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ABSTRACT 
This paper considers the problem of publishing “transaction data” 
for research purposes. Each transaction is an arbitrary set of items 
chosen from a large universe. Detailed transaction data provides 
an electronic image of one's life. This has two implications. One, 
transaction data are excellent candidates for data mining research. 
Two, use of transaction data would raise serious concerns over 
individual privacy. Therefore, before transaction data is released 
for data mining, it must be made anonymous so that data subjects 
cannot be re-identified. The challenge is that transaction data has 
no structure and can be extremely high dimensional. Traditional 
anonymization methods lose too much information on such data.   
To date, there has been no satisfactory privacy notion and 
solution proposed for anonymizing transaction data. This paper 
proposes one way to address this issue.   

Categories and Subject Descriptors 
H.2.8 [Database Applications]: Data Mining; K.4.1 [Public 
Policy Issues]: Privacy 

General Terms 
Algorithms, Theory, Performance, Experimentation 

Keywords 
Anonymity, transaction database, privacy, data publishing  

1. INTRODUCTION 
1.1 Motivations 
In this paper, a transaction is an arbitrary set of items chosen from 
a large universe. Examples of transactions are web search queries, 
purchase records, click streams, emails. Transaction data are 
generated in a wide variety of activities including querying and 
browsing web services, online/offline shopping and product 
reviews. This has made transactions rich sources for data mining 
[15], including association rule mining [8], user behavior 
prediction [14], recommender systems (http://www.amazon.com/), 
information retrieval [18] and personalized web search [19]. 
Detailed transaction data provides an electronic image of one's 
life, possibly containing sensitive information. Therefore, before 
data can be released for data mining, it must be made anonymous  

 

so that data subjects cannot be re-identified. We first consider two 
examples for re-identification on transaction data. 

Example 1 AOL recently released a database of query logs to the 
public for research purposes [1]. However, by examining query 
terms, the searcher No. 4417749 was traced back to Thelma 
Arnold, a 62-year-old widow who lives in Lilburn. Even if a 
query does not contain address or name, a searcher may still be 
re-identified from combinations of query terms that are unique 
enough about the searcher. According to [15], this scandal leads 
to not only the disclosure of private information for AOL users, 
but also damages to data publishers’ enthusiasm on offering 
anonymized transaction data for research purposes.■ 

Example 2 A web-based retailer released online shopping data to 
a marketing company for customer behavior analysis. Albert, who 
works in the marketing company, learnt that his colleague Jane 
purchased a Printer, a Frame and a Camera from this website 
some days ago. Albert matched these items against all transaction 
records and surprisingly found only 3 transactions matched, out of 
which 2 also contains AdultToy. Albert then concluded, with 67% 
confidence, that Jane bought AdultToy. Although privacy policies 
may be in place, nothing will stop such attacks on an individual. ■ 

In these examples, the data publisher (i.e., the retailer) publishes a 
collection of person-specific transactions for research purposes. 
Each transaction contains an arbitrary set of items chosen from a 
universe U. An item can be either public (i.e., Printer, Frame and 
Camera) or private (i. e., AdultToy). One data recipient, the 
attacker (i.e., Albert), seeks to re-identify the subject of some 
transactions. As prior knowledge, the attacker knows that a target 
person (i.e., Jane) has a transaction in the published data and that 
the transaction contains certain public items (e.g., Printer, Frame 
and Camera). The re-identification is successful if very few 
transactions contain these items.  

The publisher’s goal is publishing the data, not data mining 
results. The publisher has no interest or ability in data mining and 
the data recipient wants to receive the data and have the complete 
control over how to mine the data. This scenario is different from 
publishing data mining results so that no sensitive information is 
revealed such as in [5][6][7]. Also, the published data should be 
“semantically interpretable”. For example, the recipient may want 
to visually examine each transaction; therefore, publishing 
encrypted data, or randomized data [9], or synthetic data [12] data 
does not serve our purposes. Our scenario requires publishing 
sensitive information, but hiding the identity of data subjects. This 
is different from hiding sensitive information in the above works.  

Privacy models such as k-anonymity [4] and l-diversity [11] exist 
to prevent re-identification attacks on relational data. The key is 
to form “equivalence classes” on a quasi-identifier (QID), e.g., 
{Sex, Zip, BirthDate}, so that the records in the same equivalence 
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class are not distinguishable. If applied to transaction data, the 
QID would contain one attribute for each public item in the 
universe U. Typically, U for transaction data is very large, say 
10,000 items in Example 2, and each transaction contains a small 
fraction of the items in U, say 1% or less. For such high 
dimensional QID, forming equivalence classes means suppressing 
mostly all items. A similar observation was made in the previous 
study [21]. But that study did not provide a solution to the high 
dimensional problem. 

A few works [2][3] have attempted to anonymize query logs, but 
considered only re-identifications via one or two query terms. The 
work on anonymizing social networks [16] is loosely related to 
ours. In [16], the authors model prior knowledge as small 
subgraphs with a few nodes, in a similar way that we model 
attackers’ prior knowledge as subsets of public items. In [17], 
authors demonstrated that the anonymity of Netflix subscribers 
can be compromised by as little prior knowledge as no more than 
8 movie ratings and dates. These works however did not propose 
solutions to the problems identified. 

