
15

Di�Forward: On Balancing Forwarding Tra�ic for Modern
Cloud Block Services via Di�erentiated Forwarding
WENZHE ZHU∗, University of Science and Technology of China, China
YONGKUN LI†, University of Science and Technology of China, China
ERCI XU, PDL, China
FEI LI, Alibaba Group, China
YINLONG XU, Anhui Province Key Laboratory of High Performance Computing, USTC, China
JOHN C. S. LUI, The Chinese University of Hong Kong, China

Modern cloud block service provides cloud users with virtual block disks (VDisks), and it usually relies on a
forwarding layer consisting of multiple proxy servers to forward the block-level writes from applications to
the underlying distributed storage. However, we discover that severe tra�c imbalance exists among the proxy
servers at the forwarding layer, thus creating a performance bottleneck which severely prolongs the latency
of accessing VDisks. Worse yet, due to the diverse access patterns of VDisks, stable tra�c and burst tra�c
coexist at the forwarding layer, and thus making existing load balancing designs ine�cient for balancing the
tra�c at the forwarding layer of VDisks, as they are unaware of and also lacks the ability to di�erentiate the
decomposable burst and stable tra�c. To this end, we propose a novel tra�c forwarding scheme Di�Forward
for cloud block services. Di�Forward di�erentiates the burst tra�c from stable tra�c in an accurate and
e�cient way at the client side, then it forwards the burst tra�c to a decentralized distributed log store to
realize real-time load balance by writing the data in a round-robin manner and balances the stable tra�c
by segmentation. Di�Forward also judiciously coordinates the stable and burst tra�c and preserves strong
consistency under di�erentiated forwarding. Extensive experiments with reallife workloads on our prototype
show that Di�Forward e�ectively balances the tra�c at the forwarding layer at a �ne-grained subsecond
level, thus signi�cantly reducing the write latency of VDisks.

CCS Concepts: • Information systems ! Distributed storage; • Networks ! Cloud computing; •
Computer systems organization! Distributed architectures.

Additional Key Words and Phrases: block storage service, tra�c balancing

ACM Reference Format:
Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui. 2023. Di�Forward: On Balancing
Forwarding Tra�c for Modern Cloud Block Services via Di�erentiated Forwarding. Proc. ACM Meas. Anal.
Comput. Syst. 7, 1, Article 15 (March 2023), 26 pages. https://doi.org/10.1145/3579444

∗The work was done when Wenzhe Zhu was an intern at Alibaba.
†Yongkun Li is the corresponding author.

Authors’ addresses: Wenzhe Zhu, wzhzhu@mail.ustc.edu.cn, University of Science and Technology of China, China; Yongkun
Li, ykli@ustc.edu.cn, University of Science and Technology of China, China; Erci Xu, jostep90@gmail.com, PDL, China; Fei
Li, renlei.lf@alibaba-inc.com, Alibaba Group, China; Yinlong Xu, ylxu@ustc.edu.cn, Anhui Province Key Laboratory of
High Performance Computing, USTC, China; John C. S. Lui, cslui@cse.cuhk.edu.hk, The Chinese University of Hong Kong,
China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2476-1249/2023/3-ART15 $15.00
https://doi.org/10.1145/3579444

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

https://doi.org/10.1145/3579444
https://doi.org/10.1145/3579444

15:2 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

1 INTRODUCTION
Cloud block service, e.g., AWS EBS [4], Alibaba Block Service [1] and Azure Disk Storage [48],
is a key storage infrastructure on the cloud, and it is being widely adopted to support diverse
applications, e.g., virtual desktop [18, 66], big data processing [27, 73], databases [25, 28], web
services [13, 33], and etc. For cloud users, cloud block service provides virtual block disks (VDisks)
to enable them to seamlessly and elastically deploy their applications on the cloud. For cloud
vendors, it allows them to realize more e�cient resource provisioning by pooling storage resources.

Modern cloud block service often employs the layered architecture which consists of three
layers, the client layer, the forwarding layer and the storage layer (see Figure 1(a) in §2.1) [75]. In
the client layer, each VDisk has a stateless thin client, which fetches the block requests from the
application/VM running in the VDisk, and then sends the requests to a speci�ed proxy server in
the forwarding layer. Proxy servers in the forwarding layer translate the received block requests to
the lower-level reads/writes that can be processed by the storage layer, and then forwards them to
the storage layer to realize actual storage on physical storage devices. Usually the storage layer
implements a distributed storage to persist data, and it provides the forwarding layer as a simple
abstraction of a large storage space. To forward a block request from a VDisk to the underlying
storage layer, the proxy server maintains an AddressMap which maps the o�set in the VDisk to the
data location in the storage layer. One bene�t of this architecture is that the I/Os in the storage
layer can be well balanced by forwarding each VDisk’s data to multiple storage servers and devices
at a �ne granularity, e.g., at the granularity of data chunks [44, 71].

In this work, we �rst show the forwarding layer faces severe tra�c imbalance, especially when
we measure the tra�c at subsecond time scale. For example, by analyzing the publicly available
cloud block service workload [2], as the time interval of measuring tra�c narrows down from
100s to 100ms, the CoV of the tra�cs among proxy servers increases from 0.38 to 1.01, indicating a
signi�cant imbalance aggravation when the timescale reaches subsecond level, and the imbalanced
tra�c also causes a severe latency degradation, e.g., the 99-percentile latency increases to 9.6⇥
even when the average network bandwidth utilization is only 40%. The tra�c imbalance is mainly
caused due to the following two reasons. First, the tra�c at the proxy servers are write-dominant,
e.g., the write ratio can be over 70% of the overall tra�c [40, 44, 67], this is because caching is
often deployed at the application side and thus absorbs most reads [10, 26, 35, 41, 45, 52]. To avoid
high concurrency control overhead, the stateful AddressMap corresponding to the same VDisk is
not shared by multiple proxy servers, so a VDisk is bound to a speci�ed proxy server, and thus
the tra�c from this VDisk must be forwarded by a particular proxy server. Second, tra�cs from
di�erent VDisks are usually highly skewed [40], for example, for the cloud block trace [2], the
top 2% write-intensive VDisks generate over 40 times more requests than the average tra�c over
all VDisks. Therefore, the proxy servers handling intensive VDisks receive much more tra�c and
signi�cantly increase the network queueing delay.
By thoroughly investigating the tra�c of 1000 VDisks from the publicly available cloud block

service workload [2], we have a key observation on the tra�c patterns. The tra�c of VDisks can
be decomposed as stable tra�c and burst tra�c, and the coexistence of the two tra�c patterns
substantially exacerbates the tra�c imbalance at a �ne time granularity, e.g., subsecond time
scale. We also �nd that the decomposable stable and burst tra�c are mainly generated by two
kinds of accesses to VDisks. Speci�cally, as cloud block service inherently supports a wide variety
of applications, di�erent applications may simultaneously run on VDisks. However, di�erent
applications may have di�erent patterns of accessing VDisks, thus having di�erent spatial and
temporal characteristics. In particular, interactive or real-time applications like e-commerce [33],
IoT applications [11], and audio/video streaming [17, 34, 72] continuously append data to the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

Di�Forward: On Balancing Forwarding Tra�ic for Modern Cloud Block Services via Di�erentiated Forwarding 15:3

underlying storage like �le systems (e.g., HDFS [56]) or KV stores (e.g., LevelDB [28] and Cassandra
[14]), so they induce large sequential writes to VDisks and thus make the tra�c stable in a relatively
long time interval (e.g., relative constant tra�c rate), which we call “stable tra�c”. On the other
hand, batch processing tasks (e.g., MapReduce [27] and Spark [73]) are simultaneously executed to
analyze collected data, and they consist of many parallel sub-tasks that persist intermediate results
into temporary �les at the end of each epoch, intermittently generating intensive random writes
and leading to heavy tra�c at a very short time period, which we call “burst tra�c”.

Great e�orts are also made to address the load balance problem in conventional storage systems,
and they can be classi�ed into three categories: (1) segmentation [7, 12, 23], which can be applied at
the forwarding layer by dividing each VDisk into multiple small-size segments and using a separate
proxy server to forward the tra�c from each segment; (2) migration [21, 30, 39], which can be used
to migrate the high-tra�c VDisk/segment from heavy-loaded proxy server to light-loaded proxy
server; (3) replication [5, 58, 61], which can also be applied by replicating each VDisk/segment
with multiple replicas and distribute them on multiple proxy servers. However, these approaches
are ine�cient to address the tra�c imbalance problem at the forwarding layer of cloud block
service. The main reason is that the tra�c at the forwarding layer can be decoupled as stable
and burst tra�c as they are induced by two di�erent VDisk access patterns, while the above
approaches are not aware of this tra�c feature, so they do not leverage it for tra�c balancing.
Also, they lack the ability to di�erentiate burst tra�c and stable tra�c, so they all uniformly treat
the aggregated tra�c for tra�c balancing. Experiments on our prototype also demonstrate the
ine�ciency of these approaches. For example, for the same workload mentioned above, at the
time scale of 100ms, the coe�cient of variation (CoV) of the tra�cs among proxy servers is 1.01,
while it only decreases to 0.67 and 0.71 when using segmentation and migration, respectively.
Despite replication balances tra�c well, it induces expensive replica synchronization overhead to
guarantee consistency, thus leading to a similar or even worse performance in latency compared
with segmentation and migration (see §5.2 for details). Worse yet, we �nd that these approaches are
also not suitable for balancing the burst tra�c at the forwarding layer. Speci�cally, segmentation
generates too many small segments and burdens the address map management at proxy servers,
migration moves large amount of data and usually works only for stable tra�c, and replication
requires expensive synchronization among replicas to guarantee strong consistency required at the
forwarding layer.

In this paper, we design a new tra�c forwarding schemeDi�Forward by leveraging di�erentiated
forwarding, and also implement a prototype. Di�Forward realizes e�cient tra�c balance at a �ne-
grained time granularity (e.g., at 100ms) at the forwarding layer of cloud block services. Speci�cally,
for each VDisk, Di�Forward �rst judiciously di�erentiates its burst tra�c from stable tra�c at the
client side. Then the burst tra�c is directed to decentralized distributed logs, which realize real-time
balance by writing to proxy servers in a round-robin manner. For the stable tra�c, it is balanced
by leveraging the segmentation scheme which divides each VDisk into smaller segments with
individual proxies. Meanwhile, Di�Forward continuously merges data in logs back to the storage
layer at background with a careful coordination with foreground writes to reduce the log size with
low overhead. In addition, we also design a lightweight index at each VDisk’s client for Di�Forward
to help retrieve data from logs, while preserving strong consistency under di�erentiated tra�c
forwarding. Our contributions are summarized as follows.

• We analyze the publicly available real-world workload traces and demonstrate the consistent
imbalance of tra�cs at the forwarding layer of cloud block services. We also investigate the
ine�ciency of three commonly used load balancing approaches in distributed storage systems,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

15:4 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

Distributed Storage Core

network Clusters

Fo
rw

ar
di

ng
St

or
ag

e FS 0

...

