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a b s t r a c t 

Bucketization is an anonymization technique for publishing sensitive data. The idea is to 

group records into small buckets to obscure the record-level association between sensi- 

tive information and identifying information. Compared to the traditional generalization 

technique, bucketization does not require a taxonomy of attribute values, so is applicable 

to more data sets. A drawback of previous bucketization schemes is the uniform privacy 

setting and uniform bucket size, which often results in a non-achievable privacy goal or 

excessive information loss if sensitive values have variable sensitivity. 

In this work, we present a flexible bucketization scheme to address these issues. In 

the flexible scheme, each sensitive value can have its own privacy setting and buckets of 

different sizes can be formed. The challenge is to determine proper bucket sizes and group 

sensitive values into buckets so that the privacy setting of each sensitive value can be 

satisfied and overall information loss is minimized. We define the bucket setting problem 

to formalize this requirement. We present two efficient solutions to this problem. The first 

solution is optimal under the assumption that two different bucket sizes are allowed, and 

the second solution is heuristic without this assumption. We experimentally evaluate the 

effectiveness of this generalized bucketization scheme. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

1.1. Motivation 

Privacy preserving data publishing is concerned with publishing sensitive data for data analysis while ensuring that no

sensitive information about individuals is disclosed. The next example illustrates how sensitive information may be disclosed

by answering count queries. 

Example 1. A hospital provides online services for answering count queries on medical data T containing three attributes,

Gender, Zipcode, and Disease. Disease is sensitive and must not be disclosed, and Gender and Zipcode are public. Suppose

that the patient Alice has a record in the data and that an adversary tries to learn the value of Disease for Alice. Knowing

that Alice’s Zipcode is 61434, the adversary issues two queries Q and Q : 
1 2 
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Q 1 : SELECT COUNT( ∗) FROM T WHERE Gender = F AND Zipcode = 61434 

Q 2 : SELECT COUNT( ∗) FROM T WHERE Gender = F AND Zipcode = 61434 AND Disease = HIV 

Let x and y be the answers for Q 1 and Q 2 , i.e., the number of records matching the description in the WHERE clause.

Further assume x � = 0. Such answers are building blocks for many data analysis tasks such as constructing Naive Bayes

classifiers. However, an adversary could also use these answers to learn that Alice has HIV with the probability y 
x . 

The above example illustrates a sensitive disclosure through non-independent reasoning , where Alice’s disease information

is learnt from other people who share the same Gender and Zipcode as Alice, under the assumption that the diseases of

those people follow the same underlying distribution. Non-independent reasoning has a great success in many applications,

including classification, prediction, direct marketing, and product recommendation. For example, in classification we learn

the class information of a new case from a training data set. Preventing sensitive non-independent reasoning has been

a focus of syntactic models in the literature, where the raw data is modified, usually by generalization and suppression, in

order to bound the change of adversary’s beliefs after accessing published information. Some representative syntactic models

are k -anonymization [17] , ρ1 –ρ2 privacy [9] , � -diversity [16] , t -closeness [14] , β-likeness [3] , �-growth [18] , to name a few.

See surveys [1,4,10] for more details. 

As an alternative to syntactic models, the differential privacy approach [7,8] does not release the data set itself but releases

the answers to user queries using the data set, and instead of preventing non-independent reasoning, it seeks to mask the

impact of a single individual by releasing a noisy query answer x + �x, where x is the true answer and �x is the added

noise such that the distribution of noisy answers changes little with and without the participation of a single individual.

A recent study [11,20] showed that differential privacy is in the following dilemma: while a more restricted setting of ε-

differential privacy (i.e., a small ε) helps protect privacy, the noisy answers have a poor utility for data analysis; while a

less restricted setting provides a good utility for data analysis, this good utility also permits sensitive disclosures of non-

independent reasoning. The root of this dilemma is that both data analysis and sensitive disclosures are making use of the

same information, i.e., noisy answers. Wang et al. [20] shows that with the noises �y and �x generated by the ε-differential

privacy mechanism for the query answers y and x in Example 1 , y +�y 
x +�x 

arbitrarily approaches the noise-free probability y 
x 

as the data set grows arbitrarily large. The following quotes from two pioneering works on differential privacy also suggest

that differential privacy does not address the privacy violation due to non-independent reasoning. 

Page 3 of [2] : “We explicitly consider nonindependent reasoning as a non-violation of privacy; information that can

be learned about a row from sources other than the row itself is not information that the row could hope to keep

private.”

Page 8 of [7] : “Note that a bad disclosure can still occur, but our guarantee assures the individual that it will not

be the presence of her data that causes it, nor could the disclosure be avoided through any action or inaction on the

part of the user.”

According to [2] and [7] , the main reason that a disclosure due to non-independent reasoning is not considered as pri-

vacy violation is that such disclosures cannot be avoided through any action or inaction on the part of the user. For this

reason, the disclosure of Alice’s diseases through 

y +�y 
x +�x 

, when it approaches y 
x , is not considered as privacy violation by

differential privacy, though in practice Alice may not agree with this. Therefore, differential privacy is not suitable when

non-independent reasoning does violate an individual’s privacy. 

In this work, we consider non-independent reasoning of sensitive information as a privacy violation . Under this assumption,

syntactic methods through data suppression, generalization, and bucketization remain relevant. See surveys [1,4,10] for more

discussions on syntactic methods. Data suppression has a large information loss for count queries because suppressed records

or values cannot be counted by the query. Data generalization is applicable only when there is a taxonomy for each public

attributes. Also, generalized data cannot be easily analyzed by standard methods. For example, to reduce the information

loss in local recoding, the value “Engineer” could be generalized into the high level value “Professional” in some records

while it remains unchanged in other records. Consequently, “Professional” and “Engineer” cannot be treated as two distinct

values for counting, which makes it impossible to apply any standard counting based data mining methods such as Naive

Beyes classifiers. Data bucketization does not have the above problems because it does not generalize domain values. In this

work, we shall focus on the bucketization approach. 

Unfortunately, previous bucketization schemes [22] have some major drawbacks. First, all previous bucketization schemes

use a uniform privacy setting for all sensitive values. For example, the Anatomy algorithm in [22] uses � -diversity to specify

the privacy criterion that the frequency of HIV and Flu in a bucket is no more than 1/ � . Suppose that HIV is more sensitive

than Flu, where Flu occurs more frequently than HIV. � -diversity must be set according to the sensitivity of HIV, i.e., a large

� so that 1/ � is small enough for HIV. However, often this setting is not satisfiable for Flu that has a higher frequency in the

data. Another drawback of previous bucketization schemes is the uniform size for all buckets, i.e., either � or � + 1 in [22] . In

the example of HIV and Flu, � that is set according to the most sensitive HIV can be very large. A larger bucket size means

less association of a record with its original sensitive value in the bucket, thus, more information loss. More discussions

about these points will be presented in Section 3 . 
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Table 1 

Notations. 

T , | T | The raw data and its cardinality 

m Domain size of SA 

x i A sensitive value 

o i Number of occurrence of x i in T 

f i o i /| T | 

f ′ 
i 

Privacy threshold for x i 
F ′ -privacy A collection of f ′ 

i 
for all x i 

B j ( S j , b j ) b j buckets of size S j 
s ( B j ) Total size of buckets in B j 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Contributions 

The goal of this paper is to address the above drawbacks of previous bucketization schemes. Our contributions are as

follows. 

Contribution 1 . In Section 3 , we formalize a generalized bucketization problem, called bucket setting problem , in which

each sensitive value has its own privacy setting and buckets of different sizes can be formed. The goal is to find the optimal

bucket setting, i.e., the minimum bucket size for each bucket that is necessary to provide the specified privacy settings for

all the sensitive values within the bucket. 

Contribution 2 . We present an efficient optimal solution under the two-size assumption that two different bucket sizes

(but many buckets) are allowed. This solution has two parts. In Section 4 , the first part tests whether a given bucket setting

has a valid record assignment to the bucket while satisfying the specified privacy setting. In Section 5 , the second part

searches for an optimal bucket setting. 

Contribution 3 . For the general case without the two-size assumption, we present two solutions in Section 6 . The first

solution is based on integer linear programming. While guaranteeing optimality, this solution works only for data of a small

size. The second solution is heuristic and is built using the optimal solution to the two-size bucket setting problem in

Contribution 2. This solution is scalable to a large data size. 

Contribution 4 . In Section 7 , we evaluate the above solutions against the claim that the generalized bucketization scheme

could enforce variable privacy settings with less information loss. 

2. Related work 

To our knowledge, most existing works consider a uniform privacy specification for all sensitive values with the excep-

tions of personalized privacy [23] , confidence bounding [19] , � + -diversity [15] , and β-likeness [3] . Our privacy definition is

similar to the flexible privacy settings proposed in these works. The difference is in the enforcement of a flexible privacy

setting. In particular, [3,15,23] generalize the data on public attributes using a taxonomy on attributes, and [15,19] suppress

values on sensitive attributes. As discussed earlier, the suppression approach incurs a large information loss for count queries

and the generalization approach is not applicable if attribute taxonomies are not available. We consider the bucketization

approach because this approach does not require any attribute taxonomy and bucketized data can be processed by standard

data mining methods (after flattening bucketized data into a set of records). To our knowledge, this is the first bucketization

scheme that enforces a flexible privacy setting using variable bucket sizes to reduce information loss. 

