
DroidRay: A Security Evaluation System for Customized
Android Firmwares

Min Zheng, Mingshen Sun, John C.S. Lui
Computer Science & Engineering Department

The Chinese University of Hong Kong

ABSTRACT
Android mobile devices are enjoying a lion’s market share in
smartphones and mobile devices. This also attracts malware
writers to target the Android platform. Recently, we have
discovered a new Android malware distribution channel: re-
leasing malicious firmwares with pre-installed malware to the
wild. This poses significant risk since users of mobile de-
vices cannot change the content of the malicious firmwares.
Furthermore, pre-installed applications have “more permis-
sions” (i.e., silent installation) than other legitimate mobile
apps, so they can download more malware or access users’
confidential information.

To understand and address this new form of malware dis-
tribution channel, we design and implement “DroidRay”: a
security evaluation system for customized Android firmwares.
DroidRay uses both static and dynamic analyses to evalu-
ate the firmware security on both the application and system
levels. To understand the impact of this new malware dis-
tribution channel, we analyze 250 Android firmwares and
24,009 pre-installed applications. We reveal how the mali-
cious firmware and pre-installed malware are injected, and
discovered 1,947 (8.1%) pre-installed applications have sig-
nature vulnerability and 19 (7.6%) firmwares contain pre-
installed malware. In addition, 142 (56.8%) firmwares have
the default signature vulnerability, five (2.0%) firmwares
contain malicious hosts file, at most 40 (16.0%) firmwares
have the native level privilege escalation vulnerability and
at least 249 (99.6%) firmwares have the Java level privi-
lege escalation vulnerability. Lastly, we investigate a real-
world case of a pre-installed zero-day malware known as
CEPlugnew, which involves 348,018 infected Android smart-
phones, and we show its degree and geographical penetra-
tion. This shows the significance of this new malware distri-
bution channel, and DroidRay is an effective tool to combat
this new form of malware spreading.

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’14, June 4–6, 2014, Kyoto, Japan.
Copyright 2014 ACM 978-1-4503-2800-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2590296.2590313.

In the past few years, we have experienced an exponen-
tial growth of mobile devices. Among the popular platforms,
Android is enjoying a lion’s share of mobile market. Accord-
ing to the recent report by the International Data Corpora-
tion (IDC) [13], Android market share in smartphone dom-
inates nearly 80% worldwide during the second quarter of
2013. In addition, sales of smartphones grows another 32.7%
in 2013, and the shipments could exceed 958.8 million units.
According to VR-ZONE [30], US, UK and Japan only con-
tributed 20.5% of the total shipments of smartphones in Q2,
2013, while the major bulk of smartphones (or 79.5%) were
manufactured in countries such as China, India and others.
According to the China Daily [5], shipments of smartphones
on the Chinese mainland hit 18 million in April, 2012, ac-
counting for more than half of the mobile phone market,
with more than 77% of the shipment was contributed by lo-
cal brands targeting mid-end and low-end customers. These
statistics show that there exist a large percentage of “low-
end smartphones” produced by low cost manufacturers in
developing countries and these devices domain the Android
smartphone market. Therefore, the exponential growth of
Android and the abundance of low-end smartphones attract
hackers to develop new ways to distribute malware.

The conventional approach to spread Android malware is
by uploading the malware to Android app markets. How-
ever, with the passage of time, people pay more attention on
malware detection. As of today, nearly all of the app mar-
kets scan their apps before publishing them to the public.

Recently, we have discovered that malware writers are us-
ing new channels to distribute malware: “Malware writers
pay money to manufacturers of low-cost mobile devices to
pre-install malware in their devices, or they release malicious
firmwares with pre-installed malware to the wild”. Note that
for some manufacturers, their business line is to produce low-
cost smartphones or mobile devices. To improve their sales,
they usually prefer to “pre-install” as many applications as
possible. So with the financial offer given by malware writ-
ers and their own business needs, these manufacturers have
the economic incentive to include these applications (even if
some of them are malware) [17] [31]. Figure 1 depicts the
approach to distribute the pre-installed apps in firmwares.
The manufacturer receives money (and malware) from hack-
ers. Then the manufacturer produces and sales these smart-
phones to customers with these pre-installed malware in the
devices. Finally, malware writers gain control of the vic-
tims’ devices. As an evidence of this form of malware distri-
bution channel, we found that jSMSHider and Oldboot are

malware family which targets custom firmwares and these
familes were reported by Lookout [15] and Qihoo360 [41].

Another closely related distribution channel which we dis-
covered was that malware writers release firmwares of mobile
devices on the Internet in order to attract potential manu-
facturers or customers to download. In fact, some low-cost
manufacturers often download firmwares from the wild and
use them in their production. Of course, these firmwares
may contain many vulnerabilities and pre-installed malware.
We carried out our investigation and found that there are
many customized firmwares download sites available on the
Internet (e.g., [22, 32, 16, 7]).

Manufacturer Malware Writer

Malware + Money

bought

bought

bought

Customer

Customer

Customer

controlled

Figure 1: Malicious Android firmware distribution

The firmware contains the operating system (e.g., An-
droid kernel) as well as some “pre-installed” mobile appli-
cations. Usually, users of mobile devices cannot change the
content in the firmwares unless they have the root privi-
lege or they have jailbroken the device. In addition, pre-
installed applications usually have more permissions than
other mobile applications which are downloaded from vari-
ous sites (e.g., Google Play or other third party markets).
Due to the enhanced permissions, pre-installed applications
can use system-level APIs to perform privileged operations
such as silent installation, which implies they can download
more malware from the wild. In [12], authors investigate
whether the pre-installed applications have capability leak,
which means that an application can gain access to per-
missions without explicitly requesting them. They reported
that most of these Android devices have more than 100 pre-
installed applications and they pose a high risk of capability
leak. However, their research only focused on the capability
leak detection of pre-installed applications. It is very dan-
gerous that if hackers release some infected firmwares in the
wild, or include malware in the firmwares, it is difficult for
users to determine the security level of these pre-installed ap-
plications. Further complicating the situation is that these
pre-installed applications cannot be uninstalled unless users
have the root privilege. In addition, not only can the hackers
add malware in the firmware, but also modify the Android
system. For example, the hackers can change the iptables to
redirect users’ internet visit or leave some back doors in the
firmware system for the further actions.

To address the security problems of malicious firmware
and pre-installed applications, we propose “DroidRay”, a se-
curity evaluation system for customized Android firmwares.
The system uses both static and dynamic analyses to evalu-
ate the firmware security on both the application and system
levels. The main contributions of this paper are:

• We design a security evaluation system for customized
Android firmwares on both the application level and
system level. We study how the malicious firmwares
and malware are injected into the market. In partic-
ular, we use DroidRay to perform application signa-
ture vulnerability detection and malware detection on
the application level (see Sec. 4). Then it performs
system signature vulnerability detection, network se-
curity analysis, and privilege escalation vulnerability
detection for the customized Android firmware on the
system level (see Sec. 5).

• We use “DroidRay” to systematically analyze 250 cus-
tomized Android firmwares and 24,009 pre-installed
applications. On application level, we successfully dis-
covered 1,947 (8.1%) applications have signature vul-
nerability and 19 (7.6%) firmwares contain pre-installed
malware. On system level, we discovered 142 (56.8%)
firmwares have the default signature vulnerability, five
(2.0%) firmwares contain malicious hosts file, at most
40 (16.0%) firmwares have the native level privilege es-
calation vulnerability and at least 249 (99.6%) firmwares
have the Java level privilege escalation vulnerability
(see Sec. 4, 5).

• To show the influence of pre-installed Android mal-
ware, we investigate a real world case of a pre-installed
zero-day Android malware known as CEPlugnew, which
involves 348,018 infected Android smartphones. We
investigate the degree of its penetration as well as its
infected geographical regions (see Sec. 6).