1.2 Contributions 
Given a large universe U, it is unlikely that an attacker has prior 
knowledge on the status of all public items in U. Instead, the 
attacker is constrained by the “effort” required to acquire prior 
knowledge on each item (e.g., search the Yellow Books, hire a 
spy). In this paper, we measure the “power” of the attacker by the 
maximum number p of public items that can be obtained as prior 
knowledge in a single attack, and measure the level of protection 
relative to that power of attackers. Given the ultimate goal of 
publishing data, this “relative protection” of privacy, which is not 
security, makes sense; “absolute protection” means no data 
publishing at all – a safe but totally useless solution. 

Contribution 1 Our first contribution is a novel privacy notion 
for transaction data. We say that a database D has (h,k,p)-
coherence if, for every such combination β of no more than p 
public items, either no transaction contains β, or the set of 
transactions containing β, called β-cohort, contains at least k 
transactions and no more than h percent of these transactions 
contains a common private item. In other words, (h,k,p)-
coherence ensures that, for an attacker with the power p, the 
probability of linking an individual to a transaction is limited to 
1/k and the probability of linking an individual to a private item is 
limited to h.  

Example 3 (The running example) Suppose that a health care 
provider published the database D in Figure 1 for research on life 
styles and illnesses. “Activities” refers to the activities a person 
engages in (e.g., drinking, smoking) and are public. “Medical 
History” refers to the person’s major illness and is private. Each 
person can have an arbitrary number of activities and illness 
chosen from a universe U. Let k = 2, p = 2, h = 80%. D violates 
(h,k,p)-coherence. ab-cohort (we use ab for {a,b}) has only one 
transaction T2, so an “attacker” acquiring the prior knowledge ab 
on a target individual can uniquely identify T2 as the transaction 
of the individual. bf-cohort has two transactions T2 and T3, both 
containing “Hepatitis”. So an “attacker” acquiring the prior 
knowledge bf can infer “Hepatitis” with 100% probability. ■ 

a, c, f, g
b, c, g, y, z
b, d, f, x
a, b, c, f
a, c, d, f, g
Activities

HIV
HIV

Hepatitis
Hepatitis
Diabetes

Medical HistoryTID

T4
T5

T3

T2

T1

 
Figure 1. D, k = 2, p = 2, h = 80% 

Let us explain why (h,k,p)-coherence better preserves information 
than the QID-based k-anonymity. Consider a set of public items β 
with |β|≤p. β-cohort requires its transactions to contain all the 
items in β, but not necessarily contain items not in β. In contrast, 
QID contains one attribute for each public item in the universe U, 
and an equivalence class on QID must agree on all the items in U. 
Since p is typically much smaller than |QID|, more items are 
suppressed to form an equivalence class on QID than to form a β-
cohort. For example, to form the equivalence classes 
EC1={T1,T2,T5} and EC2={T3,T4} on the QID containing the 9 
activities in Example 3, EC1 requires suppressing b, d and g and 
EC2 requires suppressing all activities except a and b. In the end, 
only the item a remains. 

Another interesting property of (h,k,p)-coherence is that it allows 
prediction of private items for the researcher, though not for the 
attacker. Suppose that the health care provider in Example 3 is 
interested in predicting illnesses, D contains the useful pattern 
bf→ Hepatitis with 100% probability. However, for an attacker 
with the power p=1, and for k = 2 and h = 80%, D is (h,k,p)-
coherent. In particular, bf is not a threat because its size exceeds 
the power p=1 of the attacker. This is interesting because accurate 
patterns β→e usually involve a long antecedent β [20], which sets 
up a high bar to acquire such β as prior knowledge. Our privacy 
notion exploits the difference between an attacker and a genuine 
researcher: the former must acquire prior knowledge, but the 
latter does not. 

Contribution 2 Our second contribution is an algorithm for 
achieving (h,k,p)-coherence while preserving as much information 
as possible. We measure information loss by the amount of items 
suppressed. We show that an optimal solution is NP-hard and 
focus on finding a local optimal solution. The challenge is 
eliminating all damaging prior knowledge from the database, i.e., 
all subsets β of public items, |β|≤p, that violate (h,k,p)-coherence. 
For example, with p=4 and 1000 public items, the number of such 
subsets β can be as large as 10004 and enumerating all is not an 
option. We propose an efficient algorithm to eliminate such prior 
knowledge from the database. 

The rest of the paper is organized as follows. Section 2 defines the 
notion of (h,k,p)-coherence and the problem of achieving (h,k,p)-
coherence. Section 3 presents our solution. Section 4 presents 
experimental results. Section 5 concludes the paper. 