One concern with syntactic models is that they are susceptible to several attacks such as the deFinetti attack [12] and

a similar attack in [21] . Under certain conditions, such attacks permit the adversary to infer sensitive information with a

probability higher than 1/ � (for � -diversity) by an analysis of the global distribution of all buckets. As shown in [6,12] , the

effectiveness of the deFinetti attack diminishes substantially when the size buckets grow. In this regard, our generalized

bucketization scheme is more immune to the deFinetti attack because a larger bucket is used for a more sensitive value.

The study in [5] argued that the deFinetti attack is not a solid argument to abandon syntactic privacy models in favor of

differential privacy, and the study in [6] suggested that syntactic models are no more susceptible to the deFinetti attack

than differential privacy. The bottom line is that syntactic privacy targets privacy violation of non-independent reasoning

whereas differential privacy does not; if the data owner considers non-independent reasoning as privacy violation, syntactic

privacy models are the only option. 

3. Problem statement 

To define the generalized bucketization problem, we start with the basic bucketization scheme. Consider a microdata

table of the form T ( QI , SA ), where QI is the quasi-identifier consisting of a set of public attributes { A 1 , . . . , A d } and SA is a

sensitive attribute with the domain { x 1 , . . . , x m 

} . o i denotes the number of records in T for x i and f i = o i / | T | is the frequency

of x i , where | T | is the cardinality of T . For a record r in T , r [ QI ] and r [ SA ] denote the values of r on QI and SA . Table 1 lists

the notations used in this paper. 
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Table 2 

A table T . 

Gender Zipcode Disease 

Male 54321 Brain Tumor 

Male 54322 Indigestion 

Female 61234 Cancer 

Female 61434 HIV 

Table 3 

A bucketization T ∗ satisfying 2-diversity. 

Gender Zipcode BID BID Disease 

M 54321 1 1 Brain Tumor 

M 54322 1 1 Indigestion 

F 61234 2 2 Cancer 

F 61434 2 2 HIV 

(a) QIT (b) SAT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An adversary wants to learn the SA value of an individual t whose record is in T through the access to a published

version of T , denoted T ∗. The adversary knows the public attributes of t , t [ QI ], as well as the algorithm that was used to

produce T ∗. The disclosure of learning a SA value, x i , is measured by the probability that t is inferred to have x i , given t [ QI ]

and T ∗. This probability is denoted by Pr ( x i | t , T 
∗). 

3.1. The basic bucketization scheme 

Xiao and Tao [22] presented a bucketization scheme to limit Pr ( x i | t , T ∗) based on the privacy criterion specified by l -

diversity [16] . This scheme partitions records into buckets such that the records in the same bucket have a diverse set of

SA values. In particular, T ∗ is represented by two tables: QIT ( QI , BID ) and SAT ( BID , SA ), where BID denotes the bucket id. If

a record r belongs to a bucket with the bucket id g , QIT contains a record ( r [ QI ], g ) and SAT contains a record ( g , r [ SA ])

(duplicates are preserved). Suppose that t [ QI ] is contained in a bucket g . P r(x i | t, g) = | g, x i | / | g| is the probability for t to

have x i in g , where | g , x i | is the number of occurrence of ( g , x i ) in SAT and | g | is the size of the bucket g . Pr ( x i | t , T 
∗) is the

maximum Pr ( x i | t , g ) for any bucket g containing t [ QI ] [22] . 

The following is an instantiation of the � -diversity principle in [16] . 

Definition 1. T ∗ satisfies � -diversity if for every individual t with a record in T and for every x i , Pr ( x i | t , T 
∗) ≤ 1/ � . (Eligibility

condition) There is a T ∗ that satisfies � -diversity if and only if the maximum frequency of any x i in T , max i f i , is no more

than 1/ � [22] . 

The eligibility condition says that if some sensitive value x i is “too frequent”, i.e., max i f i > 1/ � , � -diversity cannot be sat-

isfied, that is, no T ∗ can be published without violating � -diversity. If the eligibility condition holds, the Anatomy algorithm

in [22] can find an optimal T ∗ that satisfies � -diversity. A consequence of this algorithm is that all buckets in their T ∗ have

a uniform size that is either � or � + 1 . 

Example 2. Consider the microdata T in Table 2 where Gender and Zipcode are the QI attributes and Disease is SA . Table 3

shows QIT and SAT for one bucketization. To learn the SA value of Alice with QI = 〈 F , 61434 〉 , the adversary first locates the

buckets that contain 〈 F , 61434 〉 , i.e., bucket 2 identified by BID = 2 . There are two diseases in this bucket, Cancer and HIV,

each occurring once. So P r(x i | Alice, BID = 2) = 50% , where x i is either Cancer or HIV. Since 〈 F , 61434 〉 is contained only in

bucket 2, P r(x i | Alice, T ∗) = 50% . Similarly, P r(x i | t, T ∗) = 50% for every individual t in T . So T ∗ satisfies 2-diversity. Since the

maximum frequency max i f i is 1/4, the maximum � such that � -diversity can be satisfied is 4. 

3.2. Utility metrics 

Count queries . In this paper, we consider the utility of answering count queries such as in Example 1 . Count queries

are important building blocks for many data analysis tasks, such as contingent tables, correlation analysis, mining frequent

itemsets, building decision tree or naive Bayes classifiers. Since our bucketization preserves exactly the counts for a count

query involving only public attributes, information loss occurs only for a count query involving both public attributes and

the sensitive attribute, which has the form [22] : 

SELECT COUNT( ∗) FROM T 

WHERE pred ( A 1 ) AND ... AND pred(A q d 
) AND pred ( SA ) 

A 1 , . . . , A q d 
are QI -attributes. For any attribute A , pred ( A ) has the form 

A = a 1 OR ... OR A = a , 
b 
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where a i is a value from the domain of A . The answer act to a count query Q is the number of records in T that satisfy the

condition in the WHERE clause. 

We have to estimate the answer act using the published T ∗ given by a collection of buckets g j stored in two tables QIT

and SAT . Let g j ( QIT ) and g j ( SAT ) denote the set of records in QIT and the set of records in SAT for g j . Let c ( g j , pred ( SA )) be

the number of records in g j ( SAT ) that satisfies pred ( SA ) and let c(g j , pred(A 1 ) , . . . , pred(A q d 
)) be the number of records in

g j ( QIT ) that satisfies pred ( A 1 ) AND ... AND pred(A q d 
) . We say that a bucket g j matches a count query Q if c ( g j , pred ( SA )) >

0 and c(g j , pred(A 1 ) , . . . , pred(A q d 
)) > 0 . Let g 1 , . . . , g k be the matching buckets of Q . The estimated answer est is given by

Xiao and Tao [22] 

∑ 

j 

c(g j , pred(A 1 ) , . . . , pred(A q d )) ×
c(g j , pred(SA )) 

| g j | 

This estimation assumes that each record in g j ( QIT ) has an equal chance, i.e., 
c(g j ,pred(SA )) 

| g j | , to be associated with each occur-

rence of a SA value in g j ( SAT ). The relative error of est is | act − est| /act . 

We need a loss metric to guide the search of T ∗ that aims to reduce the relative error without knowing all the queries in

advance . There are several loss metrics in the literature. Our choice is based on the observation that the larger a bucket is,

the more records are contained in the bucket and the less likely a record will be associated with its own x i value in the

bucket. Therefore, a simple heuristic of the loss metric is the sizes of buckets. The next definition formalizes this loss metric.

Definition 2. Let T ∗ contain buckets g 1 , . . . , g b . The Mean Squared Bucket Size (MSBS) of T ∗ is defined by 

MSBS(T ∗) = 

∑ b 
i =1 (| g i | − 1) 2 

| T | − 1 

(1)

Intuitively, MSBS is the average bucket size minus one (per record). At one extreme, the raw data T can be considered

as T ∗ in which each record itself forms a bucket of size one, and MSBS = 0 . At the other extreme, for the single bucket

containing all the records in T , MSBS = | T | − 1 . MSBS is in the range [0 , | T | − 1] . For the basic bucketization scheme satisfying

� -diversity, MSBS is between � − 1 and � because a bucket has a size of � or � − 1 . Since each record in a bucket has an equal

chance to be associated with each occurrence of a SA value in the bucket, a smaller MSBS value means that a record belongs

to a smaller bucket, thus, has more chance to be associated with its own SA value when estimating the answer to a count

query using buckets. For example, MSBS = 0 means that each record is always associated with its own SA value in a bucket

because it is the only record in its bucket. Thus, minimizing MSBS would increase the chance of a record being associated

with his own SA value in a bucket. 

With | T | being fixed, minimizing MSBS is equivalent to minimizing the following loss 

Loss (T ∗) = 

b ∑ 

i =1 

(| g i | − 1) 2 (2)

Loss has the following additivity property: if T ∗ has a partition { T ∗1 , T ∗2 } , Loss (T ∗) = Loss (T ∗1 ) + Loss (T ∗2 ) . Thus, an optimal

solution T ∗ consists of an optimal solution T ∗1 and an optimal solution T ∗2 . This property helps decompose a larger problem

into smaller ones. In the rest of the paper, we shall use Loss as our loss metric in the search of bucketization T ∗. 

One may note that MSBS is completely determined by the sizes of buckets and does not depend on the actual distribu-

tion of x i values in a bucket. This decision is a tradeoff between the complexity of search and the accuracy of information

loss because minimizing the bucket sizes is much simpler than minimizing other loss metrics that consider the actual dis-

tribution of x i values in a bucket. In particular, we will show that, to minimize MSBS while satisfying a privacy criterion, it

suffices to consider even distribution of the occurrences of each x i value across buckets because such distributions most ef-

fectively remove privacy violation. This property significantly simplifies the search of an optimal bucketization. More details

are presented in Lemma 2 . 

3.3. Privacy metrics 

The � -diversity in Definition 1 uses a single privacy setting 1/ � for all sensitive values x i . Typically, a different sensitive

value may require a different privacy setting for two reasons. First, some sensitive values are more sensitive than others by

nature. Second, some sensitive values are less common than others. For example, HIV is less common and more sensitive

than Flu, thus, a smaller threshold 1/ � , i.e., a larger � , is required as compared to Flu. In this case, the single setting 1/ �

must be specified according to the more sensitive HIV, which is too small for Flu that has a large frequency in the data. This

leads to an unsatisfiable siltation. Even if the � -diversity is satisfiable for both values, the single � chosen according to HIV

is likely very large, so the basic bucketization scheme [22] produces the buckets of large sizes � or � + 1 . To address this

issue, we consider a flexible privacy setting specification defined as follows. Recall that f i denotes the actual frequency of x i
in T , i.e., o i /| T |, whereas f ′ 

i 
is a publisher-specified threshold for Pr ( x i | t , T 

∗). 

Definition 3 ( F ′ -Privacy ) . For each SA value x i , f ′ 
i 
-privacy specifies the requirement that P r(x i | t, T ∗) ≤ f ′ 

i 
, where f ′ 

i 
is a real

in the range (0,1]. F ′ -privacy is a collection of f ′ 
i 
-privacy for all SA values x i . 
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� -diversity is the special case of f ′ 
i 

= 1 /� for all x i values. In general, the specification of f ′ 
i 

depends on the sensitivity of

x i , the frequency f i , and the user’s trade-off between privacy and utility. In general, f ′ 
i 

can be specified semi-automatically.

For example, the publisher may set f ′ 
i 

= 1 for those x i ’s that are not sensitive at all (such as Flu), set f ′ 
i 

manually to a small

value for highly sensitive x i (such as HIV), and set f ′ 
i 

to some function of f i for those x i whose thresholds are related to their

frequencies in T . An example is f ′ 
i 

= min { 1 , θ × f i + 0 . 02 } for some constant θ . This linear relationship models that a less

frequently occurring x i value tends to be more sensitive (thus, have a smaller privacy threshold f ′ 
i 
). For example, suppose

that HIV is less common than Flu, we would expect that HIV has a smaller privacy threshold than Flu. The coefficient θ
specifies the rate of this relationship. 

The next lemma gives a necessary and sufficient condition for the existence of T ∗ satisfying a given F ′ -privacy. 

Lemma 1 (Eligibility condition for F ′ -privacy) . Given a table T and a specification of F ′ -privacy, there exists T ∗ satisfying F ′ -
privacy if and only if f ′ 

i 
≥ f i for all x i . 

Proof. “If” follows from the fact that the single bucket T ∗ containing all records always satisfies F ′ -privacy if f ′ 
i 

≥ f i for all

x i . “Only if” follows from the fact that, for each x i , there is some bucket g in which the frequency of x i is at least f i , that is,

Pr ( x i | t , g ) ≥ f i . �

Remark 1. F ′ -privacy has two advantages over � -diversity. First, by allowing each x i value a different setting f ′ 
i 
, a smaller

bucket can be used for the records of x i with a larger f ′ 
i 

and a larger bucket is used only for records of x i with a smaller

f ′ 
i 
. In contrast, the corresponding � -diversity that enforces the same F ′ -privacy requires 1 /� ≤ min i f 

′ 
i 
, or � = 	 1 /min i f 

′ 
i 

 . This

� , chosen according to the minimum f ′ 
i 
, yields large buckets in the basic bucketization scheme [22] where every bucket has

a size either � or � + 1 . The second advantage is that F ′ -privacy is easier to satisfy than the corresponding � -diversity. From

Definition 1 and Lemma 1 , F ′ -privacy has a solution if and only if f ′ 
i 

≥ f i for all x i , and the corresponding � -diversity has

a solution if and only if 1/ � ≥ max i f i . With 1 /� ≤ min i f 
′ 
i 
, 1/ � ≥ max i f i implies min i f 

′ 
i 

≥ max i f i . The last inequality is much

harder to satisfy than f ′ 
i 

≥ f i for all x i , the eligibility condition for F ′ -privacy. This is especially true when the distribution x i 
is skewed where max i f i is large, or when the sensitivity of x i is skewed where min i f 

′ 
i 

is small. 

3.4. Generalized bucketization problems 

Given a F ′ -privacy specification and T , we want to find a bucketization T ∗ such that P r(x i | t, T ∗) ≤ f ′ 
i 

for every target

individual t and every SA value x i , and Loss ( T ∗) is as small as possible. The key step is to determine the smallest size for

each bucket so that all records can be assigned to some bucket and f ′ 
i 
-privacy is satisfied in each bucket. In the rest of the

paper, the term bucket setting refers to the specification of the size for each bucket and is written 〈 B 1 , . . . , B q 〉 or ∪ B j , where

B j is a pair ( S j , b j ) and specifies b j buckets of the size S j , 0 < S 1 < ��� < S q and b j > 0, j = 1 , . . . , q . s (B j ) = b j S j denotes the

capacity of the buckets specified by B j , Loss ( ∪ B j ) denotes the loss of the bucket setting, i.e., 
∑ q 

j=1 
b j × (S j − 1) 2 , as defined

in Eq. (2) . We want to find a bucket setting 〈 B 1 , . . . , B q 〉 such that all of the following conditions are satisfied: 

1. 
∑ 

j s (B j ) = | T | , i.e., the buckets could hold all records in T , 

2. there is an assignment of records to the buckets such that, for each x i and each bucket g , the frequency of x i in g is no

more than f ′ 
i 
, and 

3. Loss ( ∪ B j ) is minimized. 

We say that a bucket setting satisfying 1) is feasible ; a bucket setting satisfying 1) and 2) is valid , and in this case the

record assignment in 2) is valid; a bucket setting satisfying all of 1), 2) and 3) is optimal . Here are the main problems we

will study: 

Definition 4. The bucket setting validation problem : Given a feasible bucket setting ∪ B j , test if it is valid w.r.t. | T | and F ′ -
privacy. The bucket assignment problem : Given a valid bucket setting ∪ B j , find a valid assignment of records in T to the

buckets in ∪ B j . The bucket setting problem : Given T and F ′ -privacy, find an optimal bucket setting 〈 B 1 , . . . , B q 〉 . 
The one-size bucket setting problem is the special case where q = 1 , and the two-size bucket setting problem is the special

case where q = 2 . Even for the two-size bucket setting problem, finding an optimal solution is challenging because the

number of feasible bucket settings is huge and considering all is prohibitive. For example, suppose that the sizes S 1 and S 2 
are chosen from the range of [3, 20], and | T | = 1 , 0 0 0 , 0 0 0 , there are a total of 2,077,869 feasible bucket settings of the form

〈 ( S 1 , b 1 ), ( S 2 , b 2 ) 〉 . This number is much larger if q > 2. 

4. Validating two-size bucket setting 

This section considers the problem of testing if a given two-size bucket setting B is valid wrt T and F ′ , that is, if there

is an assignment of records in T to the buckets specified such that F ′ -privacy is satisfied. Let the function Valid ( B , T , F ′ )
return “true” if and only if B is valid wrt T and F ′ . In Section 4.1 , we consider the case for one-size bucket setting B , and in

Section 4.2 , we consider the case for two-size bucket setting B . Section 4.3 presents an algorithm for assigning records to

buckets for a valid two-size bucket setting B . 
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Table 4 

RRA: each row represents a bucket and each in- 

teger i represents one record for x i . 

1 3 4 5 6 7 8 8 

1 3 4 5 6 7 8 8 

2 4 5 6 7 7 8 8 

2 4 5 6 7 7 8 8 
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4.1. One-size validation 

Consider b buckets B = { g 0 , . . . , g b−1 } that have the same bucket size S . The following even distribution, called Round-

Robin Assignment (RRA) , of records for x i to all buckets g 0 , . . . , g b−1 will minimize the frequency of x i in a bucket: for each

value x i , 1 ≤ i ≤ m , assign all the records for x i to the buckets g 0 , . . . , g b−1 in a round-robin manner. Essentially, RRA

distributes the records for each x i evenly across the buckets in order to minimize the frequency of x i in a bucket. Therefore,

to test if B is valid, it suffices to consider RRA because if this assignment cannot satisfy F ′ -privacy, no assignment can. 

Table 4 shows an example of RRA that assigns 32 records to 4 buckets of size 8. Each row represents one bucket and

an integer i represents one record for x i . RRA evenly distributes the records for each x i across buckets. It is easy to see that

for b buckets of the size S each, the number of records for x i assigned to a bucket is either � | o i |/ b  or 	 | o i |/ b 
 , and the

frequency of x i in a bucket of size S is at most 
	 o i /b
 

S . This observation gives rise to a sufficient and necessary condition for

 alid(B, T , F ′ ) = true (i.e., conditions 3) and 4)) in the next lemma. 