The paper is organized as follows: In Section 2, we briefly
overview the background on Android firmware. Then we dis-
cuss the system design and analysis methodology of DroidRay
in Section 3. In Section 4, we present our systematic study
of 24,009 pre-installed applications to show their security
problems. In Section 5, we present our systematic study of
250 customized Android firmwares. In Section 6, we present
our detailed analysis of a real world malware to illustrate
the Android malware ecosystem. Related work is given in
Section 7 and Section 8 concludes.

2. BRIEF OVERVIEW OF ANDROID
FIRMWARE

In this paper, Android firmware refers to a “packed binary
system image” which can be written to a non-volatile stor-
age, say a device’s flash memory. “Flashing” is a process of
writing data to the internal memory on smartphones. Nor-
mally, one needs to flash a firmware to a smartphone in order
to upgrade (or even downgrade) the system software.

There are two types of firmwares: (1) firmware with “re-
covery partition” and, (2) firmware “without recovery parti-
tion”. The recovery partition can be considered as an alter-
native boot partition which lets the device boot into a re-
covery console for performing advanced recovery and main-
tenance operations. For example, it can perform an update
using the “update.zip” file on the microSD card. There are
two types of recovery partitions, one is the “official recovery
partition”, the other is the “customized recovery partition”.
The official recovery partition will check the public key in-
formation of the firmware. Only the official firmwares can
be flashed into an Android device. The custom recovery

partition does not check whether the public key is official or
not, so users can flash third-party firmwares into Android
devices. Usually, if an Android smartphone has a recovery
partition, users could just download those firmwares without
recovery partition, and then perform the flashing.

All firmwares have three core components: (1) the “sys-
tem” folder, (2) the“META-INF” folder and (3) the“boot.img”
file and several optional components (e.g., the“data”folder).
The “system” folder contains most of the system files, and
the “/system/app” directory on the Android device is where
the pre-installed applications with system level privilege are
stored. In addition, the “/system” folder is read-only by de-
fault, which means user cannot uninstall the pre-installed
applications unless the user has the root privilege. The
“META-INF” folder contains the installation script and sig-
nature information of the firmware. Because firmware’s de-
velopers can create their own installation scripts, they can
put their applications into the “/system/app” folder or other
folders. Malware writers who create malicious firmwares of-
ten craft a script which can copy pre-installed applications
into “/system/app” folder or “/data/app” folder. Therefore,
the pre-installed apps can be in any sub-directory because
malware writers can inject various installation scripts. In
order to bypass the malware detection, the malware writer
may place the malware into another folder, or even en-
crypt these applications if necessary. This is the reason why
some pre-installed applications are not stored in the “/sys-
tem/app” folder of the firmware. This also points to the
weakness of current Android anti-virus software since they
only inspect applications in the /system/app folder. Last
but not least, the “boot.img” is the Linux kernel which is
used in the Android device. This img file also contains many
initialization scripts for system booting, so the hackers can
perform modification in order to hide their malicious intent.

3. SYSTEM DESIGN AND ANALYSIS
METHODOLOGY

DoridRay is a security evaluation system for customized
Android firmwares. The system uses Android firmwares as
the input, then the system analyzes both Android firmwares
as well as pre-installed applications. After the analysis,
DroidRay outputs the analysis report of these firmwares and
pre-installed applications. In the analysis process, DoridRay
uses both static analysis and dynamic analyses to evaluate
the firmware security on application level and system level.
The architecture of DroidRay is depicted in Figure 2.

Let us discuss the methodology we use to carry out the
security analysis of various Android firmwares. The method-
ology can be summarized as the following steps:

• We download and collect firmwares from different An-
droid firmware forums and websites.

• After we obtain these firmwares, we use DroidRay to
analyze the configuration files (e.g., “/system/build.
prop” file) to obtain the firmware information. The
information includes firmware name, product model
and Android version, etc.

• DroidRay uses both static and dynamic methodologies
to extract and analyze the pre-installed applications
in the Android firmware. Specifically, we carry out
two forms of security analysis: (a) application signa-

ture vulnerability detection and, (b) malware detec-
tion. The details are presented in Section 4.

• DroidRay uses both static and dynamic methodologies
to analyze the system security of the Android firmware.
Specifically, we carry out three forms of security anal-
ysis: (a) system signature vulnerability detection, (b)
network security analysis, and (c) privilege escalation
vulnerability detection. The details are presented in
Section 5.

• DroidRay organizes all the analysis results of systems
and pre-installed applications into the database and
then outputs various reports which are classified by
the signature, MD5 and package name. This helps
security analysts use DroidRay to quickly identify and
associate malware and vulnerabilities.

To show the effectiveness of our system, we used DroidRay
to perform a large scale security analysis on 250 Android
firmwares and 24,009 applications. To the best of our knowl-
edge, this is the largest scale of Android firmware security
analysis reported so far. We downloaded these Android
firmwares from [22, 16, 36, 19, 29, 7, 4]. The statistics are
summarized in Table 1. Because of the page limit, we put
the full firmware information at https://www.dropbox.co

m/s/8rrmyqwzlqg3wjw/RomInfo.xls.

Firmware Information Number

Total firmwares 250
Total number of apps in all firmwares 24,009
Average number of apps per firmware 96.04
Average size of a firmware 274.7MB
Android Version (≥4.0) 210
Phone Models (e.g., Samsung Galaxy S4) 101

Table 1: Summary Statistics of 250 Firmwares

4. SECURITY EVALUATION OF
PRE-INSTALLED APPLICATIONS

In this section, we briefly introduce how to pre-install and
extract applications in the Android firmware, then we show
our analysis methodologies and experiment results for An-
droid pre-installed applications.

4.1 Introduction to Pre-installation
There are two methods to pre-install the applications in

the Android firmware: One is putting the apk files to the
“/system/app” folder or “/data/app” folder of the firmware.
Then the system will pre-install these applications when it
launches. The advantage of using this method is that the ap-
plications in the “/system/app” folder (not the “/data/app
folder) can gain the system privilege. The drawback of this
approach is that the applications cannot execute normally
if it contains any native libraries i.e., libraries which are
written in C/C++, such as foo.so. Because the Android
system does not extract the native libraries for applications
in the“/system/app” folder, the applications cannot find the
related native libraries when it executes.

The other way is using the “pm install” command to
create a pre-install script and add the trigger script to the
“init.rd” file in the “boot.img” file. After that, the sys-
tem will trigger the pre-install shell script the first time it

https://www.dropbox.com/s/8rrmyqwzlqg3wjw/RomInfo.xls
https://www.dropbox.com/s/8rrmyqwzlqg3wjw/RomInfo.xls

Figure 2: Architecture of DroidRay

launches. The advantage of using this method is it uses the
normal installation process, so the application which con-
tains native libraries can execute normally. The drawback
is the pre-installed applications cannot obtain the system
privilege.

In order to analyze the pre-installed applications, we need
to extract all the apk files from the Android firmware. In
DroidRay, our system uses both static and dynamic ap-
proaches to extract apk files. Since an apk file is in fact a zip
file which includes AndroidManifest.xml and classes.dex

file. The static approach of extracting apk files is to uncom-
press the Android firmware and extract all the files which has
the zip magic number and contains AndroidManifest.xml

file. The dynamic approach of extracting apk files is to flash
Android firmware into the device and then use “pm list

packages” and “pm path” command to obtain all the paths
of these apk files in the device, and then use “adb pull” to
extract all the apk files.

4.2 Application Signature Vulnerability Detec-
tion

In Android, application signature is very important for se-
curity and privacy. The Android system requires all installed
applications be digitally signed with a certificate and the pri-
vate key should be held by the application’s developer. The
Android system uses the certificate as a mean of identifying
the author of an application and establishing trust relation-
ships between applications. Note that if two applications
have the same package name and same signature, they can
replace each other due to the application update mechanism.
In addition, if two applications are signed by the same cer-
tification and claim the same “SharedUserId” attribute in
their AndroidManifest.xml files, they will share the same
union permission set. Furthermore, with the same uid, they
will have the permission to access each other’s data. There-
fore, if two applications have the same certificate but one of
them is a malware, this implies the malware has penetrated
into the system.

AOSP (Android Open source Project) comes with four
signature key pairs in the “build/target/product/securi-
ty/” folder. The platform key is used to sign core parts of
the system. The shared key is used to sign home and con-
tacts part of AOSP. The media key is used to sign media and
download framework parts of AOSP. The test key is used to
sign everything else. These signature key pairs are for the
developers to build test Android firmwares. The signature
information can be found in Table 2. The first column shows
the MD5 value of the signature after signed. The second col-
umn shows the description of the signature. Because all of
these four key pairs are created by the Android team, they
have the same description. The last column shows the sig-
nature of file names. It is important for us to point out that
developers should not use these default AOSP key pairs to

build their released Android applications because everyone
can obtain these key pairs from the AOSP. Therefore, it is in
danger that an application with “SharedUserId” attribute is
signed by the AOSP keys.

In order to detect application signature vulnerability, DroidRay
first extracts the “SharedUserId” attribute from the An-

droidManifest.xml file and the signature information from
the RSA file of the application. Then DroidRay puts all of
the information into the database and compares with the
default signatures of AOSP. Note that we did not count the
applications which share the same uid (as known as “an-
droid.uid.system”) with the system platform. The reason
is that these applications belong to the platform applications
with the system level privilege, so we classify them as a part
of system signature vulnerability. We will discuss this form
of security analysis in Section 5.

Among 24,009 apps in 250 Android firmwares we ana-
lyzed, we discover that 5,712 apps have the “SharedUserId”
attribute in their AndroidManifest.xml files. Moreover,
1,947 (34%) applications are signed by the default AOSP key
pairs. Table 3 shows how many shared uid applications are
signed by which key pairs (because of the page limit, the full
list can be found at https://www.dropbox.com/s/f7c5de

4s55o2rk9/AppSign.zip). This is quite alarming since mal-
ware writers can easily sign their malware with the default
AOSP key pairs, and the malware can gain extra permissions
and modify other applications’ data if they have the same
shared uid. For example, we discover that all the firmwares
released by Cyanogenmod [22] have several vulnerable ap-
plications. In particular, com.android.providers.media,
com.android.providers.drm and com.android.providers.

downloads are signed by the default AOSP media key and
they all have a same shared uid, “android.media”. Also,
com.android.contacts, com.android.providers.contacts,
com.android.providers.applications and com.android.

providers.userdictionary are signed by the default AOSP
shared key and they all have a same shared uid,“android.uid.
shared”. Therefore, if the malware is signed by the default
AOSP key (media or shared key) and claims the same shared
uid (“android.media” or “android.uid.shared”), it can ac-
cess all the data and get permissions (e.g., READ_CONTACTS,
WRITE_CONTACTS, WRITE_SETTINGS and ACCESS_DRM) from vul-
nerable applications.

4.3 Malware Detection
DroidRay first uses anti-virus software (e.g. VirusTo-

tal [11]) to scan all apks and filter out the “known” and com-
mon malware. For the remaining applications, DroidRay
only retains the applications which have dangerous permis-
sions (e.g., sending SMS message) or silent installation be-
havior. For the applications with dangerous permissions,
DroidRay uses permission-to-api map table [1] to find the
code section which uses the related API of dangerous per-

https://www.dropbox.com/s/f7c5de4s55o2rk9/AppSign.zip
https://www.dropbox.com/s/f7c5de4s55o2rk9/AppSign.zip

MD5 of Signature Signature Description Signature Type

8ddb342f2da5408402d7568af21e29f9 EMAIL=android@android.com,CN=Android,OU=Android,
O=Android,L=Mountain View,ST=California,C=US

platform

e89b158e4bcf988ebd09eb83f5378e87 EMAIL=android@android.com,CN=Android,OU=Android,
O=Android,L=Mountain View,ST=California,C=US

testkey

1900bbfba756edd3419022576f3814ff EMAIL=android@android.com,CN=Android,OU=Android,
O=Android,L=Mountain View,ST=California,C=US

media

5dc8201f7db1ba4b9c8fc44146c5bcc2 EMAIL=android@android.com,CN=Android,OU=Android,
O=Android,L=Mountain View,ST=California,C=US

shared

Table 2: Default Signature Information

MD5 of Signature Signature Description # of
App

cde9f6208d672b54b1dacc0b7029f5eb CN=Android,OU=Android,O=Google Inc.,L=Mountain View,ST=California,C=US 767
8ddb342f2da5408402d7568af21e29f9 emailAddress=android@android.com,CN=Android,OU=Android,O=Android,L=Mountain

View,ST=California,C=US
673

5dc8201f7db1ba4b9c8fc44146c5bcc2 emailAddress=android@android.com,CN=Android,OU=Android,O=Android,L=Mountain
View,ST=California,C=US

518

1900bbfba756edd3419022576f3814ff emailAddress=android@android.com,CN=Android,OU=Android,O=Android,L=Mountain
View,ST=California,C=US

503

4a441695cb20427d284e7ded135925ad emailAddress=android@htc.com,CN=Android,OU=Android,O=Android,L=Taoyuan,ST=Taoyuan,C=TW 268
f11fdf766b78025bf4035cb1b7ad483c emailAddress=android.os@samsung.com,CN=Samsung Cert,OU=DMC,O=Samsung Corpora-

tion,ST=South Korea,C=KR
263

2eed75e85b154fb0c1013ecd16115c84 CN=Tencent,OU=Tencent,O=Tencent,L=Beijing,ST=Beijing,C=CN 255
e89b158e4bcf988ebd09eb83f5378e87 emailAddress=android@android.com,CN=Android,OU=Android,O=Android,L=Mountain

View,ST=California,C=US
253

d087e72912fba064cafa78dc34aea839 emailAddress=android.os@samsung.com,CN=Samsung Cert,OU=DMC,O=Samsung Corpora-
tion,ST=South Korea,C=KR

241

ea75f0b73ee288cd683b7a11716b9f77 emailAddress=android@htc.com,CN=Android,OU=Android,O=Android,L=Taoyuan,ST=Taoyuan,C=TW 159
f31d93c0e9064bafa39cbe653360e6ba emailAddress=android.os@samsung.com,CN=Samsung Cert,OU=DMC,O=Samsung Corpora-

tion,ST=South Korea,C=KR
128

701478a1e3b4b7e3978ea69469410f13 emailAddress=miui@xiaomi.com,CN=MIUI,OU=MIUI,O=Xiaomi,L=Beijing,ST=Beijing,C=CN 115

Table 3: App Signature Information

missions and then check whether it has malicious behavior
or not. On the other hand, in order to find those applica-
tions with silent installation behavior, DroidRay disassem-
bles each application and uses two silent installation code
patterns to search the assemble code. One code pattern we
used is using the hidden installation API, android.content.
pm.PackageManager.installPackage(), to install the apk

file. The other code pattern we used is Runtime.exec()

which is to execute “pm install” command to install the
apk file. After determining the code section, we continue to
check whether it contains malicious behavior or not.

Among the 250 Android firmwares we analyzed, we dis-
covered that 19 firmwares contain malware. This means
about 7.6% Android firmwares contain pre-installed mal-
ware. Again, this is quite alarming since many low-cost
manufactures use public firmwares for their products. We
provide more detailed information of these 19 firmwares in
Table 4.

• We discover that 19 firmwares contain the same An-
droid malware which is known as “Agent”. This is a
premium SMS trojan. In addition, it has a special
permission, android.permission.INSTALL_PACKAGES,
as compared with other Android malware. Usually,
a normal Android application cannot be installed in
the smartphone if it has the android.permission.

INSTALL_PACKAGES permission, because this is a privi-
lege permission only reserved for system applications.
However, pre-installed applications are different. Be-
cause they are stored in the “/system/app/” folder,
these apps belong to the system applications. There-
fore they possess the android.permission.INSTALL_

PACKAGES permission. Once the malware has this per-

mission, it can install other Android applications into
the smartphone without notifying the user that a new
application is being installed.

• We discover“JSmsHider”, which is a premium SMS tro-
jan that uses the HTTP protocol to receive and execute
the command from some botnet masters.

• We discover “Stesec”, which is a SMS trojan which
makes phone calls to long-distance numbers or sends
SMS premium rate phone numbers without the phone
owner’s knowledge.

• We discover “Hippo”, which is another premium SMS
trojan that can cause additional phone charges by send-
ing SMS messages to some hard-coded premium-rated
numbers in the mobile application.

• One malware family we want to emphasize is the “CE-
Plugnew”. In our security analysis, we discover that it
uses various encryption techniques to bypass the anti-
virus detection and hide in the firmwares. To gain a
deeper understanding on this malware family and its
business chain, we carried out a detailed study of this
new malware family. Results and discussion will be
presented in Section 6.

5. SECURITY EVALUATION OF
THE SYSTEM

In this section, we discuss how we perform system security
detection. The process can be divided into three aspects: (1)
system signature vulnerability detection, (2) network security
vulnerability detection, and (3) privilege escalation vulnera-
bility detection.

MD5 of Firmware Image Size OS Phone Model # of Malware Path Malware
(MB) Version Apps Name

3643C59163D102616BF547A465837C44 934 4.1.2 GT-I9300 244 /optional/other/digua/preload/
digua.apk

Agent

5B7E06BCE9920E82CB0A8CBC0302BC7E 215 4.0.3 ZTE U970 83 /system/framework/framework.jar Agent
5BFE256A10BDB9A44BA7F7AF78DDD3AC 225 4.0.4 GT-I9300 83 /system/app/BaiduReader.apk/assets/

huafubao.apk
Agent

6B20E70C4AD84B1EE5F840E920E718EB 183 4.0.4 HUAWEI C8812 82 /system/app/168_(2216G7).apk Agent
76099C37D57AC1A5659B7B312155733C 185 4.2.2 Galaxy Nexus 78 /system/preload/digua.apk Agent
8BA7722157471E31946D500BDAAA7998 1026 4.2.1 GT-I9300 249 /optional/other/digua/preload/

digua.apk
Agent

959A7ADC6F1A8AC4D8D266C4AB3EDD9E 262 4.1.2 X907 85 /system/app/YXPhoneBook.apk JSmsHider
979DAF30377A1D85CD19F1CE71A7A5DC 87 2.3.7 LT15i 18 /system/app/Youni_1.1.16_1103.apk Hippo
99DD205A5E6D2045CE3D57D157278FBF 207 4.0.4 Incredible S 74 /system/etc/product/applications/

duoku.apk
Agent

A364CF949574DAEF8C30072F45504432 83 2.3.7 Blade 55 /system/app/BaiduReader.apk Agent
BC3B5944A758A8B7734C152E096C80A6 226 4.0.4 GT-I9300 86 /system/app/iReader.apk Agent
BE541971F46F5BCE0EDC0A397B608FF9 387 4.1.2 LT26i 164 /system/app/BaiduReader.apk Agent
BEC16CFCB0C5FBE9E6F8D402D88BDB8B 937 2.2.2 ZTE-U V880 74 system/app/SecuritySms.apk Stesec
D3ECD1333E7F46CE3E028CEA1CB3F224 628 4.1.2 GT-I9300 170 /system/etc/product/applications/

duoku.apk
Agent

E9F033CD8C694A5BD56C7AE94A425C97 406 4.2.1 ZTE N986 156 /system/app/BaiduReader.apk Agent
F4DF6D64A4F856CA1B53B400A33C55F4 113 2.3.7 GT-I9000 67 /system/app/youni_2.2.2.3.apk Hippo
F62C11C7827BBA0374DB69B276910266 161 4.1.2 GT-I9300 64 /system/app/Plugnew.apk CEPlugnew
F893F4BE1A0A280BD62887A2BF2C36C6 193 4.2.2 SGH-I897 83 /system/preload/digua.apk Agent
FD2EA6A845A86AAB0122BB2ADF90F2C1 81 2.3.7 Wildfire S 55 /system/app/iReader.apk Agent

Table 4: Malicious firmwares with pre-installed apps

5.1 System Signature Vulnerability Detection
As mentioned in Section 4, developers should not use the

AOSP default key pairs to build their released Android ap-
plications because anyone can get these key pairs from the
AOSP. For Android firmwares, it also have two signature
mechanisms for integrity verification and system level per-
mission control. However, our experiment result shows that
there exist many Android firmwares which were signed by
the default AOSP key pairs and this will create two types
of default signature security problem:
(1) Android firmware default signature problem: The
Android firmware signature mechanism is similar to other
Android applications. The signing program first calculates
the SHA1 value of each file in the firmware, then it uses
a private key to encrypt these SHA1 values. The signing
program will put the encrypted SHA1 values and the pub-
lic key in the “META-INF” folder of the firmware. Before the
firmware can be flashed to an Android device, the recovery
partition will use the encrypted SHA1 values and its public
key to check the integrity of each file as well as to verify the
signature of the firmware. Note that the recovery partition
of some manufacturers’ products (e.g., Samsung) will check
whether the public key is indeed its own key or not. If it
is not, one cannot flash the firmware to the flash memory.
However, many users may choose to turn off the signature
verification process so to install the third-party firmwares.

By analyzing all of our 250 downloaded firmwares, we dis-
covered that 206 (82.4%) firmwares have the same public
key, which is the test key of the default key pairs provided
by AOSP. The result of our analysis is showed in Table 5.
For example, the fifth row of the table shows the public key
information of the AOSP and there are 206 firmwares using
this key pairs. Note that if malware writers use the AOSP
default key pairs to create firmwares, this will give people
the false impression that the Android firmware was created
by the official Android open source project.
(2) Android system default signature problem: The
system signature information is stored at: “/system/frame-
work/framework-res.apk/META-INF/CERT.RSA”. By using the

pkcs7 function of the“openssl” library, the system can parse
the signature information from “CERT.RSA”. Note that the
Android system signature is different from the Android firmware
signature. The Android firmware signature is used to check
the integrity of the files in the firmware. But the system
signature is used for permission control. If one application
has the same public key as the system, it can use the system
level permissions.

By analyzing all of our 250 downloaded firmwares, we dis-
covered that 142 (56.8%) Android firmwares have the default
public keys, which are part of the default key pairs provided
by AOSP [10]. This is alarming because if a malware writer
uses the AOSP key pairs to sign their malware, then the
malware can get the system level privilege. With the sys-
tem level privilege, the malware can silently install new ap-
plications and modify other applications. The result of our
analysis is showed in Table 6 (because of the page limit, the
full list can be found at https://www.dropbox.com/s/8fbl

0yujqoaja1h/SystemSign.xls). For example, the first row
of the table shows the public key information of the AOSP
and there are 134 Android firmwares using this key pairs.

