
WAT: Finding Top-K Discords in Time Series Database∗

Yingyi Bu1, Tat-Wing Leung1, Ada Wai-Chee Fu1, Eamonn Keogh2, Jian Pei3 and Sam Meshkin2

1The Chinese University of Hong Kong, {yybu,twleung,adafu}@cse.cuhk.edu.hk
2University of California–Riverside, eamonn@cs.ucr.edu

3Simon Fraser University, jpei@cs.sfu.edu

Abstract
Finding discords in time series database is an important prob-
lem in a great variety of applications, such as space shut-
tle telemetry, mechanical industry, biomedicine, and finan-
cial data analysis. However, most previous methods for this
problem suffer from too many parameter settings which are
difficult for users. The best known approach to our knowl-
edge that has comparatively fewer parameters still requires
users to choose a word size for the compression of subse-
quences. In this paper, we propose a Haar wavelet and aug-
mented trie based algorithm to mine the top-K discords from
a time series database, which can dynamically determine the
word size for compression. Due to the characteristics of Haar
wavelet transform, our algorithm has greater pruning power
than previous approaches. Through experiments with some
annotated datasets, the effectiveness and efficiency of our al-
gorithm are both attested.

1 Introduction
Mining unusual patterns or discords in large scale time series
has vast applications in domains as diverse as medicine,
space shuttle telemetry, surveillance, biology and industry.
However, finding top-K discords in time series in many
occasions is more important than only discovering the most
unusual pattern, since the result would be a more informative
and complete subsequence set, rather than the most unusual
single subsequence, which might be sensitive to parameter
settings of algorithms or noises in data.

In the past decade, many real worthy time series prob-
lems such as dimension reduction [1], segmentation [2], in-
dexing [3, 4] have been well addressed. However, time se-
ries discords, which are first suggested by Keogh et al. [5],
have not been paid enough attention to. Although many
algorithms have been proposed for anomaly detection [6],
most of them are not designed for the specific character-
istics of time series data. P. Chan et,al. [7] propose a
well designed box model for finding anomaly points in mul-
tiple time series, yet we study here a different problem
which is to find unusual subsequences in a given time se-

∗This research is supported by the RGC Earmarked Research Grant of
HKSAR CUHK 4120/05E.

ries sequence. The anchor algorithm named SAX(symbol
aggregate approximation) for finding the most unusual time
series subsequence is proposed in [5], but it still requires an
unintuitive parameter–word size for compression, which we
try to remove in our work.

In this paper, we consider the mining of top-K discords
in time series database. We propose our algorithm WAT
(wavelet and augmented trie), which employs Haar wavelet
transform and symbol word mapping orderly on raw time
series, and then uses a breadth first search on a prefix tree
built on the transformed sequences to approximate the per-
fect search order of all candidate subsequences. Due to the
characteristics of Haar wavelet transform, better searching
order could be obtained, since the first few elements of trans-
formed subsequence would have better pruning power than
the simple symbol aggregate approximation [5]. To remove
the unintuitive parameter of word size, we use a dynamic
adaptive approach to get suitable word size for different
datasets. We also consider an efficient solution of computing
the top-K discords for multiple discord lengths. As a result,
our method is well adaptive to different applications with no
unintuitive parameter setting tasks from users. From the ex-
periments on various large scale datasets, we find that our
algorithm is both effective and efficient. Some other works
[1, 8] also utilize wavelet transform in time series algorithms,
yet their goal is to reduce dimensionality for efficient similar-
ity search. Differently, our use of wavelet transform in WAT
is to gain approximate perfect searching orders for candidate
subsequences rather than reduce data.

The rest of the paper is organized as follows. The prob-
lem definition is provided in Section 2. In Section 3, we
introduce our algorithm of finding top-K discords. We per-
form an empirical evaluation in Section 4 to demonstrate
both the effectiveness and the efficiency of our algorithm for
finding discords. Finally, Section 5 presents some conclu-
sions and expectations for future work.

