
Joint Optimization of Chain Placement and Request
Scheduling for Network Function Virtualization

Qixia Zhang1 Yikai Xiao1 Fangming Liu∗1 John C.S. Lui2 Jian Guo1 Tao Wang1
1Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology
2The Chinese University of Hong Kong

Abstract—Compared with executing Network Functions (NFs)
on dedicated hardwares, the recent trend of Network Function
Virtualization (NFV) holds the promise for operators to flexibly
deploy software-based NFs on commodity servers. However,
virtual NFs (VNFs) are normally “chained” together to provide
a specific network service. Thus, an efficient scheme is needed to
place the VNF chains across the network and effectively schedule
requests to service instances, which can maximize the average
resource utilization of each node in service and simultaneously
minimize the average response latency of each request. To this
end, we formulate first VNF chains placement problem as a
variant of bin-packing problem, which is NP-hard, and we model
request scheduling problem based on the key concepts from open
Jackson network. To jointly optimize the performance of NFV, we
propose a priority-driven weighted algorithm to improve resource
utilization and a heuristic algorithm to reduce response latency.
Through extensive trace-driven simulations, we show that our
methods can indeed enhance performance in diverse scenarios.
In particular, we can improve the average resource utilization
by 33.4% and can reduce the average total latency by 19.9% as
compared with the state-of-the-art methods.

I. INTRODUCTION

In today’s enterprise and datacenter networks, middleboxes
(e.g., firewall, load balancer, WAN accelerator)—also known
as Network Functions (NFs)—play a critical role in ensuring
security and enhancing performance [1]. Recently, the emerg-
ing Network Function Virtualization (NFV) technology shifts
the way of how those NFs are implemented, by migrating
them from dedicated hardwares to commodity servers. The
trend of NFV makes it easy for operators to flexibly manage
the network [2]–[4] and quickly deploy and scale up NFs to
meet the traffic demand [5].

Typically, Virtual Network Functions (VNFs) are chained
together—known as NF chaining—to provide a specific net-
work service [6]–[8]. For instance, in datacenters, some flows
need to traverse a firewall function and a load balancer
function, while other flows need only to traverse the firewall
function for processing. Since datacenter traffic exhibits high
volume and high variation in both temporal and spatial di-
mensions [9], [10], an appropriate method is needed to place
various VNF chains in datacenter networks so that they can
serve requests effectively.

*This work was supported in part by the National 973 Basic Research
Program under Grant 2014CB347800, and in part by NSFC under Grant
61520106005. (Corresponding author: Fangming Liu)

To flexibly process VNFs so as to achieve high resource
utilization and low response latency in datacenters, we need
to deal with two important tasks: (1) efficiently placing VNFs
on commodity servers to achieve high resource utilization and
(2) effectively scheduling requests to achieve low response
latency, which includes both queuing latency and processing
latency [11]. For the first task, Fig. 1 shows that low uti-
lization of computing resource often increases the number of
computing nodes in service, which furthermore increases the
propagation delay and transmission cost of network flows [12].
For the second task, Fig. 2 shows that effectively scheduling
requests can reduce the average queuing delay and processing
latency of service instances. Here, a service instance means
an instance of a VNF that is set up on a computing node and
can serve requests with a positive service rate [13]. Besides,
the second way of scheduling requests in Fig. 2 also lowers
the job rejection rate, where job rejection rate refers to the
ratio of requests rejected by the service instances among all
requests due to the admission control mechanism.

Considering several essential characteristics of VNF chains
and requests, we meet three major challenges when dealing
with these two tasks:

• Since a request’s arrival process at a VNF is associated
with the service process at the former VNF (if there is
any), this “chaining” requirement makes it inappropriate
to place each VNF independently. Besides, different
requests often require different VNF chains, which makes
this problem even more challenging. Hence, we need to
find an appropriate model so as to capture these important
properties.

• Due to the difference in resource capacity among comput-
ing nodes and the difference in resource demand among
VNFs, it is usually computational expensive to find out
the optimal solution for placing all VNFs. Hence, we
aim to find a near-optimal solution which can improve
the average resource utilization of each computing node
and reduce the execution cost simultaneously.

• Since each service instance of a VNF can be shared by
multiple requests, improper scheduling of requests will
lead to frequent congestions and high job rejection rate.
Thus, an effective method is needed to schedule multiple
requests to VNF instances, which would reduce queuing
latency and job rejection rate.

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.232

2028

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.232

2025

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.232

731

(a) Inter-server processing

Node2

(b) Intra-server processing

Node1Node2Node1
VNF2 VNF3 VNF2 Free

VNF1

Free

Free FreeVNF1

VNF3

Fig. 1: An example of two ways to place a VNF chain. By mov-
ing VNF3 from Node2 to Node1 (which has sufficient remaining
resources to serve these three VNFs), the VNF chain is converted
from (a) inter-server processing to (b) intra-server processing [11].

Instance1

Instance2

Instance1

Instance2

1 100O

2 50O
2 50O

1 100O

(a) (b)
VNF VNF

Fig. 2: An example of two ways to schedule two requests, where
λ1 and λ2 represent the average packet arrival rate of each request.
Instance1 and Instance2 are two service instances of a VNF, which
are serving different numbers of requests respectively.

Differing from previous works, our work comprehensively
addresses these three challenges. We tackle the first challenge
by applying the theory of open Jackson network to model
VNF chains in datacenter networks. For the second challenge,
we formulate the VNF placement problem as a variable sized
bin packing problem to prove its NP-hardness, and then
we propose a cost-effective scheme to ensure near-optimal
placement of VNFs. We also carefully design a heuristic
algorithm to solve the third challenge.

In summary, we study the VNF chain placement and request
scheduling problem, which is a timely important problem in
datacenters. The contributions of this paper are as follows:

• We apply the theory of open Jackson network to model
VNF chains. Our model not only captures the actual
network traffic characteristics in datacenter networks, but
also includes network congestions (reflected by packet
loss rate) and job rejection rate.

• In order to maximize the average resource utilization,
we propose a priority-driven weighted algorithm to
achieve near-optimal placement of VNF chains with a
theoretically-proved worst-case performance bound; and
in order to minimize the average response latency, we
propose a heuristic algorithm to schedule requests cost-
effectively.

• Through theoretical analysis and extensive trace-driven
simulations, we show that our methods improve the
average resource utilization by 33.4% and reduce the
average total latency by 19.9% as compared with the
state-of-the-art methods.

II. RELATED WORK

At present, previous works on VNF placement problem tend
to map it into two NP-hard problems: Virtual Network Embed-
ding (VNE) problem and location-routing problem [13]–[15].

Usually they do such mapping for showing NP-hardness and
then solve the VNF placement problem accordingly. Cohen
et al. [14] propose the NFV location problem and map it to
two NP-Hard problems: the facility location problem and the
Generalized Assignment Problem, and they solve the problem
by jointly placing network functions and calculating path in
the embedding process. Similarly, Mehraghdam et al. [13]
hierarchically solve the placement of VNFs and then the
chaining problem. In [15], Moens and Turck decouple the
legacy VNE problem into VNF chaining and VM embedding
problem, and they specify both VM requests and service
requests. Xia et al. [16] provide an NFV network model for
ISP operations.