5.2 Network Security Vulnerability Detection
Android is a derivative based on a modified Linux 2.6

with a Java programming interface, so it has components
(e.g., hosts and iptables) similar to those of Linux to control
network filtering and forward. In this subsection, we present
the security issues of these components.
(1) Hosts security: The hosts file is a plain text file used
by an operating system to map host names to IP addresses.
For example, if the user wants to visit“www.google.com”and
if there is a map record in the “/etc/hosts” file, the system
will not request IP lookup from a DNS server but instead, it
directly uses the IP address which is recorded in the hosts

file. Therefore, it would be very dangerous if the hackers
modify this file and add malicious redirection information.
For example, if a user wants to visit some legitimate websites
listed in the “/etc/hosts” file, a compromised system will

https://www.dropbox.com/s/8fbl0yujqoaja1h/SystemSign.xls
https://www.dropbox.com/s/8fbl0yujqoaja1h/SystemSign.xls

MD5 of Signature Signature Information # of
Firmware

1f1b2fd4e0bded6ca5088afa287b5332 EMAIL=mobile@zte.com.cn, CN=zte.com.cn, OU=Product R&D Center I, O=ZTE Corpora-
tion, L=Nanjing, C=CN

1

5fd1d7579992cff701ea20873e8ac99f CN=Smaritsan 2
ab82cce8af68057b7ab8867b5dd75d65 EMAIL=Android@amoi.com.cn, CN=Amoi, OU=Amoi, O=Amoi, L=Xiamen, ST=Fujian, C=CN 1
943e1151975cfd342a95f2a7512bbff8 EMAIL=12001@oppo.com, CN=12001, OU=M6, O=OPPO, L=DongGuang, ST=GuangDong, C=CN 1
e89b158e4bcf988ebd09eb83f5378e87 EMAIL=android@android.com,CN=Android,OU=Android,O=Android,L=Mountain

View,ST=California,C=US
206

fcf645259f609183606ab55da67fc9db EMAIL=oppo@oppo.com, CN=SmartPhone, OU=PLF, O=OPPO, L=ChangAn, ST=DongGuan, C=CN 2
fe3c74f0431ea0dc303a10b6af6470fc EMAIL=bms@baidu.com,CN=BMS,OU=BaiduYi,O=Baidu,L=Haidian,ST=Beijing,C=CN 9
No Signature No Signature Information 28
Total 250

Table 5: Firmware signature count with highlighted row indicating misleading signature

MD5 of Signature Signature Information # of
Firmware

8ddb342f2da5408402d7568af21e29f9 emailAddress=android@android.com,CN=Android,OU=Android,O=Android,L=Mountain
View,ST=California,C=US

134

d087e72912fba064cafa78dc34aea839 emailAddress=android.os@samsung.com,CN=Samsung Cert,OU=DMC,O=Samsung Corpora-
tion,ST=South Korea,C=KR

24

2eed75e85b154fb0c1013ecd16115c84 CN=Tencent,OU=Tencent,O=Tencent,L=Beijing,ST=Beijing,C=CN 13
701478a1e3b4b7e3978ea69469410f13 emailAddress=miui@xiaomi.com,CN=MIUI,OU=MIUI,O=Xiaomi,L=Beijing,ST=Beijing, C=CN 12
4abc4868a502c9c77b50ca9deb53b672 emailAddress=yi@baidu.com,CN=rom-platform,OU=BaidYi,O=Baidu,L=Haidian,ST=Beijing,

C=CN
8

bb7bce1b1090fc3a6b67ebc88701acdd emailAddress=mobile@huawei.com,CN=AndroidTeam,OU=TerminalCompany,O=Huawei,
L=Shengzhen, ST=Guangdong,C=CN

9

0f92c3b692319a1daabac6c94b07fbee emailAddress=Admin@dianxinos.com,CN=TAPAS,OU=SDG,O=TAPAS,L=BeiJing,ST=BeiJing,
C=CN

5

10637522aa8f840170c50fcbe61227ac CN=Smartisan 4
9e5b0111e0408bb405c819ea0784b69d CN=Sony_Ericsson_E_Platform_Signing_Live_864f,O=Sony Ericsson Mobile Communica-

tions AB, C=SE
7

a7babf3e3872080766e5331943aafa58 emailAddress=android@htc.com,CN=Android,OU=Android,O=Android,L=Taoyuan,ST=Taoyuan,
C=TW

6

75711ca27d4693cc27432c47ac8582c0 emailAddress=android@android.com,CN=Android,OU=Android,O=Android,L=Mountain
View,ST=California,C=US

5

d4c6ea170fd9ef95572ab50318b695de emailAddress=oppo@oppo.com,CN=SmartPhone,OU=PLF,O=OPPO,L=ChangAn,ST=DongGuan,C=CN 4
2bf07615199371b0c35ef2e23936b345 CN=lidroid,OU=lidroid,O=lidroid,L=xi’an,ST=shaanxi,C=CN 3
e89b158e4bcf988ebd09eb83f5378e87 emailAddress=android@android.com,CN=Android,OU=Android,O=Android,L=Mountain

View,ST=California,C=US
3

8701cf44ad2623c4a5c89944b24d6417 CN=lidroid.com,OU=lidroid.com,O=xian,L=shaanxi,ST=SX,C=86 2
...
Total 250

Table 6: System signature count with highlighted row indicating AOSP default signatures

not connect the user to the legitimate server but instead,
requests will be re-routed to some malicious websites.

To investigate this form of network security vulnerabil-
ity, we use DroidRay to extract the hosts file from An-
droid firmware and check whether it has malicious modifica-
tions or not. Note that some developers may use hosts file
to block advertisements. They redirect the advertisement
servers’ host names to “127.0.0.1” in order to prevent the
server from sending advertisement to the smartphone. In
this case, we will treat it as a warning but not a malicious
behavior. By analyzing all of our 250 downloaded firmwares,
we discovered that 54 firmwares modified their hosts files
and five Android firmwares contained malicious hosts file
(please refer to Table 7). For example, the first row of Ta-
ble 7 shows that “HUAWEI” Android firmware with 4.1.2
version has malicious hosts file which redirects Google and
Youtube websites to malicious websites.
(2) Iptables security vulnerability: iptables is used
to set up, maintain, and inspect the tables of IPv4 or IPv6
packet filter rules. It is more versatile than the hosts file
specification because it can define many forwarding/filtering
rules for each packet. Therefore, it is very dangerous if hack-
ers add malicious rules in the iptables. In order to detect
this form of vulnerability, we use DroidRay to perform the
analysis. For the static analysis, DroidRay first searches all

the initial scripts in the firmware and checks whether it has
“iptables” command or not. Then DroidRay searches ipt-
ables configuration file from the “/system/etc/” folder. For
the dynamic analysis, DroidRay executes the “iptables -

list-rules” command to obtain all rules from the devices.
If the system finds that the iptables rules are not none,
DroidRay will report a warning to the analysts. Note that
DroidRay will not consider the forward rules that redirect
the advertisement servers’ package to “127.0.0.1”. By ana-
lyzing all of our 250 downloaded firmwares, we discovered
that two Android firmwares modified their iptables rules
and no Android firmware contains malicious iptables rules.

5.3 Privilege Escalation Vulnerability Detec-
tion

Privilege escalation vulnerabilities can be exploited by a
malicious application to gain high level privileges (e.g., root
and system levels) and execute malicious actions that would
normally be restricted by the Android system. A num-
ber of such vulnerabilities (e.g., GingerBreak [2] and Mas-
terKey [26]) were discovered in the core Android platform,
affecting nearly all Android devices. Although manufactur-
ers have tried their best to fix these vulnerabilities, unfor-
tunately, privilege escalation vulnerabilities still remain un-
patched on large populations of Android firmwares.