VDisk 0 VDisk 1 VDisk n...

Proxy 1Proxy 0 Proxy 2
Proxy 3 Proxy 4 Proxy 5

Cl
ie

nt

Diverse Applications on Cloud
VM VM VM

FS 1 FS 2

(a) Three-layer Architecture

offset positionlength
offset1 position14KB

4KiB

offset1

address space

4KiB

...

VM

VDisk1

proxy1

core storage space
position1

3.update

1.block-level
write

2.core-level write

(b) Write Path

NIC (N Gbps)

M
em

or
y

Traffic from Diverse Applications
heavy traffic (> N Gbps)

3.inform

4.fetch

light traffic

...FS1FS0 FSn

2.put

CPU

1.process packets
traffic blocking

(c) Blocking by Heavy Tra�c
Fig. 1. Illustration on the architecture of a cloud block service and the detailed write path.

and analyze the special access patterns of VDisks to reveal the reasoning of burst tra�c and
motivate our new tra�c forwarding design.

• We design Di�Forward, which realizes di�erentiated tra�c forwarding via several techniques: (i)
accurate burst tra�c detection at the client side of VDisks, (ii) a decentralized distributed log store
to achieve real-time balance of burst tra�c, (iii) asynchronous log merging that is well coordinated
with foreground tra�c, and (iv) a lightweight client-side index to help read data from logs and
preserve strong consistency.

• We implement a prototype of a cloud block service by following the three-layer architecture
and integrating the di�erentiated forwarding scheme. We implement both the client layer and
forwarding layer from scratch, and leverage Ceph Rados [70] as the underlying distributed
storage. Experiments show that Di�Forward outperforms all the three categories of existing
load balancing approaches. In particular, it decreases the CoV by up to 65%. It also reduces the
average write latency by up to 44% and improves the 99-percentile write latency by up to 78%
under various network con�gurations and workloads.
The source code of Di�Forward is at https://github.com/wzhzhu/Di�Forward.

2 BACKGROUND ANDMOTIVATION
In this section, we �rst introduce the three-layer architecture of modern cloud block services (§2.1),
and analyze the tra�c imbalance issue at the forwarding layer (§2.2). Then we introduce existing
load balancing approaches and analyze their limitations for balancing the forwarding tra�c (§2.4).
Finally, we motivate our design by analyzing the tra�c patterns at the forwarding layer (§2.3).

2.1 Cloud Block Service Architecture
Cloud block service provides computing instances (VMs rent by cloud users) with VDisks to ful�ll
the storage need of diverse applications on the cloud. Figure 1(a) depicts the general architecture
of a cloud block service, which is composed of three layers, i.e., client layer, forwarding layer, and
storage layer [75]. In the client layer, the VDisks’ clients simply take block requests from VMs and
deliver them to proxy servers. In the forwarding layer, as illustrated in Figure 1(b), each proxy
server maintains a local AddressMap, which records the mapping from the o�sets at a VDisk to
the data location in the storage layer. When a proxy server receives the block-level requests from
client, it �rst translates them into low-level reads/writes according to the local AddressMap, then
forwards them to the storage layer for data persistence. The storage layer consists of a distributed
storage core, which is commonly a distributed �le system or an object store, and it provides a
uni�ed storage space for storing the data from all VDisks.
Note that the bene�ts of integrating a forwarding layer are two fold. First, as the processing of

the block-level requests from VMs and the stateful metadata are pushed down to the forwarding

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

Di�Forward: On Balancing Forwarding Tra�ic for Modern Cloud Block Services via Di�erentiated Forwarding 15:5

100 10 1 0.1
TimeVcale(V)

0.0

0.5

1.0

Co
V

0

20

40

0
ax
/0
in

CoV
0ax/0in

(a) Imbalance Degree

0 1 2 3 4 5
Time (minute)

0

200

400

Tr
af
fic
(0
iB
/s
)

0ax
0ean
0in

(b) Tra�c Dynamics

<25<50<75<100
2veraOO 7raffic(%)

0

50

0
ax
/0
in

18.1

58.3 59 66.2

(c) CDF

10% 20% 30% 40%
Avg network utLl

0

20

40

Av
g
LA
T(
P
s)

0

250

500

39
9
LA
T(
P
s)Avg

399

(d) Latency
Fig. 2. Tra�ic imbalance among proxy servers and its impact on latency.

layer, the clients can be simpli�ed so VMs can quickly reconnect to VDisks after VM migration,
thus supporting seamless computing resource scaling on the cloud [32, 51, 55]. Second, since the
AddressMaps record the actual data positions in the storage layer, the data from VDisks can be
evenly spread across storage servers, thus the balance of I/O loads in the underlying storage can be
well realized [44, 71]. However, we point out that if the tra�c to a proxy server becomes too heavy,
then the tra�c may be blocked due to the limited network bandwidth and processing power of the
NIC at the proxy server. This is because the NIC at the proxy server has to process every request
by �rst writing data to memory and then informing the CPU to fetch data to �nish the following
steps of tra�c forwarding (see Figure 1(c)).

While substantially optimizing its architecture to o�er more great features, cloud block service
retains a block-level compatible interface and strong consistency as traditional physical block
devices, so as to allow server-based applications to seamlessly migrate to the cloud. Albeit some
research work has explored the possibility of improving performance by relaxing some of block
service’s semantic guarantee [47], in this paper we opt to preserve these requirements, such as
strong consistency, which are essential especially for large-scale public clouds.

2.2 Imbalance of Forwarding Tra�ic
The three-layer architecture brings a new tra�c imbalance issue in the critical forwarding layer.
Since proxies at the forwarding layer are stateful, requests of a VDisk must be delivered to the
�xed proxy that stores its AddressMap, instead of an arbitrary proxy as in conventional stateless
services like Nginx [59]. Considering that VDisks support diverse applications with very di�erent
tra�c intensities and patterns, tra�cs at di�erent proxy servers are usually unevenly distributed.
Besides, we note that the tra�c imbalance at the forwarding layer is mainly caused by small writes,
For example, write tra�c may take up 75% of the total tra�c, and 75% of writes are no larger than
16 KiB [40]. This is because reads are mostly absorbed by the widely-used cache at the VM side
[10, 26, 45, 52], and large I/Os are also split by BIO splitting in the block layer of VM kernels.
To further demonstrate the tra�c imbalance at the forwarding layer, we analyze large-scale

production trace (see §2.3 for details). Figure 2(a) �rst shows the coe�cient of variation (CoV) and
Max/Min of the tra�cs at di�erent proxy servers. We see that as the length of time interval changes
from 100s to 100ms, CoV increases from 0.38 to 1.01, implying very severe tra�c imbalance among
servers, while the Max/Min increases from 2.8 to 50.5, meaning that the most-loaded server has
over 50 times more tra�c than the least-loaded one. Figure 2(b) further shows the dynamics of
three tra�c patterns in 5 minutes, i.e., the tra�c of the most-loaded server (Max), the average tra�c
over all servers (Mean), and the tra�c of the least-loaded server (Min). We see that tra�c spikes
are very common if we observe at a small time granularity (e.g., 100 ms), especially for the tra�c
at the most-loaded proxy server. Besides, as the tra�c spikes from di�erent VDisks may appear
simultaneously, the imbalance is more serious in high-tra�c intervals than low-tra�c intervals, e.g.,
as shown in Figure 2(c), the tra�c in the case when the ratio between the maximum tra�c and the
minimum tra�c is larger than 58 accounts for more than 50%. Due to the tra�c imbalance, tra�c

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

15:6 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

0 30 60 90 120
Time(s)

0

20

Tr
af
fic
(0
iB
/s
)

(a) VDisk1 Tra�c

0 30 60 90 120
Time(s)

0

10

20

Tr
af
fic
(0
iB
/s
)

(b) VDisk2 Tra�c

0 30 60 90 120
Time(s)

0

1

2

Tr
af
fic
(0
iB
/s
)

(c) VDisk3 Tra�c
Fig. 3. Tra�ic pa�erns over a long time period: stable tra�ic and burst tra�ic coexist.

0 30 60 90 120
Time(s)

0

200

400

2
ffs
et
(G
iB
)

(a) Accessed Addresses on VDisk1

0 30 60 90 120
Time(s)

0

200

400

2
ffs
et
(G
iB
)

(b) Accessed Addresses on VDisk2

0 30 60 90 120
Time(s)

0

20

40

2
ffs
et
(G
iB
)

(c) Accessed Addresses on VDisk3
Fig. 4. The distribution of accessed addresses for three typical kinds of VDisks.

at heavy-loaded servers may be blocked at the network, thus increasing the latency. To show the
impact of tra�c imbalance on latency, we further investigate the average and P99 tail latency under
di�erent network utilizations. Figure 2(d) shows that both the average and P99 latency severely
increase when network utilization increases because of processing the heavier tra�c.

Since block service is widely adopted to support latency-critical applications, e.g., interactive web
applications, its prolonged latency directly impairs the �uidity and predictability of applications’
response time [58]. Moreover, as requests from these applications are often broken into sub-requests
whose responses are aggregated to produce the ultimate results, even temporary latency spikes
may signi�cantly degrade end-to-end latency [3]. All these necessitate e�ective tra�c balancing
for block service to improve its average and P99 tail latency.

2.3 Tra�ic Analysis and Key Findings
To explore the potentials of improving tra�c balance at the forwarding layer, we investigate a
real-world trace to reveal the key features of VDisk tra�c patterns, and then present our key
�ndings on the reasons resulting in the VDisk tra�c patterns.
Coexistence of stable tra�c and burst tra�c.We �nd that the tra�c of each VDisk over a long
time period can be decoupled as stable tra�c and burst tra�c. For example, Figure 3(a) - 3(c) show
the tra�c patterns in 2 minutes of three VDisks from a publicly available real-world trace (Alibaba
Block Trace [2]). Note that the tra�c is observed at a �ne time granularity, e.g., 100ms, that is, each
vertical line in the �gure represents the total tra�c in a 100ms interval. We can see that severe
tra�c spikes commonly exist, while the tra�cs can be classi�ed into two categories, one is the
stable tra�c which has a similar size in di�erent time intervals, and the other is the burst tra�c
which corresponds to the large spikes shown in the �gures.
Observation. The coexistence of stable and burst tra�c comes from the fact that applications
running on VDisks mainly exhibit two di�erent access patterns. On the one hand, interactive
or real-time applications like e-commerce [33], IoT applications [11], and audio/video streaming
[17, 34, 72] continuously append data to the underlying storage like �le systems (e.g., HDFS [56])
or KV stores (e.g., LevelDB [28], Cassandra [14]). On the other hand, batch processing tasks (e.g.,
MapReduce [27] and Spark [73]) are simultaneously executed to analyze collected data, which
consist of parallel sub-tasks that persist intermediate results into temporary �les at the end of each

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

Di�Forward: On Balancing Forwarding Tra�ic for Modern Cloud Block Services via Di�erentiated Forwarding 15:7

epoch, intermittently generating intensive random writes. The above two di�erent accesses lead to
two di�erent patterns of tra�c at each VDisk. In particular, if sequential writes are dominated in a
time interval, then the tra�c size is usually stable, and thus generating stable tra�c. In contrast, if
a large amount of random writes are issued in a time interval, then the tra�c in this interval may
become very heavy, thus generating burst tra�c.
Our investigation on the publicly available real-world trace (Alibaba Block Trace [2]) also

validates the above understanding. For example, Figure 4(a) shows the visited o�sets of a particular
VDisk (denoted as +⇡8B:1) at 100ms time scale during a 2-minute period. We see that sequential
writes continuously visit small address ranges (represented by the horizontal lines in the �gure),
random writes also occasionally appear, and they visit across a large address range (represented
by the vertical lines). As a result, these two access patterns generate the stable and burst tra�c,
respectively, as shown in Figure 3(a). We also study the access patterns of other VDisks, and observe
a similar conclusion. In the interest of space, we show only two typical VDisks in Figure 4(b)
and Figure 4(c), and their corresponding tra�c patterns are shown in Figure 3(b) and Figure 3(c),
respectively. Furthermore, for all VDisks, if we use (and % to represent the tra�c size and the
proportion of random writes during each time interval, then we �nd that the average Spearman
Coe�cient of (and % lies at ~0.61, indicating strong correlation between burst tra�c and intensive
random writes, which further validates our �nding.