Nevertheless, these NP-hard problems do not integrate some
key characteristics in the VNF chain placement problem.
For instance, the VNE problem mainly focuses on how to
deploy VNFs on physical networks, specifically on different
templates of VMs, while a request usually requires a chain of
VNFs. In other words, chaining requirements are not addressed
well in the VNE problem [14]. Furthermore, combining the
VNE problem and the location-routing problem still does not
address the problem well. Even though [13] and [15] consider
the chaining requirements, their proposed solutions do not
scale well for large problem instances. Moreover, most existing
works just assume that the network is uncongested and do
not consider packet loss situations. In fact, congestions do
occur in datacenter networks, hence queuing delay and packet
losses should not be ignored. In addition, retransmission of
packets will bring in feedbacks among requests, which makes
previous approaches not applicable. To cover these aspects,
request scheduling should be jointly considered when placing
VNF chains. Thus, an effective scheme to schedule requests
is urgent needed in datacenter networks.

Differing from existing works, we apply the theory of
open Jackson network to capture the actual network traffic
characteristics in datacenter networks. Our model includes
both network congestions (reflected by packet loss rate) and
job rejection rate. We jointly optimize VNF chain placement
and request scheduling by proposing two heuristic algorithms
to achieve high resource utilization and low response latency,
both of which outperform the state-of-the-art methods.

III. MODEL AND FORMULATION

In this section, we first present our model as key notations
are listed in Table I and II. Then we elaborate on why we
apply the open Jackson network to model VNF chains. Lastly,
we formally present our objectives combined with constraints.

A. Mathematical Model
We model the datacenter network as a connected graph

G = (V,E), where V is the set of computing nodes and
E is the set of edges (or links) for connecting computing
nodes through switch nodes (which are not included in set V).
Since datacenter network provides high bi-sectional bandwidth
[17], queuing latency on switch nodes is relatively low. We
assume that there are sufficient switch capacities to ensure

20292026732

the connectivity of the network, and we only consider placing
VNFs on computing nodes in our model.

The computing resource consumption of a VNF can be
expressed in terms of CPU, memory and network bandwidth.
According to the related works, such as [3], [13] and [16],
we find that CPU is usually defined as the bottleneck resource
in most VNFs, while other hardware resources are relatively
sufficient in most cases. Consequently, we define Av as the
CPU-bounded resource capacity of computing node v ∈ V ,
while other resources (e.g., memory, network bandwidth) are
modeled as additional constraints.

A VNF f ∈ F can be placed at any computing node v ∈ V
if it has sufficient resource capacity, where F is the set of
VNFs. We use a binary variable xf

v to indicate whether VNF
f ∈ F is deployed at node v ∈ V (1 if so, 0 otherwise). Since
multiple VNFs can be placed at the same computing node, we
also define a binary variable yv indicating whether computing
node v ∈ V has deployed any VNF f ∈ F . The relationship
between yv and xf

v can be expressed in Eq. (1).

∀v ∈ V : yv =

⎧
⎪⎪⎨

⎪⎪⎩

0,
∑

f∈F

xf
v = 0,

1,
∑

f∈F

xf
v > 0.

(1)

In fact, multiple service instances of a VNF can be deployed
at the same computing node to deal with multiple requests. We
use Mf to indicate the number of service instances that VNF
f ∈ F can deploy. To satisfy the constraint of the integrity of
each VNF, we suggest placing all service instances of a VNF
at one computing node, which actually helps the operators to
save the setup cost. If all the service instances still cannot
cope with all the requests, we can then place some replicas of
the VNF on different nodes, and regard each replica as a new
VNF. Hence, we have Eq. (2).

∀f ∈ F :
∑

v∈V

xf
v = 1. (2)

We use a notation R to represent the set of requests. A chain
of VNFs should be applied to a request r ∈ R in a specific
order, hence we use a symbol Uf

r to indicate whether VNF
f ∈ F is required in request r ∈ R (1 if so, 0 otherwise). Since
some service instances can be shared by multiple requests, we
have inequality (3).

∀f ∈ F : Mf ≤
∑

r∈R

Uf
r . (3)

We assume that the service time for packets on each service
instance of VNF f ∈ F follows an exponential distribution
with a parameter µf . We distinguish the service instances by
a positive integer k ≤ Mf . We define a binary variable zfr,k to
indicate whether a request r ∈ R uses the k-th service instance
of VNF f ∈ F . We also define a binary variable ηrv to indicate
whether a request r ∈ R traverses any VNF on node v ∈ V .

TABLE I: Set

Symbol Description

G The graph G = (V,E) representing the datacen-
ter network

V The set of computing nodes within the network
E The set of edges (or links) within the network
F The set of Virtual Network Functions (VNFs)
R The set of requests, where each request needs to

traverse a specific VNF chain

TABLE II: Parameter and Variable

Symbol Description
Av Resource capacity of computing node v ∈ V
Df Resource demand of each service instance of

VNF f ∈ F
Mf Number of service instances of VNF f ∈ F that

can be deployed
Uf

r 1 if request r ∈ R uses VNF f ∈ F , 0 otherwise
µf Average service rate of VNF f ∈ F , µf > 0
λr Average packet arrival rate of request r ∈ R,

λr > 0
Λf

k Equivalent total arrival rate of packets at the k-th
service instance of VNF f ∈ F , Λf

k > 0
Pr Probability of packets of request r ∈ R that are

received correctly by the destination, 0 < Pr ≤ 1
ηr
v 1 if request r ∈ R needs to traverse any VNF

placed at computing node v ∈ V , 0 otherwise
xf
v 1 if VNF f ∈ F is placed at computing node

v ∈ V , 0 otherwise
yv 1 if there is any VNF f ∈ F placed at computing

node v ∈ V , 0 otherwise
zfr,k 1 if request r ∈ R uses the k-th (k < Mf) service

instance of VNF f ∈ F , 0 otherwise

Their relationship can be described as follows:

∀r ∈ R, v ∈ V : ηrv =

⎧
⎪⎪⎨

⎪⎪⎩

0,
∑

f∈F

xf
vU

f
r = 0,

1,
∑

f∈F

xf
vU

f
r > 0.

(4)

For each request r ∈ R using VNF f ∈ F , it should be
mapped to exactly one service instance of f . In other words,
if it does not traverse a VNF, none of its service instances can
be used by this request. Hence, we have Eq. (5).

∀r ∈ R, f ∈ F :

Mf∑

k=1

zfr,k = Uf
r . (5)

A request can be allocated to any service instance if needed.
Hence, the resource demand Df of each service instance of
VNF f ∈ F can be estimated by the number of requests
allocated to it. Since we can place multiple VNFs at the
same computing node if and only if it has sufficient resource
capacity, we express this constraint in inequality (6).

