
Impact of Data Locality on Garbage Collection in SSDs:
A General Analytical Study

Yongkun Li†, Patrick P. C. Lee‡, John C. S. Lui‡, Yinlong Xu†

†School of Computer Science and Technology, University of Science and Technology of China
‡Department of Computer Science and Engineering, The Chinese University of Hong Kong

†{ykli,ylxu}@ustc.edu.cn, ‡{pclee,cslui}@cse.cuhk.edu.hk

ABSTRACT

Solid-state drives (SSDs) necessitate garbage collection (GC)
to erase data blocks and reclaim the space of invalidated
data, and GC inevitably introduces additional writes due to
data relocation. The performance of GC, which is quantified
by cleaning cost or write amplification, is critical to the over-
all performance of SSDs. However, characterizing GC per-
formance is complicated by the general implementations of
GC algorithms and the complex data locality characteristics
of real-world workloads. This paper presents a general ana-
lytical study to characterize the performance impact of data
locality on a general family of GC algorithms. We develop
probabilistic models to address two fundamental issues: (1)
What is the impact of data locality on the performance of
locality-oblivious GC? (2) How can data locality be lever-
aged to improve the performance in locality-aware GC? We
further conduct extensive trace-driven simulations on real-
world workloads to validate the findings of our models.

Categories and Subject Descriptors

B.3.3 [Memory Structures]: Performance Analysis and
Design Aids; D.4.2 [Operating Systems]: Storage Man-
agement—Garbage collection; G.3 [Probability and Statis-
tics]: Probabilistic algorithms

General Terms

Performance;Theory;Algorithms

Keywords

SSDs; Garbage Collection; Trade-off; Data Locality

1. INTRODUCTION
NAND-flash-based solid-state drives (SSDs) provide per-

formance gains over traditional hard-disk drives (HDDs)
in I/O throughput, energy efficiency, and reliability, and
thus have seen wide adoption in mainstream storage sys-
tems. SSDs have distinct I/O characteristics from HDDs.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.

Copyright c⃝ 2015 ACM 978-1-4503-3248-4/15/01$15.00.

http://dx.doi.org/10.1145/2668930.2688036.

An SSD organizes data into blocks, each containing a num-
ber of fixed-size pages. Reads and writes are performed on
pages. To write new data, an SSD must identify a clean
page to program and mark the programmed page as valid;
to update existing data, an SSD uses an out-of-place ap-
proach that first programs the data to a new clean page and
then marks the original page as invalid. Invalid pages can
only be reset to clean pages by an erase operation, which
must be performed on the whole block. Thus, an SSD regu-
larly performs garbage collection (GC) to erase blocks so as
to reclaim the space of invalid pages. A physical constraint
is that each SSD block can only tolerate a finite number of
erase operations before wearing out.

The design of a GC algorithm, which specifies the strat-
egy of choosing a block to erase, determines the performance
of an SSD. Specifically, a GC algorithm relocates all valid
pages to a different free block with clean pages and hence
incurs additional writes. Its performance, often quantified
as cleaning cost [17] or write amplification [12], affects the
performance of normal read/write operations in the fore-
ground. Since an SSD block can wear out, a GC algorithm
is often designed to improve GC performance (e.g., by eras-
ing the block with the fewest valid pages), while avoiding
over-wearing a particular SSD block. It is shown that the
trade-off between performance and durability can be realized
via different parametric configurations of a general family of
GC algorithms [17].

The analysis of general GC algorithms becomes challeng-
ing when taking into account the heterogeneity of storage
workloads. Specifically, real-world storage workloads are
known to exhibit high data locality, where some stored data
is frequently accessed (i.e., hot), while the rest is rarely
accessed (i.e., cold) [23]. It is a common consensus that
separating the placement of hot/cold data can improve GC
performance [11, 14]. However, general non-uniform work-
loads can be more complex and exhibit different degrees of
hotness/coldness. Their implications on different implemen-
tations of GC algorithms remain an open issue. To charac-
terize the GC performance of SSDs, measurement studies
(e.g., trace-driven simulations) can be used, yet they suffer
from the efficiency problem due to the variety of workloads
and the wide choices of GC implementations. On the other
hand, analytical modeling is easy to be parameterized and
generally needs less running time. However, analytical stud-
ies on GC in the literature (see §7) often lack generality, and
do not explicitly address the relationships between different
types of workloads and different implementations of GC al-
gorithms.

In this paper, we propose a general analytical model that
formally characterizes the impact of data locality on the
cleaning performance of a general family of GC algorithms,
with emphasis on taking into account the generality of both
data locality characteristics and implementations of GC al-
gorithms. We make the following contributions:

• We first formalize the notion of data locality. From
the study of real-world traces, we observe that real-
world workloads exhibit the properties of clustering
(i.e., only a small proportion of address space is ac-
cessed) and skewness (i.e., accesses to different parts
of address space vary significantly). We formulate a
general workload model that classifies the regions of
address space into different types of access frequencies,
so as to capture both the clustering and skewness.

• We present probabilistic models that analyze the clean-
ing behaviors for locality-oblivious GC, whose imple-
mentation builds on a family of GC algorithms called
theGreedy Random Algorithm (GRA). GRA can achieve
the performance of GREEDY, RANDOM and those
in between through a tunable parameter. We formally
show that data locality may severely degrade GC per-
formance, and the influence becomes more significant
when GRA moves from RANDOM to GREEDY.

• We further extend our model to study the performance
of locality-aware GC, which incorporates data locality
information into the GC design. Based on the knowl-
edge that data pages have different types of access fre-
quencies, we analyze the design strategy of data group-
ing, which stores different types of data pages in sepa-
rate regions of an SSD.

• We conduct extensive trace-driven simulations using
the SSD simulator [1]. We validate the accuracy of
our model in performance characterization. We evalu-
ate both locality-oblivious GC and locality-aware GC
through several real-world traces from different storage
environments, and confirm our findings derived from
our analytical model. We also study the performance-
durability trade-off of GC algorithms via trace-driven
simulations.

The remaining of the paper proceeds as follows. In §2,
we formulate the problem of analyzing the impact of data
locality on GC performance. In §3, we present probabilistic
analysis on the cleaning behaviors of locality-oblivious GC,
and study the impact of data locality. In §4, we focus on
locality-aware GC, and study the impact of data grouping.
In §5, we validate our analysis via trace-driven simulations
and identify the implications of our model. In §6, we present
trace-driven simulation results under real-world traces. In
§7, we review related work, and finally in §8, we conclude
the paper.

2. PROBLEM FORMULATION
In this section, we formulate the problem of analyzing

the impact of data locality on the performance of GC al-
gorithms. We first present an SSD model. Based on the
analysis of real-world storage traces, we then propose a new
model that can capture the data locality of workloads. Fi-
nally, we define the metrics for quantifying the performance
of GC algorithms.

2.1 SSD Model
We consider an SSD with N physical blocks with k pages

each. Recall from §1 that a block consists of a combination of
valid, invalid, and clean pages. Since an SSD reserves blocks
for GC and bad block management [19], its advertised ca-
pacity as viewed by the logical address space is generally
smaller than its physical capacity. We define the proportion
of reserved blocks as the spare factor S. That is, NS blocks
are reserved, and we call them spare blocks. Since the log-
ical address space only spans N(1 − S) blocks, increasing
S implies less available storage space, yet it reduces write
amplification since each block contains fewer valid pages on
average. Thus, S is a critical parameter to GC performance.

To support out-of-place updates (see §1), an SSD main-
tains address mappings between logical and physical pages
in a software layer called flash translation layer (FTL). In
this work, we assume that address mapping is implemented
in the page level since it potentially achieves the best I/O
performance [9], although it can also be realized in the block
level [22] or hybrid form [6, 15, 21]. Note that page-level
address mapping is also assumed in prior analytical work
[3, 7, 12, 26,27].