2.4 Existing Balancing Approaches and Their Limitations
Existing load balancing approaches can be classi�ed into three classes [7, 12, 21, 23, 30, 39, 47, 58].
In the following, we �rst summarize their key ideas, then study their e�ect on balancing the tra�c
at the forwarding layer, and �nally analyze the key reasons of their ine�ciency.
Segmentation. The approach of segmentation divides each VDisk’s address space into = smaller
segments, then uses = proxies, which are randomly placed at di�erent proxy servers, by assigning
each segment with a separate proxy. By doing this, the heavy tra�c of a VDisk is distributed to
multiple proxies at di�erent servers, thus bene�ting the load balance. In practical implementation,
striping is widely used in splitting the address space, thus each segment may consist of multiple
small address spaces uniformly scattered in the whole address space. Speci�cally, each VDisk’s
address space is �rst logically divided into very small strips, e.g., 64KiB, then all strips are assigned
to segments in a round-robin manner [47]. For example, suppose that a 1TiB VDisk is split into
four 256GiB segments, say B46<4=C0 ~ B46<4=C3, then the four small address ranges 0 ~ 64KiB, 64 ~
128KiB, 128 ~ 192KiB, and 192KiB ~ 256KiB are assigned to B46<4=C0 ~ B46<4=C3, respectively. Thus,
sequential access (e.g., 0 ~ 256KiB) will be balanced across segments placed at di�erent servers.
Migration. The key idea of migration is to predict the tra�c of VDisks/segments and then move
high-tra�c VDisks/segments from heavy-loaded servers to light-loaded servers, so as to balance
the tra�c. The performance of migration strongly depends on the prediction accuracy. Usually,
two prediction strategies are widely adopted. The �rst strategy is to simply use the average tra�c
during the last time interval as a prediction in the next interval. The second strategy uses the
method of Exponentially Weighted Moving Average (EWMA) by considering multiple historical
intervals [20], and it can be formulated as %C+1 = ⇢,"�C = U · AC + (1� U) · ⇢,"�C�1, where %C+1
is the predicted value for interval C + 1, U is a weight factor and AC is the real value at interval C .
Replication. Replication leverages the bene�t of “power of 3 choices” to balance load. It �rst
replicates the proxy of a VDisk/segment into 3 replicas with exactly the same AddressMap, and
locates them at di�erent servers. Then each VDisk/segment records the position of its 3 replicas at
the client. Upon receiving a request from VMs, the client selects the “least-loaded” one out of the
3 proxy replicas to forward the request. In terms of selecting the proxy replica, we focus on the
state-of-the-art policy developed in C3 [58], which can be described as follows. For each server

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

15:8 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

0.0

0.5

CR
V

(a) Co9

Seg 0Lg-avg 0Lg-ewma 5eS-aVync 5eS-Vync

0

10

0
ax
/0
Ln

(b) Max/MLn
0

10

20

/a
te
nc
y(
m
V)

(c) Avg /AT
0

200

/a
te
nc
y(
m
V)

(d) P99 /AT
Fig. 5. Ine�iciency of existing approaches.

B , a client maintains a counter @B that represents the number of all requests waiting at B , and an
instantaneous count of its own outstanding requests >B (the requests without receiving responses
yet). Then the client estimates the queue size (@̂B) of each server as @̂B = 1 + >BB ·F + @B , whereF
is a weight factor which is usually set as the number of concurrent clients. Finally, the client will
select the replica that has the minimum queue size @̂B .
E�ect on tra�c balance. To investigate the e�ect of existing approaches on balancing the tra�c
at forwarding layer, we implement them in our prototype of a cloud block service and evaluate their
performance. We set the segment size as 64GiB to limit the overhead at the client side, and set the
time scale as 100ms as the tra�c spikes becomes severe at this time scale without load balancing.
For replication, we adopt chain replication [65], which updates the AddressMap from the replica
at head to tail before acknowledging a write request (see §5.4 for details of other settings). Figure
5(a) and 5(b) show the imbalance metrics of CoV and Max/Min, and Figure 5(c) and 5(d) show the
average and P99 latency. We see that the tra�c is still very unbalanced for both segmentation and
migration, e.g., the CoV is still up to 0.67 and 0.71, and the maximum tra�c is still more than 10⇥ of
the minimum tra�c. Replication performs much better in terms of tra�c balance, but it only has a
similar P99 latency and even worse average latency, because of the large overhead of synchronizing
the AddressMap required by strong consistency at the forwarding layer.
Ine�ciency analysis. Note that existing approaches are ine�cient to address the tra�c imbalance
problem at the forwarding layer, because they are unaware of the decomposable stable and burst
tra�c, but simply treat all the accumulated tra�c in the same way. Furthermore, as these approaches
also lack the ability to accurately di�erentiate the burst tra�c from stable tra�c, it is also not a
good choice to directly apply them to address the tra�c imbalance problem at the forwarding layer.
Speci�cally, for segmentation, balancing the burst tra�c needs to divide the VDisk into very small
segments, as the capacity of each VDisk can be hundreds of gigabytes, using too small segment size
inevitably generates lots of segments and introduces high overhead of metadata management at the
client side. However, complicated design at clients should be avoided as it prohibits scalability and
also eliminates the bene�ts of the three-layer architecture of cloud block services. On the other hand,
using large segment size can reduce the metadata management overhead, but it limits the bene�t of
balancing burst tra�c. For migration, it is usually used by assuming to have a stable tra�c, while
facing challenges to deal with instantaneous tra�c spikes. One reason is that it is hard to accurately
predict highly changing tra�c, especially at a small time granularity. For example, for the workload
we studied in §2.3, even if we set the time interval of tra�c prediction as 5s, the relative error
between the estimated tra�c and the real value is still larger than 100% even using the sophisticated
method EWMA. This implies that the prediction is even not better than a random guess. If we
reduce the length of prediction interval to 100ms, which is comparable to the time granularity of
observing tra�c spikes at the forwarding layer, then the relative error increases to 200%, making
it impractical to perform migration even the migration overhead could be completely ignored.
Finally, for replication, it must introduce a large synchronization overhead, as the forwarding layer
manages the metadata, e.g., the AddressMap, thus requiring strong consistency.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

Di�Forward: On Balancing Forwarding Tra�ic for Modern Cloud Block Services via Di�erentiated Forwarding 15:9

2.5 Main Idea and Key Challenges
Main idea. As stable and burst tra�c patterns coexist and induce the tra�c dynamics, uniformly
processing the coexisted tra�c is challenging to realize a good balance. Our main idea is to decouple
these two kinds of tra�cs at a small time granularity, e.g., 100ms time scale, then we can leverage
di�erent designs to balance the stable and burst tra�cs more e�ciently. For example, stable tra�c
can be well balanced with segmentation, while still limiting the overhead at the client side. As for
the burst tra�c, as long as its total size is not large, it is also much easier to develop a specialized
new forwarding design to realize good balance with low overhead, and we leverage distributed
logs to evenly distribute the burst tra�c across proxy servers.
Challenges. However, to realize the idea of di�erentiated forwarding, we face multiple key design
challenges, which are summarized as follows.

• Di�erentiating burst tra�c with high accuracy and low overhead. To leverage di�erenti-
ated forwarding to balance burst tra�c and stable tra�c separately, the �rst key challenge is to
accurately identify the burst tra�c in a timely manner. Furthermore, as the tra�c must be di�er-
entiated before sending to proxy servers, the identi�cation can only be executed at clients, thus
requiring a very lightweight design, so as to keep the clients of VDisks being agile and �exible.
Therefore, we must fully exploit the access patterns of VDisks to design a simple yet e�ective
tra�c di�erentiation algorithm to achieve high accuracy and low overhead simultaneously.

• E�cient design of distributed logs. Burst tra�c can be well balanced by leveraging distributed
logs. But it not only needs to achieve tra�c balance at subsecond time scale under highly
concurrent burst tra�c from numerous VDisks, but also should avoid potential write con�icts to
ensure high performance of concurrent writes from di�erent VDisks. Besides, it is also required
to provide a clean and compact data layout in the log so as to e�ciently serve subsequent read
operations. Naively distributing the burst tra�c among proxy servers (e.g., random) is hard
to satisfy these requirements simultaneously. Thus, both the placement of log entries and the
log structure need to be carefully designed to ful�ll the above goals of burst tra�c balancing,
concurrent writes and e�cient reads.

• Fast log merging while minimizing network contention. The distributed logs introduce
extra overhead, including the storage consumption and extra indexing overhead to retrieve data
from logs. So the logs can only be used as a temporary store to process the burst tra�c, and
need to be �nally merged into the underlying storage layer so as to reduce the log size. However,
log merging consumes extra network bandwidth, naively merging the logs could incur severe
contention with foreground requests, prolonging VDisks’ latency. While limiting the merging
speed at a low rate could mitigate the contention, it easily leads to extremely large logs. To
address this issue, we must carefully coordinate the log merging procedure with foreground
requests, so as to timely merge logs and minimize the network contention.

• Rapidly retrieving fresh data from distributed logs. Despite logs are write-friendly for
their append-only feature, searching data from them is fairly time consuming. Therefore, we
must maintain an e�cient index at the clients to help rapidly retrieve data from distributed logs.
However, one subtle thing is that with logs being continuously merged to the underlying storage
layer, the locations of some data might be altered without being perceived by the index, leading
to accumulation of outdated records, which not only face the risk of returning expired data but
also multiply the index’s size. To solve this problem, an e�cient index at the clients must be
developed, and it must timely remove outdated records as distributed logs are merged, so as to
keep the index being lightweight and ensure consistency.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

15:10 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

Lightweight Index
Stable Traffic Burst Traffic

Distributed Storage Core

VDisks
Burst Traffic Detection1

4

Distributed Log Store
Asynchronous Log Merging3

1

Cl
ie

nt
Fo

rw
ar

di
ng

St
or

ag
e

2

FS0 FS1 FS2
proxy

Fig. 6. Di�Forward overview

3 DESIGN OF DIFFFORWARD
We present Di�Forward, a novel forwarding scheme for cloud block service, which di�erentiates
stable tra�c and burst tra�c to balance the workloads in forwarding layer. We �rst introduce its
overall architecture (§3.1) and then elaborate the speci�c techniques (§3.2-§3.5).