2 Problem Definition
Intuitively a discord is a subsequence that looks very dif-
ferent from its closest matching subsequence. However, in
general, the best matches of a given subsequence (apart from

itself) tend to be very close to the subsequence in question.
Such matches are called trivial matches and are not inter-
esting. When finding discords, we should exclude trivial
matches; otherwise, we may fail to obtain the true discord
since the true discord may also be similar to its closest triv-
ial match. Therefore, we need to formally define a non-self
match.

DEFINITION 2.1. Non-self Match: Given a time series T,
containing a subsequence C of length n beginning at position
p and a matching subsequence M beginning at q, we say that
M is a non-self match to C if |p− q| ≥ n

We now can define time series discord by using the
definition of non-self matches:

DEFINITION 2.2. Time Series Discord: Given a time series
T, the subsequence D of length n beginning at position l is
said to be a top one discord of T if D has the largest distance
to its nearest non-self match.

The problem of locating top one discord can obviously
be solved by a brute force sequential scan which compares
the distance from each subsequence to its nearest non-self
match. The subsequence which has the greatest such value
is the discord. A base algorithm is given in [5], as shown in
Algorithm 1. In this algorithm, we extract all the possible
candidate subsequences in the outer loop, then we find the
distance to the nearest non-self match for each candidate
subsequence in inner loop. The candidate subsequence
with the largest distance to its nearest non-self match is
the discord. We shall refer to this algorithm as the base
Algorithm.

Algorithm 1 Base Algorithm
1: discord distance = 0
2: discord location = 0
3: //Begin Outer Loop
4: for Each p in T ordered by heuristic Outer do
5: nearest non-self match distance = infinity
6: //Begin Inner Loop
7: for Each q in T ordered by heuristic Inner do
8: if |p− q| ≥ n then
9: Dist = Dist (tp, ...tp+n−1, tq, ...tq+n−1)

10: if Dist < nearest non-self match distance then
11: nearest non-self match distance = Dist
12: end if
13: if Dist < discord distance then
14: break;
15: end if
16: end if
17: end for
18: if nearest non-self match distance > discord distance

then
19: discord distance = nearest non-self match distance
20: discord location = p
21: end if
22: end for
23: Return (discord distance, discord location)

In general there can be more than one unusual patterns
in a given time series. We are therefore interested to find the
top-K discords.

DEFINITION 2.3. Top-K Time Series Discord: Given a time
series T , let us impose a total order on the subsequences
of length n in descending order of their distances to their
nearest non-self match. Ties are also given an arbitrary
order. Next scan the list in the given order and remove any
subsequence that has some overlapping region with any of
the preceding subsequences in the current sorted list. Let
the nearest match distance of the Kth subsequence in the
resulting sorted list L be d. A subsequence D in L is among
the top-K discords of T if D has a nearest match distance
greater than or equal to d.

It is quite intuitive why no overlapping is allowed for
the discords, since we assume that discords are signals to
alert our users to some unusual or problematic behavior in
the pattern, we expect users to examine the discords for
further actions. There is not much added value to alert a
user twice to the same region of a time series. Algorithm 1
finds the 1st discord. For the 2nd, 3rd discord, etc., it
is possible to re-apply a similar process, except that each
time after finding the top-k′ discord, we can remove those
discords overlapping with k′ from the candidates’ list (p
in the algorithm). According to the definition, there is no
overlapping region between the top-K discords. That means
that if a subsequence D of length n beginning at position p is
the 1st discord, then subsequences beginning at any positions
between p−n+1 and p+n−1 cannot be the 2nd, 3rd discord,
etc.

3 The Proposed Algorithm: WAT
If a sequential searching order is used in the base algorithm,
the worst case time complexity will be O(km2), where m
is the length of time series. However, if other than the first
iteration of the double “for” loop, all the subsequence loops
can break at Line 13, 14, the time complexity can become
O(km). In order to archive such a perfect searching or-
der, we apply Haar wavelet transform on candidate subse-
quences, build an augmented trie, and then employ outer
loop and inner loop heuristics. Besides, we also try to prune
across top-k discords and different discord length.

3.1 Haar Wavelet Transform Haar wavelet Transform
is widely used in different applications such as computer
graphics, image, signal processing and time series querying
[1, 8]. We propose to apply this technique first to approxi-
mate the time series subsequences, as the resulting wavelet
can represent the general shape of a time sequence. The time
complexity of Haar wavelet transform is linear in the size of
the time series. Detailed transform algorithm could be re-
ferred to [1].

3.2 Discretization After Haar wavelet transform, we shall
impose the heuristic Outer and Inner orders based on the
transformed subsequences. The wavelet transformed sub-
sequences are then normalized by a standard normalization
procedure(to deduct mean, and then be divided by standard
deviation). In order to reduce the complexity of time series
comparison, we would further transform each of the normal-
ized sequences into a sequence (word) of finite symbols. The
alphabet mapping is decided by discretizing the value range
for each Haar wavelet coefficient. The distribution of the
Haar wavelet coefficients may affect the performance of our
algorithm, but it will not affect the correctness. We assume
the coefficients are in Gaussian distribution and from our em-
pirical study it can give us pretty good results. Now we can
determine the “cutpoints” by using a Gaussian curve. The
cutpoints define the discretization of the ith coefficient.

DEFINITION 3.1. Cutpoints: Cutpoints are a sorted list of
numbers B = β1, β2, ..., βa−1, where a is the number of
symbols in the alphabet, such that area under a N(0,1)
Gaussian curve from βi to βi+1 = 1/a, β0 and βa are defined
as −∞ and ∞, respectively.

The following table lists the cutpoints for number of
symbols from 2 to 7. For example, the area under a N(0,1)
Gaussian curve from −∞ to -0.84 is equal to 1/5.

Number of symbols a
2 3 4 5 6 7

β1 0 -0.43 -0.67 -0.84 -0.97 -1.07
β2 0.43 0 -0.25 -0.43 -0.57
β3 0.67 0.25 0 -0.18
β4 0.84 0.43 0.18
β5 0.97 0.57
β6 1.07

We then can make use of the cutpoints to map all Haar
coefficients into different symbols. For example, if the ith

coefficient from a Haar wavelet is in between β0 and β1, it
is mapped to the first symbol ‘a’. If the ith coefficient is
between βj−1 and βj , it will be mapped to the jth symbol,
etc. In this way we form a word for each subsequence.

DEFINITION 3.2. Word mapping: A word is a string of
alphabet. A subsequence C of length n can be mapped to
a word Ĉ = ĉ1, ĉ2, ..., ĉn. Suppose that C is transformed
to a Haar wavelet C̄ = {c̄1, c̄2...., c̄n}. Let αj denote the
jth element of the alphabet, e.g., α1 = a and α2 = b,
Let B = β0, ...βa be the Cutpoints for the i-th coefficient of
the Haar transform. Then the mapping from to a word Ĉ is
obtained as follows:

ĉi = αj ⇐⇒ βj−1 ≤ c̄i < βj(3.1)

3.3 Augmented Trie When each subsequence is mapped
to a word, all the words are placed in an array with a pointer
referring back to the original subsequences.

Next, we make use of the array to build an augmented
trie by an iterative method. At first, there is only a root node
which contains a linked list index of all words in the trie. In

each iteration all the leaf nodes split. In order to increase
the tree height from h to h + 1, where h is the tree height
before splitting, the (h+1)th symbol of each word under the
splitting node is considered. If we consider all the symbols
in the word, then the word length is equal to the subsequence
length.

Here we make use of the property of Haar wavelets to
dynamically adjust the effective word length according to the
data characteristics. The word length is determined by the
following heuristic.

Word length heuristic: Repeating the above splitting
process in a breadth first manner in the construction of
the trie until (i) there is only one word in some(one or
more) current leaf nodes, or (ii) the nth symbol has been
considered.

The Haar coefficient can help us to view a subsequence
in different resolutions, so the first symbol of each word
gives us the lowest resolution for each subsequence. In our
algorithm, more symbols are to be considered when the trie
grow taller, which means that higher resolution is needed
for discovering the discord. The reason why we choose to
stop at the height where some leaf node contains only one
word (or subsequence) is that the single word is much more
likely to be the discord, because it cannot be placed into the
same node with any other subsequence, so its distance to its
nearest match would be far. This is based on the property
that Haar transform can preserve the data nature even after
a tail sequence is truncated. Words appearing in the same
node are similar at the resolution at that level, hence they
are closer to their nearest match. Therefore the height at
that point implies that we can find an obvious winner to be a
candidate discord, and the trie height at that point stands for
a good choice for the effective length of the words that can
be used in the algorithm.

3.4 Outer Loop Heuristic After constructing the tree, we
could reorder the candidate subsequences using following
heuristic.

Heuristic: the leaf nodes are visited in ascending order
according to their word count(how many word in the node).
Thus, subsequences in nodes with smallest word count are
considered first in the outer loop.

We search all the subsequences in nodes with the small-
est count first, and then search in random order for the rest of
the subsequences. The rationale behind our Outer heuristic
is the following. When we are building an augmented trie,
we are recursively splitting all the leaf nodes until there is
only one subsequence in some one leaf node. A trie node
with only one subsequence is more likely to be a discord
since there are no similar subsequences grouped with it in
the same node. This will increase the chance that we get
the true discord as the subsequence early considered in the
outer loop, which can then prune away other subsequences

quickly. Conversely, the rest of the subsequences are less
likely to be the discord. As there should be at least two sub-
sequences map to same tree node, the distance to their near-
est non-self match must be very small. More or less, the trie
height can reflect the smoothness of the datasets. For smooth
dataset, the trie height is usually small, as we can locate the
discord at low resolution. On the other hand, the trie height
is usually large for a more complex data set.

3.5 Inner Loop Heuristic When the ith subsequence p is
considered in the outer loop, we reorder the inner loop search
order by inner loop heuristic.

Heuristic: We find a node which gives us the longest
matching path to the node containing p in the trie, all the
subsequences in this node are searched first. After exhaust-
ing this set of subsequences, the unsearched subsequences
are visited in a random order.

The rationale behind our Inner heuristic is the follow-
ing. In order to break the inner loop, we need to find a sub-
sequence that has a distance to the p less than the best so far
discord distance, hence the smallest distance to p will be the
best to be used. As subsequences in a node with a path close
to p are very likely to be similar, by visiting them first, the
chance for terminating the loop is increased.

3.6 Pruning Across The K Discords In the algorithm in
order to break the inner loop, we will try to find out the
nearest neighbor of each candidate subsequence. Although
we do not actually find the nearest neighbor, the nearest so
far neighbor may help us to break the inner loop efficiently.

In order to find the top-K discords, we repeat similar
steps to find the first discord, 2nd discord, ..., when we
find the ith discord, for 1 ≤ i ≤ K − 1, we record the
nearest so far neighbor of each candidate subsequence. The
nearest so far neigbour may help us to break the inner loop
early when we are looking for the next top discord. It finally
will converge to the nearest neigbour. Furthermore, the inner
loop search order of each subsequence is always the same,
we can remember all the examined subsequences and every
time we only compute the distance with the unexamined
subsequences. In this way, lots of computation could be
efficiently pruned.

3.7 More on Discord Length Although the Haar wavelet
is defined for sequences that has a length equal to 2i,
for some positive integer i, it is easy to accommodate
discord lengths that are not equal to 2i, by padding zeros
to the sequence to make up a length of 2i, for a smallest
i. Obviously, the length of the subsequences are increased
after transformation. It means the computational time of
Euclidean distance between the transformed subsequences
must be longer than original subsequences. Therefore, the
transformed subsequences are only used for heuristic outer

loop and heuristic inner loop. For the distance calculation,
we will use the original subsequences.

In general we have a problem of how to set the discord
length, especially for data without any obvious periodical
cycles. In such a case, one may try a range of discord lengths
and a trivial solution is to execute the algorithm repeatedly
for the different discord lengths.

It turns out that we can have a better solution based
on some properties of Euclidean distance and Haar trans-
form. The first strategy is to store the intermediate compo-
nents for the Euclidean distance computation for a shorter
subsequences and reuse for longer lengths which covers the
shorter subsequences. Hence there is no need to recompute
the Euclidean distance from scratch. However extra storage
is required.

For Haar wavelet transform, assume the normalization
factor of 1/21 Assume we have series, one is f(5) = (7 3 5 1
8), another one is f(6) = (7 3 5 1 8 8). This is an example
where we consider length i and then length i + 1. Consider
the transformation to Haar wavelets, the process is shown on
Figure 1 and Figure 2. Note that each sequence is padded
with zeros to attain a length of 23.

In this example, it is not difficult to discover that most
of the intermediate averages and differences of different
resolution levels are the same. However, there are some
differences between the two conversion processes. We have
located the differences in both Figure 1 and Figure 2 with
circles. All the differences are related to the new added
element 8. In fact, for any f(i) and H(f(i)), if we change
one of the padding zero elements in f(i), the new H(f(i)) is
the same as the old H(f(i)) except for the coefficients that
are related to the changed element.

With this property, if we need to find discords
with lengths from a to b, where a < b ≤
(total length of the time series) and a and b are integers .
First we can use a sliding window to extract all the subse-
quences with length a and convert them into Haar wavelets
for our algorithm. After finding the discord of length a,
we can make use of the previous data to prepare the Haar
wavelets for all the subsequences with length a+1, a+2,
This can help us to save part of the computation time, but we
need extra space for storing the intermediate averages and
differences for each subsequence.

4 Empirical Evaluation
We investigate both the effectiveness and efficiency of WAT
through extensive experiments. The test datasets, which rep-
resent the time series from different domains, are obtained
from “The UCR Time Series Data Mining Archive” [9].

1In our experiments, we find that normalization factors of 1/2 and 1/
√

2
are similar in performance.

7 5 34 23 4 03 5 1 8 0 0 0Resolution 8Resolution 4Resolution 2Resolution 1 2 11 22 4 0Averages Differences
Figure 1: After transformed f(5), it becomes (3 1 1 2 2 2 4 0)

7 5 44 43 8 03 5 1 8 8 0 0Resolution 8Resolution 4Resolution 2Resolution 1 2 01 42 0 0Averages Differences
Figure 2: After transformed f(6), it becomes (4 0 1 4 2 2 0 0)

Figure 3: Data Conversion Figure 4: Result Discords

4.1 Effectiveness We set the alphabet size to 3 and dis-
tance measure to Euclidean distance to conduct experiments
on two annotated data sets. We compare the resulting dis-
cords with the expected results from the annotations based
on the domain meaning of the dataset.

4.1.1 On The Wing Shape Dataset Our algorithm can be
successfully used to find unusual shapes, after the shapes
have undergone suitable preprocessing. For brevity we omit
the details of necessary image processing steps which is
illustrated in [10]. The visual intuition of the conversion
process on a fruit flies wing is shown in Figure 3, where A is
a raw image of a fruit flies wing, one of 1,000 such images
considered for this experiment, and after image processing
to increase contrast and remove noise, the contour of the
wing B is mapped to a one-dimensional “time series”. We
are able to ignore the potential tricky problem of rotation
invariance by always choosing the leftmost point of the wing
as our starting point. The entire wing image was analyzed
up to, but not including, the articulation (1 mm from wing
attachment to thorax). The top part of Figure 4 shows
Eight random samples from our database of 1,000 fruit flies
wing, while the bottom part of Figure 4 shows the top two
discords discovered by our algorithm. Note the discords
have plausible visual intuition. The top-1’s wing is damaged,
possibly (and ironically) by another insect. The top-2 discord
has part of the wing folded back on itself, most likely due to
a technician’s mishandling of the sample.