∀v ∈ V :
∑

f∈F

xf
v ·Mf ·Df ≤ Av. (6)

For each request, packets arrive as a Poisson stream with
an arrival rate λr. Let Pr (0 < Pr ≤ 1) be the probability

20302027733

that packets of request r ∈ R are received correctly by
the destination. Lost or incorrectly-received packets would be
retransmitted from source to destination as a feedback. We use
Λf
k to indicate the equivalent total arrival rate of the packets

at the k-th service instance of VNF f with a packet loss rate
(1−Pr). Hence, we have the relationship between λr and Λf

k :

∀f ∈ F : Λf
k =
∑

r∈R

(λr/Pr) · zfr,k. (7)

B. Applying the Theory of Open Jackson Network
First of all, we explore the Input Process, Queuing Disci-

pline and Service Process of our problem according to the
queuing network theory [18].

• Input Process - Packets of a request r arrive stochastically
as a Poisson stream with an arrival rate λr. The arrival
process of each packet is independent of each other.

• Queuing Discipline - When a packet arrives at an idle
service instance, it will get served immediately; Other-
wise, the packet will be queuing in a buffer. Packets are
served on a first-come, first-served basis.

• Service Process - Each service instance of a VNF handles
packets independently. We assume that the service time
is exponentially distributed and each service instance of
VNF f has a single server fixed rate µf .

Based on the discussion above, we elaborate on how we
apply the theory of open Jackson network to model requests.

A request with a packet loss feedback. For instance, as
shown in Fig.3, packets of a request traverse two VNFs from
source to destination, named by VNF1 and VNF2 respectively.
Packets arrive as a Poisson stream with an arrival rate λ0. The
service time of both VNFs are exponentially distributed with
a parameter µ1 and µ2 respectively. When a packet arrives, it
is served by these two VNFs successively and then leaves the
network. A NACK is sent by the destination when a packet
has lost or not been properly received [11]. If so, the packet
will be retransmitted as soon as the NACK is received by
the source. We denote by P the probability of a packet being
received correctly. Hence, packet loss rate can be expressed
as (1− P).

Since the total stream entering the network must be equal
to the total stream leaving the network, we have:

λ0 + (1− P)λ2 = λ,λ = λ1 = λ2,

According to Burke’s Theorem [18], when the network reaches
its steady state, we have:

λ = λ0/P.

Let E[Ni] be the average number of packets in the queue
of VNFi and E[Ti] be the average response latency of each
packet in the queue (i.e., the buffer) of VNFi. Based on
Jackson’s theorem [18], we have:

E[Ni] =
λ0

Pµi − λ0
, i = 1, 2,

E[Ti] =
1

Pµi − λ0
, i = 1, 2.

1P1P 2P2PP1OO 2OPoisson
stream

1VNF 2VNFP

Source

1 2
0O

Destination
2(1)P O�

2PO

Fig. 3: An example of a request traversing two VNFs from source
to destination with an Poisson arrival rate λ0 and a packet loss rate
(1− P).

Besides, the total response time of this request is:

E[T] =
2∑

i=1

E[Ti] =
1

Pµ1 − λ0
+

1

Pµ2 − λ0
.

In conclusion, we notice that this queuing network must
satisfy two conditions: (1) the interval time distribution of
arriving requests follows a Poisson distribution; and (2) the
service time of each service instance follows an exponential
distribution. Based on Jackson’s Theorem, we can model each
service instance as an M/M/1 queue with the same packet
arrival rate. Since an M/M/1 queue captures the growth in
delay for low loads and high costs near system capacity, this
model suits our hypothesis well. This way, we consequently
model each request as an open Jackson network. Besides, with
the growth of multi-processing capabilities, powerful network
processors manage to keep the average response latency under
a manageable threshold on traditional network nodes, despite
the increased time that it takes for complex packet processing
functions [19].

Multiple requests in a datacenter network. In a datacenter
network, different VNFs can be distributed on different com-
puting nodes. Since different requests may require different
VNF chains, and some VNFs can be shared by multiple
requests, several flows of packets may merge at the same
node. Accordingly, all requests in a datacenter network can
be modeled as a large interconnected network. Considering
the influence among multiple requests, we believe that it is
valid to apply the theory of open Jackson network.

Fig. 4 describes an example of this situation, where there
are three requests r1, r2 and r3, with their average packet
arrival rate λ1, λ2 and λ3. As we can see, packets of different
requests traverse different VNFs. Besides, this figure also
depicts how the requests are allocated to the service instances.
For example, request r2 uses the second service instance of
VNF2, and it shares the second service instance of VNF3

with request r1. Due to the sharing characteristic of service
instances, an effective method is needed to merge the flows.
Based on Kleinrock’s Approximation [18], we define λi as the
equivalent total arrival rate at a service instance i, which can
be expressed by:

λi = λ0i +
k∑

j=1

λjPji, i = 1, ..., k.

Where λ0i refers to external flows of requests and λjPji refers
to internal flows merging into service instance i.

This way, we merge several flows of requests into an service
instance as one flow. Each service instance i behaves as

20312028734

1O

2O

3O

2r
3r

1rRequests:

1P

2P

3P

1VNF

2VNF

3VNF

2P

3P

1r

1r
2r

3r

1VNF

2VNF

3VNF
2O

1O

1O
1r
2r
3r

2 3+O O

1 3O O�

Fig. 4: An example of scheduling three requests to multiple service
instances of three VNFs.

if the arrival stream Λi were Poissonian. Due to the state-
independent service rate of each instance, we can calculate the
probability of having n packets in the queue, π(n), and the
utilization of a service instance, ρfk , which can be expressed
as follows.

∀f ∈ F : π(n) = (1−
Λf
k

µf
)(
Λf
k

µf
)n, n ∈ N (8)

∀f ∈ F : ρfk = Λf
k/µf . (9)

where k is the k-th service instance of VNF f , k = 1, ...,mf ;
and ρfk should satisfy ρfk < 1. When the arrival rate is larger
than the service rate, the admission control mechanism will
drop some requests to ensure the normal operation of the
services. As mentioned in Sec. I, we use the job rejection
rate to measure this metric.

In an open Jackson network, when each service instance
reaches its steady state, the average number of packets N(f, k)
can be expressed in Eq. (10).

∀f ∈ F : N(f, k) =
ρfk

1− ρfk
. (10)

Based on the additivity property of Poisson streams [20] and
Little’s formula [18], we can express the average response
latency W (f, k) in Eq. (11), which contains both queuing
latency and processing latency.

∀f ∈ F : W (f, k) =
N(f, k)
∑
r∈R

λrz
f
r,k

=
ρfk

(1− ρfk)
∑
r∈R

λrz
f
r,k

.