3.1 Overview
As shown in Figure 6, Di�Forward mainly consists of four components, burst tra�c detection,
distributed log store, asynchronous log merging and lightweight client-side index.
• Burst tra�c detection. Di�Forward judiciously di�erentiates burst tra�c from stable tra�c
at each VDisk client by identifying the tra�c intensity and randomness of accessing VDisk
address. With a carefully designed algorithm, it could detect burst tra�c with high accuracy
while incurring small CPU and memory consumption.

• Distributed log store. Di�Forward migrates burst tra�c to a distributed log store residing in all
forwarding servers to balance workload in real time. Its log structure is judiciously designed to
ensure writing e�ciency under highly concurrent VDisks, so as to support e�cient point query
(fetching target data from the log) and range query (traversing the log).

• Asynchronous log merging. Di�Forward asynchronously gathers logs from distributed log
store via range query, and merges them to the underlying storage layer. During this, Di�Forward
�nely coordinates background and foreground tra�c to avoid network contention and to fully
utilize idle network bandwidth to minimize the log size and management overhead.

• Lightweight client-side index. Di�Forward maintains an index at each VDisk’s client to
promptly retrieve data from logs via point query. The index also acts as a guide to reschedule VDisk
writes to preserve strong consistency under Di�Forward’s di�erentiated forwarding. Besides, the
index automatically trims outdated nodes to keep it lightweight.

3.2 Burst Tra�ic Detection.
There are two reasons to realize the burst tra�c detection. One is to promptly discover the arrival
of overloaded tra�c on forwarding servers so as to trigger the tra�c migration at the client side of
each VDisk/segment; The other is to di�erentiate the tra�c into stable tra�c and burst tra�c, and
then only migrate the challenging burst tra�c. Moreover, the algorithm should be accurate at small
time granularity (e.g., at 100 milliseconds), and induce small CPU and memory overheads as well.

Recall that burst tra�c and stable tra�c respectively correlate with the two representative access
patterns we introduced in §2.3, which exhibits di�erent spatial and temporal characteristics, i.e.
distinct tra�c load and randomness. Di�Forward exploits this to detect the burst tra�c out of each
VDisk’s tra�c. Speci�cally, for each VDisk, we maintain a Virtual Request Queue (VRQ), and use its
length, &!⇢# , to estimate the incoming write tra�c intensity in real time. Suppose that the write
request sequence of a +⇡8B: 9 is A0, A1, A2,..., where A8 arrives at +⇡8B: 9 at time C8 and is to write

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

Di�Forward: On Balancing Forwarding Tra�ic for Modern Cloud Block Services via Di�erentiated Forwarding 15:11

Algorithm 1: Burst Tra�c Detection
Input :Current write request A8 ; Current time: C8 ;
Output :Whether write request A8 induces stable tra�c or burst tra�c

1 &!⇢# &!⇢# � ' · (C8 � C8�1) ; // shorten VRQ

2 &!⇢# min(&!⇢# , 0); // Limit QLEN � 0

3 C8�1 C8 ; // update time

4 if A8 is a A0=3>< request then,8 ,A0=3 else,8 ,B4@ ; // assign weight to A8
5 &!⇢# &!⇢# +,8 · ;8 ; // lengthen VRQ

6 if &!⇢# >)� then
7 &!⇢#)� ; // cap QLEN to TH

8 return 1DABC ; // A8 is identified as burst

9 else
10 return BC01;4 ; // A8 is identified as stable

data of length ;8 to o�set > 5 58 . When A8 arrives at a +⇡8B: , we insert it to VRQ by updating &!⇢#
in three steps. (1) Shorten the queue according to the VDisk’s average tra�c rate (Algorithm 1 line
1), formulated as

&!⇢# = &!⇢# � ' · (C8 � C8�1), (1)

where ' is the average tra�c rate, thus ' · (C8 � C8�1) is the expected length of the tra�c processed
within time interval [C8�1, C8]. (2) Weighing requests according to their spatial pattern (line 4). We
compare A8 ’s o�set with previous = requests, and de�ne its randomness A0=8 as

A0=8 =<8==�19=0 |> 5 58 � > 5 58� 9 |. (2)
If A0=8 is greater than a pre-de�ned threshold)A0= , we consider it as a random write, which is the
main source of burst tra�c according to our observation, and then assign a higher weight,A0=3 to
A8 ; Otherwise, we assign a lower weight,B4@ to A8 (Algorithm 1 line 4). In our experiments, = and
)A0= are set to 32 and 128KiB respectively, similar to previous works [40, 60], and,A0=3 = 2 ·,B4@ .
(3) Lengthen the queue due to A8 ’s arrival (line 5), formulated as

&!⇢# &!⇢# +,8 · ;8 . (3)
As a result, when burst tra�c starts to arrive at a VDisk, due to its high randomness and tra�c
load, &!⇢# of the VRQ will be quickly accumulated up for requests’ higher weights (step 2) and
more intense queue lengthening (step 3). Once the &!⇢# is greater than a prede�ned threshold
)� , the detection algorithm would con�rm the arrival of burst tra�c (line 6-8), and inform to
launch the burst tra�c balancing procedure (§3.3). Note that &!⇢# is reset to)� each time when
a burst tra�c is detected (line 7), so as to switch its output back to stable once the current tra�c
spike has ended. By contrast, stable tra�c could pass through the VRQ without being detected (line
10). According to our experiments (see §5.5), the average recall and precision of the burst tra�c
detection algorithm are about 80% and 90%, respectively.

3.3 Distributed Log Store
Di�Forward adopts a distributed log store deployed atop forwarding servers to balance burst tra�c
at sub-second timescales. Suppose that there are = forwarding servers, denoted as �(0, �(1, ..., �(=�1.
For each +⇡8B:8 , we allocate a log ;>68 which is distributed among all forwarding servers, where
;>68, 9 is the sub-log of ;>68 on �(9 . When a burst tra�c is detected, consisting of< write requests
A0, A1, ..., A<�1, each of the requests will be assigned an incremental serial number, then directed
to forwarding servers in a round-robin manner. Consequently, �(9 receives A 9 , A 9+= , A 9+2= , ..., then
appends them to local ;>68, 9 as log entries 4=CA~ 9 , 4=CA~ 9+= , 4=CA~ 9+2= , ..., and �nally acknowledges
the writes. For example, Figure 7 shows how the log entries of +⇡8B:0 (appended to ;>60) and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

15:12 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

...

log 0

log 1

FS 2

2 5
log0,2

2 5
log1,2

1498...

FS 1

1 4
log0,1

1 4
log1,1

1497...

FS 0

0 3 6
log0,0

0 3
log1,0

1496...

Fig. 7. Distributed placement of log entries.

offset lengthserial number file name validityfile offset

0 3 ... 600 603

4KB 8KB ... 8KB 16KB 4KB 8KB8KB ... 4KB

... 1490 1493 1496 1499

request 14994KB
data

metadata log ML1,0

log 1,0

off1 8KB606 file1 16KB valid

606

36 byte

data log DL1,0
file1

VDisk1

request 1502

request 1505

...

to log 1,0
at server 0

file0 file2

Fig. 8. Distributed log structure. This figure shows how ;>61,0 (sub-log of ;>61 at server �(0) is organized.

+⇡8B:1 (appended to ;>61) are assigned when the forwarding server number = is set to 3, where
yellow rectangles represent valid entries and grey rectangles represent outdated entries caused
by asynchronous log merging (§3.4). The numbers on each log entry mark their assigned serial
numbers. By doing this, each VDisk’s burst tra�c can be �nely balanced across forwarding servers,
so as the overall burst tra�c. In our experiments, the CoV and Max/Min of the overall burst tra�c
can be as low as 0.13 and 1.63, respectively.
Distributed log structure. distributed log store manages data and metadata of received write
requests, where data is the user-written raw data, while metadata is the attached descriptive
information. As Figure 8 shows, for each forwarding server, say �(9 , upon receiving a write request
from +⇡8B:8 , �(9 �rst appends the data into a data log ⇡!8, 9 , then packs the metadata into a
�xed-sized byte string and appends the string to metadata log "!8, 9 (e.g., the metadata �elds in
Figure 8). ⇡!8, 9 is composed of multiple local �les with a maximum capacity (1MiB), where data
are continuously being appended. Once a �le in ⇡!8, 9 is full, it will be sealed and replaced by a
new empty data log �le for appending the coming data. The sealed data log �les will be timely
removed once the logged entries in it have been merged into storage layer, and their storage spaces
are reclaimed (see details in §3.4).
Consequently, for +⇡8B:8 , its ⇡!8, 9 and"!8, 9 at server �(9 together form its sub-log ;>68, 9 , and

sub-logs at all servers constitute the entire ;>68 . Since metadata logs and data logs of di�erent
VDisk are disjoint (e.g., ;>60 and ;>61 in Figure 7), intensive burst tra�c from multiple VDisks can
independently and concurrently written to distributed log store without location con�icts [8, 9, 69],
so as to enhance its writing e�ciency.
Distributed log write & read. The distributed log store provides the following APIs.
• AppendLog(write request A , log-id 8 , server-id 9) appends A to ;>68 ’s sub-log ;>68, 9 on server B 9 .
• ReadLog(log-id 8 , server-id 9 , range ') reads log data of +⇡8B:8 from range ' in data log ⇡!8, 9 .
• TraverseMeta(log-id 8 , serial-number =) gathers themetadata of log entries whose serial number
� = from ;>68 . It �rst noti�es all servers to scan their local metadata log "!8, 9 (0 9 = � 1)
and return the target metadata, then sorts the gathered metadata locally by their serial numbers
and completes the operation.

This group of APIs work as the building blocks for more complex operations as follows. First,
based on AppendLog, Di�Forward could easily realize the round-robin tra�c balancing strategy.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

Di�Forward: On Balancing Forwarding Tra�ic for Modern Cloud Block Services via Di�erentiated Forwarding 15:13

Client
Lo

g
St

or
e

Requests
 r0, r1, ...

AppendLog(rl, 0, l mod 3)

FS0 FS1 FS2

(a) Tra�c balancing

Client

TraverseMeta ReadLog

1.traverse
0 1 2 3 ...

2.read
metadata

Lo
g

St
or

e

FS0 FS1 FS2

(b) Range query

Client

TraverseMeta ReadLog

2.read
1.search

Lo
g

St
or

e

FS0 FS1 FS2

Index

(c) Point query

Fig. 9. Distributed log write & read.

Suppose there are = servers and< write requests A0, A1, ..., A<�1 of +⇡8B:8 , Di�Forward invokes
AppendLog(A; , 8 , ; mod =) for each A; (0 ; < � 1) to balance the tra�c (Figure 9(a)). Second,
by combining ReadLog and TraverseMeta, Di�Forward could simultaneously realize range query
(traverse log entries by order) to facilitate Distributed Log merging (§3.4), and prompt point query
for VDisk clients (retrieve data by VDisk o�set) with the help of lightweight client-side index (§3.5).
Speci�cally, to traverse log from a speci�c position, suppose ;>68 from serial number # ,Di�Forward
�rst collects sorted metadata by TraverseMeta(8 , #), and then traverse the ;>68 accordingly by
invoking ReadLog (Figure 9(b)). Meanwhile, to retrieve data by given VDisk o�set from the log, each
VDisk client �rstly gathers metadata via TraverseMeta, then caches and organizes the metadata
into an tree-structured index (§3.5), so as to search target data from logs promptly (Figure 9(c)). We
like to note that during the above reading processes, bene�ting from the separate management of
data and metadata, the critical TraverseMeta operation can be quickly done without prohibitively
expensive log data scanning.

3.4 Asynchronous Log Merging
Large-scale logs induce high storage overhead, and also complicate the indexes at VDisk clients.
Therefore, Di�Forward regularly merges distributed logs into storage layer in the background.
Log merging procedure. Each forwarding server, say �(9 , continuously merges logs of VDisks,
say +⇡8B:1, +⇡8B:2,..., whose forwarding proxy is located at �(9 , with the following four steps.
(1) �(9 collects and caches the newest logmetadata of+⇡8B:1,+⇡8B:2,..., by invoking TraverseMeta.
(2) According to localmetadata, �(9 selects current longest log, say ;>68 , then pulls log entries from

its head, i.e., which with the smallest serial number of all valid log entries.
(3) �(9 transforms log entries in ;>68 back to write requests, and submits them to ?A>G~8 in their

original written order.
(4) �(9 invalidates merged log entries in distributed log store, and returns to step 2.
For those log entries invalidated during the process, its state �eld in corresponding metadata

log is changed to outdated, and waits to be removed from distributed log store (e.g., in Figure 7,
+⇡8B:0’s has appended 11 entries to ;>60, among them, 4=CA~0 to 4=CA~3 have been invalidated). To
reclaim storage space from those invalidated log entries, �(9 launches a garbage collection (GC)
thread to periodically scan local metadata logs. If the state �elds of all log entries in a sealed data
log �le are outdated, the GC thread will remove it.
Prioritized tra�c coordination. When �(9 merges logs, pulling log entries from distributed log
store (step 2) and merging log entries to storage layer (step 3) will interfere the foreground requests
in a VDisk, leading to longer latency to VDisks. To guarantee low latency of the foreground requests,
Di�Forward assigns a higher priority to the foreground requests than the merging operations.

As Figure 10 shows, to enable �(9 to perceive foreground tra�c timely, before sending a request,
each VDisk client will attach its local queue-depth !&⇡ to the message head. Then, by summing up
all received !&⇡s, �(9 could maintain a global queue-depth⌧&⇡ , which represents the number of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

15:14 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

Distributed Log Store

Distributed Storage Core

0 1 2 3 4 5 6

merge log by order

proxy i

7
pull log

FS j
log i

VDisk

VDisk

VDisk

VDisk

+
...

LDQs

VDisks forwarded by FSj

GDQ
if GDQ > 0

yes

no

pause merging

continue merging

Fig. 10. Asynchronous log merging. �(9 is merging ;>68 , and it is now processing entry 4.

requests being forwarded or waiting to be forwarded by �(9 . Upon receiving a foreground request,
�(9 uses the attached !&⇡ to update⌧&⇡ , to keep pace with the real-time foreground tra�c status.
�(9 in turn controls the log merging procedure based on its ⌧&⇡ :
• Case 1: ⌧&⇡ > 0. �(9 suspends log merging and yields network bandwidth to foreground tra�c,
so as to ensure the SLA of latency-critical VDisks.

• Case 2: ⌧&⇡ = 0. �(9 continues log merging, so as to fully utilize the idle network bandwidth to
reduce log size.
Owing to the timely log merging, Di�Forward allows cloud block service to enjoy the bene�ts

of distributed log store on balancing tra�c, while minimizing its overhead. In our experiment, the
average log size can be kept at ~3 MiB per log in average even under heavy foreground tra�c. And
the latency degradation to VDisks caused by log merging is fairly small (13% and 47% increase in
average and P99 latency, respectively).

3.5 Lightweight Client-side Index
Since part of VDisk’s data is appended to ;>68 , Di�Forward keeps a red-black tree '⌫)8 at each
VDisk’s client to retrieve data from ;>68 based on given VDisk o�sets. In '⌫)8 , each node corresponds
to an entry in ;>68 by recording its metadata, and all nodes are sorted by the their address range.
Before sending a write to distributed log store, VDisk’s client will insert a node into '⌫)8 to record
the write, and disables overlapping address range in '⌫)8 to keep all nodes’ total order. To serve
reads to VDisk8 , suppose to read address range ' = [o�, o� + len), the client �rst searches '⌫)8
to check if there is overlapping node with range '. If there is, the client gets the target data from
distributed log store according to the log position recorded by these nodes (data log name and o�set);
Otherwise, the client submits the read to its proxy to get data from storage layer directly.
Index trimming to keep index lightweight. To trim outdated nodes timely, we add a pointer
next to each node in '⌫)8 , which points to the node with the next serial number. Then all nodes
in '⌫)8 can be orderly linked as a chain. We also maintain a pointer index_head to point to the
node with the smallest serial number. When performing index trimming, we monitor the current
log head of ;>68 , i.e., the smallest serial number of all valid entries in ;>68 . Suppose it’s log_head,
then we repeatedly compare index_head’s serial number with log_head, as long as it’s less than
log_head, we delete the node pointed by index_head and move index_head one step forward
along next. For example, in Figure 11(a), index_head initially points to =>340 and log_head is 0.
Assume 4=CA~0 to 4=CA~3 are merged and invalidated, changing log_head to 4, then the index will
trim =>340 to =>343 in turn, making index_head equal to log_head (Figure 11(b)).
Writes rescheduling to preserve consistency. With Di�Forward’s di�erentiated forwarding,
naively direct stable writes to their proxies may cause a consistency issue. Suppose from VDisk8 ,
a burst write A1 updating address range ' = [o� 1, o� 1+len1] has been appended to ;>68 as 4=CA~1,
but not merged into storage layer yet, and meanwhile a stable write A2 also visits adress range '.
At this time, if A2 is naively directed to the ?A>G~1 which persists it into storage layer, there will

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

Di�Forward: On Balancing Forwarding Tra�ic for Modern Cloud Block Services via Di�erentiated Forwarding 15:15

1
5

4
6 2 30

4 5 61 2 30

Cl
ie

nt
-s

id
e

Lo
g

RB-Tree

VDisk address space
addr range

(a) Index before trimming

5
4

6

4 5 61 2 30
Cl

ie
nt

-s
id

e
Lo

g

RB-Tree

VDisk address space
addr range

(b) Index after trimming

RB-Tree
Counting bloom

filter (CBF)

InsertIndex

0

write range...

2 0 1 3 ... 1

Hash functions

1. append queue

insert when idle

2. update CBF

(c) Insert index

RB-Tree

SearchIndex

...

1. flush nodes

flush instantly

search range
2. search

search in Tree

(d) Search index

Fig. 11. Index structure and key operations.

be two versions of data in ', including an older version 4=CA~1 and the fresh version in storage
layer. Since '⌫)8 maps ' to 4=CA~1, subsequent reads visiting ' will get the older version, violating
consistency. Di�Forward reschedules write in advance to prevent such inconsistency, i.e., before
sending a stable write updating address range ', VDisk8 ’s client will �rstly search '⌫)8 to check
whether there are overlapping ranges with ' in ;>68 . If there are, the client would reschedule the
write to distributed log store, i.e., to append the write into ;>68 to make it the newest version. By
doing this, subsequent reads are guaranteed to get fresh data.
Accelerating index with counting bloom �lter.Maintaining the index requires the client to
insert nodes before writing to distributed log store, so as to use it for: i) searching for data positions in
distributed log store for subsequent reads based on their address ranges, and ii) detecting overlapping
address ranges for rescheduling subsequent stable writes. Due to the dominance of writes, at most
time, the client doesn’t need the concrete data position of searching range for operation i, but only
whether overlapping ranges exist for operation ii. So we can further accelerate the index searching
with a counting bloom �lter (CBF). As Figure 11(c) shows, when inserting nodes into an index, the
client just appends the nodes in a local queue and updates the CBF to record the write range with
only O(1) time complexity. The nodes in the queue are then inserted into RB-Tree asynchronously,
when the client has no tra�c to send or receive. Then the client could just look up in the CBF to
tell whether overlapping ranges exist. Once the client needs the concrete data positions to serve
reads, it instantly �ushes all waiting nodes at the queue, then search the up-to-date RB-Tree (Figure
11(d)). The accelerated index could prevent intensive inserts from delaying tra�c from clients in
case of burst tra�c. Due to its lightweight and combining CBF, accessing the index only increases
VDisk average write latency less than 10%, and increases average read latency about 1%.
Corner case handling. Index trimming may slightly lag behind log merging. As a result, a very
small number of outdated nodes may exist in '⌫)8 . To avoid getting outdated data, when reading
from logs, distributed log store �rst checks if the validity �eld in the target entry’s metadata has
been set to outdated. If it has, an outdated exception is returned to the client, forcing it to trim the
outdated node from '⌫)8 and retry the read. Similarly, if the client intends to read an uncompleted
entry, an uncompleted exception forces it to await and resubmit the request.

4 DISCUSSION
Finally, we discuss limitations in Di�Forward design, and present possible optimizations and key
challenges, while their implementation and evaluation are left to our future work.
Detection sensitivity adjustment. Di�Forward leverages a queue (VRQ) to detect burst tra�c
of each VDisk, during which the threshold of queue length (TH) is kept as a static value in our
current design. Though TH could be manually altered to make a trade-o� between tra�c balance
and induced overhead (e.g., lower TH indicates higher sensitivity to burst tra�c, therefore better
tra�c balance but more system overhead, and vice versa), sub-optimal con�gurations may impede
Di�Forward’s performance, especially considering the variance and dynamics of real-world work-
loads. A straightforward solution is to allow Di�Forward to autonomously and dynamically tune its

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

15:16 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

detection sensitivity according to administrator-de�ned requirements, e.g., minimizing end-to-end
latency or bounding system overhead; The main challenge lies in the precise prediction of system
behavior after adjustment, similar to automatically tuning parameters for databases. Therefore,
auto-tuning techniques, e.g, learning-based methods [42, 64, 74], could be employed to tackle it.
Fine-grained tra�c categorization.Di�Forward now categorizes overall tra�c from applications
into stable tra�c and burst tra�c, which dominate our production workloads. While we believe such
classi�cation is, for the most part, su�cient to achieve satisfactory tra�c balance, �ner-grained
categorization may help further enhance Di�Forward ’s adaptability. For example, rather than
the bimodal classi�cation, an optimized design would project the overall tra�c into a continuous
spectrum, then dispatch tra�c categories to their selected forwarding paths. Yet more complex
categorization and forwarding rules entail greater system complexity and even rigidity. To tackle
this, we could borrow ideas from software-de�ned storage (SDS) [29, 57, 62] to decouple speci�c
policies from the data plane. In that way, not only customized tra�c categorization and forwarding
rules are allowed to meet the diverse needs of clusters caused by variance in workload, hardware,
SLA/cost constraints, etc., but also dynamic rule addition to accommodate new tra�c patterns.
Opportunities to optimize tra�c management. Di�Forward focuses on balancing tra�c,
especially the trickier burst tra�c. However, the idea of separating tra�c by patterns also opens up
new opportunities for improving tra�c management in other aspects. For example, since categories
of tra�c may imply their respective cache requirements or SLA needs, they ought to be provided
with customized pre-fetching/caching policies and di�erent priorities similar to co-deployed best-
e�ort (BE) and latency-critical (LC) applications [16, 43]. To this end, relevant block traces should be
further explored, along with application-level information when necessary, to reveal the correlation
between tra�c categories and upper-level semantics.

5 EVALUATION
5.1 Setup
Testbed. Our experiments run on a cluster consisting of 6 bare-metal servers, connected via a
56Gb/s network. Each server has 2 Intel(R) Xeon(R) E5-2650 V4 CPUs, 64 GB memory and 1.6TB
NVMe SSD (Intel P4610), and runs Ubuntu 16.04 LTS. We use one machine to deploy VDisk clients
which replay workload traces and record latency. Meanwhile, we use the remaining machines as
proxy servers to forward tra�c from VDisk clients, and also use them as the storage servers as well.
We adopt Ceph Rados, a widely used distributed object store, as the Distributed Storage Core.
Workloads.We mainly focus on the publicly available could block trace [2], which is the largest
trace being public. It is collected from a production cluster and records requests of 1000 VDisks
running mainstream applications including operating systems, big data processing software, web
servers, etc. According to our observation on the trace, the workload exhibits obvious diurnal
pattern, i.e., the overall tra�c �rst stays rather low during 0:00 am - 8:00 am, then starts to increase
slowly from 8:00 am to around 11:00 am and keeps high tra�c until around 8:00 pm, after that it
falls back to a low tra�c rate. Therefore, we intercept two representative periods, and denote the
workloads asW1 andW2, respectively (see Table 1 for details).

Workload Name Period Tra�c Pattern Read/Write Tra�c (GiB)

W1 9am - 11am Rising 189/1617
W2 3pm - 5pm Steady 275/1767

Table 1. Workload description.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

Di�Forward: On Balancing Forwarding Tra�ic for Modern Cloud Block Services via Di�erentiated Forwarding 15:17

0 30 60 90
Time (0inute)

100
200
300

Tr
af
fic
(0
iB
/s
)

0ax
0ean
0in

(a) Seg

0 30 60 90
Time (0inute)

100
200
300

Tr
af
fic
(0
iB
/s
)

0ax
0ean
0in

(b) Mig-avg

0 30 60 90
Time (0inute)

100
200
300

Tr
af
fic
(0
iB
/s
)

0ax
0ean
0in

(c) Mig-ewma

0 30 60 90
Time (0inute)

100
200
300

Tr
af
fic
(0
iB
/s
)

0ax
0ean
0in

(d) Rep

0 30 60 90
Time (0inute)

100
200
300

Tr
af
fic
(0
iB
/s
)

0ax
0ean
0in

(e) Di�Forward

0 30 60 90
Time (0inute)

100
200
300

Tr
af
fic
(0
iB
/s
)

0ax
0ean
0in

(f) Seg

0 30 60 90
Time (0inute)

100
200
300

Tr
af
fic
(0
iB
/s
)

0ax
0ean
0in

(g) Mig-avg

0 30 60 90
Time (0inute)

100
200
300

Tr
af
fic
(0
iB
/s
)

0ax
0ean
0in

(h) Mig-ewma

0 30 60 90
Time (0inute)

100
200
300

Tr
af
fic
(0
iB
/s
)

0ax
0ean
0in

(i) Rep

0 30 60 90
Time (0inute)

100
200
300

Tr
af
fic
(0
iB
/s
)

0ax
0ean
0in

(j) Di�Forward

Fig. 12. Tra�ic distribution a�er deploying di�erent approaches under workloadsW1 ((a)-(e)) andW2 ((f)-(j)).

0.0

0.5

CR
V

�D��&R9�:��

Seg 0ig-Dvg 0ig-ewmD 5eS DiffFRrwDrd

0

10

0
Dx
/0
in

�E��0D[�0LQ�:��
0.0

0.5

CR
V

�F��&R9�:��
0

10

0
Dx
/0
in

�G��0D[�0LQ�:��

Fig. 13. Tra�ic balance metrics (CoV and Max/Min) under workloadsW1 and W2.

Comparison. We implement all the three approaches introduced in §2.4, including segmentation,
migration, and replication. Speci�cally, for migration, we implement two versions with di�erent
representative prediction strategies, including predicting VDisk tra�c as the average tra�c in the
last interval (Mig-avg), and predicting with EWMA by considering multiple previous intervals
(Mig-ewma). For replication, we implement the state-of-the-art replica selection strategy of C3 [58],
which selects the most appropriate replica by estimating the waiting and in-�ight requests, and we
adopt chain replication to synchronize replicas (Replication).
Default settings.We set the default segment size as 64GiB so as to limit the metadata management
overhead at clients, and we also study its impact by adjusting the segment size from 128GiB to
16GiB in §5.4. The default time interval of prediction and migration is set as 5s for migration,
a recommended value from production cluster to limit the migration overhead. As for network
provision setting, according to our observation on over 70 in-house cloud block service clusters
in production, we �nd that the average network utilization of all clusters is below 40%, and the
50/75/95 percentile utilizations are ~10%/~20%/~30%, respectively. Therefore, by default we limit to
use 30% network bandwidth to simulate the scenario of intensive tra�c, and we also adjust the
network provision to study its impact in §5.4.

5.2 Improvement on Tra�ic Balance
Tra�c distribution.We �rst evaluate the e�ectiveness of di�erent approaches in balancing the
tra�c among proxy servers by showing the tra�c distribution over time. We show the tra�c at
the most-loaded server (Max) and the least-loaded server (Min), as well as the average tra�c over
all servers (Mean). Figure 12(a) - 12(e) show the results under workload W1, and Figure 12(f) - 12(j)
show the results underW2. Note that the smaller the gap between di�erent curves is, the higher
degree of load balance is achieved. From the results, we can see that Di�Forward and Replication
realize much better tra�c balance among servers than Segmentation, Mig-avg, and Mig-ewma.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

15:18 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

0

10

20

LD
te
nF
y(
m
s)

�D��$YJ�/$7�:��

Seg 0Lg-Dvg 0Lg-ewmD ReS DLff)RrwDrd

0

200

LD
te
nF
y(
m
s)

�E��3���/$7�:��
0

10

20

LD
te
nF
y(
m
s)

�F��$YJ�/$7�:��
0

200

LD
te
nF
y(
m
s)

�G��3���/$7�:��
Fig. 14. Write latency.

0

10

LD
te
nF
y(
m
s)

�D��$YJ�/$7�:��

Seg 0Lg-Dvg 0Lg-ewmD 5eS DLff)RrwDrd

0

50

LD
te
nF
y(
m
s)

�E��3���/$7�:��
0

5

10

LD
te
nF
y(
m
s)

�F��$YJ�/$7�:��
0

50

LD
te
nF
y(
m
s)

�G��3���/$7�:��
Fig. 15. Read latency.

Besides, for Di�Forward and Replication, as tra�cs are more balanced, the tra�c sizes at the most
loaded server are largely reduced, and the tra�c spikes are also smaller.
Tra�c balance metrics. To quantitatively evaluate the improvement on the tra�c balance degree,
we further show the results of two balance metrics: CoV and Max/Min. CoV denotes the coe�cient
of variation and Max/Min is de�ned as the ratio of the tra�c at the most-loaded server to that
at the least-loaded server. Figure 13 shows the results under the two workloads. Compared with
segmentation, Di�Forward decreases CoV and Max/min by 66% and over 82%, respectively. Due to
the inaccurate tra�c prediction as mentioned in §2.4, migration even aggravates the imbalance
compared with segmentation. So Di�Forward achieves larger balance improvement compared
with mig-avg and mig-ewma (~70% and 85% for CoV and Max/Min). Finally, even compared with
Replication, which realizes the best balance among existing approaches,Di�Forward further reduces
the CoV and Max/Min by 24% and 25%, respectively.

5.3 Improvement on VDisk Latency
Now we evaluate the performance in improving VDisks’ latency. To minimize the impact of
segment size, for each tra�c balancing approach, we use the segment size leading to the best
result for comparison (64GiB for Segmentation,Mig-avg,Mig-ewma, and Di�Forward; no splitting
for Replication), and we will further discuss the impact of segment size on latency in §5.4. As the
setting of the network bandwidth also in�uences the latency, we provision the network bandwidth
to keep the average utilization at 30% in this experiment. Note that this utilization is very common
in production clusters, and we also study the impact of network provision in §5.4.

Figure 14 shows the write latency under the two workloads W1 and W2. First, for both average
latency and P99 latency,Di�Forward signi�cantly outperforms all existing approaches. For example,
for workloadW1, compared with Segmentation, Mig-avg, and Mig-ewma, Di�Forward decreases
the average write latency from 11.8ms, 14.3ms and 12.9ms to 6.3ms, and the reduction ratio is 47%,
56% and 52%, respectively. In addition, even though Replication realizes good balance, the average
latency (17.1ms) is even larger than other existing approaches due to the synchronization overhead.
As for the P99 tail latency, compared with Segmentation, Mig-avg, Mig-ewma, and Replication
Di�Forward recduces the tail latency from 230ms, 256.8ms, 246.0.1ms, and 227ms to 72ms, reduced
by ~70%. We have similar conclusion for workload W2.

For read latency, according to Figure 15, Di�Forward also achieves better performance compared
to all existing approaches. The reduction ratios are over 15% and 19% for the average and tail

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

Di�Forward: On Balancing Forwarding Tra�ic for Modern Cloud Block Services via Di�erentiated Forwarding 15:19

10% 20% 30% 40%
Avg netwRrk utLl

0

20

LD
te
nF
y
(m
s)

(a) Avg wrLte LAT

Seg 0Lg-Dvg 0Lg-ewmD 5eS DLff)RrwDrd

10% 20% 30% 40%
Avg netwRrk utLl

0

20

LD
te
nF
y
(m
s)

(b) Avg read LAT

10% 20% 30% 40%
Avg netwRrk utLl

0

500

LD
te
nF
y
(m
s)

(c) P99 wrLte LAT

10% 20% 30% 40%
Avg netwRrk utLl

0

200

LD
te
nF
y
(m
s)

(d) P99 read LAT
Fig. 16. Latency under di�erent network provisions.

w/R128 64 32 16
6egment VLze(GLB)

0

1

CR
V

(a) Co9

6eg 0Lg-Dvg 0Lg-ewmD ReS DLff)RrwDrG

w/R128 64 32 16
6egment VLze(GLB)

10
20
40

0
Dx
/0
Ln

(b) Max/MLn

w/R128 64 32 16
6egment VLze(GLB)

0

20

/D
te
nF
y(
m
V)

(c) Avg /atency

w/R128 64 32 16
6egment VLze(GLB)

100
200
300

/D
te
nF
y
(m
V)

(d) P99 /atency
Fig. 17. Impact of di�erent segment sizes.

latency underW1, and the ratios are over 25% and 20% for the average and tail latency underW2. In
conclusion, Di�Forward could signi�cantly improve the write performance, which is more critical
for VDisks as the workload is write dominant, and it also slightly improves the read performance.

5.4 Impact of System Configurations
Impact of network provision. Recall that requests are blocked at the network of proxy servers if
the tra�c is too heavy (§2.1). We now adjust the network provision to make the network bandwidth
utilization keep at 10%, 20%, 30%, and 40%, respectively. As the network resource mainly a�ects
the latency performance, we show the average and P99 latency for both writes and reads in
Figure 16. First, we see that Di�Forward always outperforms existing approaches for both the
average and P99 latency under all network settings. The improvement is much larger for writes
compared with reads, and this conforms with previous results. Second, as the network utilization
increases, the latency also increases signi�cantly, especially when the utilization increases from
30% to 40%, the write latency increases exponentially. This also validates the reason why network
utilization is below 40% in all in-house production clusters we studied. Finally, we can see that
the improvement of Di�Forward usually becomes larger under higher network utilization, this is
because tra�c balancing becomes more meaningful when network resources are more scarce. In
particular, under 40% utilization, Di�Forward can reduce the average and P99 write latency by 66%
and 60%, respectively, compared with all existing approaches.
Impact of segment size. We now evaluate the impact of segment size. We divide VDisks into
segments of di�erent sizes (including no segmentation and segment sizes of 128GiB, 64GiB, 32GiB,
and 16GiB). We show both tra�c balance metrics (in Figure 17(a) and (b)) and VDisk write latency
(in Figure 17(c) and (d)). We see that under the same segment size, Di�Forward always improves
the balance with smaller CoV and Max/Min compared with other approaches. Besides, using
small segments indeed improves the degree of tra�c balance for all approaches. However, it also
introducesmetadatamanagement overhead for existing approaches and thus limits the improvement
on latency. For example, after segmenting VDisks, the same amount of tra�c is concurrently sent
through more network connections of di�erent segments proxies, and aggressive segmentation

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

15:20 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

0 0.1 0.5 1 2 4
9alue of β

0

10

20

Av
g
LA
T(
P
V)

0

100

P9
9
LA
T(
P
V)

Avg LAT P99 LAT

(a) Latency under 30% network utilization

0 0.1 0.5 1 2 4
9alue of β

0

5

10

Av
g
LA
T(
P
V)

0

50

P9
9
LA
T(
P
V)

Avg LAT P99 LAT

(b) Latency under 10% network utilization

Fig. 18. Impact of di�erent sensitivity of detecting burst tra�ic: smaller V represents higher sensitivity.

Seg DLII)orwDrd
0

10

/D
We
nF
y(
m
s)

(a) Avg wrLte LAT

IndexLng WDLWLng DW FlLenW TrDnsmLssLon Wo/Irom Sroxy DDWD SersLsWLng/reWrLevLng

Seg DLII)orwDrd
0

5

/D
We
nF
y(
m
s)

(b) Avg read LAT
Seg DLII)orwDrd

0

200

/D
We
nF
y(
m
s)

(c) P99 wrLte LAT
Seg DLII)orwDrd

0

25

/D
We
nF
y(
m
s)

(d) P99 read LAT
Fig. 19. Read and write latency breakdown.

causes contention between connections, thus degrading latency. Yet for Di�Forward, multiple
segments of aVDisk could share a same distributed log without inducing additional connections,
and since the most intensive burst tra�c is separated apart, the contention between remaining
contentions transferring stable tra�c could also be alleviated greatly. As a result, Di�Forward
achieves a consistent improvement on latency performance. For Replication, as it realizes replication
at a per-request granularity, segmenting the VDisks only brings extra overhead, so its latency is the
smallest in the case without segmentation. The results of Replication under 16GiB segment size
are not presented because replicating proxies further multiplies the number of connections and
therefore runs out of sockets.
Impact of tra�c detection sensitivity. There is a trade-o� between tra�c balance and system
overhead when setting the sensitivity of detecting burst tra�c, which depends on the threshold TH
of VRQs. Speci�cally, while higher sensitivity achieves better tra�c balance by directing more tra�c
to distributed logs, it induces more system overhead. By contrast, lower sensitivity reduces overhead
but causes worse tra�c balance. By default, we set the TH as the average accumulated tra�c of
each VDisk in 50 milliseconds. Now we manually tune the TH, by multiplying it with a variable
factor V , to investigate its impact on Di�Forward. Figure 18(a) shows the latency results under 30%
network utilization, with V set from 0.1 to 4. As we can see, compared with the best-performing case
(V around 0.5), both insensitivity and over-sensitivity contribute to sub-optimal end-to-end latency
due to consequent tra�c imbalance or excessive system overhead. Yet the impact shrinks when the
cluster is provided with rich redundant network resource, e.g., under 10% network utilization (see
Figure 18(b)). In §4 we discuss the autonomous and dynamic tuning of TH to help further optimize
Di�Forward, while its implementation and evaluation are left to our future work.

5.5 Performance Breakdown and Overhead
Latency breakdown. To better understand the bene�ts of each design technique in Di�Forward,
we further show the latency breakdown. The end-to-end latency can be divided into the following
parts: i) waiting time at clients as requests may wait at local queues before sending to proxy servers
through network, ii) data transmission time when transmitting data from clients to proxies for
writes or from proxies to clients for reads, and iii) time of persisting/retrieving data to/from the
storage layer for writes/reads. As segmentation also has the same three parts for latency breakdown,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

Di�Forward: On Balancing Forwarding Tra�ic for Modern Cloud Block Services via Di�erentiated Forwarding 15:21

0 0.2 0.4 0.6 0.8 1
VDlue

25

50

75

100

#
 R
f V
D
iV
kV
 (%
) 5ecDll

PreciViRn

(a) Burst tra�c detection

0 30 60 90 120
TLme (mLnute)

0

1

2

3

Lo
g
sL
ze
 (G
LB
)

(b) Log size

0 500 1000
VDiVkV

10K

20K

#
 o
f n
od
eV Avg

PeDk

(c) Size of client-side index

2P ASAP CL PC
Log PergLng strategy

0

10

20

Av
g
LA
T(
P
s)

0

100

200

P9
9
LA
T(
P
s)

Avg LAT
P99 LAT

(d) Impact of log merging

Fig. 20. Overhead analysis: (a) e�ectiveness of the burst tra�ic detection; (b) storage overhead of distributed
logs; (c) overhead of the index at clients; (d) overhead of log merging.

we take it as the baseline for comparison. Note that for Di�Forward, clients spend extra indexing
time to update or search its index before sending requests. As shown in Figure 19, for writes,
while the data persisting time is similar, both the waiting time and transmission time are reduced
signi�cantly for Di�Forward (by around 50% for average write latency, and by 76% and 77% for
P99 write latency, respectively). Besides, the extra time spent accessing index at the client-side is
limited compared to other parts of latency. This demonstrates that the design of Di�Forward is still
lightweight at clients. Compared with writes, since read requests are seldom blocked at the client,
and so the improvement is smaller, and it mainly comes from faster transmission of responses.
Accuracy of burst tra�c detection.We now evaluate the e�ectiveness of the burst tra�c detection
method in Di�Forward by showing both recall and precision. We de�ne the ground truth of burst
tra�c as follows. We �rst split each VDisk’s service time into 100ms intervals, then we select
those intervals in which the tra�c is 10 times higher than the average over the past one minute,
and consider the tra�c in these selected intervals as burst tra�c. Figure 20(a) shows the recall
and precision of our algorithm. As we can see, the median (50 percentile) recall and precision
of all VDisks lies roughly at 70% and 95%, and the average recall and precision are 0.8 and 0.92,
respectively. Therefore, our burst tra�c detectionmethod not only detects the burst tra�c accurately,
but also avoids high false positive by recognizing stable tra�c as burst tra�c.
Overhead of distributed logs.We monitor the size of the storage space occupied by distributed
logs at each proxy server. We focus on workloadW1 and provision the network to keep 30% network
utilization. Figure 20(b) shows the results. Due to the use of round-robin writes for the distributed
logs, the log sizes at di�erent servers are roughly the same during service time, and the log size at
each proxy server �rst gradually increases from ~2GiB when the overall tra�c becomes heavier
asW1 has an increasing tra�c pattern (see Table 1). The log size �nally remains stable at ~3GiB.
This demonstrates that despite burst tra�c with speed of hundreds of megabytes per second is
continuously appended to distributed logs, our timely log merging and garbage collection could
ensure the small storage space occupation of logs (GiB level).
Overhead of client-side index. By polling indexes of all 1000 VDisks, we monitor the size of
the client-side index, i.e., the number of nodes in the red-black tree, which directly determines its
memory footprint and inserting/searching e�ciency. Figure 20(c) shows both the average number
of index nodes and the peak number of index nodes of the 1000 VDisks under W1, where these
VDisks are sorted in a descending order. For 90% of VDisks, their average and peak index node
number are below 645 and 1658, and the largest index out of these 1000 VDisks has 6426 and 28953
nodes. Since each node only takes up ~70 bytes, the largest index among all VDisks only takes up
0.42 MiB on average, and 1.93 MiB at most.
Overhead of asynchronous logmerging.We now quantify the impact of performing log merging
on VDisk latency. Note that Di�Forward leverages prioritized coordination (PC) to coordinate
log merging operations by setting the foreground tra�c a higher priority than log merging. We

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

15:22 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

compare it with other three cases: i) no log merging, i.e., directly removing sealed �les in data logs
without merging them to the storage layer. Note that this baseline can be regarded as the optimal
case (OP); ii) ASAP (as soon as possible) that maximizes the log merging speed by concurrently
pulling and merging all log entries of the selected log, and iii) CL (concurrency limited) that limits
the size of the concurrently merged log at 1 MiB. As shown in Figure 20(d), all schemes (ASAP,
CL and PC) introduce unavoidable latency increase. Compared to the optimal case, ASAP and CL
degrade the average latency by 44% and 38%, and degrade the P99 latency both by 300%.Di�Forward
outperforms other schemes, and it reduces the degradation ratio to 13% and 47%, respectively.

6 RELATEDWORK
Block-level trace analysis. A number of prior works have analyzed block-level traces in vari-
ous architectures from Windows servers [36, 49], containerized applications [31], to smartphone
applications [76]. Recently, Li et al. [40] conducted an extensive study on a large-scale trace of a
cloud block storage that supports diverse applications in production, uncovering various VDisks’
characteristics including their load intensity, read/write aggregation, RAW (read-after-write time),
WAW (write-after-write time), etc. In this work, we mainly focus on balancing the tra�c, especially
the burst tra�c, in the forwarding layer, and we also thoroughly investigate existing workload
traces to study the tra�c patterns so as to guide our design.
Block storage optimization. Many techniques have been proposed to optimize the performance
of cloud block storage. For example, Strata [21] partitions functions into an address virtualization
layer to meet the high performance of PCIe �ash devices. Salus [68] seeks to simultaneously
maximize scalability, robustness, and strong availability guarantees under server failures. Blizzard
[47] relaxes strong consistency to crash consistency and decouples the durability and ordering
requirements expressed by �ush requests, so as to improve the storage performance under intensive
small random I/Os. Ursa [38] presents an SSD-HDD hybrid structure and uses journals to bridge
their performance gap in order to achieve near-all-�ash performance at a lower cost. SWR [44] and
BCW [67] use SSDs as a faster bu�er to HDDs to keep high performance, while also lengthening
SSDs’ lifetime by bypassing SSDs as much possible. OSCA [75] is an online model based scheme for
cache allocation for shared cache servers of VDisks which could �nd a near-optimal con�guration
scheme at very low complexity. Di�er from these works, we intend to balance the tra�c at the
forwarding layer so as to optimize VDisks’ latency.
Load balance in distributed storage. Due to its critical importance for ensuring utilization and
meeting stringent SLA, load balance in distributed storage systems have been widely investigated.
For example, many balancing techniques have been proven to perform well in speci�c scenarios.
Fan et al. [26] show that adding a small and fast popularity-based front-end cache can ensure
load balancing for read-abundant storage systems. Some works [35, 41, 45] further exploit the
capabilities of programmable switch to cache hot items in the switch data plane, and route requests
to the appropriate nodes at line speed. By consuming extra network bandwidth, Narayanan et al.
[49, 50] o�oad written data of high-loaded servers or devices to less-loaded ones to balance I/O
load under write-intensive workload. In the meantime, lots of storage systems apply and combine
more general methods to ensure their load balance, including segmentation [6, 7, 12, 15, 19, 23, 53],
migration [22, 24, 30, 37, 39, 46, 54, 63], and replication [5, 58, 59, 61]. Rather than balancing the loads
from diverse applications uniformly, we adopt a di�erentiated approach to address the problem of
balancing both burst and stable tra�c at the forwarding layer for cloud block services.

7 CONCLUSION
In this paper, we develop a novel di�erentiated tra�c forwarding scheme Di�Forward for cloud
block services. Di�Forward accurately di�erentiates burst tra�c and stable tra�c in a lightweight

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

Di�Forward: On Balancing Forwarding Tra�ic for Modern Cloud Block Services via Di�erentiated Forwarding 15:23

manner at clients, and leverages di�erent forwarding paths so as to balance the burst tra�c
e�ciently at the subsecond time scale. Di�Forward utilizes distributed logs to balance burst tra�c
and manages the data in an asynchronous way to reduce overhead while still preserving strong
consistency guarantee. Experiments on our prototype demonstrate that Di�Forward outperforms
all existing approaches and thus signi�cantly optimizes the latency of accesses to VDisks under
di�erent network resource provisions.

ACKNOWLEDGMENTS
The work is supported by NSFC 62172382 and the Alibaba Group through Alibaba Innovative
Research Program. We deeply appreciate all teammates from Alibaba group for the signi�cant
supports for the online experiments. The work of John C.S. Lui was supported in part by the RGC’s
GRF 14215722.

REFERENCES
[1] Alibaba. 2011. Alibaba Cloud Block Storage. https://www.alibabacloud.com/product/disk?spm=a3c0i.7911826.

6791778070.dnavproductstorage7.44193870i1BSO8.
[2] Alibaba. 2020. Alibaba Block Trace. https://github.com/alibaba/block-traces.
[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta

Sengupta, and Murari Sridharan. 2010. Data Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference
(New Delhi, India) (SIGCOMM ’10). Association for Computing Machinery, New York, NY, USA, 63–74.

[4] Amazon. 2022. Amazon Elastic Block Storage (EBS). https://aws.amazon.com/cn/ebs/.
[5] Amazon. 2022. Amazon ELB. http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/

TerminologyandKeyConcepts.html.
[6] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas, Igor Zinkovsky, Luning Pan, Tony Savor, David

Nagle, and Michael Stumm. 2018. Sharding the shards: managing datastore locality at scale with Akkio. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 445–460.

[7] Apache. 2022. Apache HBASE. http://hbase.apache.org/.
[8] Mahesh Balakrishnan, DahliaMalkhi, Vijayan Prabhakaran, TedWobbler, MichaelWei, and John D. Davis. 2012. CORFU:

A Shared Log Design for Flash Clusters. In 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12). USENIX Association, San Jose, CA, 1–14. https://www.usenix.org/conference/nsdi12/technical-sessions/
presentation/balakrishnan

[9] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran, Michael Wei, John D. Davis, Sriram
Rao, Tao Zou, and Aviad Zuck. 2013. Tango: Distributed Data Structures over a Shared Log (SOSP ’13). Association for
Computing Machinery, New York, NY, USA, 325–340.

[10] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo,
Sachin Kulkarni, Harry Li, et al. 2013. {TAO}:{Facebook’s} Distributed Data Store for the Social Graph. In 2013
USENIX Annual Technical Conference (USENIX ATC 13). 49–60.

[11] Hongming Cai, Boyi Xu, Lihong Jiang, and Athanasios V Vasilakos. 2016. IoT-based big data storage systems in cloud
computing: perspectives and challenges. IEEE Internet of Things Journal 4, 1 (2016), 75–87.

[12] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat
Srivastav, Jiesheng Wu, Huseyin Simitci, et al. 2011. Windows azure storage: a highly available cloud storage service
with strong consistency. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. 143–157.

[13] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. 2020. Characterizing, Modeling, and Benchmarking
{RocksDB}{Key-Value} Workloads at Facebook. In 18th USENIX Conference on File and Storage Technologies (FAST 20).
209–223.

[14] Apache Cassandra. 2014. Apache cassandra. Website. Available online at http://planetcassandra. org/what-is-apache-
cassandra 13 (2014).

[15] Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chandra,
Andrew Fikes, and Robert E Gruber. 2011. Bigtable: A distributed storage system for structured data. (2011).

[16] Shuang Chen, Christina Delimitrou, and José F Martínez. 2019. Parties: Qos-aware resource partitioning for mul-
tiple interactive services. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. 107–120.

[17] Maureen Chesire, Alec Wolman, Geo�rey M Voelker, and Henry M Levy. 2001. Measurement and analysis of a
streaming media workload. In 3rd USENIX Symposium on Internet Technologies and Systems (USITS 01).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

15:24 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

[18] Citrix. 2022. Xendesktop. https://www.citrix.com/products/xendesktop/overview.html.
[19] James C Corbett, Je�rey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, Je�rey John Furman, Sanjay

Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, et al. 2012. Spanner: Google’s globally distributed
database. (2012).

[20] Stephen V. Crowder and Marc D. Hamilton. 1992. An EWMA for Monitoring a Process Standard Deviation. Journal of
Quality Technology 24, 1 (1992), 12–21.

[21] Brendan Cully, Jake Wires, Dutch Meyer, Kevin Jamieson, Keir Fraser, Tim Deegan, Daniel Stodden, Geo�re Lefebvre,
Daniel Ferstay, and Andrew War�eld. 2014. Strata: High-Performance Scalable Storage on Virtualized Non-volatile
Memory. In 12th USENIX Conference on File and Storage Technologies (FAST 14). USENIX Association, Santa Clara, CA,
17–31.

[22] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. 2011. Albatross: Lightweight elasticity in
shared storage databases for the cloud using live data migration. Proceedings of the VLDB Endowment 4, 8 (2011),
494–505.

[23] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s highly available
key-value store. ACM SIGOPS operating systems review 41, 6 (2007), 205–220.

[24] Wei Dong, Fred Douglis, Kai Li, Hugo Patterson, Sazzala Reddy, and Philip Shilane. 2011. Tradeo�s in scalable data
routing for deduplication clusters. In 9th USENIX Conference on File and Storage Technologies (FAST 11).

[25] Facebook. 2022. A Persistent Key-Value Store for Fast Storage Environment. http://www.rocksdb.org.
[26] Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. 2011. Small Cache, Big E�ect: Provable Load

Balancing for Randomly Partitioned Cluster Services (SOCC ’11). Association for Computing Machinery, New York,
NY, USA, Article 23, 12 pages.

[27] Sanjay Ghemawat. 2004. MapReduce: simpli�ed data processing on large clusters. OSDI, 2004 (2004).
[28] Sanjay Ghemawat and Je� Dean. 2022. A Persistent Key-Value Store for Fast Storage Environment. https://github.

com/google/leveldb.
[29] Raúl Gracia-Tinedo, Josep Sampé, Edgar Zamora, Marc Sánchez-Artigas, Pedro García-López, Yosef Moatti, and Eran

Rom. 2017. Crystal:{Software-De�ned} Storage for {Multi-Tenant} Object Stores. In 15th USENIX Conference on File
and storage Technologies (FAST 17). 243–256.

[30] Ubaid Ullah Hafeez, Muhammad Wajahat, and Anshul Gandhi. 2018. Elmem: Towards an elastic memcached system.
In 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). IEEE, 278–289.

[31] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016. Slacker:
Fast Distribution with Lazy Docker Containers. In 14th USENIX Conference on File and Storage Technologies (FAST 16).
USENIX Association, Santa Clara, CA, 181–195.

[32] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. 2013. Elasticity in cloud computing: What it is, and what it
is not. In 10th international conference on autonomic computing (ICAC 13). 23–27.

[33] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang, Wei
Cao, and Qiang Li. 2019. X-Engine: An optimized storage engine for large-scale E-commerce transaction processing.
In Proceedings of the 2019 International Conference on Management of Data. 651–665.

[34] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson. 2014. A bu�er-based approach
to rate adaptation: Evidence from a large video streaming service. In Proceedings of the 2014 ACM conference on
SIGCOMM. 187–198.

[35] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion Stoica.
2017. NetCache: Balancing Key-Value Stores with Fast In-Network Caching. In Proceedings of the 26th Symposium on
Operating Systems Principles (Shanghai, China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA,
121–136.

[36] Swaroop Kavalanekar, Bruce Worthington, Qi Zhang, and Vishal Sharda. 2008. Characterization of storage workload
traces from productionWindows Servers. In 2008 IEEE International Symposium onWorkload Characterization. 119–128.

[37] Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, and Ryan Stutsman. 2017. Rocksteady: Fast migration
for low-latency in-memory storage. In Proceedings of the 26th Symposium on Operating Systems Principles. 390–405.

[38] Huiba Li, Yiming Zhang, Dongsheng Li, Zhiming Zhang, