
Measuring and Maximizing Group Closeness
Centrality over Disk-Resident Graphs

Technique Report

Junzhou Zhao∗ John C.S. Lui† Don Towsley‡ Xiaohong Guan∗
∗Xi’an Jiaotong University

†The Chinese University of Hong Kong
‡University of Massachusetts Amherst

{jzzhao,xhguan}@sei.xjtu.edu.cn cslui@cse.cuhk.edu.hk towsley@cs.umass.edu

Abstract—As an important metric in graphs, group closeness
centrality measures how close a group of vertices is to all other
vertices in a graph, and it is used in numerous graph applications
such as measuring the dominance and influence of a node group
over the graph. However, when a large-scale graph contains
hundreds of millions of nodes/edges which cannot reside entirely
in computer’s main memory, measuring and maximizing group
closeness become challenging tasks. In this paper, we present
a systematic solution for efficiently calculating and maximizing
the group closeness for disk-resident graphs. Our solution first
leverages a “probabilistic counting method” to efficiently estimate
the group closeness with high accuracy, rather than exhaustively
computing it in an exact fashion. In addition, we design an I/O-
efficient greedy algorithm to find a node group that maximizes
the group closeness. Our proposed algorithm significantly reduces
the number of random accesses to disk, thereby dramatically
improving computational efficiency. Experiments on real-world
big graphs demonstrate the efficacy of our approach.

I. INTRODUCTION

Node centrality[10] is an important measure in the anal-
ysis of networks. Many centrality measures such as degree,
closeness, and betweenness, have been proposed to measure
the importance of individual nodes in a network. While these
measures are useful in finding the top-k most important
individual nodes within a network, they are not suitable to
address the question of finding a set of nodes of size k, such
that these k nodes as a group, is the most important group
in the network. Such a problem widely exists in scores of
application domains. For instance, in online social networks,
product retailers may want to locate k people to promote
their products so as to maximize the number of potentially
influenced customers. Due to the overlap of people’s friend
circles, simply returning the top k most influential people in
the network is unlikely to be optimal.

Consider a simple graph in Fig. 1. If we want to choose
a group of size two to connect (or influence) other nodes in
the graph as many as possible. If we simply choose the top
two largest degree nodes b and e, the group {b, e} connects
four other nodes in the group. In fact, we should choose
group {b, f} which connects six other nodes in the graph.
The example tells us that a group composed of top individual
ranking nodes may not be the optimal group.
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Fig. 1. An example to show that the top two largest degree nodes are not
the optimal group of size two.

Everett and Borgatti, in their seminal work [7], extended
the idea of individual centrality to group centrality, which
defines the importance of a node group in a graph. They
illustrated the concepts of group degree, group closeness and
so on for two graphs containing 20 and 14 nodes, respectively.
Despite its conceptual novelty, group centrality lacks efficient
calculation algorithms that can scale to large graphs containing
hundreds of millions of nodes/edges such as the Facebook
and Twitter networks. Such graphs call for efficient group
centrality calculation methods.

In this work, we study how to efficiently measure and
maximize group degree and group closeness of disk-resident
graphs. We introduce these two metrics, and show that they
are special cases of a generalized group closeness (which we
call group closeness for short), in Section II. When a graph
cannot entirely fit in the computer’s main memory, measuring
and maximizing group closeness become challenging.
Challenge of Calculating Group Closeness in Big Graphs:
Group closeness centrality measures how close a group of
nodes is to all other nodes in a graph. Calculating group
closeness requires calculating the shortest path length from
each node in the group to all other nodes in the graph,
i.e., solving the single-source shortest path (SSSP) problem
for each group member. Dijkstra’s SSSP algorithm can be
efficiently implemented in O(m+n log n) time using state-of-
the-art methods [9,11], where n is the number of nodes and m
is the number of edges of a given graph. However, for contem-
porary online social networks (OSNs), which include hundreds
of millions of nodes/edges, this computational complexity is



2

too large. If we want to find a node group to maximize the
group closeness, we need to solve the all-pairwise shortest
path (APSP) problem, where the time complexity becomes
O(nm + n2 log n). Furthermore, the above algorithms are
all in-memory algorithms requiring data to fit in the main
memory, which are not suitable for processing disk-resident
graphs.
Our Solution: Instead of exactly calculating the shortest path
length for each node, we propose a computationally efficient
method to estimate group closeness centrality. Palmer et
al.[19] use a probabilistic counting method [8] to approximate
the neighborhood function for each node in a graph, and the
neighborhood function can be used to estimate the shortest
path length. We leverage this method as a preprocessing step
to efficiently estimate group closeness with time complexity
O(m) and O(n log n) extra space.
Challenge of Greedily Choosing Nodes from Disk: If we
want to choose a subset of items from a population to maxi-
mize some given objective function, a widely used approach is
the greedy method: choosing an item at each step to maximize
the increase to the objective function. Unfortunately, for large-
scale graphs residing on disk, the greedy method will cause
too many random accesses on disk, which will induce frequent
page faults and thereby increase the computational cost.
Our Solution: To address the disk random access problem, we
design a novel I/O-efficient greedy algorithm for processing
disk-resident graphs. Our method relies on the submodularity
of the objective function (see Subsection III-C) and its two
important properties in order to reduce the number of disk
random accesses, and so improve on computational efficiency.

The remainder of this paper is organized as follows. In
Section II, we generalize the definitions of group degree and
group closeness and formulate the group closeness maximizing
problem. Then we describe the algorithms for processing disk-
resident graphs in Section III. Experiments are conducted in
Section IV. We summarize some related work in Section V,
and conclude with Section VI.

II. GROUP CENTRALITY MEASURES

In this section, we first review Everett and Borgatti’s original
definitions of group degree/closeness. Then we introduce a
new notion of generalized group closeness. Lastly, we formu-
late the group closeness maximization problem and state its
complexity.

A. Group Degree and Group Closeness

Everett and Borgatti define the group degree centrality of
a node group as the number of non-group members that are
connected to group members, namely

Cdeg(S) = |{v : (u, v) ∈ E ∧u ∈ S ∧ v /∈ S}|, S ⊆ V, (1)

where Cdeg(S) denotes the group degree of a group S, while
V and E are the sets of nodes and edges of a graph1 G
respectively.

1We only consider undirected unweighted graphs in this work, although
these metrics can be easily extended to directed graphs.

Group degree centrality only considers one-hop neighbors,
but group closeness centrality considers all nodes in the graph,
and gives higher score to a group of nodes with smaller
average distances to all other nodes. Everett and Borgatti
define group closeness centrality as follows

Cclose(S) =
|V \S|∑

v∈V \S dS,v
, S ⊆ V, (2)

where dS,v is the distance between group S and a node v
and defined as dS,v ≜ minu∈S distuv where distuv is the
shortest distance between u and v. Therefore, group closeness
centrality measures how close group members in S are to other
non-members in a graph.

B. Generalized Group Closeness Centrality

Group degree in Eq. (1) and group closeness in Eq. (2) can
be considered as distance scores measuring how close group S
is to other nodes in the graph. The closer the group is to other
nodes, the larger is the score. In general, let g : R≥0 7→ R≥0 be
a monotonically decreasing non-negative function. We define
the distance score from group S to other nodes that are within
H hops to S in the graph as

CH(S) =
∑
v∈V

g(dS,v)1 {dS,v ≤ H} (3)

=
H∑

h=0

g(h) [Nh(S)−Nh−1(S)] . (4)

Here 1 {·} is the indicator function, 1 ≤ H ≤ ∆ is a given
constant, and ∆ is the diameter of G. Nh(S) is the number
of nodes within h hops to S in the graph, i.e.,

Nh(S) =


0, h < 0,

|S|, h = 0,

|{v : dS,v ≤ h}|, h ≥ 1.

(5)

Thus, C1(S) = [g(0) − g(1)]|S| + g(1)N1(S) measures the
closeness of S to nodes within one hop of S. Therefore C1(S)
can be used to approximate the group degree in Eq. (1).
Similarly, C∆(S) measures the closeness to all the nodes in
G, therefore it can be used to approximate the group closeness
in Eq. (2).

C. Group Closeness Maximization

Given the above metric, an important problem is to find a
node group S in the graph that maximizes the group closeness
CH(S). This problem can be formally stated as follows.

Definition 1. (GROUP CLOSENESS MAXIMIZATION PROB-
LEM). Given graph G(V,E), H and g(·), find a set S ⊆ V
of at most K nodes that maximizes CH(S).

For the group closeness CH(·) we defined above, we have
the following results (Proofs are included in [1]):

Theorem 1. The group closeness maximization problem is
NP-complete.
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Theorem 2. Group closeness CH(·) is a non-decreasing
submodular function.

Based on Theorem 1, finding an optimal solution is com-
putationally difficult. But based on Theorem 2, we can exploit
the submodular property of CH(·) to find an approximation
solution that has good performance guarantees. In particular,
we have a polynomial time greedy algorithm (GA) to find an
approximate solution which is within at least 1−1/e of the
optimal solution [16], and the approximation is nearly optimal
as no known polynomial time algorithm can achieve a better
approximation factor. GA can be briefly stated as follows:
The node, which maximizes the group closeness increment
is chosen and put into the node group at each iteration; this
produces a node group of size K after K iterations.

Although GA has polynomial time complexity, it requires
that all of the data fit entirely in a computer’s main memory.
This condition is too stringent for large graphs containing
hundreds of millions of nodes/edges, which are very common
for today’s popular OSNs. In this work, we develop a novel
algorithm that enables one to use a common PC with small
memory capacity (1∼4GB) to efficiently find quality guaran-
teed solutions on a million-scale graph. This will be described
in detail in the next section.

III. HANDLING DISK-RESIDENT GRAPHS

Before we describe our methods in detail, it is necessary to
explain why the problem becomes challenging when the graph
cannot fit in the computer’s main memory.

A. Challenges of Handling Disk-Resident
Graphs

In general, GA has polynomial time complexity. However,
when we apply GA to compute the group closeness central-
ity, we have the additional complexity of calculating group
closeness during each round of GA. In each GA round, we
calculate the reward gain for each node s ∈ V \S, i.e.,
δs(S) ≜ CH(S ∪ {s})− CH(S). However, calculating δs(S)
is computationally intensive. To see this, simply let S = ∅;
then δs(S) = CH({s}) =

∑
v∈V g(distsv). That is, we are re-

quired to solve SSSP for node s. As a result, we need to solve
APSP in GA, which has time complexity O(nm+ n2 log n).
This is obviously expensive (both computation and memory
requirements) for a large graph with large n and m.

Another more serious challenge is that GA generates many
random disk accesses, which in turns create frequent page
faults and further increasing computational time[4]. To il-
lustrate this issue, let us consider that we already use an
efficient implementation of GA where nodes are maintained in
a priority queue ordered in decreasing reward gain. Each time
when a node s is added to S, we need to update the reward
gains of affected nodes in the queue, and use an inverted index
to quickly look up these affected nodes. An inverted index is a
hash map that maps a node u to a list Lu = {v1, v2, · · · } and
u is within H hops to v ∈ Lu. When s is selected, for each
node u within H hops of s, we look up Lu and update δv(S)
for v ∈ Lu in the queue. If the index mapping is small, it can

fit in main memory. Unfortunately, the inverted lists {Lu}u∈V

are usually very large and have to be stored on disk. Since u
is unlikely to be visited locally during the iterations in GA,
this will cause many random disk accesses.

B. Efficiently Estimating the Group Closeness

We address the first challenge of calculating CH(·) in this
subsection. Since an efficient method to calculate CH(·) can
improve the efficiency of GA, we leverage a probabilistic
counting method to efficiently estimate CH(·) with high
accuracy rather than exhaustively and exactly calculating it.

The basic idea is to estimate Nh(S) in Eq. (5) and use
Eq. (4) to obtain CH(S). In [19], Palmer et al. use the Flajolet-
Martin (FM) sketch method[8] to estimate Nh(u) ≜ Nh({u})
for a node u in a graph. We extend this approach to estimate
Nh(S) for a group S. FM-sketch is a probabilistic counting
method that encodes the counting information in a bit-string.
The method is efficient and requires little extra space.

We first describe how to estimate Nh(u) using the method
in [19]. First, a bit-string Mh(u) of logn length is generated
to encode Nh(u) for each node u ∈ V , and Mh(u) is obtained
by iteratively doing the following bitwise-OR operation

Mh+1(u) = Mh(u)⊕Mh(v1)⊕ · · · ⊕Mh(vdu)︸ ︷︷ ︸
vi:(u,vi)∈E, i=1,...,du

,

where ⊕ denotes the bitwise-OR operation of two bit-strings,
du is the degree of node u, and M0(u) is initialized as the
binary representation of a uniformly distributed random num-
ber. Nh(u) is decoded from Mh(u) by Nh(u) = 2r/0.77351,
where r is the position of the lowest ‘0’ bit in Mh(u).

We can leverage this method to estimate Nh(S). Suppose
we have obtained Mh(u), ∀u,∀h, then a bit-string Mh(S)
encoding of NH(S) can be calculated as follows

Mh(S) =
⊕
u∈S

Mh(u).

Nh(S) is then decoded in the same way as Nh(u). To increase
estimation accuracy, we can store N bit-strings per node per
hop and decode Nh(S) by

Nh(S) =
1

0.77351
2

1
N

∑N
i=1 ri .

CH(S) is obtained using Eq. (4). Notice that δs(S) is also
easy to calculate using such a method. Because Mh(S∪{s}) =
Mh(S)⊕Mh(s), CH(S∪{s}) is easily obtained after decoding
and hence δs(S). Obtaining all bit-strings requires time O(m)
and extra space O(n log n).

C. An I/O-Efficient Greedy Algorithm

Next, we present an I/O-efficient greedy algorithm to over-
come the disk random access problem. The new algorithm
leverages two properties of submodular functions to reduce
I/O costs.

The first property of submodularity comes from one of its
equivalent definitions, which we state as follows.
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Property 1 ([16, Proposition 2.1]). For a submodular function
F (·), let δs(S) ≜ F (S∪{s})−F (S). If S ⊆ T , then δs(S) ≥
δs(T ), for all s ∈ V \T .

This property tells us that as GA proceeds, the reward gain
of each node cannot increase. It can be used to reduce the
number of reward gain calculations in each round and thereby
reduce the I/O cost. For example, if the recently updated node
already has the largest gain in the queue, then there is no need
to calculate gains for the other nodes. Because their gains will
only become smaller according to Property 1.

To further reduce I/O costs, we leverage the following
second property of submodularity.

Property 2. Suppose at each step t of GA, we can choose a
node st whose gain δst is at least a fraction λ of the maximum
gain δs∗t , i.e., δst ≥ λδs∗t . Then we can guarantee that the final
solution SK = {s1, . . . , sK} satisfies

F (SK) ≥ (1− 1

eλ
)F (OPT ),

where OPT is the optimal solution maximizing F .

Proof. Please refer to [1].

The second property uses λ as a parameter to trade off
the solution quality and computational efficiency. Therefore,
instead of exhaustively searching a node that has the maximum
gain at each GA step, we can search for a node for which
the gain is at least a fraction λ of the maximum gain, and the
solution quality is still bounded. Since this property can reduce
the search scope during each GA step, I/O cost decreases.

Based on above two properties, we now design an I/O-
efficient greedy algorithm.
Preprocessing: In the preprocessing step, we use the method
of the previous subsection to generate N × H bit-strings
for each node, which allows us to calculate the reward gain
efficiently. Then we use external sorting methods to sort the
nodes in decreasing order of reward gain. Next, the sorted data
is split into blocks where each block is of size at most B. B
is selected as large as possible while allowing the block to
reside in main memory. We only load one block at a time into
memory. A block maintains bit-strings for a set of nodes, as
shown in Fig. 2(a) and includes the following fields:

• NID represents the node ID;
• δ denotes the reward gain of the node;
• # is the round number in which round δ is updated;
• BS represents the bit-strings of the node;
• δmin and δmax are two pointers pointing to the nodes

having the minimum and maximum gain in the block.
A block is stored as a single file on a disk and it is named after
its block ID. Different blocks are not necessarily contiguous
on disk. In addition, we maintain a block-meta list in main
memory, which records the meta information ⟨Block ID,
δmin, δmax, Nodes⟩ for each block, as shown in Fig. 2(b).
Iterations: The algorithm, as depicted in Alg. 1, uses the
“Read-Compute-Write” framework.
• Read: Load the first block into memory (Lines 2, 18).

# δ BS

δ
max

δ
min

NID

(a) A block.

δmin, δmax

Block ID

Nodes

δmin, δmax

Block ID

Nodes

δmin, δmax

Block ID

Nodes

B1 B2 BL

(b) Block-meta list.

Fig. 2. Block structure of the data.

• Compute: To search a node s such that δs ≥ λδs∗ ,
check the head node in the queue and update its gain if
necessary (Lines 5-8). Note that δs∗ is unknown, however, the
maximum gain δmax in the current block is an upper bound
of δs∗ according to Property 1. Hence, if a node c such that
δs ≥ λδmax, it is placed into S (Lines 9-11); otherwise it is
placed back into the queue (Line 13).
• Write: If the maximum gain in the current block is smaller
than in the next block (Line 16), the current block is written
back to disk (Line 17), and a new block is read from disk
(Line 18). During the WriteToDisk operation, each node v in
the queue is appended to a block i such that δmin

i ≤ δv ≤
δmax
i .

Our I/O-efficient greedy algorithm leverages Properties 1
and 2 to load blocks on demand from the disk, thus reducing
I/O cost.

Algorithm 1: I/O-Efficient Greedy Algorithm.
Input: Approximate ratio λ and group size K.
Output: Node group S.

1 C = ∅, t = 1;
2 Load the first block into priority queue Q;
3 while |S| < K, do
4 v = Q.Pop();
5 if #v < t, then /* Update */
6 δv = CH(S ∪ {v})− CH(S);
7 #v = t;
8 end
9 if δv ≥ λδmax, then /* If succeed */

10 S = S ∪ {v};
11 t = t+ 1;
12 else /* If failed */
13 Q.Insert(v);
14 end
15 Update δmax and δmin;
16 if δmax < δmax

2 , then /* Write and reload */
17 WriteToDisk(Q);
18 Load the first block into priority queue Q;
19 end
20 end

Function WriteToDisk(Q):
1 Delete the first block from block-meta list and disk;
2 foreach element v in Q do
3 Find the block i s.t. δv ∈ [δmin

i , δmax
i ];

4 Write v to the end of block i on disk;
5 end

IV. EXPERIMENTS

In this section, we conduct experiments on typical real-
world graphs to demonstrate the efficacy of our method.
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A. Datasets and Experimental Environment

The datasets are four real-world graphs of different sizes,
an ArXiv High Energy Physics citation network (HEPTH),
a Youtube social network, a LiveJournal social network and
a Twitter follower network. Table I summarizes the basic
information of these four graphs.

Network n m ∆ B Blocks Preproc.
HEPTH 27K 352K 10 5K 6 < 1min
Youtube 1M 3M 14 5K 228 < 1min
LiveJournal 5M 49M 16 5K 1038 8min
Twitter[13] 40M 258M 18 10K 2296 55min

TABLE I
DATASET SUMMARY

We perform the experiments on a Linux Ubuntu 12.04
desktop with a dual-core 2.13GHz Intel Processor, 2GB of
main memory and a standard 180GB, 7200rpm SATA HDD.

When calculating group closeness, we set g(0) = 1 and
g(h) = 1/h for h ≥ 1.

B. Validation of the Group Closeness Approximation

First, we show that the proposed method in Section III-B
can well approximate group closeness in the HEPTH network.
We generate 3×100 node groups with size |S| = 5, 10, and 20,
respectively. Nodes in each group are randomly chosen from
the network. Because the network is small, we can calculate
the exact values of group closeness for these node groups.

Figure 3 shows the scatter plots of the exact group closeness
values and the approximate group closeness values. Both
metrics are normalized to the range [0, 1]. These two metrics
show strong correlations, and if we increase the number of bit-
strings per node per hop from N = 16 to N = 32, the Pearson
Correlation Coefficient (PCC) increases from 0.962 to 0.975.
This indicates that our proposed method in Section III-B can
well approximate true group closeness.
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Fig. 3. Approximate validation (GC denotes group closeness and H = 7).

C. Performance and Scalability

Next, we compare the performance and efficiency with
existing methods. In order to let the existing greedy algorithm
handle big disk-resident graphs with small memory, the greedy
algorithm is designed to scan the disk multiply times, and a
node maximizing the reward gain is selected after each scan.
We use this approach as the baseline method.

Figures 4(a) and 4(e) show group closeness values for differ-
ent group sizes using the baseline method and the proposed

method. In the proposed method, we set λ = 1.0 and 0.5
respectively. When λ = 1.0, the proposed method performs
exactly the same as the baseline method, and when λ = 0.5,
the proposed method performs worse than the baseline method,
which is expected due to Property 2.

Figures 4(b) and 4(f) show the computation times to find
node groups of different sizes using the two methods. We see
that the baseline method is more time consuming than our
method. Fig. 4(b) also reveals that our method requires longer
times for λ = 1.0 than for λ = 0.5, but in Fig. 4(f), their
performance are comparable.

To clearly see the effect of λ on performance, Figs. 4(c)
and 4(d) show how λ impacts page faults (# new block loads
into memory). We observe that increasing λ results in more
page faults. Figs. 4(d) and 4(g) also show the trade-off effects
of λ for selecting a group of 20 nodes. When λ increases,
we obtain better solutions, but at the cost of longer execution
times.

D. Observations on Big Graphs

In this section, we present patterns of node groups max-
imizing the group closeness on Livejournal and Twitter. We
calculate group closeness using λ = 0.5, and H = 1, 2, 3
respectively. The preprocessing step for Livejournal costs eight
minutes and for Twitter is 55 minutes (for H = 3). Applying
the I/O-efficient greedy algorithm on Livejournal takes three
minutes for H = 3, λ = 0.5, and for Twitter 30 minutes (for
a group size 1000).

Several researchers[15,21] have suggested using degree as
an alias for other node centrality metrics. Hence, we ask the
following question: Are the top k largest degree nodes good
aliases for group of size k maximizing CH? To answer the
question, we choose node groups of various sizes and compare
their overlaps with the top k largest degree nodes in the
same network. Fig. 5 shows the results on the two networks
respectively. Surprisingly, the overlap is low and becomes even
lower as k and H increase. For example, for H = 1, the node
group of size 200 contains only about 10% of the top-200
largest degree nodes.

In conclusion, group closeness is a useful metric that cannot
be simply represented by the existing degree metric.
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Fig. 5. Overlap between group of nodes and top degree nodes (λ = 0.5).

V. RELATED WORK

There is a vast literature on scaling up the single node
centrality calculation over large graphs, but little work on
scaling up group centrality calculation.
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Fig. 4. Scalability and performance. Top row is on HEPTH network and bottom row is on Youtube network. For both networks, we set H = 7, N = 32.

Scaling up the Single Node Centrality Calculation: Many
single node centralities such as closeness and betweenness
require solving SSSP first. For closeness centrality, Eppstein
and Wang[6] only calculate the distances to a number of
sampled nodes, where the time complexity is reduced to
O( logn

ϵ2 (m+n log n)) and an error bound is given by applying
Hoeffding’s inequality. Okamoto et al. [17] leverage the above
result and present a similar algorithm. However these are in-
memory methods for single node closeness centrality and not
suitable for our setting.

Recently, there are increasingly many works scaling cen-
trality calculations by distributing the computation using
MapReduce [5]. For example, Kang et al. [12] develop a
parallel graph mining tool to estimate single node centrality on
Hadoop. Oktay et al. [18] present a method to estimate pair-
wise nodes shortest distance using MapReduce. Sariyüce et
al. [20] present a distributed framework for calculating close-
ness centrality incrementally over dynamic graphs. However,
developing distributed graph algorithms remains a challenging
task, and there is still a need for optimizing graph algorithms
on a single machine [14].

Scaling up the Greedy Algorithm: The greedy algorithm is a
heuristic approach used to solve many NP-hard problems such
as the travelling salesman problem and the set cover problem.
Despite its importance, relatively little effort has focused on
scaling it up for large datasets. Recently, Cormode et al. [4]
present a variation of the greedy algorithm for the set cover
problem on large datasets. However, our problem cannot be
easily converted to a set cover problem and hence we cannot
apply their method.

Another approach to scale up the algorithm is paralleliza-
tion. The greedy algorithm is inherently sequential in nature.
To relax this constraint, Berger et al. [2] conduct a study of the
set cover problem, in which multiple processors can randomly
cover sets and avoid covering the same elements redundantly.

Inspired by Berger’s work, Chierichetti et al. [3] develop an
algorithm for the max-cover problem in combining with the
MapReduce framework. These two methods require data fitting
in main memory so that multiple processors can randomly
access data; if data residents on disk, random access on disk
will cause I/O costs. Therefore they are not suitable in our
setting.

VI. CONCLUSION

Group closeness centrality is an important metric in mea-
suring how close a group of nodes to other nodes in a graph.
However, it is not easy to calculate/maximize when graphs
contain hundreds of millions of nodes/edges which cannot
entirely fit in the computer’s main memory. We present a
systematic solution for efficiently calculating group closeness
centrality over disk-resident graphs. Our solution leverages
the FM-sketch method to efficiently approximate the group
closeness and exploits two properties of submodular functions
to maximize the group closeness measure. The experiments
demonstrate the efficacy of this approach.
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APPENDIX

PROOF OF THEOREM 1

Proof. We consider a special case of the problem when H = 1
and g(0) = g(1) = 1, therefore CH(S) = N1(S). We build
up a set system {Sv}v∈V where Sv = {u : (u, v) ∈ E}∪{v}.
Obviously, selecting k nodes to maximize N1(S) equivalents
to selecting k sets from {Sv}v∈V to maximize the coverage
over V , which is the max-k cover problem, which is known
to be NP-complete. Therefore, group closeness maximization
problem is NP-complete.

PROOF OF THEOREM 2

Proof. We prove non-decreasing and submodularity of CH(·),
respectively.

(1) Non-decreasing. That is, we need to show that CH(S) ≤
CH(S′), for S′ = S ∪ {s}, and s ∈ V .

It is easy to see that dS,v ≥ dS′,v for v ∈ V , hence
g(dS′,v) ≥ g(dS,v). Therefore, we have

CH(S′) =
∑
v∈V

g(dS′,v) ≥
∑
v∈V

g(dS,v) = CH(S).

So CH(·) is monotonically non-decreasing.
(2) Submodularity. That is, we need to show CH(S′) −

CH(S) ≥ CH(T ′)−CH(T ), S ⊆ T ⊆ V , S′ = S∪{s}, T ′ =
T ∪ {s}, and s ∈ V \T .

CH(S′)− CH(S) =
∑
v∈V

[g(dS′,v)− g(dS,v)]

≥
∑
v∈V

[g(dT ′,v)− g(dT,v)] (6)

= CH(T ′)− CH(T )

We now explain why Ineq. (6) is correct. According to the
definition dS,v = minu∈S distuv, we have

g(dS′,v)− g(dS,v)

=g(min{dS,v, distsv})− g(dS,v)

=

{
0, if dS,v ≤ distsv

g(distsv)− g(dS,v) ≥ 0, otherwise.

Similarly, we have

g(dT ′,v)− g(dT,v)

=

{
0, if dT,v ≤ distsv

g(distsv)− g(dT,v) ≥ 0, otherwise.

Since dS,v ≥ dT,v for S ⊆ T . So,
a) If distsv ≥ dS,v ≥ dT,v , then g(dS′,v) − g(dS,v) =

g(dT ′,v)− g(dT,v) = 0; Therefore Ineq. (6) holds.
b) If dS,v ≥ distsv ≥ dT,v , then g(dS′,v) − g(dS,v) =

g(distsv)−g(dS,v) ≥ 0, and g(dT ′,v)−g(dT,v) = 0. Therefore
Ineq. (6) holds.

c) If dS,v ≥ dT,v ≥ distsv , then g(dS′,v) − g(dS,v) =
g(distsv) − g(dS,v), and g(dT ′,v) − g(dT,v) = g(distsv) −
g(dT,v). Because g(distsv)− g(dS,v) ≥ g(distsv)− g(dT,v),
therefore Ineq. (6) holds.

Hence, CH(·) is a submodular function.
In conclusion, Theorem 2 holds.

PROOF OF PROPERTY 2

Proof. By utilizing the non-decreasing property of F , we have

F (OPT )− F (St−1) ≤F (OPT ∪ St−1)− F (St−1)

=F (OPT\St−1 ∪ St−1)− F (St−1).

Assume OPT\St−1 = {z1, . . . , zm},m ≤ K, and we define

Zj≜F (St−1∪{z1, . . . , zj})−F (St−1∪{z1, . . . , zj−1}), j≤m.

Then we have

F (OPT )− F (St−1) ≤
m∑
j=1

Zj .

Now notice that

Zj ≤ F (St−1 ∪ {zj})− F (St−1) = δzj ≤ δs∗t ≤ 1

λ
δst .

Then we get the following iterative formula for F (St),

F (OPT )− F (St−1) ≤
m∑
j=1

Zj ≤
K

λ
(F (St)− F (St−1)),

from which we can derive the following relationship

F (St) ≥ [1− (1− λ

K
)t]F (OPT ).

Finally, let t = K, and we conclude that

F (SK) ≥ [1− (1− λ

K
)K ]F (OPT ) ≥ (1− 1

eλ
)F (OPT ).


	Introduction
	Group Centrality Measures
	Group Degree and Group Closeness
	Generalized Group Closeness Centrality
	Group Closeness Maximization

	Handling Disk-Resident Graphs
	Challenges of Handling Disk-ResidentGraphs
	Efficiently Estimating the Group Closeness
	An I/O-Efficient Greedy Algorithm

	Experiments
	Datasets and Experimental Environment
	Validation of the Group Closeness Approximation
	Performance and Scalability
	Observations on Big Graphs

	Related Work
	Conclusion
	References
	Appendix