(11)
When Pr = P, ∀r ∈ R, we have:

W (f, k) =
1/P

µf −
∑
r∈R

Λf
k

=
1

Pµf −
∑
r∈R

λrz
f
r,k

. (12)

where k = 1, ...,mf is the k-th service instance of VNF f .
To sum up, considering various requests in a datacenter

network, we apply the theory of open Jackson network for
modeling. Based on Kleinrock’s Approximation and Jackson’s
Theorem, we merge several flows of requests into an service
instance as one flow, and model each service instance as an

M/M/1 queue. Packets loss rate and job rejection rate are both
included in our model.

C. Objectives
In the sections above, we have formulated some relations

between parameters and variables. We assume all these con-
straints should be satisfied once defined. In general, we have
the following two objectives.

Objective 1: Maximize the average resource utilization
of each computing node. To this end, we aim to take full
advantage of the resource capacity of each computing node in
service, thus we have:

max
∑

v∈V

((
∑

f∈F

xf
v ·Mf ·Df)/Av)/

∑

v∈V

yv

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

∑

v∈V

xf
v = 1, ∀f ∈ F

∑

f∈F

xf
v ·Mf ·Df ≤ Av, ∀v ∈ V

(13)

Insight: To achieve Eq. (13), we find another objective that
is complementary to Objective 1— minimizing the total num-
ber of computing nodes in service. We express this objective
in Eq. (14).

min
∑

v∈V

yv (14)

To reduce the total number of computing nodes in service,
we have to fully utilize the resources of each used comput-
ing node, which means to max

∑
f∈F

xf
v for ∀v ∈ V , when

yv = 1. This in return improves the resource utilization of
each computing node. Thus, we can conclude that Eq. (14)
and Eq. (13) are complementary to each other. Besides, from
the operators’ perspective, using fewer computing nodes (i.e.,
commodity servers) is beneficial for saving operation cost.

Objective 2: Minimize the average response latency of each
service instance. We express this objective in Eq. (15).

min

Mf∑

k=1

W (f, k)/Mf

s.t.
Mf∑

k=1

zfr,k = Uf
r , ∀r ∈ R, f ∈ F

(15)

Insight: In Eq. (12), we notice that W (f, k) is positively
correlated with

∑
r∈R

λrz
f
r,k when Pr = P is a constant. Since

each VNF f can deploy Mf service instances to serve
∑
r∈R

Uf
v

requests, we aim to find an appropriate way to allocate the
requests effectively. Considering Eq. (7), we find it advisable
to balance the

∑
r∈R

λrz
f
r,k of each service instance as nearly

equal as possible. This way, we can minimize the average
response latency W (f, k) of each service instance of VNF f .

The coordination of Objective 1 and Objective 2. The
utilization and response time may usually be conflicting goals,
hence we want to find a method to balance the tradeoff. To
achieve Objective 1, we suggest minimizing the total number

20322029735

of computing nodes in service, as declared in Eq. (15). This is
conducive to reducing the interval traffic cost so as to reduce
the total propagation and transmission delay of all requests.
To achieve Objective 2, we aim to minimize the total response
latency of all service instances. Therefore, by jointly achieving
Objective 1 and Objective 2, we can minimize the total latency
of all requests, which can be expressed in Eq. (16).

min
∑

r∈R

(
∑

f∈F

Mf∑

k=1

zfr,kU
f
r W (f, k) + (

∑

v∈V

ηrv − 1)L) (16)

Where L is the sum of average propagation delay and trans-
mission delay on the link between two computing nodes [11].

In short, Eq. (16) adds up two independent parts of the total
latency of all requests (the total response latency on computing
nodes plus the sum of communication latency on links). This
way, we explore the coordination of these two objectives. By
jointly achieving Objective 1 and Objective 2, we can flexibly
place VNFs with high resource utilization and process requests
with low response latency in datacenters.

IV. ALGORITHM DESIGN

In order to jointly optimize VNF chain placement and
request scheduling, we manage to solve the problem in a
two-phase way. In phase one, we prove that the VNF chain
placement (VNF-CP) problem is NP-hard and propose a
priority-dirven weighted algorithm. Then we propose a heuris-
tic algorithm to solve the request scheduling problem. Finally,
we analyze the optimality and complexity of both algorithms.

A. VNF Chain Placement
To achieve Eq.(13), we find it helpful to refer to a NP-

hard problem, the Variable Sized Bin Packing (VSBP) problem
[21]. Even consider the simplified version of the VNF-CP
problem, where each computing node v ∈ V has the same
resource capacity Av = a, we can prove it still NP-hard.

Theorem 1. The VNF-CP problem defined in Eq. (13) is NP-
hard.

Proof: First of all, coming back to the bin packing
problem, there is a set of pieces with different sizes W =
{w1, w2, ..., wn|wi ∈ (0, 1], i = 1, ..., n}. Let Q be the set of
bins with each size of 1. The target is to put all the pieces in
these bins and minimize the total number of the bins used:

min
n∑

i=1

yi

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

j=1

wixij ≤ 1, xij ∈ {0, 1}

yi = 0, if
n∑

j=1

xij = 0; yi = 1, if
n∑

j=1

xij > 1

(17)

Given an instance I = (w1, ..., wn, n, q) of the bin packing
problem, we map an instance of Eq. (13), I ′ = (|F | =
n,MfDf = wi, (Av = a) = q) to I , where MfDf stands for
the total resource demand of each VNF. Obviously, we can do

such mapping in polynomial time. We denote the total demand
of all requests by a constant C =

∑
f∈F

MfDf . Considering

Eq. (2), we have:

max
∑

v∈V

((
∑

f∈F

xf
v ·Mf ·Df)/Av)/

∑

v∈V

yv

⇒ max (
∑

v∈V

∑

f∈F

xf
v ·Mf ·Df/

∑

v∈V

a)/
∑

v∈V

yv

⇒ max (C/|V |a)/
∑

v∈V

yv

⇒ max 1/
∑

v∈V

yv

⇒ min
∑

v∈V

yv

Therefore, if there exists an solution for I in the bin packing
problem, then it also solves the VNF-CP problem, and vice
versa. As a result, the VNF-CP problem can be formulated
as a variant of the bin packing problem, which is NP-hard as
well.

Although we prove the NP-hardness of the VNF-CP prob-
lem by mapping it to the bin packing problem, we notice some
significant differences between them, which makes existing
solutions to the VSBP problem not applicable to the VNF-CP
problem. In the VSBP problem, there are unlimited bins of
each size; while in the VNF-CP problem, each computing node
is regarded as one and only node with a unique resource ca-
pacity. Hence, we carefully design a priority-driven weighted
algorithm BFDSU (Best Fit Decreasing using Smallest Used
nodes with the largest probability) to find a near optimal
solution cost-effectively.