4.1.2 On The Power Consumption Dataset We try to
find top-3 discords from a dataset2 that records the power

2It is from http://www.cs.ucr.edu/ eamonn/discords/

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

x 10
4

500

1000

1500

2000

2500

4.826

4.56 4.3511

4.826

4.56 4.3511

One years power demand at a Dutch research facility

Top-1 discord

Top-3 discord Top-2 discord

New years day 1997
New years eve 1997

Figure 5: Top-3 discords in power consumption history of a
Dutch research facility in year 1997

0 100 200 300 400 500 600 700

Dec 25Sunday

Liberation Day Ascension Thursday

Good Friday
Easter Sunday

0 100 200 300 400 500 600 700

Monday

Tuesday

W
ednesday

Thursday

Frid
ay

Saturday

Sunday

Typical Week from the Dutch

Power Demand Dataset
0 100 200 300 400 500 600 7000 100 200 300 400 500 600 700

Dec 25Sunday

Liberation Day Ascension Thursday

Good Friday
Easter Sunday

0 100 200 300 400 500 600 7000 100 200 300 400 500 600 700

Monday

Tuesday

W
ednesday

Thursday

Frid
ay

Saturday

Sunday

Typical Week from the Dutch

Power Demand Dataset

Figure 6: Details of power consumption in normal weeks and
discords

consumption for a Dutch research facility for the entire year
of 1997. Our objective is to find the 3 most unusual weeks.
We do not require the week should be start from Monday to
Sunday, so the week could be any 7 days. Note that in this
experiment, we set the length of discord to be 750 which is
longer than the normal week, as we need to ensure that the
discord length must long enough to cover the whole week.
The top-3 discords in power consumption history are shown
in Figure 5.

It was not easy to find out the differences between the
top 3 discords and the rest of the subsequences. However,
we could find out some interesting patterns, if we compared
the top 3 discords with normal subsequences in detail. The
left part of Figure 6 shows the power demands for a normal
week, we found that the power consumption from Monday to
Friday was relatively high. The right part of Figure 6 shows
the top 3 unusual weeks. From the result, we could locate
the top 3 unusual weeks that all contained two holidays.

4.2 Efficiency For comparing the efficiency of WAT with
SAX, 10 data sequences from 3 datasets(ECG, ERP, and
random walk) are picked. For each dataset, time series
of lengths 512, 1024, 2048, 4096 and 8192 are randomly
extracted, forming 4 derived datasets of varying dimensions.
In Figure 7, we compared the pruning power of WAT with
SAX in terms of the number of times the distance function
is called. In this experiment, we set the length of the

Keogh et al.’s Alg., word size 1
Keogh et al.’s Alg., word size 2

Keogh et al.’s Alg., word size 4
Keogh et al.’s Alg., word size 8

Keogh et al.’s Alg., word size 16
Keogh et al.’s Alg., word size 32

Proposed Alg.5121024204840968192

0

5

10

15

x 10
5

ECG

The length of Time Series

N
o.

 o
f T

im
e

D
is

ta
nc

e
Fu

nc
tio

n
is

 c
al

le
d

Keogh et al.’s Alg., word size 1
Keogh et al.’s Alg., word size 2

Keogh et al.’s Alg., word size 4
Keogh et al.’s Alg., word size 8

Keogh et al.’s Alg., word size 16
Keogh et al.’s Alg., word size 32

Proposed Alg.5121024204840968192

0

0.5

1

1.5

2

x 10
6

ERP

The length of Time Series

N
o.

 o
f T

im
e

D
is

ta
nc

e
Fu

nc
tio

n
is

 c
al

le
d

Keogh et al.’s Alg., word size 1
Keogh et al.’s Alg., word size 2

Keogh et al.’s Alg., word size 4
Keogh et al.’s Alg., word size 8

Keogh et al.’s Alg., word size 16
Keogh et al.’s Alg., word size 32

Proposed Alg.5121024204840968192

0

0.5

1

1.5

2

x 10
6

Random Walk

The length of Time Series

N
o.

 o
f T

im
e

D
is

ta
nc

e
Fu

nc
tio

n
is

 c
al

le
d

Figure 7: Pruning Power Comparison (WAT and SAX)