With page-level address mapping, we consider the follow-
ing write and GC implementations, which are also used by
previous analytical studies (see §7). At any time, there is
one special block called the write frontier. All page writes,
such as external writes (due to workload) and internal writes
(due to GC), are directed to the write frontier, and pages
are sequentially written to the write frontier. When all clean
pages in the write frontier are used up, the write frontier is
sealed and no more writes are permitted until a clean block is
selected as the write frontier. Thus, an SSD contains three
types of blocks at any time: (1) the write frontier (con-
taining valid, invalid, and clean pages), (2) sealed blocks
(without any clean pages), and (3) clean blocks (with clean
pages only). When the number of clean blocks drops be-
low a certain threshold, GC will be triggered to perform the
following steps: (1) select a sealed block, (2) write all valid
pages from the selected sealed block to the write frontier,
and (3) erase the selected block. To fully utilize the avail-
able spare blocks, we set the threshold as small as possible,
so GC is triggered only when the SSD no longer contains
any clean physical block after the write frontier is allocated,
and GC stops when at least one clean block is reclaimed.

2.2 Workload Model
We propose a workload model to characterize data locality

in real-world storage workloads. To motivate the characteri-
zation, we first analyze eight real-world I/O traces collected
from different storage environments (see §6.1 for details).
Since read requests do not affect the GC performance, we
focus on write requests only, and accessing a page means
that the data in this page is updated. We configure the vol-
ume size of an SSD as the maximum logical page number
being accessed, and measure the distribution of the access
frequency of logical pages for each I/O trace. Here, the ac-
cess frequency of a logical page is defined as the total number
of writes to this page during the whole period of executing a
workload. Figure 1 depicts the distributions of four traces,
while the remaining traces also share similar trends (which
are not shown in the interest of space). We make two obser-
vations. First, if we measure the proportion of pages which
have at least one access, it only accounts for a small por-

tion of the entire logical address space. For example, for the
Financial, Webmail, Online, and Webmail+Online traces, the
proportions of accessed pages are only 12.4%, 4.6%, 3.3%,
and 5.2%, respectively. This reflects a high degree of cluster-
ing in the workloads. Secondly, among the accessed pages,
the number of times that each page is accessed varies sig-
nificantly. For example, the highest access frequencies of
pages in these four traces are around 9.1 × 104, 3.8 × 104,
3.1 × 104, and 6.0 × 104, respectively, implying that some
pages are re-accessed frequently. This reflects high skewness
of the workloads.
We formulate our workload model based on our trace anal-

ysis as follows. To model the clustering property, we define
a proportion fa of the logical address space that gets ac-
cessed as the active region, while the remaining logical ad-
dress space as the inactive region. The active (inactive) re-
gion contains all active (inactive) logical pages. With page-
level address mapping, each active (inactive) logical page is
mapped to an active (inactive) physical page. In our anal-
ysis, we do not distinguish the physical and logical pages
explicitly, and we simply refer to them as active or inactive
pages. Thus, the number of active pages over an SSD is
N(1− S)kfa.
Since a real workload usually accesses only a very small

proportion of the address space of the SSD, to model the
clustering property, we let the active and inactive pages be
mapped to separate blocks in the physical address space.
That is, the region of the active pages can be taken as the
working set of the workload. We call the blocks containing
only inactive pages inactive blocks, and they must be sealed
as they are also occupied by valid data which never gets
updated during the whole period of executing the workload.
We call the remaining sealed blocks active blocks, which may
contain both valid and invalid pages.
To model the skewness property, we further classify the

active pages into n access types. Let r = (r1, ..., rn) and
f = (f1, ..., fn) be the vectors, such that type-i (where 1 ≤
i ≤ n) pages are uniformly accessed by a proportion ri of
requests which account for a proportion fi of active pages of
the logical address space, and we have

∑n
i=1 ri=

∑n
i=1 fi=1.

Without loss of generality, we assume that r1
f1

≥ r2
f2

≥ · · · ≥
rn
fn

. A larger ratio ri
fi

means that a type-i page is on average
accessed by more requests, so our assumption implies that
type-1 pages are the hottest, while type-n pages are the
coldest. To summarize, we can characterize a workload by
the parameters (fa, n, r, f), as illustrated in Figure 2.

r

r
r

f

(Sorted) logical

page number

A
c
c
e
s
s

f
r
e
q

u
e
n

c
y

Active region Inactive region

f f

∑

a f

i

a f

r =

a

a

a

Figure 2: Illustration of our workload model with n = 3.

We show via examples how to map a workload to our
model. The uniform workload can be modeled by setting
fa = 1, r = (1) and f = (1). A non-uniform hot/cold work-
load [7,27], such as 80/20 workload, can be modeled by set-

ting fa = 1, n = 2, r = (0.8, 0.2), and f = (0.2, 0.8). We can
also model a more fine-grained workload by setting a larger
n. For instance, for the Webmail+Online workload in Fig-
ure 1(d), the proportion of active pages fa is 0.052, and the
embedded figure in Figure 1(d) shows the distribution of ac-
cess frequency of active pages only. We can choose n = 3 and
set the thresholds as 20 and 5. That is, pages that are ac-
cessed by no less than 20 times are classified as type-1, other
pages that are accessed by no less than 5 times are classi-
fied as type-2, and the remaining active pages are of type-3.
Under this setting, the parameters r and f can be measured
as r = (0.946, 0.036, 0.018) and f = (0.270, 0.135, 0.595).

Note that our workload model differs from the traditional
r−f model in [23] (which is also used in prior analytical stud-
ies [7,27]) in that the latter does not consider the clustering
property (i.e., it sets fa = 1). Our workload model can be
viewed as a generalized r−f model in [23], and it enables us
to model a wider range of real-life I/O workloads.

Our analysis considers the entire period of executing a
workload. Note that we focus on write requests only, we
let L be the total number of single-page writes in the en-
tire workload. To guarantee the statistical significance, we
assume that L is sufficiently larger than the capacity of the
logical address space, i.e., L ≫ Nk(1− S).

2.3 Performance Metric
Given the SSD and workload models, our analysis focuses

on the metric cleaning cost C(alg), which quantifies the per-
formance of a GC algorithm alg. Let M be the total number
of GC operations that have been performed on an SSD, vj
(where 1 ≤ j ≤ M and 0 ≤ vj ≤ k) be the number of valid
pages moved from the erased block to the write frontier in
the j-th GC operation. Mathematically, we define the clean-
ing cost as the total number of internal page writes in all GC
operations. That is,

C(alg) =
∑M

j=1
vj . (1)

Note that the cleaning cost equivalently models write am-
plification [12], which is often defined as the average number
of internal page writes per external user write.

In this paper, we study two classes of GC designs, namely
locality-oblivious GC and locality-aware GC. Locality-oblivious
GC does not consider data locality in the design. We an-
alyze how data locality influences the cleaning cost of GC
algorithms under this category. See §3 for details. Locality-
aware GC aims to include the workload characteristics de-
fined by (fa, n, r, f) into the design. We consider the design
strategy of data grouping, which stores the data pages of dif-
ferent access types separately in an SSD. See §4 for details.

3. LOCALITY-OBLIVIOUS GC
In this section, we propose a probabilistic analysis frame-

work on a family of locality-oblivious GC algorithms. The
framework enables us to quantify the cleaning cost. We then
study some special cases of GC algorithms.