We use a set Used_list to save the computing nodes in
service and a set Spare_list to save the spare computing
nodes. Another set, VNF_list saves the VNFs that haven’t
been placed. Let RST(v) be the remaining resource capacity of
computing node v. In BFDSU, we place VNFs from the most
resource-demanding one to the least. When placing a VNF f ,
we try to find out a subset Vrst(f) = {v ∈ V |RST(v) ≥
Dsum

f = DfMf} that contains all nodes with sufficient
resources RST(v) for placing it. We first search the Used_list
for these nodes, and place f at one of the most suitable nodes
in Vrst(f) (if Vrst(f) ̸= ∅); Otherwise, we attempt to place f
at one of the most suitable spare node in the Spare_list and
move that node from the Spare_list to the Used_list.

Intuitively, the most suitable node v for placing VNF f
should be the one with minimal RST(v) in Vrst(f). However,
placing f at such node may not ensure a feasible solution.
Instead, we introduce a weighted probability strategy, where
we place the VNF at such node with the maximum probability.
Specifically, for all the nodes v ∈ Vrst(f), we calculate the
probability of placing f at node v by its reciprocal of RST(v).
Definition Prst(v) refers to the weight of v ∈ Vrst(f)
(assuming all computing nodes in Vrst(f) have been sorted in
ascending order by their RST (v)) to place VNF f ∈ F and
Prob_sum refers to the sum of all weights. Then we have the

20332030736

upper bound of the probability of node vk, Prob_bound(vk):

Prst(v) = 1/(1 +RST (v)−Dsum
f)

Prob_sum =
∑

v∈Vrst(f)

(1/(1 +RST (v)−Dsum
f))

Prob_bound(vk) =
k∑

i=1

Prst(v)/Prob_sum

where ∀f ∈ F, v ∈ Vrst(f), k = 1, 2, ..., |Vrst(f)|. Note
that a constant, 1 is added to the denominator of Prst(v) to
make it nonzero. We also assume there is a virtual node v0
and its Prob_bound(v0) = 0 for simplifying the procedure.
When we place VNF f , we first generate a random number
ξ within Prob_sum. If ξ belongs to [Prob_bound(vk−1),
Prob_bound(vk)), then place VNF f at node vk.

In addition, we have considered dynamically adding or
removing VMs. However, this work needs to cooperate with
underlying mechanism of SDN [22]. Besides, placing a VNF
at a computing node suffers from large setup cost (i.e., to
get domain isolation, we would have to run each middlebox
inside a Linux virtual machine and this will take around five
seconds to boot [23]). Some existing works have solved this
problem (e.g., ClickOS manages to reduce the setup time
within 30 ms [23]). Differing from these works, we aim to find
out an efficient scheme to place VNF chains on commodity
servers, with a fixed number of VMs on each server. To avoid
introducing this sizable setup cost, we should not frequently
add or remove VMs.

B. Request Scheduling

To achieve Eq. (15), let us consider another NP-hard prob-
lem, the Multi-Way Number Partitioning (MWNP) problem
[24]. It aims to divide a set of integers into a collection of
subsets so that the sum of the integers in each subset is as
equal as possible. Even the simplest version, a 2-way number
partitioning is proved NP-hard [24]. There are some existing
approximation algorithms for solving the MWNP problem,
such as CGA (Complete Greedy Algorithm) and CKK (Com-
plete Karmarkar-Karp) algorithm [24]. However, they do not
scale well as the number of instances increases. Thus we
carefully design a heuristic algorithm RCKK (Reverse Com-
plete Karmarkar-Karp) to solve the request scheduling problem
effectively.

Note that ∀f ∈ F , W (f, k) = 1/(µf −Λf
k), hence W (f, k)

is positively correlated with Λf
k , which can be represented

by W (f, k) ∝ Λf
k . Hence, when we allocate each λr of∑

r∈R
Uf
v requests to Mf instances, we balance the

∑
r∈R

λrz
f
r,k

of each service instance as equal as possible. This way, we
can minimize the average response latency W (f, k) of each
service instance of VNF f .

We use a set Rf = {r|∀r ∈ R,Uf
r = 1} to save the requests

requiring VNF f ∈ F . For each request r ∈ Rf , we initiate
a partition in form of (λr,0,..,0) consisted of m values (one
λr and m − 1 zeros) in each position. Here, position i (i =
1, 2, ...,m) represents the i-th service instance. We maintain

Algorithm 1 BFDSU: VNF Chain Placement Procedure
Input: The set of resource capacity of each computing node, A =

{Av|∀v ∈ V };
The set of total resource demand of each VNF, D =
{Dsum

f |∀f ∈ F};
Other sets: Used_list, Spare_list, VNF_list and Vrst(f);

Output: The set of placement result of each VNF, X = {xf
v |∀f ∈

F, v ∈ V };
1: Begin: Initiate Used_list = ∅, Spare_list = V , VNF_list = F ;
2: Sort all VNFs in the VNF_list in descending order by their total

resource demand;
3: while VNF_list ̸= ∅ do
4: Get the first VNF f in the VNF_list, reset Vrst(f) = ∅;
5: Search the Used_list and add each computing node v into

Vrst(f) if it satisfies RST(v) ≥ Dsum
f ;

6: if Vrst(f) = ∅ then
7: Search the Spare_list and add each computing node v into

Vrst(f) if it satisfies RST(v) ≥ Dsum
f ;

8: end if
9: if Vrst(f) = ∅ then

10: Go back to Begin;
11: end if
12: Sort all computing nodes in Vrst(f) in ascending order by

their RST(v);
13: Calculate the weighted probability Prst(v) of each node in

Vrst(f) and each probability upper bound Prob_bound(vk);
14: Generate a random number ξ within Prob_sum;
15: if ξ ∈ [Prob_bound(vk−1), P rob_bound(vk)) then Place

VNF f at node vk, xf
vk = 1;

16: end if
17: Remove VNF f from the VNF_list and move the node vi to

the Used_list if it’s from the Spare_list;
18: end while
19: return Z.

the state of each service instance by a state table, which saves
the number of requests allocated to it. Then we add all the
partitions into a set named by Partition_list. We use a set si to
save the requests that allocated to the i-th instance. We search
the Partition_list for two partitions with the largest value at the
first position, namely a = (a1,a2,...,am) and b = (b1,b2,...,bm).
Then we combine them into a new partition (a1 + bm,a2 +
bm−1,...,am+b1). We resort it, normalize it by subtracting the
value at the m-th position from each position and replace a and
b by it. Meanwhile, we combine the request sets accordingly.
For instance, if ai + bm−i is the value in the i-th position of
the new partition, we should also combine the request set si
of partition a and sm−i of b into a new set s′i.

C. Optimality Analysis
First of all, we summarize some properties of the BFDSU

algorithm: (1) we use two sets, Used_list and Spare_list to
distinguish whether a computing node has placed any VNF
and preferentially place a VNF at a computing node in service;
and (2) we bring in weighted probability for finding a feasible
solution; hence we try to place a VNF at a computing node
with the highest probability if its remaining resource is min-
imal. Both methods help to improve the resource utilization
of each computing node in service and meanwhile reduce the
total number of the computing nodes in service.

Due to the NP-hardness of the VNF-CP problem, it is
computational expensive to find out the optimal solution. In
order to analyze the optimality of our algorithm, we derive

20342031737

Algorithm 2 RCKK: Request Scheduling Procedure
Input: Number of instances that VNF f ∈ F deploys, m = Mf ;

The set of requests using VNF f ∈ F , Rf = {r|∀r ∈ R,Uf
r =

1}, assume that n = |Rf |;
The set of partitions, Partition_list = {(λr, 0, .., 0)|∀r ∈ Rf};
The set of arrival rates of requests which require VNF f ∈ F ,
Ω = {λr|∀r ∈ Rf};

Output: The set of scheduling results for each request, Z =
{zfr,k|∀r ∈ Rf , k = 1, ...,Mf};

1: Sort all partitions in descending order by their value at the 1-th
position (λr ∈ Ω) in the Partition_list;

2: while Partition_list has more than one partition do
3: Combine the first two partitions Pa and Pb (with their sets)

by adding each position’s value in reverse order and get a new
partition P ;

4: Resort P by the value at each position in descending order;
5: Normalize P by subtracting the value at the m-th position

from each position and get P
′
;

6: Replace Pa and Pb by P
′

and add P
′

into the Partition_list
according to the value at the 1-th position;

7: end while
8: for i = 1 to m do
9: For all requests r in set si, zfr,i = 1;

10: end for
11: return Z.

the asymptotic worst-case performance bound of algorithm
BFDSU, which is defined as S∞

BFDSU [25].

S∞
BFDSU = lim

n→∞
sup{SUM(V)/OPT(V)}

where SUM(V) refers to the sum of computing nodes used in
BFDSU and OPT(V) refers to the sum of computing nodes
used in the optimal solution. In other words, OPT(V) stands
for the minimal number of nodes used for placing all VNFs.

Theorem 2. The asymptotic worst-case performance bound
of Algorithm BFDSU is 2, that is S∞BFDSU = 2.

Proof: We use m =
∑
v∈V

yv to represent the sum of nodes

in service. We normalize Av in (0,1] and normalize Dsum
f

accordingly. Thus, we have d(v) =
∑
f∈F

xf
vD

sum
f . We sort the

set of computing nodes {v1, v2, ..., vm} by Av in descending
order.

If m = 1, only one node is used, thus SUM(V) = OPT(V).
Else if m ≥ 2, for i = 1, ...,m − 1, we have d(vi) +

d(vi+1) > Avi and d(v1) + d(vm) > Av1 ; Otherwise, a shift
from d(vi+1) to d(vi) must be done. Then we have:

2OPT(V) ≥ 2
m∑

i=1

d(vi) = d(v1) + (d(v1) + d(v2)) + ...

+ (d(vm−1) + d(vm)) + d(vm)

> d(v1) +
m−1∑

i=1

Avi + d(vm)

>
m−1∑

i=1

Avi +Av1 ≥
m∑

i=1

Avi

≥ SUM(V)

Therefore, SUM(V)/OPT(V) ≤ 2. We can infer that

S∞
BFDSU = lim

n→∞
sup{SUM(V)/OPT(V)} = 2.

Let ε be a dimensionless, assume that we only have pieces
of size 1/2 + ε and bins of size 1 and 1/2 + ε. In this
case, we can conclude that the asymptotic worst-case perfor-
mance bound is 2. Although this theoretical bound gives a
performance guarantee, this worst case hardly occurs in real
scenarios. As we evaluated in Sec. V, the simulation results
proves that our methods improve the resource utilization rate
by around 30% as compared with the state-of-the-art methods.

As for algorithm RCKK, there is usually no optimal k-way
partitioning, where each sum of partition is equal. Even if
there is an optimal solution, due to the NP-hardness of the
problem and the diversity of the partitions, it is computational
expensive to figure out. More details about the optimality can
be found in [24]. In fact, for a m-way partitioning, there are
m! ways to combining two partitions. In order to get a high-
quality solution, but not increase too much execution time,
we attempt to combine two normalized partitions in reverse
order. This way, we achieve a very cost-effective solution to
the request scheduling problem.

D. Complexity Analysis
For BFDSU, note that there are m = |F | VNFs and n =

|V | computing nodes. First, sorting m VNFs in descending
order requires O(mlogm) computation. Note that Used_list∩
Spare_list = V , searching both sets terminates in n iterations.
Besides, sorting the Vrst(f) terminates in logn iterations and
placing a VNF costs needs O(n) computation. Thus, the time
complexity of BFDSU is O(m(logm+ nlogn)).

For RCKK, as we have defined in Sec. V, we have m = Mf

service instances and n = |Rf | requests. First, we sort
the requests in descending order, which can be finished in
O(nlogn). Note that there are n − 1 iterations in the loop.
In each iteration, step 3 needs O(m) computation, step 4
needs O(mlogm) computation and step 6 needs at most O(n)
computation. Due to n ≥ m, as stated in Eq. (3), the total
time complexity of RCKK is O(nmlogm).

V. EVALUATION AND ANALYSIS

We conduct extensive trace-driven simulations to evaluate
the performance of both algorithms as compared with the state-
of-the-art methods. Our experiment setup is based on real-
world traces in datacenter networks.

A. Simulation Setup
1) Diverse VNF chains: First, Li and Chen in [26] sum-

marize more than thirty commonly-used VNFs and classify
them into nine categories. Traced by this survey, we scale
the number of VNFs from 6 to 30, including at least six
commonly-deployed VNFs, such as Network Address Trans-
lator (NAT), Firewall (FW), Intrusion Detection System (IDS),
Load Balancer (LB), WAN Optimizer and Flow Monitor (FM).
The number of requests ranges from 30 to 1000. Each request
traverses a VNF chain consisted of at most 6 VNFs.

2) Scale-up network topologies: We adopt a connected graph
to model the datacenter network based on [27], which contains

20352032738

0 200 400 600 800 1000
Number of Requests

60

80

100

R
e

so
u

rc
e

 U
til

iz
a

tio
n

 (
%

)

BFDSU
NAH
FFD

Fig. 5: The average resource uti-
lization of 10 nodes under three
algorithms.

6 12 18 24 30
Number of VNFs

40

60

80

100

R
e

so
u

rc
e

 U
til

iz
a

tio
n

 (
%

)

BFDSU
NAH
FFD

Fig. 6: The average resource uti-
lization of used nodes handling
1000 requests under three algo-
rithms.

10 20 30 40 50
Number of Nodes

0

50

100

R
e

so
u

rc
e

 U
til

iz
a

tio
n

 (
%

)

BFDSU
NAH
FFD

Fig. 7: The average resource uti-
lization of used nodes for placing
15 VNFs under three algorithms.

10 12 15 20 25 30 40 50
Number of Nodes

0

10

20

N
o

d
e

s
in

 S
e

rv
ic

e BFDSU
NAH
FFD

Fig. 8: The average number of
nodes in service for placing 15
VNFs under three algorithms.

from four to fifty computing nodes. There are sufficient switch
capacities and network bandwidth for serving each request.
The resource capacity of each computing node scales from 1
to 5000. One unit of resource capacity refers to the ability
to handle one unit of workload per second, precisely, 64
Bytes packets at 10 kpps in our simulations. According to
the reference [28], one CPU core can handle 64 Bytes packets
at 1.5 Mpps, which equals to 150 units of resource capacity.
Hence, in our simulations, a computing node with 5000 units
of resource capacity indicates that it needs 34 CPU cores.
Currently, most providers (e.g., Amazon EC2) can provide
such VMs with up to 64 CPU cores, which should be enough
to host our peak-time workload [29].

3) Arrival process and service process: Measured in data-
centers, the arrival rate of requests follows the flow inter-arrival
time distribution [9]. We assume that any external arrival to
the network follows Poisson distribution with an arrival rate λ
ranging from 1 to 100 pps. Each service instance of VNF f has
the same exponential service rate µf . We estimate the latency
of a request by its arrival time and the service rate that it gets
at a service instance. The probability of packets being received
correctly by the destination, P scales from 0.98 to 1. Besides,
one unit of workload can be obtained by estimating (1) the
arrivals of requests (from 1 to 100 pps), (2) the number of
requests scheduled to each service instance (from 1 to 200) and
(3) the number of service instances deployed on a computing
node (from 1 to 25). Hence, we can adjust the grain size of
the workload according to the actual demand.

B. Performance Evaluation for VNF Chain Placement
To evaluate the performance of BFDSU, we compare it with

two state-of-the-art algorithms, FFD (First Fit Decreasing)
and NAH (Node Assignment Heuristic algorithm for VNF
placement) [12]. As introduced in [12], for each VNF chain,
NAH first places the most resource-demanding VNF at the
node with the largest remaining resource capacity. It then tries

10 20 30 40 50
Number of Nodes

0

0.5

1

1.5

R
e

so
u

rc
e

 O
cc

u
p

a
tio

n

×104

BFDSU NAH FFD

Fig. 9: The average resource oc-
cupation for placing 15 VNFs
under three algorithms.

30 50 100 200 350 500 7501000
Number of Requests

0

20

40

60

It
e

ra
tio

n
s

BFDSU
NAH
FFD

Fig. 10: The iterations of execut-
ing three algorithms for placing
15 VNFs.

10 15 25 50 100 150 200 250

Number of Requests

0

0.2

0.4

0.6

0.8

1

E
n

h
a

n
ce

m
e

n
t

R
a

tio

0

2

4

6

W

ER RCKK CGA

Fig. 11: The average response
time of two algorithms and their
enhancement ratio (P = 0.98).

10 15 25 50 100 150 200 250

Number of Requests

0

0.2

0.4

0.6

0.8

1

E
n

h
a

n
ce

m
e

n
t

R
a

tio

0

2

4

6

W

ER RCKK CGA

Fig. 12: The average response
time of two algorithms and their
enhancement ratio (P = 1.00).

to place the other VNFs of that service chain at the same node
as many as possible. Both FFD and NAH do not save the state
of whether a computing node has placed any VNF or not.

Average resource utilization. As illustrated in Fig. 5,
when the number of requests scales from 30 to 1000, all
three algorithms’ average resource utilization of used nodes
remains stable. Precisely, it is 91.76%, 68.63% and 66.89%
for BFDSU, FFD and NAH. We also observe this trend
in Fig. 6, as we scale the number of VNFs from 6 to
30 and the number of nodes from 4 to 20. Our algorithm
enhances the performance by 31.61% as compared with FFD
and 33.41% with NAH. Fig. 7 also demonstrates that as the
number of computing nodes scales from 6 to 30, the average
resource utilization of FFD and NAH decreases while BFDSU
stabilizes.

Insight: BFDSU improves the average resource utilization
of computing nodes in service by around 30% as compared
with two state-of-the-art algorithms, FFD and NAH.

Total computing nodes in service. We also have some
interesting findings about the total number of computing
nodes in service, as the number of computing nodes available
increases. As shown in Fig. 8, with more computing nodes
available, the average total number of used nodes increases
slightly. We observe that BFDSU always uses fewest nodes
while FFD uses most. According to the figure, BFDSU, NAH
and FFD uses 8.56, 10.55 and 10.80 computing nodes in av-
erage. Besides, we also evaluate the total resource occupation
of all computing nodes in service as a performance metric. As
illustrated in Fig. 9, we find that our method maintains a stably
low resource occupation, while FFD and NAH both show a
growing trend in the resource occupation as the number of
computing nodes increases.

Insight: As compared with the state-of-the-art methods,
BFDSU achieves the minimal total number of computing
nodes in service and the minimal resource occupation.

Execution Cost. To evaluate the execution cost of the three

20362033739

2 3 4 5 6 7 8 9 10

Number of Instances

0

0.1

0.2

0.3

0.4

E
n

h
a

n
ce

m
e

n
t

R
a

tio

1

2

3

W

ER RCKK CGA

Fig. 13: The average response
time of two algorithms and their
enhancement ratio (P = 0.98).

2 3 4 5 6 7 8 9 10

Number of Instances

0

0.1

0.2

0.3

0.4

E
n

h
a

n
ce

m
e

n
t

R
a

tio

1

2

3

W

ER RCKK CGA

Fig. 14: The average response
time of two algorithms and their
enhancement ratio (P = 1.00).

algorithms, we measure their numbers of iterations for finding
a feasible solution. Fig. 10 plots that the average number
of iterations of BFDSU, NAH and FFD is 11, 32 and 1
respectively. As the number of requests increases, the iterations
of FFD stay constantly lowest, while NAH takes nearly triple
execution time than BFDSU.

Insight: Considering both the performance metrics and
execution cost, BFDSU performs as the most cost-effective
algorithm as compared with the state-of-the-art algorithms.

C. Performance Evaluation for Request Scheduling
For the request scheduling problem, we compare RCKK

with CGA. We execute both algorithms for 1000 times and
calculate the average values as the simulation results.

Average response time. We fix the number of service
instances at 5, while the number of requests scales from 15 to
250. W refers to the average response latency, which is the
main performance metric in Eq. (15). The enhancement ratio is
defined as (WCGA −WRCKK)/WCGA to show the improvement
of W from CGA to RCKK. We scale µf with the number
of requests to eliminate its dominant influence. To reflect the
network congestion degree, we set the probability of a packet
being received correctly, P , at two values, precisely 1 and 0.98
(i.e., packet loss rates are 0% and 2%).

Fig. 11 and Fig. 12 plot the average response time of five
instances with P = 0.98 and 1.00 respectively. As illustrated
in these two figures, RCKK always outperforms CGA in W
as the number of requests increases under different packet loss
rates. With P = 0.98 and 1.00, the enhancement ratio between
CGA and RCKK, W , is reducing from 41.89% to 2.10% and
from 33.49% to 1.17% respectively.