1024 2048 4096 8192
0

1

2

3

4

5

6
x 10

6

Length of test sequence

Nu
m

be
r o

f d
ist

an
ce

 fu
nc

tio
n

ca
lle

d

ECG

Pearson correlation
Lp−1
Euclidean
Lp−infinite

1024 2048 4096 8192
0

2

4

6

8

10

12
x 10

5

Length of test sequence

Nu
m

be
r o

f d
ist

an
ce

 fu
nc

tio
n

ca
lle

d
ERP

Pearson correlation

Lp−1

Euclidean

Lp−infinite

1024 2048 4096 8192
0

1

2

3

4

5

6

7
x 10

5

Length of test sequence

Nu
m

be
r o

f d
ist

an
ce

 m
ea

su
re

 ca
lle

d

Random Walk

Pearson correlation

Lp−1

Euclidean

Lp−infinite

Figure 8: Pruning Power Comparison (WAT under Different Distance Measures)

discord to 128 and find the top-1 discord on all the created
subsequences. Each of the experiments is repeated 10 times
and the average value is taken. From Figure 7, we could find
that WAT successfully beats SAX on pruning power. We
then compare the total running time, and still find that WAT
is better.

We also study the pruning power of WAT under differ-
ent distance measures, including Pearson correlation, Lp-1,
Euclidean and Lp-∞ distances, for which the datasets and
test time series are the same as those used in comparison
with SAX. Like the previous experiment, we also find top-1
discord with discord length 128. We compare the pruning
power of distance measures in Figure 8. From the results,
we could see none of the distances could beat others on all
datasets. We also conduct some running time comparisons
on different distance measures, but the best distance mea-
sure is also varied on different discord length and different
dataset.

5 Conclusion and Future Work
To effectively and efficiently find top-K discords has lots
of applications in various domains, since top-K result set
is more stable than the most unusual one pattern. This
paper proposes a novel algorithm WAT to efficiently find
top-K discords in large scale time series. Our algorithm
makes use of some valuable properties of Haar transform
and is close to the ideal of parameter free data mining.
However, in this work, we focus on finding unusual time
series with one dimension only. In the near future, we want

to extend our algorithm for handling multidimensional time
series. Moreover, we are working towards an extension
of our algorithm for discovering discords on data streams,
where real time anomaly detection is required.

References

[1] Kin pong Chan and Ada Wai-Chee Fu. Efficient time series
matching by wavelets. In ICDE, pages 126–133, 1999.

[2] Aris Anagnostopoulos, Michail Vlachos, Marios Hadjielefthe-
riou, Eamonn J. Keogh, and Philip S. Yu. Global distance-
based segmentation of trajectories. In KDD, pages 34–43,
2006.

[3] Eamonn J. Keogh. Exact indexing of dynamic time warping.
In VLDB, pages 406–417, 2002.

[4] Yunyue Zhu and Dennis Shasha. Warping indexes with enve-
lope transforms for query by humming. In SIGMOD Confer-
ence, pages 181–192, 2003.

[5] Eamonn J. Keogh, Jessica Lin, and Ada Wai-Chee Fu.
HOT SAX: Efficiently finding the most unusual time series
subsequence. In ICDM, pages 226–233, 2005.

[6] Victoria J. Hodge and Jim Austin. A survey of outlier detection
methodologies. Artif. Intell. Rev., 22(2):85–126, 2004.

[7] Philip K. Chan and Matthew V. Mahoney. Modeling multiple
time series for anomaly detection. In ICDM, pages 90–97,
2005.

[8] Ivan Popivanov and Renée J. Miller. Similarity search over
time-series data using wavelets. In ICDE, pages 212–, 2002.

[9] Eamonn J. Keogh and T. Folias. The UCR time series data
mining archive.

[10] Eamonn J. Keogh, Li Wei, Xiaopeng Xi, Sang-Hee Lee, and
Michail Vlachos. LB Keogh supports exact indexing of shapes
under rotation invariance with arbitrary representations and
distance measures. In VLDB, pages 882–893, 2006.