3.1 General Analysis Framework
We consider a family of locality-oblivious GC algorithms,

which we call the Greedy Random Algorithm (GRA). The
operations of GRA are defined by a window size parameter d
(where 1 ≤ d ≤ N): each time when GC is triggered, we first
select d sealed blocks that have the smallest number of valid

0 2 4 6 8 10

x 10
5

10
0

10
1

10
2

10
3

10
4

10
5

(Sorted) logical page number

A
c

c
e

s
s

 f
re

q
u

e
n

c
y

2 4 6 8 10 12

x 10
4

0

20

40

60

80

100

The largest logical page
number being accessed: 960354

0 1 2 3 4 5

x 10
6

10
0

10
1

10
2

10
3

10
4

10
5

(Sorted) logical page number

A
c

c
e

s
s

 f
re

q
u

e
n

c
y

0.5 1 1.5 2

x 10
5

0

20

40

60

80

100

The largest logical page
number being accessed: 4781073

0 0.5 1 1.5 2

x 10
6

10
0

10
1

10
2

10
3

10
4

10
5

(Sorted) logical page number

A
c

c
e

s
s

 f
re

q
u

e
n

c
y

1 2 3 4 5 6 7

x 10
4

0

20

40

60

80

100

The largest logical page
number being accessed: 2064395

0 1 2 3 4 5

x 10
6

10
0

10
1

10
2

10
3

10
4

10
5

(Sorted) logical page number

A
c

c
e

s
s

 f
re

q
u

e
n

c
y

0.5 1 1.5 2 2.5

x 10
5

0

20

40

60

80

100

f
a
=0.052

r=(0.946,0.036,0.018)
f=(0.270,0.135,0.595)

The largest logical page
number being accessed: 4781073

(a) Financial (b) Webmail (c) Online (d) Webmail+Online

Figure 1: Distributions of access frequency of logical pages for four different real-world workloads. The logical page numbers
in the x-axis are sorted in descending order of access frequencies.

pages as candidates (random tie-breaking is used if multiple
blocks contain the same number of valid pages); then we
uniformly select a block from these d candidate blocks for
GC. We use d to denote an implementation of a GC algo-
rithm when the context is clear. In particular, if d = 1, then
GRA always selects the sealed block containing the smallest
number of valid pages for GC, and we call it the GREEDY
algorithm. On the other hand, if d = N , then GRA uni-
formly selects a sealed block among all physical blocks, and
we call this special GRA the RANDOM algorithm. We see
that GREEDY locally minimizes the cleaning cost as it al-
ways write the fewest valid pages in each GC, while RAN-
DOM maximizes the evenness of erasures on blocks as it in
essence has all blocks evenly erased. Therefore, GREEDY
and RANDOM represent the two extreme points in the de-
sign space of GC algorithms [17], and GRA operates at the
points between GREEDY and RANDOM via the tunable
window size parameter.
We now describe the dynamics of the physical blocks in

locality-oblivious GC. Figure 3 depicts the states of physical
blocks in an SSD right after a clean block is allocated as the
write frontier. Recall that GC is triggered when the SSD has
no clean block left (see §2.1). Both active blocks and inactive
blocks may be chosen for GC according to d: if an inactive
block is selected, then k additional page writes are always
required as the block contains all valid pages that are not
updated; otherwise, if an active block is chosen for GC, then
the number of additional page writes is a random variable.
Let Ca(d) be the average number of all valid pages in the
block, and Ci(d) be the average number of type-i (where
1 ≤ i ≤ n) valid pages in the block. We have Ca(d) =
∑n

i=1 Ci(d).
Our GRA analysis makes the following approximation:

the d candidate blocks are chosen from the d blocks that
are sealed in the earliest time, since the earlier sealed blocks
should contain fewer valid pages on average. We note that
all writes are designated to the unique write frontier with-
out differentiating the type of updated pages in the case of
locality-oblivious GC. Suppose that n ≪ k, which is ex-
pected since we have k ≥ 64 in commodity SSDs and n is
small. Then every sealed block should likely contain all n
types of pages (see Figure 3). Since our workload model as-
sumes that all pages of the same access type have the same
probability of being accessed and updated, we expect that an
earlier sealed block has more pages of each type invalidated
and hence fewer valid pages overall. In particular, GREEDY
can be approximated by the first-in-first-out (FIFO) algo-

Internal

page writes

External

page writes

...

Sealed blocks

Inactive blocks

Write

frontier

Active blocks

Figure 3: States of blocks right after a clean block is allo-
cated as the write frontier.

rithm, which reclaims blocks following their order of being
sealed.

In the following, we analyze the cleaning cost of GRA for
general window size d. We refer readers to Appendix for the
proofs of all theorems in this paper.

Theorem 1. The cleaning cost of GRA with window size
d is

C(d) =
[

L/(k − C(d))
]

C(d), (1 ≤ d ≤ N), (2)

where C(d) denotes the average cleaning cost in each GC
and it is

C(d) =

{

Ca(d), if d ≤ Na,
(Na/d)Ca(d) + (1−Na/d)k, otherwise,

(3)

where Na = N((1 − S)fa + S) − 1 denotes the number of
active blocks. As N → ∞, Ca(d) can be computed via Equa-
tions (4) and (5) if 1 ≤ d ≤ Na, and Ca(d) = Ca(Na) if
d > Na.

Ca(d) =
∑n

i=1
Ci(d), (4)

Ci(d) =
ri(k − Ca(d)) (1− P ′)Na−d

1 + P ′ × d− (1− P ′)Na−d
, (5)

where P ′ = ri(k−Ca(d))
(Na+1)(1−S′)kfi

and S′ = S
(1−S)fa+S .

Remarks: S′ denotes the spare factor of the active region
and P ′ represents the average conditional probability that
an active block has a type-i page invalidated for each exter-
nal page write given that it accesses a type-i page. Equa-
tion (5) shows that the cleaning cost of GC may be affected by

data locality, including both clustering and skewness, which
can be reflected by the parameters fa, ri’s and fi’s. We will
further discuss this impact for different values of d in more
detail in the following subsections.
Theorem 1 provides a general framework to derive the

cleaning cost of GRA for general window size d. However,
Equation (5) in Theorem 1, which characterizes the average
number of type-i valid pages containing in each active block
to be reclaimed, i.e., Ci(d), is still too complicated to solve.
Since d varies from one to infinity as N goes to infinity, to
further simplify the equation so as to efficiently derive the
cleaning cost of GRA, we consider the following cases for d:
(1) d = o(N), i.e., limN→∞

d
N = 0, (2) d ≥ Na, and (3)

d = αNa (0 < α < 1) where α is a constant. Note that
GREEDY (d = 1) and RANDOM (d = N) are included in
the first two cases. In the following, we focus on the average
cleaning cost in each GC, i.e., C(d), because the cleaning
cost can be derived based on Theorem 1 given C(d).

3.2 GRA with Window Size d = o(N)

Consider the case where d = o(N), which also includes the
scenario of GREEDY (d=1). Equation (5) can be further
simplified when N goes to infinity.

Theorem 2. As N → ∞, the average cleaning cost C(d)
of GRA with window size d = o(N) is the unique solution of
Equation (6) in the range [0, k]1.

C(d)=
∑n

i=1

[

(k − C(d))ri
]

/
[

eAi−1
]

, (6)

where Ai =
ri(k−C(d))
(1−S′)kfi

and S′ = S
(1−S)fa+S .

Remarks: It shows that the cleaning cost of GREEDY
is related to the clustering and skewness within the work-
load, which can be reflected by the parameters fa, ri’s and
fi’s. In particular, we have the following observations from
Equation (6). First, the cleaning cost increases as the ac-
tive region size increases, since Equation (6) is a monotone
increasing function with respect to fa. Formally, if we take
C(d) as a function of fa and take the derivative with re-
spect to fa on both sides of Equation (6), then we can show
that the derivative of C(d) is greater than zero. Second, the
cleaning cost increases if the workload possesses skewness.
To check this observation, we fix ri = 1/n, and study dif-
ferent distributions of fi’s, where f1 ≤ f2 ≤ · · · ≤ fn. If we

define g(fi) = (k − C(d))ri/(e
(k−C(d))ri
(1−S′)kfi − 1), then we can

see that g(fi) is a convex function with respect to fi. Thus,
we have

∑n
i=1 g(fi) ≥ ng((

∑n
i=1 fi)/n) = ng(1/n). This

inequality indicates that if fi’s are not equal, which corre-
sponds to some skewed workload as we fix ri = 1/n, then
the cleaning cost increases. In other words, the cleaning cost
is the lowest when the workload has no skewness (i.e., when
fi’s are equal).
Note that when ri = fi (∀i = 1, 2, · · · , n), the workload

changes to uniform access to blocks in the active region. We
can derive the cleaning cost of GREEDY as well as GRA
with window size d = o(N). In fact, this case was well
studied in previous work, e.g., [7], and Theorem 2 derives
the same results, which we state in Corollary 1.

