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Abstract

In this work we introduce the new problem of finding time series discords. Time series discords are 

subsequences of longer time series that are maximally different to all the rest of the time series 

subsequences. They thus capture the sense of the most unusual subsequence within a time series. 

While the brute force algorithm to discover time series discords is quadratic in the length of the time 

series, we show a simple algorithm that is 3 to 4 orders of magnitude faster than brute force, while 

guaranteed to produce identical results.  

1. Introduction

The previous decade has seen hundreds of papers on time series similarity search, which is the task of 

finding a time series that is most similar to a particular query sequence [3]. In this work we pose the 

new problem of finding the sequence that is least similar to all other sequences. We call such 

sequences time series discords. Figure 1 gives a visual intuition of a time series discord found in a 

human electrocardiogram. 

Figure 1: The time series discord found in an excerpt of electrocardiogram qtdb/sel102 (marked 
in bold line). The location of the discord exactly coincides with a premature ventricular 
contraction

As we shall show, time series discords are superlative anomaly detectors, able to detect anomalies in 

diverse medical applications. 

2. Related work and background 

Our review of related work is exceptionally brief because we are considering a new problem. Some 

of the notions used throughout this paper are described below. 

2.1 Notation  

For concreteness, we begin with a definition of our data type of interest, time series: 

Definition 1. Time Series: A time series T = t1,…,tm is an ordered set of m real-valued variables. 

For data mining purposes we are typically not interested in any of the global properties of a time 

series; rather, we are interested in local subsections of the time series, which are called subsequences.   

Definition 2. Subsequence: Given a time series T of length m, a subsequence C of T is a sampling 

of length n  m of contiguous position from T, that is, C = tp,…,tp+n-1 for  1   p  m – n + 1. 

One can see that the best “matches” to a subsequence (apart from itself) tend to be located one or two 

points to the left or the right of the subsequence in question. Such matches have previously been 

called trivial matches [1][2][5]. It is critical when finding discords to exclude trivial matches; 

otherwise almost all real datasets have degenerate and unintuitive solutions. We will therefore take 

the time to formally define a non-self match 
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Definition 3. Non-Self Match: Given a time series T, containing a subsequence C of length n 

beginning at position p and a matching subsequence M beginning at q, we say that M is a non-self 

match to C at distance of D(M,C) if | p – q| >= n. 

We will use the definition of non-self matches to define time series discords:    

Definition 4. Time Series Discord: Given a time series T, the subsequence D of length n beginning 

at position l is said to be the Discord of T if D has the largest distance to its nearest non-self match.  

We will denote the location of the discord as D.l and the distance to the nearest non-self matching 

neighbor as D.dist. We have deliberately omitted naming a distance function up to this point for 

generality. For concreteness, we will use the ubiquitous Euclidean distance measure throughout the 

rest of this paper. 

Definition 5. Euclidean Distance: Given two time series Q and C of length n, the Euclidean 

distance between them is defined as:   
n

i
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1

2
,

                (1) 

3. Finding time series discords 

The brute force algorithm for finding discords is simple and obvious. We simply take each possible 

subsequence and find the distance to the nearest non-self match. The subsequence that has the 

greatest such value is the discord. This is achieved with nested loops, where the outer loop considers 

each possible candidate subsequence, and the inner loop is a linear scan to identify the candidate’s 

nearest non-self match. For clarity, the pseudo code is shown in Table 1.

Table 1: Brute Force Discord Discovery 
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Function  [dist, loc ]= Brute_Force(T, n)
 best_so_far_dist = 0 
 best_so_far_loc = NaN 

For p = 1 to |T | - n   + 1                                          // Begin Outer Loop             
    nearest_neighbor_dist = infinity 

For q = 1 to |T | - n   + 1                                      // Begin Inner Loop 
     IF | p – q | >= n                                               // non-self match? 