Different from the simulations above, Fig. 13 and Fig. 14
plot the performance metrics when the number of service
instances scales from 2 to 10. As shown in Fig. 13, when the
number of service instances grows, RCKK reduces the average
response time by 5.24% to 25.05% as compared with CGA.
When P = 1.00, as illustrated in Fig. 14, the enhancement
ratio is from 3.16% to 18.53%. We can also conclude that
with a higher packet loss rate, the average response time is
increasing accordingly and so is the enhancement ratio.

In addition, some tail statistics attract our attention, where
tail refers to the 99th percentile response time in 1000 sim-
ulation results. With the number of requests scaling from
10 to 200, we find that RCKK reduces the 99th percentile
response time of by 44.54% to 5.18% as compared with CGA.
For instance, when we schedule fifty requests to five service

0 50 100 150 200 250

Number of Requests

0

10

20

R
e

je
ct

io
n

 R
a

te
 (

%
)

RCKK
CGA

Fig. 15: The average job rejection
rate of two algorithms under a
low packet loss rate (P = 0.997).

0 50 100 150 200 250

Number of Requests

0

20

40

60

R
e

je
ct

io
n

 R
a

te
 (

%
)

RCKK
CGA

Fig. 16: The average job rejection
rate of two algorithms under a
high packet loss rate (P = 0.984).

instances with P = 0.98, we find that the 99th percentile
response time of RCKK is within 1.23 while CGA is within
1.60, and the enhancement ratio is 23.17%.

Insight: Generally, RCKK outperforms CGA in minimizing
the total response latency under two packet loss rates when we
successively vary the number of requests and service instances.

Job rejection rate: As declared in Sec. I, when the arrival
rate of the requests is larger than the service rate of a
service instance, the admission control mechanism drops some
requests to ensure the normal operation of the services. We
measure this metric under two packet loss rates (1 − P). As
shown in Fig. 15 and Fig. 16, we find that with a higher packet
loss rate, the job rejection rate is consequently higher. Under a
low packet loss rate, when P = 0.997, RCKK nearly maintains
a zero job rejection rate while this rate of CGA rises as the
number of requests increase. Fig. 16 plots that under a low
packet loss rate, when P = 0.984, the average job rejection
rate of RCKK and CGA is 4.87% and 28.28% respectively.

Insight: RCKK achieves a lower job rejection rate as
compared with CGA under different packet loss rates.

VI. CONCLUSIONS

In this paper, we present a hierarchically two-phase solution
for joint optimization of VNF chain placement and request
scheduling problem. We apply the theory of open Jackson
network to model VNF chains. Our model not only cap-
tures the actual network traffic characteristics in datacenter
networks, but also includes network congestions (reflected by
packet loss rate) and job rejection rate. In order to maximize
the resource utilization rate, we formulate the VNF chain
placement problem as a variant of variable-sized bin-packing
problem, and propose a priority-driven weighted algorithm
BFDSU to ensure a near-optimal solution with theoretically
proved worst-case performance bound. To minimize the aver-
age response latency of each service instance, we also propose
a heuristic algorithm RCKK to optimize request scheduling
cost-effectively. Through extensive trace-driven simulations,
we show that our methods scale well in diverse scenarios. In
particular, BFDSU improves the average resource utilization
by 31.6% and 33.4% as compared with FFD and NAH
respectively. Besides, BFDSU achieves the minimal nodes in
service for placing all VNFs. Under different packet loss rates,
RCKK not only reduces the average response latency of each
instance by 19.9%, but also lowers the average job rejection
rate by 23.4% as compared with CGA.

20372034740

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” 2012.

[2] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: a framework for nfv applications,” in ACM Proc. of
SOSP, 2015.

[3] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Dynamic
chaining of Virtual Network Functions in cloud-based edge networks,” in
Network Softwarization (NetSoft), 2015 1st IEEE Conference on. IEEE,
2015, pp. 1–5.

[4] B. Li, K. Tan, L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, and P. Cheng,
“ClickNP: Highly flexible and High-performance Network Processing
with Reconfigurable Hardware,” pp. 1–14, 2016.

[5] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling innovation in network
function control,” 2015.

[6] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in USENIX Proc. of NSDI, 2014.

[7] P. Quinn and T. Nadeau, “Service function chaining problem statement,”
draft-ietf-sfc-problem-statement-10 (work in progress), 2014.

[8] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: taking the v out of nfv,” in Usenix Conference on Operating
Systems Design and Implementation, 2016, pp. 203–216.

[9] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in ACM Proc. of IMC, 2010.

[10] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in ACM Proc. of
IMC, 2009.

[11] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach.

[12] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network
function placement for NFV chaining in packet/optical datacenters,”
Journal of Lightwave Technology, vol. 33, no. 8, pp. 1565–1570, 2015.

[13] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in IEEE Proc. of CloudNet, 2014.

[14] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in IEEE Proc. of INFOCOM,
2015.

[15] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in IEEE Proc. of CNSM, 2014.

[16] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network func-
tions placement and routing optimization,” in IEEE Proc. of CloudNet,
2015.

[17] F. Liu, J. Guo, X. Huang, and J. C. S. Lui, “eBA: Efficient Bandwidth
Guarantee Under Traffic Variability in Datacenters,” IEEEACM Trans-
actions on Networking, pp. 1–14, 2016.

[18] E. Gelenbe, G. Pujolle, and J. Nelson, Introduction to queueing net-
works. Wiley Chichester, 1998.

[19] A. Dwaraki and T. Wolf, “Adaptive Service-Chain Routing for Virtual
Network Functions in Software-Defined Networks,” in Workshop, 2016,
pp. 32–37.

[20] G. M. Kamath, E. Şaşoğlu, and D. Tse, “Optimal haplotype assembly
from high-throughput mate-pair reads,” in IEEE Proc. of ISIT, 2015.

[21] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” ACM SIGCOMM Com-
puter Communication Review, vol. 44, no. 4, pp. 455–466, 2014.

[22] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic SDN controller
assignment in data center networks: Stable matching with transfers,”
pp. 1–9, 2016.

[23] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualization,”
in USENIX Proc. of NSDI, 2014.

[24] R. E. Korf, “Multi-Way Number Partitioning,” in IJCAI. Citeseer, 2009,
pp. 538–543.

[25] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, “Approximation
algorithms for bin packing: a survey,” in Approximation algorithms for
NP-hard problems. PWS Publishing Co., 1996, pp. 46–93.

[26] Y. Li and M. Chen, “Software-defined network function virtualization:
a survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[27] S. Orlowski, R. Wessaly, A. Tomaszewski, and R. Wess, “Sndlib 1.0
survivable network design library,” in Networks, 2010, pp. 276–286.

[28] Z. Xu, F. Liu, T. Wang, and H. Xu, “Demystifying the energy efficiency
of Network Function Virtualization,” in Quality of Service (IWQoS),
2016 IEEE/ACM 24th International Symposium on. IEEE, 2016, pp.
1–10.

[29] Amazon EC2. [Online]. Available: http://aws.amazon.com/ec2/

20382035741