2. PROBLEM STATEMENTS 
Let U={e1,…,em} be the universe of items. An item is either 
public or private (but not both). Public items correspond to 
potentially identifying information on which prior knowledge 
could be acquired by an attacker. Private items correspond to 
sensitive information to be protected. An itemset is a set of items 
from U. A public itemset is an itemset containing only public 
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items. D={T1,…, Tn} denotes a database of transactions. Each 
transaction Ti is a set of items from U and corresponds to an 
individual. If an individual has several transactions, we merge all 
his transactions into a single transaction. 

Private items typically refer to financial information, health 
information, sexual orientation, religion and political beliefs. 
Public items refer to any items that are potentially public, 
therefore, all non-private items. In specialized applications such 
as heath care, financial sectors and insurance industry, well 
defined guidelines for public/private items often exist. 
Public/private items may also be specified by data subjects during 
data collection. For our discussion purpose, we assume that 
public/private items have been specified.  

To launch an attack on a target individual, the attacker must know 
that the individual has a transaction in D. Also, the attacker has 
the prior knowledge that the transaction contains some public 
items β. Let |β| denote the number of items in β. We describe such 
an attack by β→e, for some private item e that the attacker 
intends to infer. β-cohort refers to the set of transactions that 
contain β as a subset. Sup(β), the support of β, denotes the 
number of transactions in β-cohort. The probability that a 
transaction contains e, given that it contains β, is 

P(β→e)=Sup(β∪{e})/Sup(β). 

We define Pbreach(β), called the breach probability of β, to be the 
maximum P(β→e) for any private  item e. Since P(β→e)≥P(β→α) 
for any set α containing e, we consider only a single private item 
e in an attack β→e.  

In Example 2, the attacker has the prior knowledge β={Printer, 
Frame, Camera} and finds that, out of the 3 transactions that 
contain β, 2 also contains e =AdultToy. Sup(β)=3, Sup(β∪{e})=2, 
and P(β→e)=2/3. So the attacker infers that Jane bought 
AdultToy with the probability P(β→e)=2/3=67%.   

2.1 Coherence 
Our goal is to bound Pbreach(β) for all possible public itemsets β 
that can be acquired by the attacker as prior knowledge on a target 
individual. As the size |β| increases, so does the attacker’s effort 
required to acquire the prior knowledge β. Suppose that the 
“power” of the attacker is measured by the maximum size |β| of 
such prior knowledge β. An attacker with the power p can 
potentially acquire any public itemset β as prior knowledge on a 
target individual, where |β|≤p. If either Sup(β)<k or Pbreach(β)>h, 
by focusing on the transactions in β-cohort, the attacker is able to 
link a target individual to a transaction with more than 1/k 
probability, or to a private item with more than h probability. To 
prevent such linking, we define the following privacy notion. 

Definition 1 (Coherence) Let β be a public itemset with |β|≤p and 
Sup(β)>0. β is called a mole wrt (h,k,p) if either Sup(β)<k or 
Pbreach(β)>h; otherwise, β is called a non-mole wrt (h,k,p). We say 
that D is (h, k, p)-coherent if D contains no moles wrt (h,k,p). ■ 

Intuitively, a mole is a piece of prior knowledge that could be 
used to link a target individual to a transaction with more than 1/k 
probability, or to a private item with more than h probability. If a 
database is (h,k,p)-coherent, such linking is not possible. 

Example 4 In Example 1, suppose that Ms Thelma Arnold 
searches her own name and “Diabetes”, her query log will be 

Ti={Thelma, Arnold, Diabetes}. If β={Thelma, Arnold} is unique 
in D, Sup(β)=1 and β is a mole wrt (k = 2, p = 2, h = 80%). In 
Example 3, where k = 2, p = 2, h = 80%, ab is a mole because 
Sup(ab)=1. bf is a mole because Pbreach(bf)=100%. a is a non-mole 
because Sup(a)=3 and Pbreach(a)=1/3. ■ 

2.2 Item Suppression/Information Loss 
If D does not have coherence, we will modify D to satisfy 
coherence before publishing it. We believe that the modification 
operation should satisfy the following requirements: (R1) Private 
items are essential for research and should remain intact. (R2) A 
published transaction should not contain external items not in the 
original transaction. (R3) The support of any itemset in the 
published data should be the same as in the original data. Many 
data mining problems rely on the support of itemsets [8][13][20]. 
For example, association rule mining [8] is aimed to find all 
patterns α→β, where α and β are itemsets, such that 
Sup(α∪β)/Sup(α) is above some threshold value. Such patterns 
are good candidates for prediction and classification [20]. If 
Sup(α∪β) or Sup(α) on the modified data is different from those 
obtained on the original data, even a small difference could lead 
to a significant difference in Sup(α∪β)/Sup(α), thus an arbitrary 
prediction or classification.  

Item Suppression To meet the above requirements, we consider 
suppression of public items to achieve coherence. By suppressing 
an item from D, we simply delete the item from all transactions 
that contain the item. For example, after suppressing the items a 
and f from the transactions {a, b, HIV}, {a, d, f, HIV} and {b, d, 
Diabetes}, the transactions become {b, HIV}, {d, HIV} and {b, d, 
diabetes}.  