IF D(tp,…,tp+n-1, tq,…,tq+n-1)  < nearest_neighbor_dist 
                 nearest_neighbor_dist = D(tp,…,tp+n-1, tq,…,tq+n-1)

End 
       End                                                                  // End non-self match test
   End                                                                      // End Inner Loop

IF nearest_neighbor_dist > best_so_far_dist 
        best_so_far_dist = nearest_neighbor_dist 
        best_so_far_loc  = p

End 
End                                                                        // End Outer Loop
Return[ best_so_far_dist, best_so_far_loc ] 

The algorithm is easy to implement, and produces exact results. However, it has O(m2
) time 

complexity which is simply untenable for even moderately large datasets. The following two 

observations, however, offer hope to improve the algorithm’s running time. 

Observation 1:  In the inner loop, we don’t actually need to find the true nearest neighbor to the 

current candidate. As soon as we find any subsequence that is closer to the current candidate than 

the best_so_far_dist, we can abandon that instance of the inner loop, safe in the knowledge that 

the current candidate could not be the time series discord. 

Observation 2:  The utility of the above optimization depends on the order which the outer loop 

considers the candidates for the discord, and the order which the inner loop visits the other 

subsequences in its attempt to find a sequence that will allow an early abandon of the inner loop. 

The pseudo code is shown in Table 2. Note that the input has been augmented by two 

heuristics, one to determine the order in which the outer loop visits the subsequences, and 

one to determine the order in which the inner loop visits the subsequences. It is important to 

note that the heuristic for the outer loop is used once, but the heuristic for the inner loop 
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takes the current candidate into account, and is thus invoked to produce a new ordering for 

every iteration of the inner loop. 

Table 2 : Heuristic Discord Discovery. 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Function  [dist, loc ]= Heuristic_Search(T, n, Outer, Inner ) 
 best_so_far_dist = 0 
 best_so_far_loc = NaN 

For Each p in T  ordered by heuristic Outer // Begin Outer Loop 
     nearest_neighbor_dist = infinity
    For Each q in T ordered by heuristic Inner // Begin Inner Loop 

IF | p – q | >= n                                               // non-self match? 
IF D(tp,…,tp+n-1, tq,…,tq+n-1)  < best_so_far_dist 

Break                                          // Break out of Inner Loop
End
IF D(tp,…,tp+n-1, tq,…,tq+n-1)  < nearest_neighbor_dist 

                 nearest_neighbor_dist = D(tp,…,tp+n-1, tq,…,tq+n-1)
End 

        End                                                                  // End non-self match test
    End                                                                      // End Inner Loop

IF nearest_neighbor_dist > best_so_far_dist 
         best_so_far_dist = nearest_neighbor_dist 
         best_so_far_loc  = p

End 
End                                                                         // End Outer Loop
Return[ best_so_far_dist, best_so_far_loc ] 

We have now reduced the discord discovery problem into a generic framework where all one 

needs to do is to specify the heuristics. To gain some intuition into our new algorithm, and to hint at 

our eventual solution to this problem, let us consider 3 possible heuristic strategies: 

 Random: We could simply have both the Outer and Inner heuristics randomly order the 

subsequences to consider. It is difficult to analyze this strategy since its performance is bounded 

from below by O(m) and from above by O(m2
)  (see below for explanation) and depends on the 

data. However, empirically it works reasonably well. The conditional test on line 9 of Table 2 is 

often true and the inner loop can be abandoned early, considerably speeding up the algorithm. 

Magic:  In this hypothetical situation, we imagine that a friendly oracle gives us the best possible 

orderings. These are as follows: For Outer, the subsequences are sorted by descending order of the 

non-self distance to their nearest neighbor, so that the true discord is the first object examined. For 

Inner, the subsequences sorted in ascending order of distance to the current candidate. For the 

Magic heuristics, the first invocation of the inner loop will run to completion, thereafter, all 

subsequent invocations of the inner loop will abandoned during the very first iteration.  

Perverse: In this hypothetical situation, we imagine that a less than friendly oracle gives us the 

worst possible orderings. These are identical to the Magic orderings with ascending/descending 

orderings reversed. In this case we are back to the original O(m2
) time complexity. 

These results are something of a mixed bag for us. On one hand they suggest that a linear time 

algorithm is possible, but only with the aid of some very wishful thinking. The following two 

observations offer us some hope for a fast algorithm: 

  Observation 3: In the outer loop, we don’t actually need to achieve a perfect ordering to achieve 

dramatic speedup. All we really require is that among the first few subsequences being examined 

we have at least one that has a large distance to its nearest neighbor. This will give the 

best_so_far_dist variable a large value early on, which will make the conditional test in line on 

line 9 of Table 2 be true more often, thus allowing more early terminations of the inner loop. 

Observation 4: In the inner loop, we also don’t actually need to achieve a perfect ordering to 

achieve dramatic speedup. All we really require is that among the first few subsequences being 

examined we have at least one that has a distance to the candidate sequence being considered that 

is less than the current value of the best_so_far_dist variable. This is a sufficient condition to 

allow early termination of the inner loop. 

We can imagine a full spectrum of algorithms, which only differ by how well they order 

subsequences relative to the Magic ordering. This spectrum spans {Perverse…Random…Magic}.
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Our goal then is to find the best possible approximation to the Magic ordering, which is the topic of 

the next section. 

4. Approximations to magic 

Before we introduce our techniques for approximating the perfect ordering returned by the 

hypothetical Magic heuristics, we briefly review the discretization technique: Symbolic Aggregate 

ApproXimation (SAX) [6]. While there are least 200 different symbolic approximation of time series 

in the literature, SAX is unique in that it is the only one that allows both dimensionality reduction and 

lower bounding of Lp norms. 

4.1 A brief review of SAX 

A time series C of length n can be represented in a w-dimensional space by a vector 
wccC ,,1

. The 

ith element of C  is calculated by the following equation: 
i

ij

jn

w
i

w
n

w
n

cc
1)1(

  (2) 

In other words, to transform the time series from n dimensions to w dimensions, the data is divided 

into w equal sized “frames”. The mean value of the data falling within a frame is calculated and a 

vector of these values becomes the dimensionality-reduced representation. This simple representation 

is known as Piecewise Aggregate Approximation (PAA). 

Having transformed a time series into the PAA representation we can apply a further 

transformation to obtain a discrete representation. It is desirable to have a discretization technique that 

will produce symbols with equiprobability [2][4]. In empirical tests on more than 50 datasets we 

noted that normalized subsequences have highly Gaussian distribution [6], so we can simply 

determine the “breakpoints” that will produce equal-sized areas under Gaussian curve. These 

breakpoints may be determined by looking them up in a statistical table. Once the breakpoints have 

been obtained we can discretize a time series in the following manner. All PAA coefficients that are 

below the smallest breakpoint are mapped to the symbol “a”, all coefficients greater than or equal to 

the smallest breakpoint and less than the second smallest breakpoint are mapped to the symbol “b”, 

etc.

Figure 2 illustrates the idea. 

Figure 2: A time series (thin black line) is discretized by first obtaining a PAA approximation 
(heavy gray line) and then using predetermined breakpoints to map the PAA coefficients into 
symbols (bold letters). In the example above, with n = 128, w = 8 and a = 3, the time series is 
mapped to the word cbccbaab

4.2 Approximating the magic outer loop 

We begin by creating two data structures to support our heuristics. First, we create a SAX 

representation of the entire time series, by sliding a window of length n across time series T,

extracting subsequences, converting them to SAX words and placing them in an array where the 

index refers back to the original sequence. Figure 3 gives a visual intuition of this, where both a and 

w are set to 3.
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Figure 3: The two data structures used to support the Inner and Outer heuristics.  (left) An array 
of SAX words, where the last column contains a count of how often each word occurs in the 
array. (right) An excerpt of an trie with leaves that contain a list of all array indices that map to 
that terminal node 