Corollary 1. If the pages in the active region are uni-
formly accessed, as N → ∞, the average cleaning cost of

1 The equation can be efficiently solved using Newton’s method.

GREEDY (as well as GRA with window size d = o(N)) is

C(d) = −W0

(

−
1

1− S′
e
− 1

1−S′

)

/
[1
(1− S′)k

]

, (7)

where S′ = S
(1−S)fa+S and W0(·) is one branch of Lambert’s

W function (where W0(x) ∈ [−1, 0] for x ∈ [− 1
e , 0]).

3.3 GRA with Window Size d ≥ Na

Now we focus on the case when d ≥ Na, which includes
the scenario of RANDOM where d = N .

Theorem 3. As N → ∞, the average cleaning cost C(d)
of GRA with window size d where d ≥ Na is

C(d) = (1−NS/d)k. (8)

Remarks: Theorem 3 shows that the average cleaning
cost of RANDOM is independent of both the clustering and
skewness within the workload. The reason is that Ca(d)
remains unchanged regardless of parameters fa, r and f .

3.4 GRA with Window Size d = αNa

We now consider values of d which are smaller than the
number of active blocks Na, but can scale with Na. We let
d = αNa (where α is a constant with 0 < α < 1), which
means that the window size d is comparable to the number
of active blocks. In this case, the average cleaning cost of
GRA can be derived as follows.

Theorem 4. As N → ∞, the average cleaning cost C(d)
of GRA with window size d = αNa is the unique solution of
Equation (9) in the range [0, k]1.

C(d)=
∑n

i=1

[

(k−C(d))ri
]

/
[

(1+αAi)e
(1−α)Ai − 1

]

, (9)

where Ai =
ri(k−C(d))
(1−S′)kfi

and S′ = S
(1−S)fa+S .

Remarks: Note that Equation (9) is also a monotone
increasing function of fa. If we fix ri = 1/n, then each
summation term in the right hand side of Equation (9) is
also a convex function of fi. Therefore, Equation (9) has
the same implications as those in Equation (6). That is, the
relationship between the cleaning cost and data locality is
the same for GRA with window size d < Na.

4. LOCALITY-AWARE GC
In this section, we consider the case of locality-aware GC,

and analyze a design strategy leveraging on data locality.
Since it is a general consensus that cleaning cost of GC
algorithms may be reduced when data can be differenti-
ated [11, 14] and a workload includes n + 1 types of data
pages, it is of interest to study the performance of GC that
exploits data locality using data grouping, which differenti-
ates different types of data pages and stores them separately
in different regions in an SSD. In particular, we analyze how
data grouping influences the performance of GC in SSD,
and how much is the influence for workloads with different
degrees of locality? We assume that we have the complete
priori information about the workload so as to take full ad-
vantage of hot/cold information.

We first illustrate the architecture of an SSD with data
grouping. To perform locality-aware GC, we divide the
whole storage space into n + 1 regions, and let the last re-
gion keep the inactive data so that this region never gets

...

......

...

Figure 4: System architecture with data grouping.

accessed. For other n regions, each region keeps only one
type of data pages and performs GC independently, so it
has a separate write frontier for handling writes directed
to that region. Without loss of generality, we assume that
region 1 stores the hottest data while region n stores the
coldest data. Note that logical pages in each of the first
n regions are randomly and uniformly accessed because of
data grouping. Hence, the first n regions can be considered
as n independent sub-systems, each of which is fed with a
uniform workload. The architecture of an SSD with data
grouping can be further illustrated in Figure 4. Here, since
each region is fed with a uniform workload, it only contains
one type of data. In particular, we denote Ci as the average
cleaning cost in region i (1 ≤ i ≤ n).
Note that the purpose of considering data grouping is to

leverage data locality in improving the GC performance, and
the analysis in §3 shows that GREEDY outperforms GRA
with a general window size under the uniform workload (i.e.,
when fa = 1 and n = 1). Therefore, in the interest of space,
we assume that GREEDY is used for GC in each region for
locality-aware GC.
Since there are NS spare blocks in total and n + 1 sepa-

rate regions with data grouping, one implementation issue
of locality-aware GC is how many spare blocks should be
allocated to each region. The allocation of spare blocks to
each region may influence the cleaning cost. To study the
impact of different allocations, we analyze the cleaning cost
of GC with a given allocation b = (b1, b2, · · · , bn), where bi
denotes the proportion of spare blocks allocated to region
i. We have 0 ≤ bi ≤ 1 and

∑n
i=1 bi = 1. Note that since

no request goes to region n+ 1, we do not need to allocate
spare blocks to it. Given the allocation of b, the total num-
ber of physical blocks in region i is N(1 − S)fafi + NSbi
(1 ≤ i ≤ n), which we denote as Ni. Now we can derive the
cleaning cost of locality-aware GC, and the result is stated
in Theorem 5.

Theorem 5. Given the spare block allocation b where
proportion bi of spare blocks are allocated to region i (1 ≤
i ≤ n) and

∑n
i=1 bi = 1 (0 ≤ bi ≤ 1), the cleaning cost C of

locality-aware GC are

C =
∑n

i=1

[

Lri/(k − Ci)
]

Ci,

where Ci = −W0

(

− 1
1−Si

e
− 1

1−Si

)

/
[

1
(1−Si)k

]

as N → ∞ and

Si=Sbi/[(1− S)fafi + Sbi].

Remarks: Theorem 5 shows that the allocation of spare
blocks, b, affects the cleaning cost of locality-aware GC.
The most significant allocation is the one that minimizes
the cleaning cost, which we denote as b∗

c . We will further
show the performance improvement of cleaning cost for b∗

c

in §5.3 via numerical analysis.

Note that the design strategy of data grouping exploits
data locality by eliminating the skewness within a work-
load. In particular, it separates a highly-skewed workload
into multiple uniform workloads with no skewness so as to re-
duce the cleaning cost (see §5.2 for the impact of skewness).

5. MODEL VALIDATION AND IMPLICA-
TIONS

In this section, we conduct model analysis to study the im-
pact of data locality and the implications of locality aware-
ness on the GC design. We first validate our model using
the SSD simulator [1]. Based on our model, we then study
the impact of data locality and architectural design.

5.1 Model Validation
Since the analysis of locality-aware GC builds on locality-

oblivious GC and each region of the SSD in the locality-
aware GC corresponds exactly to the case of locality-oblivious
GC under uniform workload, our model validation focuses
on locality-oblivious GC only with respect to different work-
loads. To speed up our simulation, we consider a small-scale
SSD that contains one flash chip composed of 8 planes with
1024 blocks each. We configure each block with 64 pages of
size 4KB each. We use the default timing parameters set
by the simulator. We set the spare factor S=0.1 (i.e., the
logical address space is 90% of the physical address space).

We generate multiple synthetic workloads to drive our
simulation. Since read requests do not affect GC, we gen-
erate write requests only. Specifically, for each workload,
we generate 5M write requests, which suffice to make all ac-
tive pages get enough number of accesses so to guarantee
the statistical significance. Each request has size of 4KB,
which aligns with the page size. We specify a workload
based on the parameterizing (fa, n, r, f). Here, we con-
sider two types of workloads: (a) skewed workload, in which
we have 20% of active pages accessed by 80% of requests by
setting fa = 0.1, n = 2, r = (0.8, 0.2) and f = (0.2, 0.8);
and (b) fine-grained workload, in which we set a larger value
of n by fixing fa = 0.1, n = 4, r = (0.4, 0.3, 0.2, 0.1) and
f = (0.2, 0.2, 0.3, 0.3).

1 2000 4000 6000 8000
10

6

10
7

10
8

Window size d

C
le

a
n

in
g

 C
o

s
t

Simulation
Model

RANDOM

GREEDY

r=(0.8,0.2)
f=(0.2,0.8)

1 2000 4000 6000 8000
10

6

10
7

10
8

Window size d

C
le

a
n

in
g

 C
o

s
t

Simulation
Model

r=(0.4,0.3,0.2,0.1)
f=(0.2,0.2,0.3,0.3)

GREEDY

RANDOM

(a) Skewed workload (b) Fine-grained workload

Figure 5: Model validation for locality-oblivious GC.

Figure 5 shows both the model and simulation results
based on the above workloads. Each data point in a curve
corresponds to GRA with a particular value of d, which in-
creases from the leftmost point (i.e., GREEDY) to the right-
most point (i.e., RANDOM). Our model accurately charac-
terizes the cleaning cost under different workloads. In par-
ticular, comparing the model and simulation results for a
given value of d, the cleaning costs differ by no more than
7%, and it is no more than 1% in most cases. We also vali-
date other types of workloads, such as different values of fa.

1 2000 4000 6000 8000

10
6

10
7

10
8

Window size d

C
le

a
n

in
g

 C
o

s
t

f
a
=0.1

f
a
=0.3

f
a
=0.5

RANDOM

GREEDY

1 2000 4000 6000 8000

10
6

10
7

10
8

Window size d

C
le

a
n

in
g

 C
o

s
t

f=(0.2,0.8)

f=(0.5,0.5)

f=(0.8,0.2)

r=(0.8,0.2)
GREEDY

RANDOM

(a) Impact of clustering (b) Impact of skewness

Figure 6: Impact of data locality on locality-oblivious GC.

The model and simulation results conform to each other. In
the interest of space, we do not present the results here.

5.2 How Data Locality Affects Locality-obli-
vious GC?

We use our model to obtain numerical results, and study
how data locality affects the GC performance. Here, we fo-
cus on locality-oblivious GC. To study the impact of data
locality, we consider a given GC implementation by fixing
the window size d of GRA, and examine its changes of clean-
ing cost under different workloads.
Figure 6(a) shows the impact of clustering by varying fa =

0.1, 0.3, and 0.5, which determines the proportion of the
active region, while fixing the skewness with n = 2, r =
(0.8, 0.2), and f = (0.2, 0.8). Figure 6(b) studies the impact
of skewness, and we fix r = (0.8, 0.2), and vary f = (0.2, 0.8)
(which is the most skewed workload), f = (0.5, 0.5), and f =
(0.8, 0.2) (which is equivalent to the non-skewed workload).
From the figures, we see that cleaning cost increases as either
the clustering or skewness increases. Moreover, the increase
is more pronounced for a smaller d, and GREEDY shows
the most increase. For example, in Figure 6(b), the cleaning
cost of GREEDY increases from 1.063×106 to 2.314×106

when we increase skewness by varying from f = (0.8, 0.2) to
f = (0.2, 0.8). As d increases, both the impact of clustering
and skewness on the cleaning cost vanishes. In particular,
data locality within a workload, including both clustering
and skewness, has a significant impact on GREEDY, but
has no impact on RANDOM.

5.3 Will Locality Awareness Help?
We now analyze via our model the performance of locality-

aware GC with data grouping (see §4), and study if it im-
proves over locality-oblivious GC.
Figure 7(a) shows the impact of different spare block al-

locations on GC performance. Here we consider the skewed
workload with fa = 0.1, n = 2, r = (0.8, 0.2) and f =
(0.2, 0.8). Each data point (asterisk) corresponds to a par-
ticular allocation b = (b1, 1 − b1), where the leftmost data
point (b∗

c = (0.432, 0.568)) minimizes the cleaning cost, and
the rightmost data point (b∗

w = (0.862, 0.138)) shows the
same performance of locality-oblivious GC with GREEDY,
which is marked as square. That is, there is no performance
gain for locality-aware GC under the block allocation b∗

w.
So we focus on the range of allocations from b∗

c to b∗
w, and

other data points are obtained by varying b1 from 0.432 to
0.862 with a step size of 0.02. The figure shows that data
grouping may efficiently reduce the cleaning cost. For ex-
ample, it can be reduced from 2.31× 106 to 0.53× 106 with
a proper configuration of the spare blocks in each region.

Figures 7(b) and 7(c) show the impact of clustering and
skewness on locality-aware GC, respectively. In Figure 7(b),
we vary fa = 0.1, 0.3, and 0.5, while fix the skewness within
the workload with n = 2, r = (0.8, 0.2) and f = (0.2, 0.8).
In Figure 7(c), we fix fa = 0.1, r = (0.8, 0.2), and vary
from f = (0.2, 0.8) to f = (0.5, 0.5). For each workload, we
consider the block allocations varying from b∗

c to b∗
w as in

Figure 7(a). From Figure 7(b), we see that when the active
region size increases, the relative change of cleaning cost de-
creases. For instance, when fa = 0.1, the cleaning cost under
the allocation of b∗

w (which is 2.31×106) is 4.36 times higher
than that under the allocation of b∗

c (which is 0.53 × 106),
while this ratio decreases to 2 when fa = 0.5. However,
Figure 7(c) shows that the relative change of cleaning cost
increases if the workload is more skewed. This can be ob-
served from that the difference of the cleaning cost between
the allocations of b∗

c and b∗
w is larger when f = (0.2, 0.8).

Even though skewness worsens the cleaning performance of
GREEDY for locality-oblivious GC (see Figure 6(b)), it im-
proves the performance of locality-aware GC. That is, incor-
porating locality awareness into GC design is more signifi-
cant for workload with higher skewness.

5.4 Summary of Findings
We summarize the implications from our model analysis.

• Data locality affects the performance of locality-obli-
vious GC with a given implementation (i.e., GRA with
a fixed d): (1) cleaning cost increases when either the
active region size or the skewness increases, (2) the in-
crease is more pronounced for a smaller window size.
In particular, data locality has the most significant im-
pact on GREEDY, but has no impact on RANDOM.

• Locality-aware GC reduces the cleaning cost through
data grouping, while the performance improvement de-
pends on the proper allocation of spare blocks. Data
locality also affects the performance of locality-aware
GC in different ways: (1) if the active region size in-
creases, the relative change of cleaning cost decreases;
(2) if the workload has higher skewness, the relative
change increases, and so locality awareness is more im-
portant if the workload is more skewed.

6. TRACE-DRIVEN EVALUATION
In this section, we conduct trace-driven evaluation on the

GC performance under real-world workloads, using the SSD
simulator [1]. The goals of our evaluation are two-fold. First,
we further validate the implications of our model under real-
world workload traces. Second, we show the significance of
locality awareness on the GC design.

6.1 Evaluation Setup
We have collected eight real-world workload traces to drive

our evaluation. Since read requests do not affect the GC
performance, we focus on write-intensive traces. The traces
can be categorized into three types of environments:

• Financial [25]: It is an I/O trace of an online transac-
tion process application. We select the write-intensive
one Financial1.spc in the repository.

• Webmail, Online, Webmail+Online [28]: The three traces
describe workloads in a university department. Web-
mail describes the workload of a mail server, Online

0.4 0.5 0.6 0.7 0.8 0.9
0.5

1

1.5

2

2.5
x 10

6

Allocation b=(b
1
,1−b

1
)

C
le

a
n

in
g

 C
o

s
t

Locality−aware GC
Locality−oblivious
GC (GREEDY)

b
c
*=(0.432,0.568)

b
w

*=(0.862,0.138)

0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12
x 10

6

Allocation b=(b
1
,1−b

1
)

C
le

a
n

in
g

 C
o

s
t

f
a
=0.5

Locality−aware
GC

Locality−oblivious
GC (GREEDY)

f
a
=0.3

f
a
=0.1

0.4 0.5 0.6 0.7 0.8 0.9
0.5

1

1.5

2

2.5
x 10

6

Allocation b=(b
1
,1−b

1
)

C
le

a
n

in
g

 C
o

s
t

r=(0.8,0.2)
f=(0.5,0.5)

Locality−aware
GC

Locality−oblivious
GC (GREEDY)

r=(0.8,0.2)
f=(0.2,0.8)

(a) Impact of locality awareness (b) Impact of clustering (c) Impact of skewness

Figure 7: Performance of locality-aware GC.

Total # of Volume Proportion of
Traces single-page size accessed

writes pages

Financial 4.9 M 4 GB 12.4%
Webmail 6.4 M 18 GB 4.6%
Online 4.2 M 8 GB 3.3%

Webmail+Online 10.6 M 18 GB 5.2%
stg 0 5.2 M 2 GB 3%
prxy 0 23.8 M 2 GB 2%
proj 0 41.0 M 2 GB 3.2%
prn 0 18.1 M 2 GB 2.4%

Table 1: Statistics of traces.

describes a coursework management workload on Moo-
dle, and Webmail+Online is the combination of Web-
mail and Online.

• prxy 0, prn 0, proj 0, stg 0 [20]: The four traces are
collected from an enterprise data center. The original
set of traces cover 36 volumes in total. We choose
four of them that have high write-to-read ratios and a
sufficiently large number of write requests.

Table 1 summarizes the statistics of traces. We fix the
page size as 4KB and align the requests in each trace to be
a multiple of the page size. As shown in the table, each trace
consists of millions of single-page writes. We then determine
the volume size (i.e., the capacity of the logical space) of each
trace by multiplying the largest logical page number among
all requests with the page size and rounding it up to the
next multiple of gigabytes. For the Financial trace, we ignore
the requests with application-specific unit numbers ASU1,
ASU3, and ASU5 as they lead to an extremely large volume
size. As shown in Table 1Webmail andWebmail+Online have
a large volume size, while the data-center traces [20] have a
much smaller volume size. By measuring the proportion of
logical pages that are accessed by at least one write request,
we see that all write requests only access a very small portion
of the logical space for all traces (i.e., fa is small), with up to
only 12.4% as shown in Table 1. We use this characteristic
to motivate our workload model formulation (see §2.2).
We configure the SSD simulator for our evaluation as fol-

lows. We note that each flash chip in an SSD typically oper-
ates independently with its own I/O bus, and performs GC
on its own blocks independently of other flash chips. Thus,
when we evaluate a GC algorithm under a given workload,
we feed the trace to an SSD with only one flash chip so
as to preserve the statistics of the workload. We set each
block with the number of pages k = 64, and configure the

SSD capacity (i.e., the total number of blocks) according to
the volume size of each trace, and the spare factor which
is set as S = 0.2. We focus on page-level address mapping,
and assume that the SSD is fully utilized initially, and local-
ity pages are mapped sequentially to physical pages. Thus,
each write request to a page corresponds to an update. The
full initial state is the default setting of the SSD simula-
tor, and we use it to stress-test the I/O performance of the
SSD. Note that the SSD contains a proportion S of spare
blocks that have no data initially. To eliminate the influ-
ence of these spare blocks, we first warm up the simulator
with 10M write requests that uniformly access the pages of
the entire logical address space. Afterwards, we drive our
evaluation with the real-world traces.

6.2 Impact of Data Locality on Cleaning Cost
Locality-oblivious GC: We first evaluate the cleaning

cost of locality-oblivious GC. We consider different GC im-
plementations by configuring GRA with d = 1, N

2 ,
3N
4 , and

N , whereN is the total number of physical blocks. Note that
d = 1 and d = N correspond to GREEDY and RANDOM,
respectively. Since the workload size varies from traces, for
ease of comparison, we normalize the cleaning cost as the
number of internal page writes caused by GC over the num-
ber of external page writes containing in the workload. This
normalized cleaning cost can be interpreted as write ampli-
fication [12] minus one.

Figure 8(a) shows the results. We see that the perfor-
mance of locality-oblivious GC manifests in two ways. First,
RANDOM gives the worst performance in terms of clean-
ing cost and GREEDY achieves the best performance. In
fact, a trade-off between performance and durability exists
for GRA with different values of d, and we show the trade-
off in §6.3. Second, we observe that among different GC
implementations, GREEDY has the most varying cleaning
cost across different workloads. Its normalized cleaning cost
varies from 1.6 to 2.46. RANDOM has the least variance in
cleaning cost, as also indicated by our analysis (see §3).

Locality-aware GC: Now we evaluate the cleaning cost
of locality-aware GC. Our implementation assumes the com-
plete knowledge of the workload, so that we can evaluate the
best achievable design of a GC algorithm. Specifically, we
fix the number of regions n, and then measure the access fre-
quency of each data page so as to separate data pages into
n regions and obtain the corresponding parameters r and f ,
as defined in §2.2. In terms of the spare block allocation for
each region, since different allocations lead to different per-

0

1

2

3

4

5

N
o

rm
a

li
ze

d
 C

le
a

n
in

g
 C

o
s

t

Fin
an

ci
al

W
eb

m
ai

l

O
nlin

e

W
eb

m
ai

l

+O
nlin

e st
g 0

prx
y 0

pro
j 0

prn 0

GREEDY
d=N/2

 d=3N/4
RANDOM

0

0.5

1

1.5

2

2.5

N
o

rm
a

li
ze

d
 C

le
a

n
in

g
 C

o
s

t

Fin
an

ci
al

W
eb

m
ai

l

O
nlin

e

W
eb

m
ai

l

+O
nlin

e st
g 0

prx
y 0

pro
j 0

prn 0

Locality−oblivious GC
Locality−aware GC (n=2)
Locality−aware GC (n=3)

(a) Locality-oblivious GC (b) Locality-aware GC

Figure 8: Cleaning cost of GC algorithms.

formance results (see §4), we focus on the one minimizing
the cleaning cost.
We consider two scenarios of data grouping: (1) we sep-

arate data pages into n = 2 types, one of which has data
pages accessed by at least 10 times and another has data
pages accessed by less than 10 times; (2) we separate data
pages into n = 3 types, which have data pages accessed by
no less than 50 times, less than 50 but no less than 10 times,
and less than 10 times, respectively. For comparison, we also
plot the cleaning cost of GREEDY in locality-oblivious GC.
Figure 8(b) shows the cleaning cost of locality-aware GC

for different traces. First, compared to locality-oblivious
GC, cleaning cost can be significantly reduced with data group-
ing, e.g., by more than 87% for locality-aware GC with
n = 2. The reduction can even reach up to 99% for the
proj 0 trace. Note that we can achieve further reduction, al-
though marginal, if we separate data pages into three types.

6.3 Impact of Data Locality on GC Design
Trade-off

As stated in [1, 17], GC design poses a trade-off between
performance and durability of an SSD. In this subsection,
we show the performance-durability trade-off of GC design
and study the impact of data locality on it.
Recall that we use the cleaning cost as defined in Equa-

tion (1) to represent the performance of GC algorithms. For
durability, we define another metric, namely wear-leveling
index W(alg).

W(alg) =

[

N
N
∑

i=1

(

ni
∑N

i=1 ni

)2]−1

=

(N
∑

i=1

ni

)2

/

(

N
N
∑

i=1

n2
i

)

,

where ni (1 ≤ i ≤ N) is the number of erasures performed
on block i. The intuition of W(alg) is that it quantifies the
fairness among ni’s, so it characterizes how evenly blocks
are erased throughout all GC operations. Note that we have
0 < W(alg) ≤ 1, where W(alg) = 1 means all blocks receive
the same number of erasures.
Figure 9 shows the wear-leveling index of different GC al-

gorithms for both locality-oblivious GC and locality-aware
GC. By combining the results in Figure 8, we see that the
design trade-off manifests in two ways for locality-oblivious
GC. First, the trade-off exists in GRA with different values
of d. For a given trace, RANDOM gives a large wear-leveling
index but introduces high cleaning cost, while GREEDY in-
curs low cleaning cost but has a small wear-leveling index.
Second, the trade-off exists among different traces. For in-

0

0.2

0.4

0.6

0.8

1

W
e
a
r−

le
v
e
li
n

g
 I
n

d
e
x

Fin
an

ci
al

W
eb

m
ai

l

O
nlin

e

W
eb

m
ai

l

+O
nlin

e st
g 0

prx
y 0

pro
j 0

prn 0

0

0.2

0.4

0.6

0.8

1

W
e
a
r−

le
v
e
li
n

g
 I
n

d
e
x

Fin
an

ci
al

W
eb

m
ai

l

O
nlin

e

W
eb

m
ai

l

+O
nlin

e st
g 0

prx
y 0

pro
j 0

prn 0

Locality−oblivious GC
Locality−aware GC (n=2)
Locality−aware GC (n=3)

(a) Locality-oblivious GC (b) Locality-aware GC

Figure 9: Wear-leveling index of GC algorithms.

stance, GREEDY shows the highest cleaning cost and wear-
leveling index under the Financial trace, which spans the
largest active region (i.e., fa is the largest) as indicated in
Table 1. From our analysis, a larger fa implies higher clean-
ing cost (see Figure 6). For locality-aware GC, when clean-
ing cost decreases, the wear-leveling index also decreases (by
28% to 77% as shown in Figure 9(b)). It is thus important
to deploy a dedicated wear-leveling technique orthogonal to
locality-aware GC.