Observation 1 By suppressing an item, (1) every itemset 
containing the item are eliminated from the database, and (2) 
every itemset that remains in the database has the same support as 
in the original database. Therefore, item suppression satisfies R2 
and R3. In contrast, suppressing an item from some but not all 
transactions that contain the item will violate R3 because the 
support statistic may be altered. We do not consider such partial 
suppression. 

Suppression of each item leads to some loss of information. The 
best way to model information loss is considering the specific 
purpose of data. However, this approach is not applicable if the 
purpose of the data is not known at the time of publication. 
Publication on the web and publication as required by law, such 
as “public records”, are such examples because there is no 
specific data recipient. Another downside of specialized 
information metrics is that a different release must be published 
for each purpose, leaving the attacker with multiple releases to 
launch more powerful attacks.  

Information Loss Our approach is to let the data publisher assign 
a certain information loss to the suppression of an item e, denoted 
IL(e), based on some perceived importance of the item. In 
particular, IL(e)=1 charges one unit of information loss for the 
item e suppressed, and IL(e)=Sup(e) charges one unit of 
information loss for each occurrence of the item e suppressed. 
The latter penalizes more the suppression of an item e that occurs 
in more transactions. Suppose that D is transformed to D’ by 
suppressing zero or more public item. IL(D, D’)= ∑IL(e) denotes 
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the total information loss in the transformation, where ∑ is over 
all the items e suppressed. 

2.3 Problem 
Here is the problem we want to study. 

Definition 2 D’ is called a (h,k,p)-cohesion of D if D is 
transformed to a (h,k,p)-coherent D’ by suppressing some public 
items. D’ is called an optimal (h,k,p)-cohesion of D if  D’ is a 
(h,k,p)-cohesion of D and for any other (h,k,p)-cohesion  D” of D, 
IL(D, D”)≥ IL(D, D’). The optimal cohesion problem is to find an 
optimal (h,k,p)-cohesion of D.■ 

Theorem 1 D has no (h,k,p)-cohesion if and only if the empty 
itemset is a mole wrt (h,k,p). 
Proof: The empty itemset is a mole if some private item is 
contained in more than h percent of all transactions. If the empty 
itemset is a mole, it cannot be eliminated by item suppression and 
D has no (h,k,p)-cohesion. If D has no (h,k,p)-cohesion, the empty 
itemset must be a mole, otherwise suppressing all public items 
would give a (h,k,p)-cohesion. ■ 

Theorem 2 For k=2, p=2, and IL(e)=1, the optimal cohesion 
problem is NP-hard. 

Proof: The following vertex cover problem is NP-hard1: A vertex 
cover for an undirected graph G = (V,E) is a subset S of its 
vertices such that each edge has at least one endpoint in S. To 
map an instance of the vertex cover problem to an instance of 
optimal cohesion problem, let the item universe U contain all the 
vertexes in V and let the database D contain a transaction {a,b} 
for each edge <a,b> in E. Let all items in U be public items. For 
k=2, p=2 and any h, every transaction {a,b} in D is a mole 
because {a,b} has support 1. So for IL(e)=1, S is a vertex cover 
for G if and only if D’ is an optimal (h,k,p)-cohesion of D, where 
D’ is D after suppressing the items in S. ■ 

Since the optimal cohesion problem is inherently hard, we 
consider a heuristic solution to the problem. From now on, we 
assume that D has a (h,k,p)-cohesion. 

3. GREEDY ALGORITHM 
For a given loss metric IL(e), we want to suppress some public 
items from D such that the resulting database is (h,k,p)-coherent 
and ∑IL(e) over all suppressed items e  is minimized. To prune 
the search space, the meaningful first step is to suppress all public 
items that must be suppressed. A public item must be suppressed 
if the item on its own is a mole, in which case this mole cannot be 
eliminated unless the item is suppressed. This observation is 
stated below. 

Observation 2 If a public item is a (size-1) mole, the item will 
not occur in any (h,k,p)-cohesion of D, thus, can be suppressed in 
a preprocessing step. In Figure 1, each of x, y, z is a size-1 mole. 
Figure 2 shows the database after suppressing them. For tracking 
changes, we cross out a suppressed item instead of deleting it. In 
the following discussion, we assume that all size-1 moles have 
been suppressed from D. The remaining task is to eliminate all 
moles of size in [2,p] from D. 

                                                                 
1 http://en.wikipedia.org/wiki/Vertex_cover_problem 

a, c, f, g
b, c, g, y, z
b, d, f, x
a, b, c, f
a, c, d, f, g
Activities

HIV
HIV

Hepatitis
Hepatitis
Diabetes

Medical HistoryTID

T4
T5

T3

T2

T1

 
Figure 2.  D after the preprocessing step 

There are two cases for a mole β wrt (h,k,p): either Sup(β)<k or 
Pbreach(β)>h. For a mole β with Sup(β)<k, every superset β’ of β 
with |β’|≤p is also a mole because Sup(β’)≤Sup(β)<k; for a mole β 
with Pbreach(β)>h and Sup(β)≥k, a superset β’ of  β may or may not 
be a mole because Pbreach(β’)≥Pbreach(β) does not always hold. The 
first case implies that the number of moles may grow fast and 
considering all moles is not practical. We consider a smaller set of 
“minimal moles” defined below. 