Once we have this ordered list of SAX words, we can imbed them into an augmented trie where the 

leaf nodes contain a linked list index of all word occurrences that map there. The counts of the 

numbers of occurrences of each word can be mapped back to the rightmost column of the array. For 

example, in Figure 3 if we are interested in the word caa we visit the trie to discover that it occurs in 

locations 1, 3 and 731. If we are interested in the word that occurs at a particular location, lets say (m

– n) - 1, we can visit that index in the array and discover that the word cbb is mapped there. 

Furthermore we can see by examining the rightmost column that there are a total of 2 occurrences of 

that particular word (including the one we are currently visiting), however, if we want to know the 

location of the other occurrence, we must visit the trie. 

We can now state our Outer heuristic; we scan the rightmost column of the array to find the 

smallest count mincount (its value is virtually always 1). The indices of all SAX words that occur 

mincount times are recorded, and are given to the outer loop to search over first. After the outer loop 

has exhausted this set of candidates, the rest of the candidates are visited in random order. 

The intuition behind our Outer heuristic is simple. Unusual subsequences are very likely to map 

to unique or rare SAX words. By considering the candidate sequences that mapped to unique or rare 

SAX words early in the outer loop, we have an excellent chance of giving a large value to the 

best_so_far_dist variable early on, which (as noted in observation 3) will make the conditional test in 

line on line 9 of Table 2 be true more often, thus allowing more early terminations of the inner loop. 

4.3 Approximating the magic inner loop 

When candidate i is first considered in the outer loop we look up the SAX word that it maps to, by 

examining the ith word in the array. We then visit the trie and order the first items in the inner loop in 

the order of the elements in the linked list index found at the terminal nodes. For example, imagine 

we are working on the problem shown in Figure 3. If we were examining the candidate C731 in the 

outer loop, we would visit the array at location 731. Here we would find the SAX word caa. We 

could use the SAX values to traverse the trie to discover that subsequences 1, 3, 731 map here. These 

3 subsequences are visited first in the inner loop (note that line 8 of Table 2 prevents 731 from being 

compared to itself). After this step, the rest of the subsequences are visited in random order.  

The intuition behind our Inner heuristic is also simple. Subsequences that have the same SAX 

encoding as the candidate subsequence are very likely to be highly similar. As noted in observation 4, 

we just need to find one such subsequence that is similar enough (has a distance to the candidate than 

the current value of the best_so_far_dist variable) in order to termination the inner loop. 
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5. Emperical evaualtion 

For each example below, we give the speed up factor over brute force search, the only reasonable 

strawman.   

5.1 Anomaly detection in electrocardiograms 

Electrocardiograms (ECGs) are a time series of the electrical potential between two points on the 

surface of the body caused by a beating heart. We have already considered the utility of discords in 

one ECG in Figure 1.  Figure 4 shows a very complicated signal with remarkable variability.   

Figure 4: An ECG that has been annotated by a cardiologist (bottom bar) as containing one 
premature ventricular contraction. The discord256 (bold line) exactly coincides with the heart 
anomaly 

Surprisingly, this ECG contains only one small anomaly, which is easily discovered by a discord. In 

this problem our heuristic search algorithm is 909 times faster than brute force, taking us from an 

offline ½ hour to a real time few seconds. 

In Figure 5 we consider an ECG which has several different types of anomalies. Here the first 3 

discords exactly line up with the cardiologists annotations. Here our algorithm was 779 times faster 

than brute force. 

Figure 5: An excerpt of an ECG that has been annotated by a cardiologist (bottom bar) as 
containing 3 various anomalies.  The first 3 discord600 (bold lines) exactly coincides with 
the anomalies 
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