MD5 of firmware Image Size OS Phone Model # Malicious Behavior
(MB) Version of Apps

5EC3A725107D787C51F73055E2B2836B 473 4.1.2 HUAWEI U9508 127 Redirect google and youtube
5F262C7046904152ABC0DC0635694EA2 286 4.0.3 X907 92 Redirect facebook
67C031B8BCC97B2EBE672B30243C3050 306 4.0.3 X907 92 Redirect yahoo
8A3598500340843FF1D0609F42E852E7 428 4.1.2 LT26i 161 Redirect google
E43B91728003193EA4E889C20310FD5D 207 4.0.4 HUAWEI C8812 75 Redirect adobe and wikipedia

Table 7: Modified Firmwares with Malicious Hosts File

We use DroidRay to explore the existence of privilege esca-
lation vulnerabilities on Android firmware systems. For the
static analysis, we classify escalation vulnerabilities into na-
tive level vulnerabilities (e.g.,GingerBreak and ZergRush [24])
and Java level vulnerabilities (e.g., MasterKey). For native
level vulnerabilities, DroidRay first extracts the potential
vulnerable elf files from the Android firmware and then
disassembles the potential vulnerable functions into ARM
assemble language. Then the system compares the control
flow of the potential vulnerable functions with the vulner-
able functions stored in our vulnerability database. Note
that for patching vulnerable files, developers need to add
new judgement code into the vulnerable functions. This is
the reason why we choose the control flow as the signature.
For example, Android 2.2 (as known as Froyo) has a RageA-
gainsttheCage vulnerability. This vulnerability exploits the
lack of checking for the return value of setuid() function in
the /system/bin/adb file. After the initial process has the
root privilege, the adb daemon attempts to call setuid() to
set its uid to the shell privilege in its code:

setgid(AIL_SHELL);
setuid(AIL_SHELL);

However, the exploit attempts to fork as many “adb” pro-
cesses as possible in order to make the “setuid” fail. In ad-
dition, the current adb code does not check whether the se-

tuid() call was successful or not and it will keep running as
a root process even if the call fails. To patch this vulnerabil-
ity, Android 2.3 adds the privilege check after the setuid()

call:

if (setgid(AIL_SHELL) != 0) {
exit(0);

}
if (setuid(AIL_SHELL) != 0) {

exit(0);
}

For Java level vulnerabilities, DroidRay first extracts the
potential vulnerable odex or jar files from the Android firmware
and then disassembles the potential vulnerable functions
into Dalvik assemble language. Then the system compares
the control flow of the potential vulnerable functions with
the vulnerable functions stored in our vulnerability database.
For example, Android 4.2 has a master key vulnerability.
This vulnerability exploits the lack of checking for the du-
plicate name of the entries in the zip file. So hackers can
create two files with the same name in order to bypass the
signature verification:

LinkedHashMap<String, ZipEntry> mEntries
= new LinkedHashMap<String, ZipEntry>();

for (int i = 0; i < numEntries; ++i) {
ZipEntry newEntry = new ZipEntry(hdrBuf, bin);
mEntries.put(newEntry.getName(), newEntry);

}

To patch this vulnerability, Android 4.3 adds the duplicate
name check after the mEtries putting the name into the
HashMap:

for (int i = 0; i < numEntries; ++i) {
ZipEntry newEntry = new ZipEntry(hdrBuf, bin);
String entryName = newEntry.getName();
if (mEntries.put(entryName, newEntry) != null) {

throw new ZipException("Duplicate" +
"entry name: " + entryName);

}
}

For dynamic analysis, DroidRay uses the “adb” to exe-
cute all real exploits in our vulnerability database and then
checks whether the exploits are successful or not. Last but
not least, DroidRay reports the potential privilege escalation
vulnerabilities to the user.

Currently, our vulnerability database includes four na-
tive level vulnerabilities and three Java level vulnerabilities
(please refer to Table 8). In Table 8, the first column shows
the name of the vulnerability. The second column shows the
check points of the vulnerability and the last column shows
the type (native or Java) of the vulnerability. For example,
the first row shows the RageAgainsttheCage vulnerability we
discussed before. By analyzing all of our 250 downloaded
firmwares, we discovered that most of firmwares can defend
against native level vulnerabilities. However, nearly 99%
firmwares have Java level vulnerabilities. The experiment
result is summarized in Table 9. The first column is the
name of the vulnerability. The second column indicates how
many firmwares have this type of vulnerability, and the last
column depicts the percentage of vulnerable firmwares.

vulnerability name # of firmware Percentage

RageAgainsttheCage [3] 1 0.4%
GingerBreak [2] 2 0.8%
ZergRush [24] 40 16.0%
CVE-2009-1185 [6] 40 16.0%
Masterkey1[26] 249 99.6%
Masterkey2[25] 249 99.6%
Masterkey3[27] 250 100.0%

Table 9: Experiment result of privilege escalation
vulnerabilities

6. PRE-INSTALLED MALWARE CASE STUDY
As mentioned in Section 4, we discovered a malware named

“CEPlugnew” in numbers of firmwares. In March of 2013, we
captured this pre-installed zero-day Android malware family

vulnerability name Check Point Type

RageAgainsttheCage [3] adb_main() function of /system/bin/adb elf file native
GingerBreak [2] handlePartitionAdded() function of /system/bin/vold elf file native
ZergRush [24] dispatchCommand() function of libsysutils.so elf file native
CVE-2009-1185 [6] uevent_kernel_multicast_recv() function of /system/bin/sysinit elf file native
Masterkey1[26] readCentralDir() function of java.util.zip.ZipFile class of /system/framework/core.jar Java
Masterkey2[25] getInputStream() function of java.util.zip.ZipFile class of /system/framework/core.jar Java

and ZipEntry() function of java.util.zip.ZipEntry class of /system/framework/core.jar
Masterkey3[27] getInputStream() function of java.util.zip.ZipFile class of /system/framework/core.jar Java

Table 8: vulnerability Description

and its management system. The system is used to send pre-
mium rate SMS and distribute pay per install applications.
In this section, we present our investigation of this zero-
day Android malware, its operating process and its business
chain.

6.1 Zero-day Malware: CEPlugnew

As we mentioned in Section 4, malware writers can pay
money to some smartphone manufacturers in order to pre-
install apps in smartphones. By using DroidRay, we studied
several firmwares of low-cost smartphones and successfully
discovered a pre-installed zero-day malware. We call this
malware CEPlugnew because its package name is com.example
.plugnew. Firstly, it has INSTALL_PACKAGES and SEND_SMS

permission, so DroidRay extracts it from firmware for fur-
ther analysis. Secondly, by using dynamic analysis, we find
it is an advanced malware using the DexClassLoader to dy-
namically decrypt and load an encrypted JAR file. In addi-
tion, because it is a pre-installed app with system privilege,
it can download and install any application when it receives
commands from the malware server. By reverse engineering,
we were able to determine the malware servers’ addresses
(e.g., 42.121.120.*). Furthermore, we discover that one of
their servers has the MSSQL SQL injection vulnerability.
We exploit this vulnerability and obtain a large database
and its malware manage system. Let us present our find-
ings.

6.2 Malware Management System
The malware management system we obtained is a web-

based system to manage and view the status of premium rate
SMS messages and silent installation of mobile applications.
The system was written in JSP and was created in 2009.
At first, this system was used to control the Symbian-based
malware. According to the modification record, the system
was modified and began controlling Android-based malware
in 2011. Firstly, this system has a dynamic web page, the
malware on the controlled smartphones will visit this dy-
namic web page on the specified time with some essential
parameters (e.g., IP address, time, IMEI, IMSI, version, and
phone model). Then the system will record the information
in the MSSQL database. Secondly, if the malware writers
want to distribute an application, they only need to create a
new task and enter parameters for this task (e.g., the down-
load link and distribution numbers). On the other hand,
the malware on the controlled smartphone will request the
server for the task, and execute it on the specified time.
Thirdly, this system can be used to send a large number
of SMS messages to a host of phone numbers. In addition,
malware writers can use this system to check their monthly
profits from different telecommunications operators.