Definition 3 A mole is minimal if every proper subset is a non-
mole.■ 

Example 5 In Figure 1, all of x, y, z are size-1 minimal moles 
because the empty itemset is not a mole. All of ab, ad, bd, bf, bg, 
cd, dg are size-2 minimal moles. For example, ab is a minimal 
mole because it is a mole but the subsets a and b are non-moles. ■ 

Observation 3 D is (h, k, p)-coherent if and only if D contains no 
minimal mole. This observation follows because each mole 
contains a minimal mole, so if we can eliminate all minimal 
moles, we also eliminate all moles. 

Our strategy is greedily eliminating minimal moles. Let MM(e) 
denote the number of minimal moles containing the public item e.  
By suppressing the item e, we eliminate MM(e) minimal moles at 
the cost of IL(e) information loss. To eliminate all minimal moles 
and minimize information loss, we greedily suppress the public 
item e that maximizes MM(e)/IL(e). The following algorithm is 
based on this heuristics.  

Suppression Algorithm Figure 3 outlines our item suppression 
algorithm for achieving coherence. Line 1 suppresses all size-1 
moles in the preprocessing step (Observation 2). Subsequently, in 
each iteration Line 3 suppresses a remaining public item e having 
the maximum MM(e)/IL(e). There are two key steps. The first 
key step is checking if there are minimal moles in D on Line 2. 
The second key step is identifying the item e to suppress on Line 
3 since MM(e) is dynamically changing. In the rest of this 
section, we propose an efficient algorithm for these steps. The 
general idea is first finding all minimal moles from D and then 
maintaining minimal moles and MM(e) in each iteration.  

1. suppress all size-1 moles from D (Observation 2); 

2. while there are minimal moles in D do 
3.       suppress the public item e with the maximum 

              MM(e)/IL(e) from D; 

Figure 3. Outline of greedy algorithm 

3.1 Identifying Minimal Moles 
Let us consider how to find all minimal moles. We assume that 
public items are ordered according to some pre-determined order. 
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Imagine that all public itemsets are organized into the lattice with 
subsets below supersets. To find all minimal moles, we start from 
size-1 non-moles at the bottom and walk up the lattice if the 
current node is a non-mole (Definition 1) and contains no mole. 
We stop walking up when the current node becomes a mole for 
the first time, at which point the current node is a minimal mole 
because every subset is a non-mole. The non-moles that contain 
no mole have potential to be extended into a minimal mole. This 
type of non-moles is defined below.   

Definition 4 A non-mole is said to be extendible if it contains no 
mole. ■ 

Essentially, the above walking up of the lattice corresponds to 
constructing extendible non-moles in the growing size until it 
reaches minimal moles.  Let Mi denote the set of all minimal 
moles of size i and let Fi denote the set of all extendible non-
moles of size i. Let β = <e1, …, ei-1, ei, ei+1> be a minimal mole in 
Mi+1. From Definition 3, no i-subset of β is in Mi, and both 
<e1, … , ei-1, ei > and <e1, …, ei-1, ei+1> are in Fi. Similarly, from 
Definition 4, for an extendible non-mole β=<e1, …, ei-1, ei, ei+1> 
in Fi+1, no i-subset of β is in Mi, and both < e1, …, ei-1, ei> and < 
e1, …, ei-1, ei+1> are in Fi. This gives rise to the following 
construction.  

Observation 4 Every minimal mole in Mi+1 and every extendible 
non-mole in Fi+1 has the form β=< e1, …,ei-1, ei, ei+1>, such that  < 
e1, …, ei-1, ei> and < e1, …, ei-1, ei+1> are in Fi, no i–subset of  β is 
in Mi, and ei precedes ei+1. 
 
1. find M1 and F1 in one scan of D; 

2. while i<l and Fi is not empty do 
3.     generate the candidate set Ci+1 for Mi+1 and Fi+1   
        from Fi based on Observation 4; 
4.     scan D to count Sup(β) and Pbreach(β) for all β in Ci+1; 

5.      forall  β in Ci+1 do 
6.          if Sup(β) < k or Pbreach(β)>h 

7.               then add β to Mi+1 else add β to Fi+1; 
8.       i++; 
9. output all Mi; 

Figure 4. Identifying minimal moles 

Figure 4 shows the construction of Mi+1 and Fi+1. Line 1 finds M1 
and F1 in one scan of D. At level i≥1, Line 3 generates all 
candidates <e1, …, ei-1, ei, ei+1>, Ci+1, for Mi+1 and Fi+1 based on 
Observation 4. At Line 4, Sup(β) and Pbreach(β) of all candidates β  
in Ci+1 are computed in one scan of D. At Line 6-7, candidates are 
added to Mi+1 or Fi+1 based on Sup(β) and Pbreach(β) following 
Definition 3 and Definition 4.  

The above computation shares some similarity with Apriori [8] 
for finding frequent itemsets, where an itemset is frequent if its 
support is above some threshold. The key to Apriori is that every 
proper subset of a frequent itemset is a frequent itemset. However, 
a minimal mole does not have this property because a mole 
involves conditions on both breach probability and support. 
Instead, every proper subset of a minimal mole and an extendible 
non-mole is an extendible non-mole. Therefore, we have to 

construct Mi+1 and Fi+1 in parallel. Observe that Fi is not larger 
than the set of frequent itemsets wrt the minimum support k 
because each non-mole is a frequent itemset wrt k. For this reason, 
finding minimal moles is not more expensive than finding 
frequent itemsets. 

3.2 Eliminating Minimal Moles 
Let M* denote the set of all minimal moles of size 2≤i≤p found in 
Section 3.1 (size-1 moles have been eliminated from D). In the 
next step, we eliminate all moles in M* from D. This is done by 
iteratively suppressing the remaining public item e with the 
maximum MM(e)/IL(e). The key is computing MM(e) and IL(e). 
For a remaining public item e’ with e’≠ e, by suppressing e, 
IL(e’)=Sup(e’) is not affected and all minimal moles that contain 
both e’ and e are eliminated (Observation 1).  Therefore, MM(e’) 
should be decreased by the number of minimal moles that contain 
both e’ and e. We introduce the following MOLE-tree to organize 
minimal moles and update MM(e’). 

Definition 5 (MOLE-tree) The MOLE-tree for M* contains the 
root labeled “null”. Each root-to-leaf path represents a minimal 
mole in M*. Each node (except for the root) has three fields: label 
- the item at this node; mole-num - the number of minimal moles 
that pass this node; node-link – the link pointing to the next node 
with the same label. The Score table contains three fields for each 
remaining public item e: MM(e), IL(e), head-of-link(e) that points 
to the first node on the node-link for e. ■ 

The key property of the MOLE-tree is that, for each public item e 
in the Score table, we can find all minimal moles containing e by 
following the node-link for e, starting from head-of-link(e).  

Example 6 Figure 5 shows the MOLE-tree for M*={db, da, dg, 
dc, ba, bg, bf}, where items are arranged in the descending order 
of MM(e). Let IL(e)=Sup(e). The node <b:3> means that 3 
minimal moles pass the node, i.e., ba, bg, bf. The entry <b:4,3> in 
the Score table means that MM(b)=4, IL(b)=3. The 4 minimal 
moles containing b are found by following the link in the entry: 
db, ba, bg, bf . If b is suppressed, we can find and delete these 
minimal moles by following this link.■  

b:3d:4

b:1 c:1g:1a:1

c: 1,4

f: 1,4

g: 2,3

a: 2,3

b: 4,3

d: 4,2

Score Table (Item: MM, IL) root

g:1a:1 f:1

 
Figure 5. MOLE-tree, k=2, p=2, h=80% 

 
Figure 6 describes the overall algorithm for eliminating all 
minimal moles from D. Line 1 deletes all size-1 moles. Line 2 
finds all size-2 or larger minimal moles M*. Line 3 builds the 
MOLE-tree. Line 5-9 iteratively selects the public item e with the 
maximum MM(e)/IL(e) for suppression. The main step is deleting 
e from the MOLE-tree (Line 7-9), i.e., deleting all minimal moles 
containing e. To delete all minimal moles containing e, for each 
node on the node-link of e, Line 8 deletes the entire subtree at 
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node and Line 9 updates the ancestors of node. Finally, Line 10 
suppresses all items in SuppItem from D. Let us explain Step 8 
and 9 in details. 

Step 8: This step deletes all the minimal moles in the subtree at 
node. For each node w in the subtree at node, if w has the label e’, 
MM(e’) is decremented by mole_num(w), to account for the 
elimination of all minimal moles passing w. If MM(e’) becomes 
0, delete the entry for e’ from the Score table.  

Step 9: This step updates the mole_num for all ancestors of node. 
For an ancestor node w of node, if w has the label e’, 
mole_num(w) and MM(e’) are decremented by mole_num(node), 
to account for the elimination of all minimal moles passing node. 
If mole_num(w) becomes 0, delete the node w. If MM(e’) 
becomes 0, delete the entry for e’ from the Score table.  
 
1. let D be the database with size-1 moles removed; 
2. find  minimal moles M* from D (Figure 4); 
3. build the MOLE-tree for M*; 
4. initialize SuppItem to the empty set; 
5. while Score table is not empty do 
6.      add the item e with the maximum MM(e)/IL(e) to 
SuppItem; 

7.      forall each node on the node-link for e do 
8.           delete all minimal moles that pass node;  
9.           update the mole-num at node’s ancestors; 
10. suppress all items in SuppItem from D; 