6.4 Summary
The above evaluation results show that the impact of

data locality varies across different GC algorithms. For
locality-oblivious GC, data locality significantly influences
the performance of GREEDY, but has negligible impact on
RANDOM. We demonstrate that locality-aware GC can ef-
ficiently reduce the cleaning cost. We also show that the GC
design poses a trade-off between cleaning and wear leveling,
and the design trade-off exists under all workloads.

7. RELATED WORK
NAND-flash-based SSDs have received much attention in

both industrial and academic communities. Several aspects
are studied such as write performance optimization [2,10,24],
reliability analysis [16], and lifetime extension [5,18]. In par-
ticular, Gal et al. [8] survey the algorithms and data struc-
tures of flash memory. Chen et al. [4] and Jung et al. [13]
reveal the intrinsic characteristics and system implications of
SSDs through extensive empirical measurements. Agrawal
et al. [1] study different design trade-off issues for SSDs using
a trace-driven simulator.

Since the cleaning operation introduces additional writes
(also known as write amplification) that are critical to SSD
performance, several studies analyze the cleaning perfor-
mance of GC algorithms. For example, Hu et al. [12] pro-
pose a probabilistic model to analyze a windowed greedy
algorithm that erases the block with the fewest valid pages
among the least-recently-used blocks. Bux et al. [3] analyze
the greedy algorithm under uniform workload. Desnoyers [7]
analyzes the greedy algorithm under both uniform and non-
uniform workloads. Van Houdt [26] develops a mean field
model to derive the write amplification for various GC algo-
rithms under uniform workload, and later extends the model
for hot/cold workload [27]. Yang and Zhu [29] further em-
ploy the mean field model to analyze the performance of var-
ious hotness-aware GC algorithms. Li et al. [17] also propose
a mean field model to analyze different GC algorithms for
SSDs, with the emphasis on modeling the trade-off between
cleaning and wear leveling.

Unlike most previous studies, our work focuses on study-
ing the impact of data locality on the cleaning performance
of different GC implementations, and makes the following
differences. First, we consider more general workloads, with
different levels of hotness/coldness, by modeling both clus-
tering and fine-grained skewness. Second, we analyze a fam-
ily of locality-oblivious GC algorithms and consider a more
general implementation of locality-aware GC, which sup-
ports the separation of data pages in more fine-grained lev-
els. Finally, we conduct trace-driven simulations to validate
our analysis and the findings of our model. In summary,
our work complements the previous studies by addressing
more general deployment scenarios through both analytical
modeling and trace-driven simulations.

8. CONCLUSIONS
We develop analytical models to characterize the impact

of data locality on the GC performance of SSDs. We first
formalize a workload model to capture data locality (i.e.,
clustering and skewness) evidenced by the trace analysis of
real-life I/O workloads. We then integrate the workload
model into GC performance analysis, and study two classes
of GC designs: locality-oblivious GC and locality-aware GC.
In locality-oblivious GC, we analyze the cleaning cost of a
family of GC algorithms. We show that as the active re-
gion size increases, the cleaning cost increases, and a more
skewed workload also increases the cleaning cost. Further-
more, we extend our analysis for locality-aware GC.We show
that data grouping can reduce the cleaning cost, and the re-
duction is more significant if the workload is more skewed,
which shows the importance of locality awareness. Finally,
we conduct extensive trace-driven simulations to validate
the accuracy and findings of our models. The main focus of
our work is to analytically study how data locality influences
the cleaning performance of various GC algorithms so as to
guide the GC design, while we leave the actual design of
locality-aware GC algorithms that exploit workload locality
and adapt to workload dynamics as future work.

9. ACKNOWLEDGMENTS
The work of Yongkun Li was supported in part by Na-

tional Nature Science Foundation of China under Grant No.
61303048, and the Fundamental Research Funds for the Cen-
tral Universities under Grant No. WK0110000040.

10. REFERENCES
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design Tradeoffs for SSD
Performance. In Proc. of USENIX ATC, Jun 2008.

[2] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A Design
for High-performance Flash Disks. ACM SIGOPS Oper.
Syst. Rev., 41(2):88–93, Apr 2007.

[3] W. Bux and I. Iliadis. Performance of Greedy Garbage
Collection in Flash-based Solid-state Drives. Performance
Evaluation, Nov 2010.

[4] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
Intrinsic Characteristics and System Implications of Flash
Memory based Solid State Drives. In Proc. of ACM
SIGMETRICS, Jun 2009.

[5] F. Chen, T. Luo, and X. Zhang. CAFTL: A Content-aware
Flash Translation Layer Enhancing the Lifespan of Flash
Memory Based Solid State Drives. In Proceedings of
USENIX, FAST, 2011.

[6] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee,
and H.-J. Song. System Software For Flash Memory: A

Survey. In Proc. of Int. Conf. on Embedded and Ubiquitous
Computing, Aug 2006.

[7] P. Desnoyers. Analytic Modeling of SSD Write
Performance. In Proceedings of SYSTOR, Jun 2012.

[8] E. Gal and S. Toledo. Algorithms and Data Structures for
Flash Memories. ACM Computing Surveys, 37(2):138–163,
Jun 2005.

[9] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A Flash
Translation Layer Employing Demand-based Selective
Caching of Page-level Address Mappings. In Proc. of ACM
ASPLOS, Mar 2009.

[10] A. Gupta, R. Pisolkar, B. Urgaonkar, and
A. Sivasubramaniam. Leveraging Value Locality in
Optimizing NAND Flash-based SSDs. In Proc. of USENIX
FAST, 2011.

[11] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang. Efficient
Identification of Hot Data for Flash Memory Storage
Systems. ACM TOS, Feb 2006.

[12] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka.
Write Amplification Analysis in Flash-based Solid State
Drives. In Proc. of SYSTOR, May 2009.

[13] M. Jung and M. Kandemir. Revisiting Widely Held SSD
Expectations and Rethinking System-level Implications. In
Proc. of ACM SIGMETRICS, Jun 2013.

[14] H.-S. Lee, H.-S. Yun, and D.-H. Lee. HFTL: Hybrid Flash
Translation Layer based on Hot Data Identification for
Flash Memory. IEEE Trans. on Consumer Electronics,
55(4):2005–2011, 2009.

[15] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park,
and H.-J. Song. A Log Buffer-based Flash Translation
Layer Using Fully-associative Sector Translation. ACM
TECS, 6(3), Jul 2007.

[16] Y. Li, P. P. C. Lee, and J. C. S. Lui. Stochastic Analysis on
RAID Reliability for Solid-State Drives. In Proc. of IEEE
SRDS, 2013.

[17] Y. Li, P. P. C. Lee, and J. C. S. Lui. Stochastic Modeling of
Large-Scale Solid-State Storage Systems: Analysis, Design
Tradeoffs and Optimization. In Proc. of ACM
SIGMETRICS, 2013.

[18] Y. Lu, J. Shu, and W. Zheng. Extending the Lifetime of
Flash-based Storage through Reducing Write Amplification
from File Systems. In Proc. of USENIX FAST, 2013.

[19] Micron Technology. Bad Block Management in NAND
Flash Memory. Technical Note, TN-29-59, 2011.

[20] D. Narayanan, A. Donnelly, and A. Rowstron. Write
off-loading: Practical power management for enterprise
storage. ACM TOS, 4(3):10:1–10:23, Nov 2008.

[21] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S.
Kim. A Reconfigurable FTL (Flash Translation Layer)
Architecture for NAND Flash-based Applications. ACM
TECS, 7(4):38:1–38:23, Aug 2008.

[22] Z. Qin, Y. Wang, D. Liu, and Z. Shao. Demand-based
Block-level Address Mapping in Large-scale NAND Flash
Storage Systems. In Proc. of IEEE/ACM/IFIP
CODES+ISSS, Oct 2010.

[23] M. Rosenblum and J. K. Ousterhout. The Design and
Implementation of a Log-structured File System. ACM
Trans. Comput. Syst., 10(1):26–52, Feb 1992.

[24] A. Soga, C. Sun, and K. Takeuchi. NAND Flash Aware
Data Management System for High-speed SSDs by Garbage
Collection Overhead Suppression. In IEEE 6th
International Memory Workshop (IMW), May 2014.

[25] Storage Performance Council. http:
//traces.cs.umass.edu/index.php/Storage/Storage,
2002.

[26] B. Van Houdt. A Mean Field Model for a Class of Garbage
Collection Algorithms in Flash-based Solid State Drives. In
Proc. of ACM SIGMETRICS, Jun 2013.

[27] B. Van Houdt. Performance of Garbage Collection
Algorithms for Flash-based Solid State Drives with

Hot/cold Data. Performance Evaluation, 70(10):692 – 703,
Sep 2013.

[28] A. Verma, R. Koller, L. Useche, and R. Rangaswami.
SRCMap: Energy Proportional Storage using Dynamic
Consolidation. In Proc. of USENIX FAST, Feb 2010.

[29] Y. Yang and J. Zhu. Analytical Modeling of Garbage
Collection Algorithms in Hotness-aware Flash-based Solid
State Drives. In Proc. of IEEE MSST, June 2014.

APPENDIX

Proof of Theorem 1 in §3.1: Since the proportion of
active region in logical space is fa, the number of active
blocks is Na=N((1−S)fa+S)− 1. We consider two cases.
Case 1: d ≤ Na. Based on the argument that the blocks
that are sealed earlier should contain fewer valid pages on
average, we can make an approximation that the d candidate
blocks are chosen from the d blocks that are sealed in the
earliest time. Thus, only active blocks have the chance of be-
ing selected for GC if d ≤ Na. Moreover, an active block can
be reclaimed at the j-th (j = Na−d+1, Na−d+2, · · · ,∞)
GC instant since it has been sealed, and the corresponding
probability is 1

d (1−
1
d)

j−(Na−d)−1. Note that Ca(d) denotes
the average number of valid pages in an active block to be
reclaimed under GRA with selection window size d. Among
these Ca(d) pages, the average number of type−i pages is de-
noted by Ci(d). We have Ca(d) =

∑n
i=1 Ci(d). To simplify

the presentation, let us drop the notation d when the context
is clear. Since each GC needs to write back Ca valid pages
on average, each clean block can only handle k − Ca exter-
nal page writes. Therefore, a sealed block is reclaimed after
handling (j − 1)(k − Ca) external page writes on average if
it is reclaimed by the j-th GC. For each external page write,
it updates a type-i page with probability ri

N(1−S)fakfi
=

ri
(Na+1)(1−S′)kfi

where Na = N((1 − S)fa + S) − 1 and

S′ = S
(1−S)fa+S . The physical meaning of S′ is that it

represents the spare factor of a sub-system without inac-
tive blocks. Now Ci can be characterized by the following
equation.

Ci =
(

Ci + (k − Ca)ri
)

∞
∑

j=Na−d+1

[

1

d

(

1−
1

d

)j−(Na−d)−1

×

(

1−
ri

(Na + 1)(1− S′)kfi

)(j−1)(k−Ca)
]

=
(

Ci+(k−Ca)ri
)(

1−P ′
)Na−d

[1

(1+P ′ × d)

]

, (as N→∞)

where P ′ = ri(k−Ca)
(Na+1)(1−S′)kfi

. Thus, Ci is derived as in

Eq. (5). Now the average cleaning cost incurred by reclaim-
ing an active block is Ca =

∑n
i=1Ci. Since inactive blocks

will never be chosen for GC as d ≤ Na, we have C = Ca.
Case 2: d > Na. There are Na active blocks and d − Na

inactive blocks in the window of d candidate blocks, and
each of them is chosen for GC with equal probability, so the
probabilities of reclaiming an active and an inactive block in
each GC are Na/d and (d −Na)/d, respectively. Note that
reclaiming an inactive block always incurs k page writes.
Thus, the average cleaning cost in each GC can be derived
as (Na/d)Ca(d)+ [(d−Na)/d]k. Note that all active blocks
are in the window and uniformly selected for GC, which is
equivalent to the case where d = Na, so Ca(d) can also be
derived via Equations (4)-(5) by replacing d with Na.

Given the average cleaning cost C(d), the write frontier
can only handle k−C(d) external page writes during one GC.
Therefore, the total cleaning cost caused by GC is [L/(k −
C(d))]C(d).

Proof of Theorem 2 in §3.2: Since d = o(N), according
to Equation (5), as N → ∞, Ci(d) can be transformed to
Ci(d)=[(k−Ca(d))ri]/(eAi −1), where Ai = ri(k−C(d))/[(1−
S′)kfi] and S′ = S/((1 − S)fa + S). Therefore, the average
cleaning cost in each GC, C(d), can be easily derived as

C(d)=
∑n

i=1
(k − C(d))ri/(e

Ai−1). (10)

To show the uniqueness of the solution in Equation (10),
we only focus on C(d) ∈ [0, k]. We let f(x) =

∑n
i=1(k −

x)ri/(e
Ai(x)−1)− x, where Ai(x) = ri(k − x)/[(1− S′)kfi]

and x ∈ [0, k]. We have f(0) > 0, and limx→k− f(x) < 0. By
checking the first-order derivative of f(x), we have f ′(x) < 0.
So Equation (10) has a unique solution in [0, k].

Proof of Corollary 1 in §3.2: Since ri = fi (i = 1, 2, · · · , n),

Equation (6) can be rewritten as C(d) = ke−[k−C(d)]/[(1−S′)k],
which can be solved in terms of Lambert’s W function as
C(d) = −W

(

− 1
1−S′ e

− 1
1−S′

)

/
[

1
(1−S′)k

]

. Note that S′ < 1,

we have − 1
1−S′ e

− 1
1−S′ ≥ −1/e, so Lambert’s W function

W (·) is a real valued function and has two branches. One
branch defines a single-valued function W0(·) ≥ −1, while
the other branch has W1(·) ≤ −1. In our case, since C(d) ≤
k, we restrict Lambert’s W function to the higher branch
W0(·), and we obtain the results as claimed.

Proof of Theorem 3 in §3.3: As N → ∞, we have Na →
∞, since d ≥ Na, based on Eq. (5), we have

Ci(d)=ri(k − Ca(Na))/

[

ri(k − Ca(Na))

(Na + 1)(1− S′)kfi
Na

]

=(1− S′)kfi.

Therefore, Ca(d) = (1 − S′)k and C(d) can be derived as
C(d) = (Na/d)(1− S′)k + (1−Na/d)k = (1−NS/d)k.

Proof of Theorem 4 in §3.4: Since d = αN , as N → ∞,
Equation (5) can be simplified as Ci(d)=[(k−Ca(d))ri]/[(1+
αAi)e

(1−α)Ai − 1], where Ai = ri(k − Ca(d))/[(1 − S′)kfi].
Now C(d) can be easily derived via C(d)=Ca(d)=

∑n
i=1Ci(d).

For the proof of uniqueness, it is the same as that in Theo-
rem 2.

Proof of Theorem 5 in §4: Since the workload in each
region is uniform, based on Corollary 1, we can derive the
average cleaning cost in each GC, and we denote it as Ci

for region i. We have Ci = −W0

(

− 1
1−Si

e
− 1

1−Si

)

/
[

1
(1−Si)k

]

,

where Si = Sbi/[(1−S)fafi +Sbi]. Note that the workload
contains L page writes, and proportion ri of them go to
region i, so the total number of GCs in region i is Lri

k−Ci

as each GC can only handle k − Ci external page writes.
Therefore, the total number of page writes issued by GC in
region i is Lri

k−Ci
Ci, and the total cleaning cost is the sum

of all page writes issued by GC in all regions. So we have
C =

∑n
i=1

Lri
k−Ci

Ci.

