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ABSTRACT
Recent research efforts have made notable progress in improving
the performance of (exhaustive) maximal clique enumeration (MCE).
However, existing algorithms still suffer from exploring the huge
search space of MCE. Furthermore, their results are often undesir-
able as many of the returned maximal cliques have large overlap-
ping parts. This redundancy leads to problems in both computa-
tional efficiency and usefulness of MCE.

In this paper, we aim at providing a concise and complete sum-
mary of the set of maximal cliques, which is useful to many ap-
plications. We propose the notion of τ -visible MCE to achieve
this goal and design algorithms to realize the notion. Based on
the refined output space, we further consider applications includ-
ing an efficient computation of the top-k results with diversity and
an interactive clique exploration process. Our experimental results
demonstrate that our approach is capable of producing output of
high usability and our algorithms achieve superior efficiency over
classic MCE algorithms.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications—
Data mining; G.2.2 [DISCRETE MATHEMATICS]: Graph The-
ory—Graph algorithms

General Terms
Algorithms, Performance

Keywords
Maximal clique enumeration, clique summarization, clique concise
representation

1. INTRODUCTION
Let G = (V,E) be a simple undirected graph. A subset of ver-

tices, C ⊆ V , is called a clique if the subgraph of G induced by C
is a complete subgraph, and C is called a maximal clique if there
exists no clique C′ in G such that C′ ⊃ C. The process of Maximal
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clique enumeration (MCE) is to enumerate the set of all maximal
cliques in G.

MCE is a fundamental problem in graph theory and has been
extensively studied [5, 6, 21]. Existing works have been focusing
on improving the efficiency of MCE in real world graphs and in
recent years, a number of new algorithms [8, 9, 10, 13] have been
proposed for MCE in large graphs. However, an important issue
of MCE has been largely ignored so far, that is, the output size of
MCE, i.e., the number of maximal cliques (especially in a large
graph), is often exceedingly large so that it has severely thwarted
the applications of MCE in practice.

We give a number of problems arisen from the large output size
of MCE as follows. First, it is often very expensive to output and
store the result set since the set of maximal cliques is too large
to be kept in memory and sometimes even on disk. Second, even
though the output of MCE may be pipelined to another application
program, it is still difficult to process and analyze the large number
of maximal cliques. Third, there exists a high level of redundancy
in the set of maximal cliques since vertices are often duplicated in
multiple maximal cliques.

To address the problem caused by the sheer output size of classic
MCE, we propose to compute a summary of the set of maximal
cliques. In particular, we require a summary to be small in size, able
to represent the whole set of maximal cliques with a minimal level
of redundancy, and quick to compute (therefore post-processing is
not acceptable).

A concise yet complete summary of all maximal cliques in a
graph can be useful in a wide range of applications. For example,

• Maximal cliques are widely employed for anomaly detec-
tion in complex networks [4]. The problem is usually to find
a set of large cliques as signals of rare events. To this end, a
complete enumeration of large maximal cliques, which can
be significantly overlapping with each other, may not be as
effective as a summary in which a similar maximal clique is
present for each large maximal clique in the whole set.

• Maximal cliques are used to visualize a large graph where
the cliques are grouped together in the display [15]. For a se-
lected clique, its overlapping cliques are not likely to be cho-
sen. Thus, an exhaustive maximal clique enumeration may
again be wasteful, while a smaller set of distinct maximal
cliques can be readily applied.

• Top-k computations are important and useful in information
systems, as well in graph databases. One may query the top-
k cliques in a graph by a certain quality measure. It is also
desirable for the answers to be diverse with minimal redun-
dancy. However, computing such an answer set is often hard,
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and in fact NP-hard for many quality measures such as max-
imum coverage. The situation becomes worse when quick
response is required or the graph is massive. Fast approxi-
mation algorithms, which compute top-k results from the set
of maximal cliques with guaranteed quality, are available for
certain class of quality measures. However, computing top-k
results from a large redundant set is clearly not so efficient as
from a good summary.

• In clique exploration one wants to flexibly explore a graph
without fixed objectives. For example, a user may be inter-
ested in the groups that involve a particular object. Although
an MCE provides the most complete answer, the large num-
ber of outputs can easily overwhelm the user. Alternatively, a
summary of small size yet containing essential information,
from which other information can be (recursively) derived, is
often more useful to the user.

We make the following main contributions in this paper.

• We identify the problem of large output size with high redun-
dancy in classic MCE. To address the problem, we introduce
the notion of τ -visible MCE, which computes a τ -visible
summary that ensures that every maximal clique in the graph
is well represented by a maximal clique in the summary.

• We propose a randomized algorithm based on adaptive sam-
pling. The algorithm utilizes important properties of clas-
sic backtracking MCE algorithms for efficient redundancy
identification and effective search space pruning. We show
that the algorithm guarantees to output a summary that well
represents the whole set of maximal cliques in expectation,
with significantly improved efficiency compared with classic
MCE algorithms. We explain intuitively why the method is
effective by drawing an analogy to importance sampling.

• We devise a deterministic version of the randomized algo-
rithm, which achieves stronger guarantee of the summary
quality. We also introduce an efficient technique that fur-
ther removes redundant cliques left in the summary to give a
more concise τ -visible summary.

• We demonstrate how a τ -visible summary lends solid sup-
port to important real world applications, including diversity-
aware top-k maximal clique retrieval and a user-friendly clique
exploration.

Paper organization. The rest of the paper is organized as follows.
Section 2 surveys related work. Section 3 further motivates the
problem with an analysis of classic backtracking MCE algorithms
and then defines the problem of τ -visible MCE. Section 4 presents
the algorithms for τ -visible MCE. Section 5 discusses applications
of τ -visible summary. Section 6 reports the experimental results.
Section 7 concludes the paper.