Figure 6. Overall greedy algorithm 

Example 7 Consider the MOLE-tree in Figure 5. Since the item d 
has the maximum MM/IL, we first suppress d by deleting all 
minimal moles passing the (only) node for d (Line 8). To do this, 
we can traverse the subtree at the node for d and decrease MM for 
b, a, g, and c by 1, and decreases MM for d by 4. Since MM(d) 
and MM(c) become 0, the entries for d and c are deleted from the 
Score table. The new MOLE-tree and Score table are shown in 
Figure 7. Next, the item b has the maximum MM/IL and is 
suppressed. As a result, all remaining moles are deleted and now 
the Score table becomes empty.  ■ 

b:3
g:1,3

f:1,4

a:1,3
b:3,3

Score Table (Item: MM, IL)
root

g:1a:1 f:1
 

Figure 7.  MOLE-tree after deleting d 

Cost Analysis The overall work consists of two parts. The first 
part involves finding minimal moles (Figure 4). As discussed in 
Section 3.1, this part is not more expensive than finding frequent 
itemsets. The second part involves inserting and deleting minimal 
moles using the MOLE-tree (Figure 6). Each minimal mole is 
inserted into and deleted from the MOLE-tree exactly once, thus, 
the work is proportional to the number of minimal moles |M*|. 
The benefit of dealing with minimal moles is three-fold: speed up 

the work for finding minimal moles, reduce the space for storing 
the MOLE-tree, and reduce the work for eliminating moles. 

4. EMPIRICAL STUDIES 
This section evaluates the data distortion of the proposed 
anonymization. The data distortion is defined by the percentage of 
item occurrence suppressed, S/N. S is the occurrence of the items 
suppressed, i.e., ∑IL(e) over all suppressed items e with 
IL(e)=Sup(e).  N is the occurrence of all items in the original 
database. We consider the following approaches: 

 “RmAll” – suppress all public items. Thus, S/N is the 
percentage of the occurrence of public items over the occurrence 
of all items.  
 “k-anonymity” – k-anonymization on the QID containing all 

public items. We used the global recoding TDS in [10] because it 
preserves the support of remaining itemsets (see Observation 1 
and the follow-up discussion). Since l-diversity is also based on 
the QID, we consider only k-anonymization.   

 “MM/IL” – greedily suppress the public item with the 
maximum MM/IL. This is the method presented in Section 3. We 
also consider two variants: “MM” – greedily suppress the public 
item with the maximum MM, and “1/IL” – greedily suppress the 
public item with the minimum IL.  

We considered three vastly different datasets: Connect, Retail, 
and T40I10D100K, all being publicly available from FIMI 
Repository2. As a preprocessing step, we removed the items with 
support less than 0.1%|D|, where |D| is the number of transactions. 
Such items usually are pruned due to insufficient statistical 
significance by frequent itemset mining [8] and classification 
tasks [20]. Table 1 provides a brief description of these datasets 
after preprocessing. Connect is a real dataset containing game 
state information. Retail is a real dataset supplied by anonymous 
Belgian retail supermarket store. T40I10D100K is a synthetic 
dataset. Retail and T40I10D100K have a very large item universe 
U, thus, extremely high dimensionality if represented by a 
relational table. In this aspect, Retail is more similar to the AOL 
query log data set in Example 1. Connect is denser but still 
considered high dimensional in relational data. Due to such a 
diverse data characteristics, we do not expect that all data sets 
respond equally well in terms of data distortion.  

Table 1. Dataset statistics after preprocessing 

Dataset # Trans-
actions |D|

Average 
Length 

# Items 
|U| 

Data size    
(K bytes) 

Connect 67,557 43 129 2,836 

Retail 88,162 7.5 2117 2,930 

T40I10D100K 100,000 39.4 862 15,796 

                                                                 
2 http://fimi.cs.helsinki.fi/data/ 
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Figure 8. Distortion on Connect 
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Figure 9. Distortion on Retail 
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Figure 10. Distortion on T40I10D100K 

4.1 Public Items/Private items 
First we explain our strategy of specifying public and private 
items. We introduce a parameter δ to determine the percentage of 
public items. For each data set, we randomly select δ|U| items 
from U as public items. The set of private items consists of all 
non-public items e, where e occurs in some transaction as the non-
public item of highest support. This choice is conservative 
because it generates more moles with a high breach probability, 
thus forcing elimination of more moles and increasing distortion. 
All item selections are random and the distortion reported is the 
average of five random selections. Below, we study the effect of δ, 
h, k, p on distortion and runtime for achieving (h,k,p)-coherence.  

4.2 Connect 
Figure 8(a-c) shows the distortion for Connect with p, k and δ 
being varied one at a time. The default setting is δ=40%, k=100, 
p=5. h has little impact and is set h=40%. The key findings are 
summarized as follows. “RmAll” has the highest distortion of 
41.94%. The distortion of “k-anonymity” is significantly higher 
than “MM”, “MM/IL” and “1/IL”, suggesting that the traditional 

k-anonymization is not suitable. “MM” has a higher distortion 
than “MM/IL” and “1/IL”. In fact, “MM” tends to suppress high 
frequency items to eliminate more moles at each step, but this 
also leads to a larger distortion. “1/IL” and “MM/IL” have a small 
distortion because they minimize information loss at each step. 
“MM/IL” sometimes suppresses high frequency items if doing so 
eliminates many moles, which is exactly the design goal of this 
selection criterion. k and p do not have a major impact on Connect 
because the number of moles only increases slightly. As δ 
increases, “RmAll” and “k-anonymity” distort the data more 
severely than other methods. 