Lemma 2 (One-size validation) . Let B = { g 0 , . . . , g b−1 } be a set of buckets of size S such that | T | = s (B ) (note s (B ) = bS). The

following conditions are equivalent: (1) V alid(B, T , F ′ ) = true . (2) There is a valid RRA from T to B. (3) For each x i , 
	 o i /b
 

S ≤ f ′ 
i 
. 4)

For each x i , o i ≤ � f ′ 
i 
S b. 

Proof. We show 4) ⇒ 3) ⇒ 2) ⇒ 1) ⇒ 4). Let r be a real and i be an integer. r ≤ i if and only if 	 r 
 ≤ i , and i ≤ r if

and only if i ≤ � r  . Therefore, 
	 o i /b
 

S ≤ f ′ 
i 

⇔ 	 o i /b
 ≤ f ′ 
i 
S ⇔ 	 o i /b
 ≤ � f ′ 

i 
S ⇔ o i /b ≤ � f ′ 

i 
S ⇔ o i ≤ � f ′ 

i 
S b. This implies 4) ⇒

3). To see 3) ⇒ 2), observe that 
	 o i /b
 

S is the maximum frequency of x i in a bucket generated by RRA. So 3) implies that this

assignment is valid. 2) ⇒ 1) follows because every valid RRA is a valid assignment. To see 1) ⇒ 4), observe that F ′ -privacy

implies that the number of occurrence of x i in a bucket of size S is at most � f ′ 
i 
S . Thus for any valid assignment, the total

number of occurrence o i in the b buckets of size S is no more than � f ′ 
i 
S b. �

Lemmas 2 – 4 gives a test for V alid(B, T , F ′ ) = true, which can be evaluated efficiently given T , F ′ , b , and S . In addition, if

this condition holds, RRA gives a valid record assignment. 

4.2. Two-size validation 

For two-size bucket setting B 1 ∪ B 2 , where B 1 denotes a set of buckets of size S 1 and B 2 denotes a set of buckets of size

S 2 , V alid(B 1 ∪ B 2 , T , F 
′ ) = true if and only if there is a partition of T , { T 1 , T 2 }, such that V alid(B j , T j , F 

′ ) = true, where T j is

the set of records assigned to the buckets in B j , j = 1 , 2 . We present the algorithm for computing Valid ( B 1 ∪ B 2 , T , F 
′ ). First,

we define some notations. 

Definition 5 ( u ij and a ij ) . For each x i and for j = 1 , 2 , we define u i j = � f ′ 
i 
S j  b j and a i j = min { u i j , o i } . 

From Lemmas 2 –4 , if V alid(B j , T j , F 
′ ) = true, u ij is an upper bound on the number of records for x i that can be allocated

to the buckets in B j . a ij is an upper bound after considering the maximum supply of the x i records, i.e., o i . The next theorem

gives an efficient algorithm for computing Valid ( B 1 ∪ B 2 , T , F 
′ ). 

Theorem 1 (Two-size validation) . V alid(B 1 ∪ B 2 , T , F 
′ ) = true if and only if all of the following hold: 

P ri v acy Constraint (P C) : ∀ i : a i 1 + a i 2 ≥ o i (3)

F ill C onstraint (F C ) : j = 1 , 2 , 
∑ 

i a i j ≥ b j S j (4)

C apacity C onstraint (C C ) : | T | = b 1 S 1 + b 2 S 2 (5)

Proof. Eq. (3) says that the total number of occurrences of x i should not exceed the upper bound a i 1 + a i 2 , where a ij is an

upper bound imposed by F ′ -privacy for T j , j = 1 , 2 . Eq. (4) says that under the upper bound constraint of a ij it should be

possible to fill up all the buckets in B j . Eq. (5) says that the total bucket capacity matches the data cardinality. Clearly, all

these conditions are necessary for a valid record assignment to the buckets in B 2 ∪ B 2 . The sufficiency proof follows from an

algorithm in the next section that actually finds a partition { T 1 , T 2 } of T such that V alid(B j , T j , F 
′ ) = true, j = 1 , 2 , assuming

that the above conditions hold. �
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Thus, given T , F ′ -privacy, b j , and S j , j = 1 , 2 , we can test efficiently whether there is a valid record assignment from T to

the b j buckets of size S j without enumerating any actual assignment. 

4.3. Record partition 

The next question is how to produce a partition { T 1 , T 2 } of T such that V alid(B 1 , T 1 , F 
′ ) = true and V alid(B 2 , T 2 , F 

′ ) = true,

assuming that the conditions in Theorem 1 hold. The answer to this question serves two purposes: it provides the sufficiency

proof for Theorem 1 and it provides an algorithm for producing a valid record assignment for a valid two-size bucket setting

B 1 ∪ B 2 , i.e., by first finding the partition { T 1 , T 2 } and then assigning the records in T j to the buckets in B j by applying RRA

to ( B j , T j ), j = 1 , 2 . The answer to the above question is given by Algorithm 1 . Recall that o i is the number of records for x i
in T and that a ij and u ij , j = 1 , 2 , are defined in Definition 5 . This algorithm produces { T 1 , T 2 } such that for j = 1 , 2 , o ij ≤ u ij
for all x i and 

∑ 

i o i j = b j S j , where o ij denotes the number of records for x i in T j . This condition implies that the condition in

Lemmas 2 –4 holds on ( B j , T j ) for j = 1 , 2 , therefore, V alid(B 1 , T 1 , F 
′ ) = true and V alid(B 2 , T 2 , F 

′ ) = true . 

Algorithm 1 Record Partition. 

Input: T , B 1 , B 2 , F 
′ satisfying all the conditions (i.e., PC, FC, and CC) in Theorem 1 

Output: the partition { T 1 , T 2 } of T such that, for j = 1 , 2 , o i j ≤ u i j for all x i and | T j | = b j S j , where o i j denotes the number of

records for x i in T j and | T j | = 

∑ 

i o i j 

1: for all SA values x i do 

2: let T 1 contain any a i 1 records for x i in T and let T 2 contain the remaining o i − a i 1 records for x i in T 

3: end for 

4: while | T 1 | > b 1 S 1 do 

5: move one record for x i from T 1 , such that o i 2 < u i 2 , to T 2 
6: end while 

7: return { T 1 , T 2 } 

Let us see why the output satisfies the specified condition. Initially, for each x i , T 1 contains any a i 1 records for x i in T and

T 2 contains the remaining o i − a i 1 records for x i . So o i 1 = a i 1 and o i 2 = o i − a i 1 . o i 1 = a i 1 and a i 1 ≤ u i 1 imply that Lemmas 2 –

4 holds on ( B 1 , T 1 ). From PC, o i − a i 1 ≤ a i 2 , thus, o i 2 ≤ u i 2 , so Lemmas 2 –4 holds on ( B 2 , T 2 ). It remains to see | T j | = b j S j ,

j = 1 , 2 . Note | T 1 | = 

∑ 

i a i 1 . FC implies | T 1 | ≥ b 1 S 1 . If | T 1 | = b 1 S 1 , then | T 2 | = b 2 S 2 because of CC, so { T 1 , T 2 } is a partition

specified in the output. 

Let us assume | T 1 | > b 1 S 1 , thus | T 2 | < b 2 S 2 . To satisfy | T j | = b j S j , j = 1 , 2 , Lines 3 and 4 move records from T 1 to T 2
while preserving o i 1 ≤ u i 1 and o i 2 ≤ u i 2 . Clearly, moving records out of T 1 preserves o i 1 ≤ u i 1 . We claim that, as long as | T 2 |

< b 2 S 2 , there must exist some x i such that o i 2 < u i 2 , therefore, moving one record for x i from T 1 into T 2 preserves o i 2 ≤
u i 2 . Suppose no such x i exists, we must have u i 2 = o i 2 for all x i , thus, �i u i 2 = | T 2 | . Then u i 2 ≥ a i 2 and FC imply | T 2 | ≥ b 2 S 2 ,

which contradicts | T 2 | < b 2 S 2 . This shows the above claim. From this claim, as long as | T 1 | > b 1 S 1 (thus, | T 2 | < b 2 S 2 ), we

can always move a record for some x i from T 1 to T 2 while preserving o i 2 ≤ u i 2 , until | T 2 | = b 2 S 2 . This move is performed by

the while-loop in Algorithm 1 . 

Corollary 1. V alid(B 1 ∪ B 2 , T , F 
′ ) = true can be tested in O (m + | T | log| T | ) time. 

5. Optimal solution to two-size bucket setting 

We now present an optimal solution for the two-size bucket setting problem: given T and F ′ -privacy, find the valid bucket

setting of the form 〈 ( S 1 , b 1 ), ( S 2 , b 2 ) 〉 , where b j ≥ 0 and S 1 < S 2 , such that 

Loss (B 1 ∪ B 2 ) = b 1 (S 1 − 1) 2 + b 2 (S 2 − 1) 2 (6)

is minimized. f ′ 
i 
-privacy implies that a record for x i must be placed in a bucket of size at least 	 1 / f ′ 

i 

 ; therefore, the

minimum value for S 1 and S 2 is M = min i {	 1 / f ′ 
i 

} . The maximum value for S 1 and S 2 is constrained by the information loss

allowed. We assume that this maximum value M 

′ is given and we search for the optimal bucket setting over all the size

pairs ( S 1 , S 2 ) in the range M ≤ S 1 < S 2 ≤ M 

′ . Note that there may not be a valid bucket setting in this range, but if it does,

we want to find an optimal bucket setting in this range. 