2. RELATED WORK
The classical maximal clique enumeration algorithm that is widely

in use was proposed in [5] by Bron and Kerbosch. It is a depth-
first search algorithm with the property that consecutively gener-
ated maximal cliques are likely to be similar. Tomita et al. intro-
duced a variant of the Bron-Kerbosch algorithm which is optimal
in the maximum possible number of maximal cliques in [21]. This
number was shown to be exponential in [18]. Eppstein et al. [13]
introduced a method for listing all maximal cliques in sparse graphs
in near-optimal time. For massive graphs, IO-efficient algorithms

were studied by Cheng et al. in [10] and [8, 9]. The smallest mean-
ingful clique in a graph is a triangle and the problem of listing all
triangles was studied by Chu et al. in [11, 12] for massive graphs.

There are related works on returning meaningful subgraphs that
are close to cliques. A quasi-clique Q is almost a clique in the
sense that each vertex in Q is connected to at least a portion of
γ (0 < γ ≤ 1) of the other vertices in Q. Matsuda et al. [17]
proposed an approximation algorithm to find a minimum number of
quasi-cliques to cover all vertices in the given graph. For mining all
quasi-cliques with given size and γ thresholds, the fastest algorithm
is due to Liu et al. [16]. Pei et al. [20] studied the problem of cross-
graph quasi-cliques. Abello et al. considered γ-cliques in a graph
G, where a γ-clique S is a set of vertices such that the induced
subgraph in G is connected and contains at least γ ×

(|S|
2

)
edges,

a randomized adaptive search algorithm was proposed to find a γ-
clique with the maximum size [1]. Note that the objective of the
above methods is to generate maximal cliques as well as subgraphs
that are not cliques but close to cliques. Our objective is to alleviate
the problem of returning too many maximal cliques to the user in
the case where the cliques are highly overlapping and most of the
results do not add values for the user. Our returned result is a subset
of the set of all maximal cliques.

The problem of result diversification has been well studied for
information retrieval. Without system support, a user may need to
submit multiple queries to retrieve results of different natures. Vee
et al. [22] formally defined diversity and introduced techniques
that guarantee diversity. In [3], the problem of DIVERSIFY(K)
is to return the top K results that can best cover different possible
categorizations of the query. A greedy algorithm is proposed with
an approximation guarantee of (1 − 1/e). Another way to select
meaningful results is based on typical instances which represent a
category of interest [14].

A similar problem of finding diverse results arises in data min-
ing for discovering frequent patterns. In many applications the re-
turned set of frequent patterns from data mining is very large and
contains much redundancy. Similar to the problem in information
retrieval, the mining result becomes unmanageable for the user. In
[2], the aim is to find a small number of item sets which can best
approximate a collection of sets. Yan et al. [25] considered how to
summarize a large set of patterns using K representatives. Xin et
al. [24] considered the mining of redundancy-aware top-k patterns.

Our τ -visible summary may be applied to visualize a large graph
[15] using local substructures, visualizing a large graph can also use
global structures such as k-trusses [23] and k-cores [7].

3. MOTIVATION AND PROBLEM DEFINI-
TION

We first briefly review the classic recursive backtracking proce-
dure that exhaustively enumerates all maximal cliques in an undi-
rected graph G. We identify the drawbacks of the traditional MCE
computation and then propose a new type of redundancy-aware
maximal cliques.

3.1 Classic MCE and Its Drawbacks
We denote by N (v) the set of neighbors of a vertex v in G, and

by M(G) the set of all maximal cliques in G. A classic MCE
algorithm relies on recursive calls to Procedure ProcMCE , which
is outlined in Procedure 1. The algorithm takes a graph G as input
and initially invokes ProcMCE (∅, V, ∅). The recursive procedure
finally returns M(G).

In Procedure 1, the basic idea is to recursively backtrack to add
a vertex from the set of candidate vertices in T to grow the current
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Procedure 1: ProcMCE(C, T , D)

1 if T = ∅ and D = ∅ then
2 Output C as a maximal clique;
3 return;
4 end
5 Choose a pivot vertex vp from (T ∪D);
6 T ′ ← T \ N (vp);
7 foreach v ∈ T ′ do
8 T ← T \ {v};
9 Call ProcMCE (C ∪ {v}, T ∩ N (v), D ∩ N (v));

10 D ← D ∪ {v};
11 end

clique C. A vertex v is a candidate to C if and only if v is a neigh-
bor of all vertices in C. Each time when C is augmented by a vertex
v, we refine T by keeping only the vertices that are also neighbors
of v. When T becomes empty, C cannot be further grown. At this
point, we need to check whether C is indeed maximal. To do this,
we maintain a set D which keeps the set of vertices that are neigh-
bors of all vertices in C and have been outputted as part of some
maximal clique earlier, i.e., the recursive procedure has outputted
some maximal clique C′ ⊇ (C∪{v}) earlier, where v ∈ D. Thus,
if D is not empty, C is not a maximal clique; otherwise, we output
C as a maximal clique.

The pivot vertex vp is used for pruning such that we do not need
to start growing a maximal clique from any neighbor v of vp, be-
cause a maximal clique containing v can be enumerated from either
vp or some neighbor u of v where u is not a neighbor of vp.