4.3 Retail 
Figure 9 (a-c) shows distortion of Retail vs k, p, and δ. The 
default setting is δ=20%, k=20, p=4 and h=40%. “k-anonymity” 
did not finish within a set time limit due to a large item universe. 
The distortion of “MM/IL” and “1/IL” is about 8% lower than 
“RmAll” and the gap increases with a larger δ. Compared to 
Connect, this gap is smaller because this dataset is sparser and 
more public items were suppressed to eliminate moles even for 
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small k and p. With AOL query logs having similar data 
characteristics, we anticipate that anonymizing AOL query logs 
will lead to a similar data distortion.  

4.4 T40I10D100K 
Figure 10 (a-c) shows distortion of T40I10D100K vs k, p and δ. 
The default setting is δ=15%, k=30, p=4 and h=40%. The trend is 
similar to that for Retail except that distortion is smaller. For 
small k and p, say k=5 and p=2, this dataset is dense enough so 
that most itemsets of size ≤p have support ≥k, thus, enjoys a low 
distortion as seen on Connect. As k and p increase, a large portion 
of itemsets turns into moles, leading to a high distortion as seen 
on Retail. 

4.5 Efficiency 
Our second goal is to evaluate the efficiency of the proposed 
anonymization algorithm. All programs were coded in C++ and 
run on a PC with 2GHz CPU, 512M memory and Windows XP. 
“k-anonymity” did not finish on Retail and T40I10D100K within 
a set time limit. Since all of “MM/IL”, “MM” and “1/IL” have a 
similar runtime, we report only the efficiency of “MM/IL”. The 

runtime vs h was omitted as the number of moles having high 
breach probability is very small. Figure 11-13 show the runtime 
vs δ, k, p, with the default settings used earlier. TotalTime 
represents the total runtime for “MM/IL” and FindMole 
represents the runtime for finding moles. So the time for 
eliminating moles is TotalTime-FindMole. 

Runtime vs δ (Figure 11). For a larger δ, there are more public 
items and the runtime increases quickly. Recall that the search of 
minimal moles proceeds bottom-up in the lattice of itemsets and 
the set of minimal moles forms a cut of the lattice (Section 3.1). 
For the dense Connect, the number of moles is small, but the 
search of minimal moles goes into the higher part of the lattice 
and dominates the runtime. For the sparse Retail, there are many 
moles, but most are not searched because the cut for minimal 
moles is close to the bottom. As a result, the number of moles 
generated is small and little time is spent on eliminating minimal 
moles. For T40I10D100K, being less dense than Connect and 
being denser than Retail leads to many minimal moles in the 
middle part of the lattice. Therefore, both search and elimination 
of minimal moles take time. 
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Figure 12. Runtime vs k 
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Runtime vs k (Figure 12). k has different effects on the three 
datasets. For the dense Connect, even when k is increased from 50 
to 400, most itemsets have support ≥k and the search for minimal 
moles goes into many iterations, so the runtime is not reduced by 
a large k. In contrast, the runtime drops quickly on the sparse 
Retail. As most itemsets have a low support, the search process 
for minimal moles tends to stop at a lower part of the lattice with 
a larger k, which reduces the runtime quickly. The trend on 
T40I10D100K is similar to that on Retail.  

Runtime vs p (Figure 13). The increase of p results in a boost of 
runtime on the dense Connect due to the increase of search space 
of moles. On the contrary, for Retail, the increase of p after p=3 
hardly has any effect on runtime because most 3-itemsets have 
turned into moles and the search for minimal moles stops early.  
T40I10D100K follows this trend except its turning point is 
delayed to p=5. 

5. CONCLUSION AND FUTURE WORK 
An important research problem is anonymizing transaction 
databases for publication. The traditional anonymization for 
relational data loses too much information due to the high 
dimensionality of transaction data. To address this problem, we 
model the power of attackers by the maximum size of public 
itemsets that may be acquired as prior knowledge, and propose a 
novel privacy notion called “coherence” suitable for transactional 
databases. The empirical study shows that the coherence can be 
achieved efficiently while with a low data distortion, especially 
compared to the traditional privacy model such as k-anonymity. 
This work is directly motivated by the recent privacy breaches on 
two well-known transactional datasets[1] [17], which have caused 
huge impact in public space. We believe our work represents an 
important step to address these privacy problems generated in 
real-life scenarios. Yet, we also think that there are quite a few 
promising directions to be explored towards a more satisfactory 
solution. First, the current coherence model treat every public 
item equally identifying, while in practice different public items 
may have different weights to identify a transaction. Secondly,  
the current model relies on the assumption that an item is either 
public or private. However, in certain situations, the line between 
public/private may be blurred, i.e. different users may treat 
different item as private items. We will explore all these in our 
future work. 
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