As noted in Section 3.4 , it is prohibitive to enumerate all feasible bucket settings. Our approach is pruning unpromising

bucket settings without examining them. A bucket setting is unpromising if either it is not valid or it does not have the

minimum loss. First, we need to organize all feasible bucket settings for each ( S 1 , S 2 ) according to Loss . We say that a

candidate ( b 1 , b 2 ) is a feasible wrt ( S 1 , S 2 ) if 〈 ( S 1 , b 1 ), ( S 2 , b 2 ) 〉 is feasible, i.e., | T | = S 1 b 1 + S 2 b 2 ; ( b 1 , b 2 ) is a valid wrt ( S 1 ,

S 2 ) if 〈 ( S 1 , b 1 ), ( S 2 , b 2 ) 〉 is valid; ( b 1 , b 2 ) is an optimal wrt ( S 1 , S 2 ) if it is valid and if Loss ( B 1 ∪ B 2 ) is minimum among all

valid ( b 1 , b 2 ) wrt ( S 1 , S 2 ), where B j = (S j , b j ) , j = 1 , 2 . 
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5.1. Ordering candidates 

Recall that Loss (B 1 ∪ B 2 ) = b 1 (S 1 − 1) 2 + b 2 (S 2 − 1) 2 . Given a size pair ( S 1 , S 2 ), where S 1 < S 2 , since S 1 b 1 + S 2 b 2 = | T | , ( b 1 ,
b 2 ) has a smaller loss than (b ′ 

1 
, b ′ 

2 
) if and only if b 1 > b ′ 

1 
(in which case b 2 < b ′ 

2 
). Therefore, if all feasible candidates ( b 1 , b 2 )

wrt ( S 1 , S 2 ) are listed in the descending order of b 1 , they are in the ascending order of Los . Let 	( S 1 , S 2 ) denote this list for

( S 1 , S 2 ). 

Lemma 3. If ( b 1 , b 2 ) precedes (b ′ 
1 
, b ′ 

2 
) in 	( S 1 , S 2 ), Loss (B 1 ∪ B 2 ) < Loss (B ′ 

1 
∪ B ′ 

2 
) , where B j contains b j buckets of size S j , and

B ′ 
j 

contains b ′ 
j 

buckets of size S j , j = 1 , 2 . Therefore, the first valid candidate ( b 1 , b 2 ) in 	( S 1 , S 2 ) is optimal wrt ( S 1 , S 2 ) . 

The beauty of 	( S 1 , S 2 ) is that its i th candidate can be generated based on the index i , which means that there is no

need to store 	( S 1 , S 2 ). The first candidate ( b 1 , b 2 ) has the largest possible b 1 such that S 1 b 1 + S 2 b 2 = | T | . This ( b 1 , b 2 ) is

the solution to the integer linear program: 

min { b 2 | S 1 b 1 + S 2 b 2 = | T |} , (7)

where b 1 and b 2 are variables of non-negative integers and S 1 , S 2 , | T | are constants. Let (b 0 
1 
, b 0 

2 
) denote this first candidate

in 	( S 1 , S 2 ). 

To determine the i th candidate, consider two consecutive candidates ( b 1 , b 2 ) and (b 1 − �1 , b 2 + �2 ) in 	( S 1 , S 2 ). Note

that S 1 b 1 + S 2 b 2 = | T | and S 1 (b 1 − �1 ) + S 2 (b 2 + �2 ) = | T | , and �1 and �2 are the smallest positive integers such that

these equalities hold. Therefore, S 1 �1 = S 2 �2 , and S 2 �2 are the least common multiple of S 1 and S 2 (i.e., the smallest

positive integer that is a multiple of both S 1 and S 2 ). Let lcm ( S 1 , S 2 ) denote the least common multiple of S 1 and S 2 . Then

�2 and �1 are given by 

�1 = lcm (S 1 , S 2 ) /S 1 
�2 = lcm (S 1 , S 2 ) /S 2 

(8)

The i th candidate in 	( S 1 , S 2 ), where i ≥ 0, has the form (b 0 
1 

− i ∗ �1 , b 
0 
2 

+ i ∗ �2 ) . The last candidate has the smallest

possible b 0 
1 

− i ∗ �1 , that is, 0 ≤ b 0 
1 

− i ∗ �1 < �1 . The integer i satisfying this condition is given by 

k = � b 0 1 / �1  (9)

Lemma 4. Let b 0 
1 
, b 0 

2 
, �1 , �2 , k be defined in Eqs. (7) –( 9 ). For 0 ≤ i ≤ k , the ith candidate in 	( S 1 , S 2 ) has the form 

(b 0 1 − i ∗ �1 , b 
0 
2 + i ∗ �2 ) (10)

Example 3. Let | T | = 28 , S 1 = 2 , S 2 = 4 . lcm (S 1 , S 2 ) = 4 . �2 = 4 / 4 = 1 and �1 = 4 / 2 = 2 . b 0 
1 

= 14 , b 0 
2 

= 0 . k = � 14 / 2  = 7 .

	( S 1 , S 2 ) is (14,0), (12,1), (10,2), (8,3), (6,4), (4,5), (2,6), (0,7). 

We now return to the problem of finding the optimal bucket setting 〈 ( S 1 , b 1 ), ( S 2 , b 2 ) 〉 , where M ≤ S 1 < S 2 ≤ M 

′ . We

propose two pruning strategies to prune unpromising candidates in 	( S 1 , S 2 ). The first strategy prunes candidates that do

not have a minimum loss and the second strategy prunes the candidates that are not valid. 

5.2. Loss-based pruning 

We consider all size pairs ( S 1 , S 2 ), where M ≤ S 1 < S 2 ≤ M 

′ , in some order. Let Best loss be the minimum loss of the valid

bucket settings examined so far and let ( S 1 , S 2 ) be the next size pair to consider. Lemma 3 implies that all the candidates in

	( S 1 , S 2 ) that have Loss less than Best loss are contained in a prefix of 	( S 1 , S 2 ). Let (b ∗
1 
, b ∗

2 
) be the last candidate in this prefix.

We have b ∗1 = b 0 
1 

− k ∗ ∗ �1 and b ∗2 = b 0 
2 

+ k ∗ ∗ �2 , where k ∗ is the maximum integer satisfying b ∗1 (S 1 − 1) 2 + b ∗2 (S 2 − 1) 2 <

Best loss . Solving this inequality gives 

k ∗ = max 

{
0 , 

⌊
Best loss − b 0 1 (S 1 − 1) 2 − b 0 2 (S 2 − 1) 2 

�2 (S 2 − 1) 2 − �1 (S 1 − 1) 2 

⌋}
(11)

Define 

k ′ = min { k, k ∗} (12)

where k is given by Eq. (9) . 

From Lemma 3 , any bucket setting in 	( S 1 , S 2 ) that has a smaller loss than Best loss occurs in the first k ′ + 1 candidates in

	( S 1 , S 2 ), and the first valid bucket setting in the first k ′ + 1 candidates is optimal wrt ( S 1 , S 2 ). In other words, it suffices to

consider the first k ′ + 1 candidates in 	( S 1 , S 2 ), instead of the entire 	( S 1 , S 2 ). This loss-based pruning is stated in the next

lemma and the algorithm based on this strategy is given in Algorithm 2 . 

Lemma 5. Let 	′ ( S 1 , S 2 ) contain the first k ′ + 1 candidates in 	( S 1 , S 2 ) . The first valid candidate in 	′ ( S 1 , S 2 ) is optimal wrt ( S 1 ,

S 2 ) . 

The input to Algorithm 2 consists of a table T , privacy parameter F ′ , and the minimum and maximum bucket sizes M

and M 

′ . The output is an optimal two-size bucket setting wrt F ′ if one exists. Lines 1 and 2 initialize Best loss and Best setting .
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Algorithm 2 TwoSizeBucketing. 

Input: T , F ′ , M, M 

′ 
Output: optimal bucket setting 〈 (S 1 , b 1 ) , (S 2 , b 2 ) 〉 

1: Best loss ← ∞ 

2: Best set t ing ← NULL 

3: for all { S 1 = M; S 1 ≤ M 

′ − 1 ; S 1 + + } do 

4: for all { S 2 = S 1 + 1 ; S 2 ≤ M 

′ ; S 2 + + } do 

5: compute k ′ using Eq. (12) 

6: let 	′ (S 1 , S 2 ) be the first k ′ + 1 candidates in 	(S 1 , S 2 ) 

7: find the first valid candidate (b 1 , b 2 ) in 	′ (S 1 , S 2 ) 

8: if (b 1 , b 2 ) is found then 

9: let B j be the set of b j buckets of size S j , j = 1 , 2 

10: if Best loss > Loss (B 1 ∪ B 2 ) then 

11: Best set t ing ← 〈 B 1 , B 2 〉 
12: Best loss ← Loss (B 1 ∪ B 2 ) 

13: end if 

14: end if 

15: end for 

16: end for 

17: return Best set t ing 

Fig. 1. (a) Monotone C 1 . (b) Anti-monotone C 2 . (c) C 1 ∧ C 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lines 3 and 4 iterate all size pairs ( S 1 , S 2 ) with M ≤ S 1 < S 2 ≤ M 

′ . For each ( S 1 , S 2 ), Lines 7–12 find the first valid candidate

in 	′ ( S 1 , S 2 ) and update Best loss and Best setting if necessary. Line 13 returns Best setting . The loss-based pruning is implemented

by focusing on the prefix 	′ ( S 1 , S 2 ) derived from Best loss . Though we did not specify the order of considering the sizes ( S 1 ,

S 2 ), to tighten up the above pruning, Lines 3 and 4 should examine smaller sizes ( S 1 , S 2 ) before examining larger ones, to

ensure that small Best loss is generated as early as possible. 