6.3 Database Analysis

We obtain the database snapshot from the malware writ-
ers’ server. The database includes more than 348,018 unique
International Mobile Equipment Identification (IMEI) and
415,607 unique International Mobile Subscriber Identifica-
tion (IMSI). The statistics of the database is summarized in
Table 10. We find that all the smartphones in the database
were infected within five months (from 2012.10 to 2013.03).
In addition, by querying the database on the IP distribu-
tion map, we can approximate the locations of these IP ad-
dresses. Table 11 shows the number of infected IP addresses
in countries. Note that due to the page limit, we only list
those countries which have more than 50 infected smart-
phones. Finally, we use Google map API [14] to generate an
infected smartphone distribution map and it is depicted in
Figure 3. From the map, we can see that some major cities
in China, like Guangzhou, Beijing and Chengdu, have the
high number of victims. Other countries like US and other
European countries are not immune either since they have
infected devices. To the best of our knowledge, this is the
first real world case about the pre-installed malware which
has more than 348,018 infected devices.

Database Information Description

Unique IMEI 348,018
Unique IMSI 415,607
of Phone Model 3,178
Unique IP Address 568,072
First log time 2012-10
Last log time 2013-03

Table 10: Statistics of infected smartphones

7. RELATED WORK
In this section, we present some related works which are

related to Android malware, Android application security
and Android firmware security.

In [8], authors presented the ded decompiler and carried
out a study of 1,100 Android applications. Their analysis
framework allows researchers to observe not only the ex-
istence of dangerous functionality, but also how it occurs
within an Android app. Felt et al. studied 18 Android
malware in [9]. Jia et al. [18] conducted a study on the
run-time enforcement of information-flow. In [33], authors
discussed how to enhance users’ comprehension of Android
permissions. ADAM [35] and DroidChameleon [23] are two
systems to generate Android malware variants. [40] was the
first paper to provide a systematic study on the detection
of malicious applications on Android Markets. The authors
successfully discovered 211 malware and carefully analyzed
the malicious behaviors of the malware. DroidMOSS [37] is
an Android system to detect repackaged applications using
fuzzy hashing. ContentScope [39] aimed to find the passive

Figure 3: Distribution of infected Android devices around the world due to the pre-installed malware “CE-
Plugnew”

Country # of Infected
IP Addresses

CN-(CHINA) 561,657
TW-(TAIWAN) 1,299
HK-(HONG KONG) 891
KR-(REPUBLIC OF KOREA) 453
US-(UNITED STATES) 385
MY-(MALAYSIA) 305
VN-(VIET NAM) 202
RU-(RUSSIAN FEDERATION) 168
VE-(VENEZUELA) 165
MO-(MACAU) 159
SG-(SINGAPORE) 155
IT-(ITALY) 141
AU-(AUSTRALIA) 126
CA-(CANADA) 114
ES-(SPAIN) 105
GB-(UNITED KINGDOM) 105
TH-(THAILAND) 88
FR-(FRANCE) 81
DE-(GERMANY) 74
PH-(PHILIPPINES) 66
BG-(BULGARIA) 62
KZ-(KAZAKHSTAN) 62
ID-(INDONESIA) 61
NZ-(NEW ZEALAND) 58
AR-(ARGENTINA) 57
SA-(SAUDI ARABIA) 50

Table 11: Number of infected IP addresses in coun-
tries

content leaks and pollution in Android applications. Smart-
Droid [34] can automatically reveal the UI-based trigger con-
ditions. In [38], Zhou et al. studied characterization and
evolution of Android malware with 1,260 samples. Kevin
McNamee [21] showed us how to build a spyphone. How-
ever, all of the above mentioned works only focused on the
detection and functionalities of Android malware and they
did not focus on Android firmware security.

Woodpecker [12] analyzed each application in a smart-
phone firmware to explore the reachability of a dangerous
permission from a public, unguarded interface. Lei et al.
[20] studied ten representative stock Android images from

five popular smartphone vendors and they found a lot of se-
curity problems on the permission usages of pre-installed ap-
plications. However, all of the above mentioned works only
focused on the applications. XRay[28] is an app for scan-
ning security vulnerabilities of Android system, so it cannot
scan the firmwares. Our paper is the first detailed study on
both pre-installed application security and system security
for Android firmwares. In particular, we have done large
scale experiments on 250 Android firmwares and performed
a detailed case study on infected firmwares.

8. CONCLUSION
As malware writers are using firmwares to spread new

malware, there is an urgent need to combat this new form of
distribution channel. We present the design and implemen-
tation of “DroidRay”: a security evaluation system for cus-
tomized Android firmwares. The system uses both static and
dynamic analyses to evaluate the firmware security on appli-
cation level and system level. We carry out a comprehensive
study on 24,009 pre-installed applications and 250 Android
firmware systems, and discover compromised firmwares can
contaminate the system and inject new malware into de-
vices. We found 1,947 (8.1%) pre-installed applications have
signature vulnerability and 19 (7.6%) firmwares contain pre-
installed malware. In addition, we discovered 142 (56.8%)
Android firmwares have the default signature vulnerability,
five (2.0%) Android firmwares contain malicious hosts file, at
most 40 (16.0%) Android firmwares have native level priv-
ilege escalation vulnerability and at least 249 (99.6%) An-
droid firmwares have Java level privilege escalation vulnera-
bility. In particular, we carry out detailed investigation on a
real world pre-installed zero-day Android malware known as
CEPlugnew, which involves 348,018 infected Android smart-
phones and reveal its geographical spread.

References
[1] F. Adrienne, Porter, C. Erika, H. Steve, S. Dawn, and

W. David. Android permissions demystified. In Pro-
ceedings of ACM Conference on Computer and Com-
munications Security (CCS), 2011.

[2] C-skill. Gingerbreak. http://c-skills.blogspot.hk

/2011/04/yummy-yummy-gingerbreak.html, 2011.

[3] C-skill. Rageagainstthecage. https://github.com/b

ibanon/android-development-codex/wiki/rageaga

instthecage, 2011.

[4] A. Central. Android central (rom market). http://

www.androidcentral.com/tags/firmware, 2013.

[5] C. Daily. Low-end smartphone fight.
http://www.chinadaily.com.cn/bizchina/2012s

martphone/2012-07/16/content_15703750.htm, 2012.

[6] N. V. Database. Cve-2009-1185. http://web.nvd.

nist.gov/view/vuln/detail?vulnId=CVE-2009-1185,
2009.

[7] DownloadAndroidROM. Downloadandroidrom (rom
market). http://downloadandroidrom.com/, 2013.

[8] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A study of android application security. In Proceedings
of the 20th USENIX conference on Security, SEC’11,
2011.

[9] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wag-
ner. A Survey of Mobile Malware in the Wild. In Pro-
ceedings of the 1st ACM workshop on Security and pri-
vacy in smartphones and mobile devices, 2011.

[10] Google. Android open source project. http://source

.android.com, 2008.

[11] Google. virustotal. https://www.virustotal.com/,
2013.

[12] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
Detection of Capability Leaks in Stock Android Smart-
phones. In Proceedings of the 19th Annual Network &
Distributed System Security Symposium, 2012.

[13] I. D. C. (IDC). Apple cedes market share in smartphone
operating system market as android surges and win-
dows phone gains, according to idc. http://www.idc.

com/getdoc.jsp?containerId=prUS24257413, 2013.

[14] G. Inc. Google map apis. http://developers.googl

e.com/maps/, 2012.

[15] L. Inc. Security alert: Malware found targeting custom
roms (jsmshider). https://blog.lookout.com/b

log/2011/06/15/security-alert-malware-found-

targeting-custom-roms-jsmshider/, 2011.

[16] Ipmart. Ipmart (rom forum). http://www.ipmart-

forum.com/forum.php, 2013.

[17] J. Janego. The security implications of custom android
roms. http://labs.neohapsis.com/2011/12/21/

the-security-implications-of-custom-android-

roms/, 2012.

[18] L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer,
M. Stroucken, K. Fukushima, S. Kiyomoto, and
Y. Miyake. Run-time enforcement of information-flow
properties on Android (extended abstract). In Com-
puter Security—ESORICS 2013: 18th European Sym-
posium on Research in Computer Security, Sept. 2013.

[19] Jidi. Rom jidi (rom market). http://www.romjd.com/,
2013.

[20] W. Lei, G. Michael, Z. Yajin, W. Chiachih, and J. Xux-
ian. The impact of vendor customizations on android
security. In Proceedings of ACM Conference on Com-
puter and Communications Security (CCS), 2013.

[21] K. McNamee. How to build a spyphone. Blackhat,
2013.

[22] C. Mod. Cyanogen mod (rom forum). http://www.cy

anogenmod.org/, 2013.

[23] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon:
evaluating android anti-malware against transforma-
tion attacks. In Proceedings of the ASIACCS ’13.

[24] Revolutionary. Zergrush. http://forum.xda-develo

pers.com/showthread.php?t=1296916, 2011.

[25] saurik. Android bug superior to master key. http:

//www.saurik.com/id/18, 2009.

[26] saurik. Exploit and fix android master key. http:

//www.saurik.com/id/17, 2009.

[27] saurik. Yet another android master key bug. http:

//www.saurik.com/id/19, 2009.

[28] D. Security. Xray for android. http://www.xray.io/

#vulnerabilities.

[29] Shendu. Rom shendu (rom market). http://www.sh

endu.com/android/, 2013.

[30] VR-ZONE. Research shows chinese manufacturers ac-
count for 20 percent of smartphones worldwide, india on
the rise. http://vr-zone.com/articles/research-

shows-chinese-manufacturers-account-for-20-

percent-of-smartphones-worldwide-india-on-the-

rise/49868.html, 2013.

[31] D. Walker. Pay-per-install pays big bucks in the
mobile world. http://www.scmagazine.com/pay-

per-install-pays-big-bucks-in-the-mobile-

world/article/258731/, 2012.

[32] Xda. Xda-developers (rom forum). http://www.xda-

developers.com/, 2013.

[33] L. Yang, N. Boushehrinejadmoradi, P. Roy, V. Gana-
pathy, and L. Iftode. Short paper: enhancing users’
comprehension of android permissions. In Proceedings
of the second ACM workshop on Security and privacy
in smartphones and mobile devices, SPSM ’12, 2012.

[34] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and
W. Zou. Smartdroid: an automatic system for revealing
ui-based trigger conditions in android applications. In
Proceedings of the second ACM workshop on Security
and privacy in smartphones and mobile devices, SPSM
’12, 2012.

http://c-skills.blogspot.hk/2011/04/yummy-yummy-gingerbreak.html
http://c-skills.blogspot.hk/2011/04/yummy-yummy-gingerbreak.html
https://github.com/bibanon/android-development-codex/wiki/rageagainstthecage
https://github.com/bibanon/android-development-codex/wiki/rageagainstthecage
https://github.com/bibanon/android-development-codex/wiki/rageagainstthecage
http://www.androidcentral.com/tags/firmware
http://www.androidcentral.com/tags/firmware
http://www.chinadaily.com.cn/bizchina/2012smartphone/2012-07/16/content_15703750.htm
http://www.chinadaily.com.cn/bizchina/2012smartphone/2012-07/16/content_15703750.htm
http://www.chinadaily.com.cn/bizchina/2012smartphone/2012-07/16/content_15703750.htm
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1185
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1185
http://downloadandroidrom.com/
http://source.android.com
http://source.android.com
https://www.virustotal.com/
http://www.idc.com/getdoc.jsp?containerId=prUS24257413
http://www.idc.com/getdoc.jsp?containerId=prUS24257413
http://developers.google.com/maps/
http://developers.google.com/maps/
https://blog.lookout.com/blog/2011/06/15/security-alert-malware-found-targeting-custom-roms-jsmshider/
https://blog.lookout.com/blog/2011/06/15/security-alert-malware-found-targeting-custom-roms-jsmshider/
https://blog.lookout.com/blog/2011/06/15/security-alert-malware-found-targeting-custom-roms-jsmshider/
http://www.ipmart-forum.com/forum.php
http://www.ipmart-forum.com/forum.php
http://labs.neohapsis.com/2011/12/21/the-security-implications-of-custom-android-roms/
http://labs.neohapsis.com/2011/12/21/the-security-implications-of-custom-android-roms/
http://labs.neohapsis.com/2011/12/21/the-security-implications-of-custom-android-roms/
http://www.romjd.com/
Blackhat
http://www.cyanogenmod.org/
http://www.cyanogenmod.org/
http://forum.xda-developers.com/showthread.php?t=1296916
http://forum.xda-developers.com/showthread.php?t=1296916
http://www.saurik.com/id/18
http://www.saurik.com/id/18
http://www.saurik.com/id/17
http://www.saurik.com/id/17
http://www.saurik.com/id/19
http://www.saurik.com/id/19
http://www.xray.io/#vulnerabilities
http://www.xray.io/#vulnerabilities
http://www.shendu.com/android/
http://www.shendu.com/android/
http://vr-zone.com/articles/research-shows-chinese-manufacturers-account-for-20-percent-of-smartphones-worldwide-india-on-the-rise/49868.html
http://vr-zone.com/articles/research-shows-chinese-manufacturers-account-for-20-percent-of-smartphones-worldwide-india-on-the-rise/49868.html
http://vr-zone.com/articles/research-shows-chinese-manufacturers-account-for-20-percent-of-smartphones-worldwide-india-on-the-rise/49868.html
http://vr-zone.com/articles/research-shows-chinese-manufacturers-account-for-20-percent-of-smartphones-worldwide-india-on-the-rise/49868.html
http://www.scmagazine.com/pay-per-install-pays-big-bucks-in-the-mobile-world/article/258731/
http://www.scmagazine.com/pay-per-install-pays-big-bucks-in-the-mobile-world/article/258731/
http://www.scmagazine.com/pay-per-install-pays-big-bucks-in-the-mobile-world/article/258731/
http://www.xda-developers.com/
http://www.xda-developers.com/

[35] M. Zheng, P. P. C. Lee, and J. C. S. Lui. Adam: an au-
tomatic and extensible platform to stress test android
anti-virus systems. In Proceedings of the 9th interna-
tional conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, DIMVA’12, 2013.

[36] Zhijia. Rom zhijia (rom market). http://www.romzj.

com/, 2013.

[37] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Droid-
MOSS: Detecting Repackaged Smartphone Applica-
tions in Third-Party Android Marketplaces. In Pro-
ceedings of the second ACM conference on Data and
Application Security and Privacy, 2012.

[38] Y. Zhou and X. Jiang. Dissecting Android Malware:
Characterization and Evolution. In Proceedings of the

33rd IEEE Symposium on Security and Privacy, 2012.

[39] Y. Zhou and X. Jiang. Detecting passive content leaks
and pollution in android applications. In Proceedings
of the 20th Annual Symposium on Network and Dis-
tributed System Security, 2013.

[40] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You,
Get Off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets. In Proceed-
ings of the 19th Annual Network & Distributed System
Security Symposium, 2012.

[41] H. Z. Zihang Xiao, Qing Dong and X. Jiang.
Oldboot: the first bootkit on Android. http:

//blogs.360.cn/360mobile/2014/01/17/oldboot-

the-first-bootkit-on-android/, 2014.

http://www.romzj.com/
http://www.romzj.com/
http://blogs.360.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/
http://blogs.360.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/
http://blogs.360.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/

	Introduction
	Brief Overview of Android Firmware
	System Design and Analysis Methodology
	Security Evaluation of Pre-installed Applications
	Introduction to Pre-installation
	Application Signature Vulnerability Detection
	Malware Detection

	Security Evaluation of the System
	System Signature Vulnerability Detection
	Network Security Vulnerability Detection
	Privilege Escalation Vulnerability Detection

	Pre-installed Malware Case Study
	Zero-day Malware: CEPlugnew
	Malware Management System
	Database Analysis

	Related Work
	Conclusion