Drawbacks. The above algorithm achieves the optimal worst-
case time complexity [21], which is O(3|V |/3). For d-degenerate
graphs, the complexity is reduced to O(|V |3d/3) [13]. In either
case, however, the number of maximal cliques is exponential in
either |V | or d, which is not practical for large graphs. For most real
world graphs, the number of maximal cliques can be significantly
larger than the size of the input graph.

The time taken to compute and output the set of all maximal
cliques is generally large in practice. In fact, even if we can toler-
ate the prolonged running time, the storage space required is often
large and the sheer number of maximal cliques also makes it im-
practical to use them in real applications.

Another problem with the set of maximal cliques is that there are
a significant level of redundancy as many maximal cliques share a
large portion of common vertices. Thus, it is not very useful to re-
port all these cliques since they deliver a large amount of duplicate
information. Such redundancy also slows down the computation
significantly without delivering much more new information dur-
ing the MCE process. Therefore, it is questionable that we always
follow the classic exhaustive search approach for maximal clique
reporting.

3.2 Redundancy-Aware Maximal Cliques
To address the drawbacks of the classic MCE approach, we pro-

pose to compute redundancy-aware maximal cliques and we show
that the computation process is efficient and the result set is able
to convey information possessed by the set of all maximal cliques
effectively.

We first introduce the notion of visibility that measures how well
each maximal clique is revealed by a subset S of the set M(G).

DEFINITION 1 (VISIBILITY). Let S ⊆ M(G) be any subset
of maximal cliques of G. We define the visibility of a maximal
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Figure 1: Illustration of visibility and τ -visible summary

clique C ∈ M(G) with respect to S , denoted by VS(C), to be the
maximum ratio of coverage of C by any C′ ∈ S , i.e., VS(C) =

maxC′∈S
|C∩C′|

|C| .

When the context is clear regarding S , we write V(C) instead of
VS(C) for short. On the basis of visibility, we define the problem
of τ -visible MCE as follows.

DEFINITION 2 (τ -VISIBLE MCE). The problem of τ -visible
MCE is to compute a τ -visible summary, S ⊆ M(G), such that
the visibility of each C ∈ M(G) with respect to S is at least τ ,
i.e., V(C) ≥ τ .

The notion of τ -visible MCE provides us with the flexibility
of trading the completeness of M(G) for a τ -visible summary of
M(G) that is more usable and more efficient to compute, in a con-
trollable manner by adjusting the value of τ .

EXAMPLE 1. In Figure 1(a), we show a graph with 3 maxi-
mal cliques, namely C1 = {a,b,c,d,f}, C2 = {a,b,d,e,f}, and C3 =
{b,d,f,g}. It can be seen that the three cliques overlap in most of
the vertices. If we set S = {C2} as shown in bold in Figure 1(b),
then the visibility of C1, VS(C1), is 0.8, and that of C3 is 0.75.
Hence {C2} is a 0.75-visible summary. Similarly, {C2, C3} is a
0.8-visible summary.

In the rest of the paper, we will discuss (1) efficient computation
of τ -visible MCE, for which we show that our algorithms drasti-
cally outperform that for classic MCE, and (2) retrieval of the k
best (top-k) maximal cliques based on τ -visible MCE.

4. τ -VISIBLE MCE
To reduce the redundancy in the result set returned by classic

MCE, we first propose a randomized algorithm to obtain a sample
summary of M(G) with an expected visibility of at least τ . We
then devise a method with similar powerful pruning technique to
derandomize the randomized algorithm. The new algorithm com-
putes an exact τ -visible summary.

4.1 A Sampling Approach
A common approach to reducing the output size is to use a sam-

ple of smaller size to summarize the whole output space. However,
in the case of maximal cliques, a simple uniform sampling can miss
important details while the redundancy may not be effectively re-
duced. To obtain a quality sample, we investigate the output pattern
of classic MCE algorithms.

Our randomized algorithm is based on the important observa-
tion that although the maximal cliques can be huge in number, an
MCE algorithm (based on backtracking) typically outputs in an or-
der such that two cliques tend to be similar if they are near in the
output sequence. This is because the searching process follows a
depth-first order. This property allows us to (1) avoid reporting a
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Algorithm 2: Summarization by Sampling
Input: Graph G, probability function s, visibility threshold τ
Output: A summary S ofM(G)

1 S ← ∅;
2 Let C′ be the maximal clique previously included in S;
3 C′ ← ∅;
4 Call ProcMCE (∅, V, ∅), during the process when entering each

recursion of ProcMCE (C, T,D), process Lines 5-9:

5 Let d be an upper bound of the depth of the search subtree T to be
grown by a complete recursive evaluation of the current
ProcMCE (C, T,D) procedure; let P be any maximal clique to be
found during the recursive process, and t = |P \ C|; let Y = T \ C′;
and assume that yt vertices in Y and (t − yt) vertices in T ∩ C′ are
used to grow C to P ; let yt be an upper bound of yt;

6 l← |C|+ d;
7 r̃ ← min

1≤t≤d
(|C ∩ C′|+max{t− yt, 0})/(|C| + t);

8 Prune T with probability 1- l
√

s(r̃);
9 Execute ProcMCE (C, T,D) if T is not pruned, for each C

computed to be a maximal clique, do: include C in S with probability
|C|√s(r), where r = |C′ ∩ C|/|C|, and in case C is included,
C′ ← C

clique largely overlapping with the previously reported clique and
(2) effectively prune the search space. Both (1) and (2) can be per-
formed with only the local knowledge of the search tree without
examining all the previous outputs.

As outlined in Algorithm 2, the processes of sampling and prun-
ing are embedded in a backtracking-based MCE algorithm. Specifi-
cally, pruning is performed when the MCE process is starting a new
search subtree T (Lines 5-8), while sampling is executed when a
maximal clique is found by the MCE algorithm (on a non-pruned
branch of the search tree) (Line 9).