Algorithm 2 still needs to scan the prefix 	′ ( S 1 , S 2 ) to find the first valid candidate. If there are many invalid candidates

before the first valid candidate, this sequential scan is still expensive. In the next section, we present a binary search to

locate the first valid candidate in 	′ ( S 1 , S 2 ) by exploiting certain “monotonicity properties” of valid candidates. 

5.3. Privacy-based pruning 

Consider a sublist L of 	′ and a Boolean condition C defined on an candidate in L . Let h ( C , L ) denote the set of all

candidates in L on which C holds, and let f ( C , L ) denote the set of all candidates in L on which C fails. We say that C is

monotone in L if whenever a candidate in L is in h ( C , L ), all later candidates in L are in h ( C , L ), and we say that C is anti-

monotone in L if whenever a candidate in L is in f ( C , L ), all later candidates in L are in f ( C , L ). A monotone C splits L into

those in f ( C , L ) on the left and those in h ( C , L ) on the right, and we assume that f ( C , L ) and h ( C , L ) are sublists of L that

preserve the order of candidates in L . An anti-monotone C splits L into those in h ( C , L ) on the left and those in f ( C , L ) on

the right, and similarly, we assume that f ( C , L ) and h ( C , L ) are sublists of L . 

Fig. 1 (a), (b) and (c) show h ( C 1 , L ), h ( C 2 , L ) and h ( C 1 ∧ C 2 , L ) for a monotone C 1 and anti-monotone C 2 . An important point

is that if C is monotone, we can find the first satisfying candidate in L by a binary search over L by testing C for at most

log 2 | L | candidates, and if C is anti-monotone, we can find the first satisfying in L by testing the first candidate in L . More

generally, if C i , 1 ≤ i ≤ l , are monotone in L and that C ′ 
j 
, 1 ≤ j ≤ l ′ , are anti-monotone in L , we can find the first candidate

in L that satisfies (∧ i C i ) ∧ (∧ j C 
′ 
j 
) by a binary search over L . The initial round starts with the full list L . At each round, we

test if ∧ i C i holds at the mid-point μ. If so, we drop the second half and search the first half. If not, there are two cases: if

∧ j C 
′ 
j 

holds at μ, we drop the first half and search the second half; if ∧ j C 
′ 
j 

fails at μ, there is no candidate in L satisfying 

(∧ i C i ) ∧ (∧ j C 
′ 
j 
) . At every mid-point μ, we test at most l + l ′ conditions. In total, we test at most (l + l ′ ) log 2 | L | conditions. 
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Lemma 6. Suppose that C i , 1 ≤ i ≤ l , are monotone in L and that C ′ 
j 
, 1 ≤ j ≤ l ′ , are anti-monotone in L , we can find the first

candidate in L that satisfies (∧ i C i ) ∧ (∧ j C 
′ 
j 
) by a binary search over L. 

In the discussion below, 	′ refers to 	′ ( S 1 , S 2 ) when S 1 and S 2 are clear from the context. From Lemma 5 , the first valid

candidate in 	′ is optimal wrt ( S 1 , S 2 ), where a candidate in 	′ is valid if and only if it satisfies the conditions FC and

PC in Theorem 1 (note that CC holds since all candidates in 	′ are feasible). We show that FC and PC can be broken into

several monotone C i and anti-monotone C ′ 
j 
, therefore, we can find the first valid candidate in 	′ by a binary search over

	′ . In Theorem 1 , let F C S 1 denote FC for j = 1 and F C S 2 denote FC for j = 2 , and let P C x i denote PC for x i . The set of valid

candidates in 	′ is given by 

	∗ = h (F C S 1 ∧ F C S 2 ∧ (∧ i P C x i ) , 	
′ ) (13)

Below, we show that F C S 1 , F C S 2 , P C x i are either monotone or anti-monotone. 

5.3.1. Monotonicity of FC 

Lemma 7. F C S 1 is monotone in 	′ and F C S 2 is anti-monotone in 	′ . 

Proof. Rewrite F C S 1 and F C S 2 into ∑ 

i 

min i {� f ′ i S 1  b 1 , o i } ≥ S 1 b 1 (14)

∑ 

i 

min i {� f ′ i S 2  b 2 , o i } ≥ S 2 b 2 (15)

Let ( b 1 , b 2 ) precede (b ′ 
1 
, b ′ 

2 
) in 	′ . b 1 > b ′ 

1 
and b 2 < b ′ 

2 
. Since o i is a constant, decreasing b 1 to b ′ 

1 
preserves the satisfaction

of Eq. (14) , so Eq. (14) is monotone on 	′ . Similarly, increasing b 2 to b ′ 
2 

preserves the failure of Eq. (15) , so Eq. (15) is

anti-monotone on 	′ . �

The first valid candidate in 	′ is contained in the sublist h (F C S 1 ∧ F C S 2 , 	
′ ) . In the following discussion, L FC denotes this

sublist. The boundaries of L FC can be found by a binary search over 	′ using F C S 1 and F C S 2 because these conditions are

monotone or anti-monotone ( Lemma 7 ). 

5.3.2. Monotonicity of PC 

The monotonicity of P C x i is a bit more complicated. Let us rewrite P C x i into 

min {� f ′ i S 1  b 1 , o i } + min {� f ′ i S 2  b 2 , o i } ≥ o i (16)

Since b 1 is decreasing and b 2 is increasing in L , � f ′ 
i 
S 1  b 1 ≥ o i is anti-monotone and � f ′ 

i 
S 2  b 2 ≥ o i is monotone in L . Therefore,

Eq. (16) holds in three cases: 

Case1: � f ′ 
i 
S 1  b 1 ≥ o i , 

Case2: � f ′ 
i 
S 2  b 2 ≥ o i , 

Case3: (� f ′ 
i 
S 1  b 1 < o i ) ∧ (� f ′ 

i 
S 2  b 2 < o i ) . 

If both Case1 and Case2 fail, we have Case3. In this case, Eq. (16) degenerates into 

� f ′ i S 1  b 1 + � f ′ i S 2  b 2 ≥ o i (17)

Consider any two consecutive candidates ( b 1 , b 2 ) and (b 1 − �1 , b 2 + �2 ) in L . If 

� f ′ i S 2  �2 ≥ � f ′ i S 1  �1 (18)

holds, Eq. (17) holding on ( b 1 , b 2 ) implies that it holds on (b 1 − �1 , b 2 + �2 ) , therefore, Eq. (17) is monotone; if Eq. (18)

fails, Eq. (17) failing on ( b 1 , b 2 ) implies that it fails on (b 1 − �1 , b 2 + �2 ) , therefore, Eq. (17) is anti-monotone. Note that

Eq. (18) does not depend on ( b 1 , b 2 ) and it has a fixed value for each ( S 1 , S 2 ). The next corollary summarizes the above

observation. 

Corollary 2. L FC is divided into three sublists L 1 , L 2 , L 3 wrt P C x i corresponding to the following cases: 

• Case1: � f ′ 
i 
S 1  b 1 ≥ o i holds. 

• Case2: � f ′ 
i 
S 2  b 2 ≥ o i holds. 

• Case3: Both Case1 and Case2 fail. In this case, Eq. (16) degenerates into Eq. (17) . If Eq. (18) holds, Eq. (17) is monotone, and

if Eq. (18) fails, Eq. (17) is anti-monotone. 

Fig. 2 shows the relative relationships of the three sublists L 1 , L 2 , L 3 of L FC . Any of the sublists can be empty and L 1 and

L 2 may overlap, in which case L 3 is empty. The boundaries, Boundary 1 and Boundary 2, of these sublists can be found by a

binary search over L FC . At each testing point, we test the conditions defining the three cases. In particular, if the condition

for Case1 holds at the testing point, Boundary 1 will be in the right half, otherwise, Boundary 1 is in the left half; if the

condition for Case2 holds at the testing point, Boundary 2 will be in the left half, otherwise, Boundary 2 is in the right half.
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Fig. 2. (a) L FC consists three sublists L 1 , L 2 , L 3 , corresponding to Case1, Case2, and Case3. In L 1 and L 2 , PC x i holds. In L 3 , if Eq. (18) holds, PC x i is monotone, 

and if Eq. (18) fails, PC x i is anti-monotone. (b) Eq. (18) holds. (c) Eq. (18) fails. Vertically shaded areas refer to h (PC x i , L FC ) and horizontally shaded areas 

refer to f (PC x i , L FC ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4. Algorithms 

Now we combine all pruning strategies into the complete algorithm. From Lemma 5 , the first valid candidate in 	′ is

optimal wrt ( S 1 , S 2 ), and from Theorem 1 , the set of valid candidates in 	′ is given by 	∗ in Eq. (13) . 

	∗ = h (F C S 1 ∧ F C S 2 ∧ (∧ i P C x i ) , 	
′ ) (19)

Therefore, the first valid candidate in 	′ (if any) is the optimal candidate wrt ( S 1 , S 2 ). Algorithm 3 searches for the first

valid candidate in 	′ . The algorithm is similar to Algorithm 2 . The difference is that the search over 	′ is based on the

sublist L CF = h (F C S 1 ∧ F C S 2 , 	
′ ) . As discussed above, L CF is divided into three sublists L 1 , L 2 , L 3 such that P C x i holds in L 1

and L 2 and is either monotone or anti-monotone in L 3 , depend on Eq. (18) . The boundaries of these sublists can be found

by a binary search. The first candidate satisfying P C x i in L FC is the left most candidate in { c 1 , c 3 , c 2 }, where c 1 and c 2 are

the first candidate in L 1 and L 2 , and c 3 is the first candidate satisfying P C x i in L 3 . c 3 can be found by a binary search over

L 3 because P C x i is either monotone or anti-monotone in L 3 . Note that any of c 1 , c 2 , c 3 can be missing. Let C i denote the

left most candidate in { c 1 , c 3 , c 2 } for x i . If C i is found for all 1 ≤ i ≤ m , the left most candidate in { C 1 , . . . , C m 

} is the first

candidate in 	∗ in Eq. (13) , thus, is the optimal candidate wrt ( S 1 , S 2 ), otherwise, there is no optimal candidate wrt ( S 1 , S 2 ).

Since 	′ is at most | T | in length, the binary search takes at most time O ( m log | T |). 

Theorem 2. Given o i for all x i , 1 ≤ i ≤ m , finding the first candidate in 	∗ at Line 6 in Algorithm 3 takes time O ( m log | T |) . 

6. General bucket setting 

In this section, we consider the general bucket setting problem where there is no restriction on the number of different

bucket sizes. 

6.1. ILP based solution 

The first solution is optimal based on integer linear programming and works only for a small domain size m of SA . Let

M and M 

′ denote the minimum and maximum bucket sizes. Let n = M 

′ − M + 1 . Define S j = M + j − 1 , where j = 1 , . . . , n .

Notice S 1 = M, S n = M 

′ , and S j+1 = S j + 1 for 1 ≤ j ≤ n − 1 . For j = 1 , . . . , n, let b j be the variables representing the number

of S j -sized buckets, let B j be the set of such buckets, with s (B j ) = b j S j . Let o 1 , . . . , o m 

be the numbers of occurrences of

x 1 , . . . , x m 

, respectively. For 1 ≤ i ≤ m and 1 ≤ j ≤ n , let v i j denote the variables for the number of occurrences of x i in the

buckets in B j . Let u i j = � f ′ 
i 
S j  b j , as defined in Definition 5 . Our objective is to minimize Loss , i.e., min 

∑ n 
j=1 b j (S j − 1) 2 , under

the following constraints: (1) ∀ i : 
∑ n 

j=1 v i j = o i , (2) ∀ j : 
∑ m 

i =1 v i j = S j b j , (3) ∀ i, j : v i j ≤ u i j , (4) 
∑ n 

j=1 S j b j = | T | . v i j and b j are

variables of non-negative integers and S j , o i , u ij are constants. The first constraint says that the total occurrences of a value

x i in all buckets is equal to o i . The second constraint says that the total occurrences of all values x i assigned to a bucket is

equal to the capacity of that bucket. The third one ensures the upper bound imposed by F ′ -privacy as in Definition 5 . From
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Algorithm 3 TwoSizeBucketing. 

Input: T , F ′ , M, M 

′ 
Output: optimal bucket setting 〈 (S 1 , b 1 ) , (S 2 , b 2 ) 〉 

1: Best loss ← ∞ 

2: Best set t ing ← NULL 

3: for all { S 1 = M; S 1 ≤ M 

′ − 1 ; S 1 + + } do 

4: for all { S 2 = S 1 + 1 ; S 2 ≤ M 

′ ; S 2 + + } do 

5: let 	∗ be defined in Eq. (13) 

6: let (b 1 , b 2 ) be the first candidate in 	∗ (computed by binary search over 	′ described) 

7: if (b 1 , b 2 ) is found then 

8: let B j be the set of b j buckets of size S j , j = 1 , 2 

9: if Best loss > Loss (B 1 ∪ B 2 ) then 

10: Best set t ing ← 〈 B 1 , B 2 〉 
11: Best loss ← Loss (B 1 ∪ B 2 ) 

12: update 	′ by Best loss using Eq. (12) 

13: end if 

14: end if 

15: end for 

16: end for 

17: return Best set t ing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lemma 2 , this condition ensures F ′ -privacy. The last constraint says that the cardinality of T is equal to the total capability

of all buckets. 

6.2. Heuristic solution 

The second solution is based on the optimal solution to the two-size bucket setting problem presented in Section 5.4 .

This solution, called MultiSizeBucketing , is given in Algorithm 4 . The input consists of T , Buckets , F ′ , M , M 

′ , where T is a set

of records and Buckets is a set of buckets of the same size such that s (Buckets ) = | T | . The algorithm calls TwoSizeBucketing

to find the optimal two-size bucket setting 〈 B 1 , B 2 〉 for T (Line 1). If Loss ( B 1 ∪ B 2 ) < Loss ( Buckets ), RecordPartition ( T , B 1 , B 2 )

partitions the records in T into T 1 and T 2 for B 1 and B 2 , as discussed in Section 4.3 . Lines 4 and 5 recur on each of ( T 1 , B 1 )

and ( T 2 , B 2 ). If Loss ( B 1 ∪ B 2 ) ≥ Loss ( Buckets ), Line 7 returns the current ( T , Buckets ) without further recursion. The main call

is MultiSizeBucketing ( T , B , F ′ , M , M 

′ ), where B is a single bucket of size | T |. 

Algorithm 4 MultiSizeBucketing. 

Input: T , Buckets, F ′ , M, M 

′ 
Output: a bucket setting 〈 B 1 , . . . , B q 〉 and T 1 , . . . , T q , where T j is a set of records for B j , 1 ≤ j ≤
q 

1: 〈 B 1 , B 2 〉 ← T woSizeBucketing(T , F ′ , M, M 

′ ) 
2: if Loss (B 1 ∪ B 2 ) < Loss (Buckets ) then 

3: (T 1 , T 2 ) ← RecordPart it ion (T , B 1 , B 2 ) ( Section 4.3 ) 

4: Mult iSizeBucket ing(T 1 , B 1 , F 
′ , M, M 

′ ) 
5: Mult iSizeBucket ing(T 2 , B 2 , F 

′ , M, M 

′ ) 
6: else 

7: return( T , Buckets ) 

8: end if 

7. Empirical studies 

This section evaluated the generalized bucketization solutions proposed in Sections 4 and 6 . We used the real life CENSUS

data set for 500K American adults, previously used in [13,16,22] . There are eight discrete attributes: Age (76), Gender (2),

Education (14), Marital (6), Race (9), Work-Class (10), Country (83), and Occupation (50), where the integers in the brackets

are the domain sizes. We derived two base tables from CENSUS. The first table denoted OCC has Occupation as SA and the

remaining attributes as the QI -attributes. The second table denoted EDU has Education as SA and the remaining attributes

as the QI -attributes. OCC- n and EDU- n denote the data sets of OCC and EDU of the cardinality n . OCC represents a more

balanced distribution of SA values with the maximum f i = 7 . 5% , and EDU represents a more skewed distribution of SA

values with the maximum f = 27 . 3% . 
i 
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Table 5 

Parameter settings. 

Parameters Settings 

Cardinality | T | 10 0k, 20 0k, 30 0k , 40 0k, 50 0k 

f ′ 
i 
-privacy for x i f ′ 

i 
= min { 1 , θ × f i + 0 . 02 } 

θ 2, 4, 8 , 16, 32 

Minimum bucket size M min i {	 1 / f ′ 
i 

} 

Maximum bucket size M 

′ 50 

Fig. 3. � ( y -axis) vs θ ( x -axis). � is the parameter of the corresponding � -diversity for F ′ -privacy specified by f ′ 
i 

= min { 1 , θ × f i + 0 . 02 } . For most values of 

θ , a large � , i.e., more than 10, is required for the corresponding � -diversity. Such � -diversities often cannot be enforced for the OCC and EDU data sets 

because 1/ � is less than the maximum frequency of SA values in these data sets, which are 27.3% for EDU and 7.5% for OCC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 summarizes the parameter settings in the subsequent experiments with the default settings in bold face. We

consider F ′ -privacy specified by f ′ 
i 

= min { 1 , θ × f i + 0 . 02 } for each SA value x i , 1 ≤ i ≤ m , where f i is the frequency of x i in

the data set and θ is the coefficient chosen from {2, 4, 8, 16, 32}. The small constant 0.02 is the base tolerance in inference

probability for all SA values. On top of this, θ × f i models an additional tolerance specific to each SA value, that is, a less

frequently occurring x i value tend to be more sensitive and have a smaller privacy threshold. For example, suppose that

HIV is less common than Flu, we expect that HIV has a smaller privacy threshold than Flu. θ specifies the rate of this

relationship. The choices of θ from {2, 4, 8, 16, 32} represent a wide range of F ′ -privacy settings. For all of these choices,

f ′ 
i 

≥ f i , so the eligibility condition for having a F ′ -Privacy solution ( Lemma 1 ) is satisfied. 

As discussed in Section 5 , the minimum bucket size should be set to M = min {	 1 / f ′ 
i 

} because any bucket of a size

smaller than this minimum size cannot satisfy the F ′ -privacy. We set the maximum bucket size to M 

′ = 50 . 

We consider three evaluation criteria: ability for handling skewed sensitivity and distribution of sensitive values, data

utility, and scalability. 

7.1. Criterion 1: handling skewed sensitivity and distribution of SA values 

One claimed objective of the generalized bucketization scheme and F ′ -privacy is dealing with skewed sensitivity and

skewed distribution of sensitive values. To evaluate how this objective is achieved, we consider how often F ′ -privacy has a

satisfying solution but the corresponding � -diversity that enforces the same F ′ -privacy has no solution, where � = 	 1 /min i f 
′ 
i 



(see Remark 1 ). According to Lemma 1 , F ′ -privacy has a satisfying solution T ∗ if and only if f ′ 
i 

≥ f i holds for all x i . This

condition is satisfied for all θ settings considered. 

For the corresponding � -diversity, � = 	 1 /min i f 
′ 
i 

 . From Remark 1 , this � -diversity has a satisfying solution if and only if

1/ � ≥ max i f i . For the OCC-300K that has a more balanced f i where max i f i = 7 . 5% , 1/ � ≥ max i f i is violated for all � ≥ 14. In

particular, for all θ ∈ {2, 4, 8, 16, 32}, Fig. 3 shows the value � for the corresponding � -diversity. Except for θ = 32 , we have

� ≥ 14. This means that the corresponding � -diversity for most F ′ -privacy considered does not have a satisfying solution.

This situation gets even worse for the EDU-300K that has max i f i = 27 . 3% : the eligibility condition 1/ � ≥ max i f i is violated

for all � ≥ 4, and from Fig. 3 , this means that for all the F ′ -privacy considered, the corresponding � -diversity does not have

a satisfying solution. 

The eligibility condition of the corresponding � -diversity implies min i f 
′ 
i 

≥ max i f i (see Remark 1 ), which can be violated

for two reasons. The first reason is that max i f i is large, and this occurs for a skewed distribution of x i values such as EDU-

300K. The second reason is that min i f 
′ 
i 

is small. Importantly, these reasons are inherent to the uniform privacy setting

of � -diversity, independent of the methods for achieving � -diversity. Therefore, all methods for achieving � -diversity cannot

escape the above drawback. In contrast, the eligibility condition for F ′ -privacy compares f ′ 
i 

with f i , i.e., f ′ 
i 

≥ f i . This condition

is much easier to satisfy than min i f 
′ 
i 

≥ max i f i , especially when x i has a skewed distribution, which has a large max i f i , or a

skewed sensitivity, which has a small min i f 
′ 
i 
. 
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Fig. 4. MSBS ( y -axis) vs θ ( x -axis). “Anatomy” has a much larger MSBS than “TwoSize”, “MultiSize”, and “Optimal”. The closeness of the last three suggests 

that “TwoSize” and “MultiSize” are good approximation of the optimal solution in the general setting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2. Criterion 2: data utility 

We created a pool of 50 0 0 count queries defined in Section 3.2 following the same procedure described in [22] . For each

query Q in the pool, we compute the estimated answer est using T ∗ as described in Section 3.2 . The relative error (RE) of Q

is defined by RE = | act − est| /act, where act is the actual answer. We report the average RE over all queries in the pool. 

We also evaluate the Mean Squared Bucket Size (MSBS) of T ∗, which was the search criterion used by our algorithm. We

would like to see if there is a correlation between MSBS and RE because such correlation would confirm the effectiveness

of MSBS as a search criterion. There is another reason for evaluating MSBS . As observed in Section 7.1 , the corresponding

� -diversity that enforces a given F ′ -privacy often does not have a satisfying solution. In such cases, no data is published, so

RE cannot be collected, but we can still compare MSBS because MSBS depends only on the bucket sizes, which are either �

or � − 1 for the basic bucketization scheme “Anatomy” proposed in [22] . 

We evaluate the following methods. Optimal is the optimal solution for the general bucket setting problem obtained

from the integer linear programming in Section 6.1 . This method provides the lower bound on MSBS but is exponential in

the domain size | SA |. TwoSize is the optimal solution for the two-size bucket setting problem produced by Algorithm 3 .

MultiSize is the heuristic solution for the general bucket setting problem produced by the solution to the two-size bucket

setting problem produced by Algorithm 4 . Anatomy is the “Anatomy” algorithm in [22] run with the corresponding � -

diversity for a given F ′ -privacy. 

7.2.1. MSBS 

Fig. 4 shows MSBS vs various specification of F ′ -privacy in terms of the coefficient θ on the default OCC-300K and EDU-

300K. “Anatomy” has a significantly higher MSBS than the other methods across all settings of θ . This is because the buckets

produced by “Anatomy” have a size of either � or � + 1 , where � = 	 1 /min i f 
′ 
i 

 . If any x i has a small f ′ 

i 
, � is large, so is MSBS .

“TwoSize” has a slightly higher MSBS than “MultiSize”, which has a slightly higher MSBS than “Optimal”. The closeness of

MSBS for the last three methods suggests that both the solution to the two-size bucket settings and the heuristic solution

are good approximations to the optimal solution for the general bucket setting problem. 

7.2.2. Relative Error (RE) 

The results on RE are summarized in Fig. 5 . “Anatomy” is missing because we cannot evaluate RE without a satisfying

solution for the corresponding � -diversity, as discussed earlier. The maximum RE is slightly over 10%, but most time RE is

below 10%. Similar to MSBS , RE for “TwoSize”, “MultiSize”, and “Optimal” are relatively close to each other: “MultiSize” loses

no more than 2% accuracy compared to “Optimal”, and “TwoSize” loses no more than 2% accuracy compared to “MultiSize”,

while this closeness is more observed on the balanced OCC data than on the skewed EDU data. The small RE in these

algorithms suggested that MSBS as a search criterion for utility indeed helps preserve the utility for count queries. 

7.3. Criterion 3: scalability 

We evaluated the effectiveness of several pruning settings for the two-size bucket setting problem in Section 5 . No-

pruning denotes the sequential search of the full list 	 without any pruning; Loss-pruning denotes the sequential search

of the prefix 	′ presented in Algorithm 2 , which exploits only loss-based pruning; Full-pruning denotes the binary search

of 	′ presented in Algorithm 3 , which exploits both loss-based pruning and privacy-based pruning. Optimal denotes the

integer linear programming solution applied to the two-size bucket setting problem. The default setting θ = 8 is used for

specifying F ′ -privacy. All algorithms were implemented in C++ with ILP being implemented in Matlab and all experiments

were run on a Windows 64 bits Platform with CPU of 2.53 GHz and memory size of 12GB. Each algorithm was run 100

times and the average time is reported here. 
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Fig. 5. RE (%) ( y -axis) vs θ ( x -axis). The small differences among RE ’s for “TwoSize”, “MultiSize”, and “Optimal” suggest “TwoSize” and “MultiSize” are good 

approximation of the optimal solution in the general setting. 

Fig. 6. Runtime in seconds ( y -axis) vs | T | ( x -axis). The pruning strategies effectively reduce runtime. 

Fig. 7. Runtime in seconds ( y -axis) vs the scale factor γ of | SA | ( x -axis). As the scale factor increases, Runtime of “Optimal” increases exponentially while 

those of other methods increase slowly. 

 

 

 

 

 

 

 

7.3.1. Scalability with | T | 

The runtime vs the data cardinality | T | is summarized in Fig. 6 . “Loss-pruning” significantly reduces the time compared

to “No-pruning”, but has an increasing trend in runtime as | T | increases because of the sequential search of the list 	′ .
“Full-pruning” takes the least time and remains constant as | T | increases because the length of 	′ has little effect on the

binary search over 	′ . “Optimal” takes less time than “No-pruning” because the domain size m of SA is relatively small for

both data sets. The next experiment shows that the comparison will be reversed as we scale up the domain size m . 

7.3.2. Scalability with | SA | 

We scale up the domain size m = | SA | for OCC-500K and EDU-500K by a factor γ , where γ is ranged over 2, 4, 8, 16,

32 and 64. To create a new domain of SA of the size m × γ , for each record t in T , we replace the value t [ SA ] in t with

another value γ × t[ SA ] + r, where r is an integer selected randomly from the range [0 , γ − 1] with equal probability. With

t [ SA ] having the domain { 0 , 1 , . . . , m − 1 } , the new value γ × t[ SA ] + r has the domain { 0 , 1 , . . . , γ × m − 1 } . 
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Fig. 7 summarizes Runtime vs γ . As γ increases, the integer linear programming based “Optimal” takes significantly

longer time due to the exponential growth of runtime in the domain size of SA . Runtime of the other algorithms increases

little because their complexity is linear in the domain size of SA . In fact, as the domain size of SA increases, Runtime of

“No-pruning” decreases since more SA values mean smaller f i and f ′ 
i 
, thus, larger minimum bucket size M = min i {	 1 / f ′ 

i 

} .

This leads to a shorter 	 list to search. 

8. Conclusion 

In this work, we presented a generalized bucketization scheme to limit sensitive non-independent reasoning, with two

important differences from previous bucketization schemes: it allows a flexible privacy setting and it allows flexible bucket

sizes. Our study shows that these flexibilities help publishing more data in the case of skewed privacy settings or a skewed

distribution of SA values. Our bucketization scheme does not require a taxonomy on attribute values, thus, is applicable to

more data sets. 
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