First, we discuss sampling (Line 9). Let us consider whether a
found maximal clique C should be reported. Let C′ be the maximal
clique previously added to S . We retain C with a probability that is
adaptive to its similarity to C′. Formally, we add C to S with prob-
ability |C|√s(r), where r = |C ∩ C′|/|C|, and s : [0, 1) �→ [0, 1]
is the sampling probability function. We require s to be monoton-
ically decreasing. We will show later in Theorem 1 that the prob-
ability of each C chosen in S is at least s(r). In other words, the
larger portion of C is covered by its predecessor C′, the lower prob-
ability we add C to S . We remark that without the local similarity
between maximal cliques in the output sequence of classic MCE,
we will need a costly computation of |C ∩ C′| for all C′ ∈ S .

Next, we discuss how we employ pruning to speedup the search
whenever the MCE process is going to start a new search subtree
T (Lines 5-8). Let d be the depth of T , and d be an upper bound
of d (we will discuss how we compute d shortly). Then, the size of
each clique P to be generated from T is at most l = |C|+ d.

On the other hand, we want to have |C′∩P | lower-bounded. Let
Y = T \ C′, and t = |P \ C| (i.e., t vertices are used to grow C
to P ). Part of the t vertices are taken from Y and the rest are from
T ∩ C′. Assume that yt out of t vertices are taken from Y , and
let yt be an upper bound of yt (yt will be estimated similarly as d).
First, C is known and we know |C′ ∩ P | ≥ |C′ ∩ C|. Second, we
know that yt (out of t) vertices in P (or precisely in P \C) are not
in C′∩P since these yt vertices are taken from Y = T \C′. Thus,
we have |C′ ∩ P | ≥ |C ∩ C′|+max{t− yt, 0}.

Finally, by enumerating t, we can lower bound the ratio of P
covered by C′ by

r̃ = min
1≤t≤d

|C ∩ C′|+max{t − yt, 0}
|C|+ t

.

...

T1
Level-1

Level-2

Level-l

T2

Tl

Level of 
recursion Search tree

Sampling 
probability of 

branch Ti

s(r1)^(1/l1)

s(r2)^(1/l2)

s(r)^(1/l)

Figure 2: Illustration of summarization by sampling with max-
imal clique C contained in Tl, where l = |C|, and ri (resp. li) is
r (resp. l) in Algorithm 2 associated with Ti.

The search space represented by the search subtree T is only ex-
panded with probability l

√
s(r̃). This probability is devised based

on the idea as illustrated in Figure 2, which can be viewed as multi-
layer sampling over levels of the search tree, where the samples
from an upper level are cascaded downwards to the next lower
level.
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Figure 3: Local similarity in running ProcMCE on a graph: (a)
input graph G, (b) search tree for G

EXAMPLE 2. Consider the execution of ProcMCE(φ, V, φ)
on the graph in Figure 3(a), where V = {1, 2, 3, 4, 5, 6, 7}. At Line
5 of ProcMCE, we choose a pivot vp to maximize V ∩ N(vp),
where N(vp) is the set of neighbors of vp excluding vp. Hence we
choose vp = 3. T ′ = {3}. At Line 9, we call ProcMCE({3}, V \
{3}, φ). We can visualize this as the top level in Figure 3(b). In the
next recursion, let us choose vp = 6. Then we have T ′ = {6, 2, 7}.
The for loop at Line 7 is shown as the second level in the search
tree in Figure 3(b). We first call ProcMCE({3, 6}, {5, 1, 4}, φ).
4 will be chosen as our next pivot, so the next recursive call is
ProcMCE( {3, 6, 4}, {1, 5}, φ), and further recursively we call
ProcMCE({3, 6, 4, 1}, φ, φ), at which point a maximal clique is
generated. The next clique generated is {3, 6, 4, 5}. The redun-
dancy with the previously generated clique is 0.75.

Before a detailed discussion of how d (and similarly yt) is esti-
mated, we first present the nice properties of our algorithm in the
following theorem.

THEOREM 1. Let 0 ≤ τ ≤ 1 be a constant specified by users.
By choosing s to be

s(r) =
(1− r)(2− τ )

2− r − τ
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Algorithm 2 samples a maximal clique with probability at least
s(r), and returns a sample summary S such that the expected visi-
bility E[V(C)] of each C ∈ M(G) is at least τ .

PROOF. Consider the event whether or not a maximal clique
C is sampled. Since C is sampled only when the search sub-
tree growing to the leaf that represents C is pruned. Let the se-
quence of nodes from the root to the leaf in the search tree be
v1, v2, . . . , vk, where k = |C|, and particularly vk is the leaf
node that represents C. Referring to Algorithm 2, let the corre-
sponding sequences of l and r̃ defined for the subtrees rooted at
v1, v2, . . . , vk be l1, l2, . . . , lk and r̃1, r̃2, . . . , r̃k, respectively. Let
r∗ = max{r̃1, . . . , r̃l}. As the sampling probability function s is
monotonically decreasing, s(r∗) ≤ s(r̃i) for 1 ≤ i ≤ k, and
s(r∗) ≤ s(r). Since l is an upper bound of the depth of some
search subtree Ti rooted at vi, we have 0 < k ≤ li. It follows that

Pr[C ∈ S ] =
∏

1≤i≤k

Pr[Ti not pruned]

=

⎛
⎝ ∏

1≤i<k

li
√

s(r̃i)

⎞
⎠ · k

√
s(r)

≥

⎛
⎝ ∏

1≤i<k

k
√

s(r∗)

⎞
⎠ · k

√
s(r∗)

= s(r∗)

If C is discarded, then there exists C′ ∈ S such that |C ∩
C′|/|C| ≥ r∗. Then

E[V(C)] ≥ 1 · Pr[C ∈ S ] + r∗ Pr[C /∈ S ]
≥ s(r∗) + r∗(1− s(r∗))

In case that r∗ ≥ τ ,

E[V(C)] ≥ τ · s(r∗) + τ (1− s(r∗)) = τ

Otherwise, 0 ≤ r∗ < τ ,

s(r∗) =
(1− r∗)(2− τ )

2− r∗ − τ
>

τ − r∗ + (1− τ )

1− r∗ + (1− τ )
>

τ − r∗

1− r∗

and

E[V(C)] > 1 · τ − r∗

1− r∗
+ r∗ · (1− τ − r∗

1− r∗
) = τ

As shown by Theorem 1, the sampling algorithm is capable of
not only reducing the output size, but also providing a summary S
with guaranteed quality by selecting a proper sampling probability
function s. Note that in Theorem 1, r < 1 because by definition
a maximal clique C cannot be contained in any other clique. The
function s chosen in Theorem 1 is monotonically decreasing and
has the property that

s(r) =

{
1 when r = 0
0 when r = 1

as illustrated in Figure 4. It implies that a maximal clique is almost
always discarded when it is nearly identical to a maximal clique
previously added to the summary S .

Now we provide the details of computing d and yt. Recall d
is the depth of the search subtree T to be grown by a complete
recursive evaluation of the current ProcMCE (C, T,D) procedure.
In other words, d is the size of the maximum set of vertices X ⊆ T
that can be added to C to obtain a maximal clique. Let GT =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

r

s(
r)

 

 

τ = 0.5
τ = 0.6
τ = 0.7
τ = 0.8
τ = 0.9

Figure 4: Sampling probability s(r) for 0.5 ≤ τ ≤ 0.9

(VGT , EGT ) be the subgraph of G induced by T . Thus, X is a
maximum clique in GT and hence to compute X exactly is NP-
hard (with GT as input). Therefore, we devise heuristics to upper
bound |X|. We discuss three heuristics as follows.

Let dvnum be the maximum degree of any vertex in the subgraph
GT , dh be the maximum value of h so that there are h vertices with
degree at least h in GT , and dcore be the maximum core number
of GT (i.e., the maximum value of c such that every vertex in a
subgraph F of GT has degree at least c within F and F is the
largest such subgraph of GT ). It is easy to see that dvnum, dh,
and dcore are all upper bounds of |X| since X forms a complete
subgraph in GT . By their definition, we can order the upper bounds
as follows.

dvnum ≥ dh ≥ dcore ≥ |X|

The smaller the value of the upper bound, the greater is the prun-
ing power. On the other hand, it requires

O(1) ≤ O(|VGT |) ≤ O(|EGT |)

time to compute the bounds, respectively. Thus, there is a tradeoff
between pruning power and efficiency. The effect of the choice of
the upper bound is evaluated later in our experiments.

EXAMPLE 3. Here we consider how the lower bound r̃ is de-
termined in Algorithm 2 and Algorithm 3 for graph G in Figure
3(a). When ProcMCE({3, 2}, {1, 7}, φ) is processed, the cur-
rent subtree T contains 2 candidate vertices: T = {1, 7}. Thus we
estimate d = 2. At this point, C = {3, 2}. Hence the size of any
clique to be generated from T is at most |C| + 2=4. If we do not
consider future intersection with existing cliques, then the current
overlap with existing clique is only C∩C′ where C′ = {3, 6, 4, 1}
and r̃ is given by 1/4 = 0.25. To tighten the lower bound, we
consider possible future intersection of P with existing cliques. If
we let |P | = 4, then t = 2. Consider the previous maximal clique
C′ = {3, 6, 4, 1} in S . Y = T \C′ = {1, 7}−{3, 6, 4, 1} = {7}.
Hence yt = 1. To determine a lower bound r̃, we choose 7 to be
the next vertex in the potential P before we choose 1. Hence the
ratio (|C ∩C′|+max{t− yt, 0})/(|C|+ t) = 1+1

4
= 0.5. If we

let |P | = 3, then t = 1, for the worst case, we choose 7 to be the
final vertex in P , and (|C ∩ C′| + max{t − yt, 0})/(|C|+ t) =
1+0
3

= 0.33. r̃ = min
1≤t≤d

|C∩C′|+max{t−yt,0}
|C|+t

= 0.33.

To estimate yt, we may also use |Y | similarly, or the number of
vertices in Y with degree at least t, or the number of vertices in Y .
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Algorithm 3: Deterministic Summarization
Input: Graph G, maximum redundancy τ
Output: A τ -visible summary S ofM(G)

1 S ← ∅;
2 Let C′ be the maximal clique previously included in S;
3 C′ ← ∅;
4 Call ProcMCE (∅, V, ∅), during the process when entering each

recursion of ProcMCE (C, T,D), process Lines 5-9:

5 Compute r̃ by applying Lines 5-7 of Algorithm 2 here ;
6 if r̃ > τ then

// prune T
7 return;
8 end
9 Execute ProcMCE (C, T,D) if T is not pruned, for each C

computed to be a maximal clique, do: S = S ∪ C, C′ ← C

A perspective of Algorithm 2. To get an intuition of our algo-
rithm, recall the notion of importance sampling as used in the ap-
proximation of integral of a (unknown) continuous function, for
example, y = f(x). The idea is to draw more samples in regions
where y changes rapidly and less where the curve is relatively flat.
Analogously, we can imagine a y-value being a maximal clique C
and the corresponding x-value being the time-stamp when C is out-
putted. By our observation, the output sequence of maximal cliques
appears “continuous” where sharp changes are infrequent. Out-
putting maximal cliques with probabilities adaptive to the changes
(large coverage ratio indicating a small change) then approximates
the entire space of maximal cliques.

Derandomization. We now describe a method to derandom-
ize Algorithm 2 in order to compute an exact τ -visible summary.
The algorithm also leverages the local similarity between maximal
cliques in the output sequence of classic MCE to achieve effective
pruning, as outlined in Algorithm 3.

Each time when the recursive procedure ProcMCE (C, T,D) is
starting a new search subtree T , we first examine if the search in T
is capable of leading us to any maximal clique that is sufficiently
different from the maximal clique previously included in the sum-
mary S so far. We use the techniques similar to those used for the
randomized algorithm to compute r̃. Then, T is always discarded
when r̃ > τ and always retained when r̃ ≤ τ .

The deterministic algorithm always summarizes M(G) with a
guarantee in terms of visibility, since a maximal clique C is not
included in S only when a fraction of at least τ of C is covered by
C′ ∈ S . In this case, the visibility of C is ensured by the presence
of C′. The result is summarized in Theorem 2 as follows.

THEOREM 2. Algorithm 3 computes a τ -visible summary.

4.2 Global Filtering
Although the redundancy removal using local similarity can al-

ready significantly reduce the output size of classic MCE, we can
further remove redundancy with a global view of all maximal cliques
in the summary.

In Algorithm 4, when a maximal clique C is found by proce-
dure ProcMCE , C is first tested for redundancy with the existing
maximal cliques in the current S . It is costly to compare C with
every C′ ∈ S . We devise the following method to allow efficient
redundancy testing for every newly found maximal clique with the
maximal cliques in S .

Let fX and bX be the smallest and greatest id of any vertex in
a clique X. Then, the vertex ids of X lie in the range [fX , bX ].
Instead of comparing C with every C′ ∈ S , we retrieve C′ only

Algorithm 4: Summarization with Global Filtering
Input: Graph G, maximum redundancy τ
Output: A τ -visible summary S of M(G)

1 S ← ∅;
2 Let L be a binary-search tree containing maximal cliques in current S

that may potentially be compared with future generated maximal
cliques;

3 L ← ∅;
// i is the vertex id of vi

4 Let vertices in V in ascending order of their id be v1, v2, ..., vn;
5 T = V,D = ∅;
6 for i← 1 to n do

// Let bC denote the greatest id of any
vertex in a clique C

7 Update L by removing every C′ from L if bC′ < i;
8 T ← T \ {v};
9 Call ProcMCE ({vi}, T ∩ N (vi), D ∩ N (vi));

10 D ← D ∪ {v};
11 In the recursive calls of ProcMCE , search subtrees are pruned

by techniques in Algorithm 2 or 3, and Lines 13-19 below are
executed whenever a maximal clique C is found;

12 end
13 foreach maximal clique C found by ProcMCE do
14 Compare C to each clique in L;
15 if no C′ ∈ L exists such that |C′ ∩ C|/|C| > τ then
16 S ← S ∪ C;
17 Insert C into L with bC as the key and C as the value;
18 end
19 end

when [fC , bC ] ∩ [fC′ , bC′ ] is nonempty. To find such C′ quickly,
we maintain a binary-search tree L with bC′ as the key and C′ ∈ S
as the value. Then, each relevant C′ can be retrieved in O(log |S|)
time.

In addition, we devise a method so that we do not keep every
C′ ∈ S in L as follows. Assume in the first level recursion of
ProcMCE , we pick a vertex in ascending order of the vertex id.
Thus, a new clique C is generated in ascending order of fC . In this
way, it is safe to remove a maximal clique C′ from L if bC′ < fC ,
since C′ cannot overlap with any maximal cliques found later.

To show the correctness of the algorithm we use the following
lemma [21].

LEMMA 1 ([21]). ProcMCE (C, T,D) return all and only
maximal cliques containing all vertices in C, some vertices in T ,
and no vertex in D, without duplication.

THEOREM 3. Algorithm 4 returns a τ -visible summary S .

PROOF. Let C be a maximal clique and vc be the vertex with
the smallest id in C. When ProcMCE ({vc}, Tc, Dc) is called in
Algorithm 4, by Lemma 1 all and only the maximal cliques con-
taining vc and no vertex in {v1, ..., vc−1} will be generated. Since
ProcMCE (C, T,D) is called by the algorithm for C = {vi} for
each vi ∈ V , each maximal clique of G will be generated exactly
once or pruned by Algorithm 2 or 3 for being found redundant.
Thus, S is a τ -visible summary since Lines 15-18 make sure that
C is not included into S only when |C′ ∩C|/|C| > τ for an exist-
ing C′ in the current S .

A heuristic can be applied to shorten the interval [fC , bC ] so that
C can be discarded earlier. Initially, G is clustered and the vertices
are assigned id’s in a way that vertices in the same cluster have
close id’s. Since vertices in a clique is highly interconnected, their
id’s also tend to cluster and fall in a relatively small interval.
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5. APPLICATIONS
The results of τ -visible summary can be used for different appli-

cations. Here we consider two possible refinement processes: top-k
enumeration based on diversity and interactive clique exploration.
Both processes can help end users to further sharpen their result
sets and will be valuable in the investigation of different types of
graph data.

5.1 Top-k Maximal Cliques with Diversity
Top-k computation is a useful and important operation in database

systems and related applications, especially when the size of results
is massive making it difficult to use the results. We consider com-
puting the top-k results, A, of M(G). To ensure the quality of A,
we should not rely only on the quality of any individual result in A,
but also be aware of the relationship between them. In particular,
we desire results in the top-k answers to be diverse.

While quality measures of A ⊆ M(G) with diversity considera-
tion depend on applications, most of these measures are NP-hard to
compute. However, an interesting family of evaluation functions,
called submodular functions, allow efficient approximation of the
top-k results.

A set function f : 2N → R is submodular if and only if for all
sets S, T ⊆ N such that S ⊆ T , and d ∈ N\T , f(S + d) −
f(S) ≥ f(T + d) − f(T ) [19]. For example, in the NP-hard
problem of maximum k-set coverage problem (MkC), the function
that evaluates the coverage of a collection of sets can be shown to
be submodular.

We discuss efficient top-k clique computation with any submod-
ular measure, using the objective function in MkC as an exam-
ple. That is, we compute a collection A of k maximal cliques
that covers the maximum number of vertices in G. With some
M′ ⊆ M(G) as the input, the algorithm each time greedily se-
lects a maximal clique C ∈ M′ that adds maximum marginal cov-
erage to the current A and include C in A. From the result by
Nemhauser, Wolsey, and Fisher [19], the resulting collection has
a coverage that is not smaller than (1 − 1/e) times the optimal
solution. Thus, our algorithm is (1 − 1/e)-approximate and has
complexity O(kα|M′|), where α is the average clique size in M′.

However, even if we can compute A efficiently by taking advan-
tage of a submodular measure, the computation can still be imprac-
tically expensive with the input M(G) from a classic MCE algo-
rithm, due to the explosion in the number of maximal cliques. With
τ -visible MCE, however, the problem can be readily solved with a
significantly smaller τ -visible summary S as the input, while the
quality of A given S is still comparable to that by M(G) as veri-
fied by our experiments.

5.2 Interactive Clique Exploration
We propose Interactive Clique Exploration (ICE) that is natural

and efficient for a user to incrementally approach the target clique.
On the contrary, a classic MCE algorithm can overwhelm the users
with too many results, thus severely hindering the applications of
maximal cliques. The workflow of ICE is depicted in Figure 5.

Initially we select a set of seed vertices Σ from V , which means
that we are to grow cliques containing at least a vertex from Σ. Let
G+

Σ be the extended subgraph of Σ, i.e., G+
Σ is the subgraph of G

induced by the set of vertices containing Σ and all neighbors of Σ.
We then apply τ -visible MCE to G+

Σ to compute a τ -visible sum-
mary S of M(G+

Σ ). The list of top-k answers A(S) in S is then
computed by the greedy algorithm described in Section 5.1, which
is efficient with a submodular quality measure and S as input.

Next, A is presented to the user. When the user finds some
C∗ ∈ A to be the target, ICE terminates with C∗ as the answer.

Any C’ in A 
interesting?

Initialize Σ = V, specify τ 

Finish with C*

Compute a summary S of 
maximal cliques in 

extended subgraph of Σ 

Compute list A of top-k 
answers in S

S = S - A

Set Σ = C’, 
increase τ

Yes

Yes

No

No
C* in A the 

target?

Figure 5: Workflow of ICE

Otherwise, if the user finds some C′ ∈ A interesting and it worths
a further exploration on C′, we set Σ = C′ and increase τ to zoom
in the vicinity of C′, and start from Step 2 for a new iteration now
with G+

C′ . In case A(S) is unsatisfactory, A(S) is removed from S
and we re-compute the top-k answers in the new summary S , and
the new A is again presented to the user as shown in Figure 5.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency and effectiveness of

our method, compared with the classic MCE algorithm. For short,
we denote by MCE the classic backtracking MCE algorithm [21]
that has been proved to achieve optimal worst-case complexity, by
τ -RMCE the randomized algorithm that computes an expected τ -
visible summary, and by τ -DMCE the deterministic algorithm that
computes an exact τ -visible MCE. The experiments were run on a
machine with Intel Core i5 3.30GHz CPU and 4GB main memory.

Datasets. We use four real world graphs to evaluate the algorithms.
Some statistics about the datasets are given in Table 1. Blog is from
the blogs network and has vertices as blogs and an edge indicates
that two blogs appear in the same search result of the top-15 pop-
ular queries published by Technorati. Skitter describes an internet
topology constructed from several sources to about a million des-
tinations. Wiki represents Wikipedia users as vertices and an edge
indicates that a user once edited a talk page of another user. Patent
is a graph with U.S. patents as vertices and citations between them
as edges.

The default setting in our experiments is τ = 0.8 and using dh
as the estimation heuristic for d (see details in Section 4.1).

6.1 Classic MCE v.s. τ -Visible MCE
We demonstrate the advantage of τ -visible MCE algorithms, τ -

RMCE and τ -DMCE, over the classic MCE algorithm, MCE, by
comparing their running time and output size. We vary τ from
0.5 to 1 (note that we choose τ >= 0.5 for practical visibility
insurance).

The running time of τ -RMCE and τ -DMCE is reported in Figure
6, where the running time for MCE is equivalent to the time at
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Figure 6: Running time (in seconds) of τ -RMCE and τ -DMCE with varying τ , and of MCE (at τ = 1)
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Figure 7: Size of the τ -visible summary by τ -RMCE and τ -DMCE with varying τ , and the total number of maximal cliques outputted
by MCE (at τ = 1)

Table 1: Statistics of datasets (K = 103, M = 106): the number
of vertices and edges (|V | and |E|), the size of maximum clique
and average size of maximal cliques (cmax and cavg), and total
number of maximal cliques with size at least 3 (|M|) in graph
G

Blog Skitter Wiki Patent
|V | 990K 1.7M 2.39M 3.7M
|E| 6.62M 11.1M 41.7M 33M
cmax 49 67 26 11
cavg 15 21 13 6
|M| 11.2M 18.3M 82.7M 6.1M

τ = 1. The result shows that, for all the datasets, the running time
drops sharply when τ changes from τ = 1 to τ = 0.9, which
indicates a significant reduction in time with only a small loss of
completeness. The result also shows a clear trend of decreasing
running time as τ ranges from 0.9 to 0.5.

Figure 7 reports the size of the τ -visible summary computed by
τ -RMCE and τ -DMCE, respectively, where we also report the total
number of maximal cliques returned by MCE (i.e., at τ = 1) as a
reference. The result verifies our claim in the significant level of
redundancy in the set of maximal cliques. The number of maximal
cliques decreases exponentially when τ changes from τ = 1 to
τ = 0.9, and the number continues to decrease significantly when
τ changes from 0.9 to 0.5. In other words, the redundancy already
begins to drop dramatically as we start to introduce the τ -visible
summary with a small change in the visibility threshold τ .

6.2 Choice of Estimation Heuristics
The estimation of d can affect the performance of τ -RMCE and

τ -DMCE considerably, as shown by the result using τ -RMCE in
Table 2 (the result for τ -DMCE is similar as the same principle is
applied). While the core number can provide the tightest bound
dcore, it results in much longer running time. On the contrary,

the heuristics dvnum and dh result in significantly better efficiency.
These two heuristics are no more costly than the set intersection
operations in the ProcMCE procedure, thus giving the same time
complexity and incurring only little time overhead. Thus, the tighter
bound dh, though having slightly higher overhead than computing
the simple heuristic dvnum, turns out to improve the efficiency of
τ -RMCE more than the low-overhead dvnum.

Table 2: Running time (in seconds) of τ -RMCE with d esti-
mated by dvnum, dh, and dcore

Blog Skitter Wiki Patent
dvnum 71.4 151.1 459.8 43.9
dh 66.7 140.2 405.4 37.9

dcore >3600 >3600 >3600 >3600

Table 3: Running time (in seconds), tlocal/tglobal, of τ -RMCE
and the number of maximal cliques in the τ -visible summary,
|Slocal|/|Sglobal|, with/without global filtering

Blog Skitter Wiki Patent
tlocal 67.6 140.3 401.5 38.3
tglobal 72.8 142.6 1132 38.9
|Slocal| 650K 1.40M 3.98M 665.8K
|Sglobal| 601K 1.37M 3.31M 666.5K

6.3 Refinement with Global Filter
The global filter described in Section 4.2 further refines the τ -

visible summary S computed by τ -RMCE and τ -DMCE. Its effect
in producing a smaller summary and the additional time overhead
are evaluated by the results using τ -RMCE in Table 3 (the results
using τ -DMCE are similar).

As reported in Table 3, the running time for the datasets Blog,
Skitter and Patent is only marginally increased with the addition of
global filter, but it takes 3 times more time to finish on Wiki.
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As for the size of the τ -visible summary S , we observe that the
reduction in the number of maximal cliques by a global filter is
not as obvious as compared with those filtered locally (as shown in
Figure 7). This agrees with our observation of local similarity be-
tween maximal cliques in the output sequence of classic recursive
backtracking MCE algorithms.

6.4 Performance of Top-k Computation
Finally, we use top-k maximal clique retrieval as an example to

demonstrate how τ -visible MCE can be useful in practice. The
objective function in MkC (maximum k-set coverage) as discussed
in Section 5.1 is used as the quality measure. In our experiment, we
set k = 20, as a typical setting in information retrieval applications.
We report in Table 4 the comparison of the quality of top-k results
and the time taken to compute them from a τ -visible summary and
from the set of all maximal cliques in the graph.

Table 4: Quality of and running time (in seconds) to compute
top-20 results from the τ -visible summary by τ -RMCE (Qrand,
Trand) and τ -DMCE(Qdet, Tdet), and from the set of all maxi-
mal cliques (Qall, Tall)

Blog Skitter Wiki Patent
Qrand 822 1205 462 173
Qdet 826 1214 464 174
Qall 907 1255 485 195
Trand 1.38 4.02 8.59 0.70
Tdet 2.41 4.97 20.25 1.00
Tall 27.42 47.51 196.95 8.87

As shown in Table 4, the quality (i.e., the number of vertices in
the graph being covered by the top-20 results) of the top-20 results
computed from a τ -visible summary is very close to that computed
from the set of all maximal cliques. However, computing top-20 re-
sults from a τ -visible summary is approximately an order of mag-
nitude faster than from the set of all maximal cliques.

The results thus support the use of a τ -visible summary for top-
k computation for its much smaller size (resulting in higher effi-
ciency) without sacrificing the quality.

7. CONCLUSIONS
In this paper, we highlighted the problem of excessive size and

redundancy in classic maximal clique enumeration (MCE). We in-
troduced the notion of τ -visible MCE to reduce the redundancy
while capturing the major information in the result. We proposed
efficient algorithms for the computation of a τ -visible summary,
and introduced top-k clique computation on top of the summary to
further enhance the result usability. Our empirical studies showed
significant improvements in both the result size and computation
time over classic MCE, and demonstrated the usefulness of a τ -
visible summary.
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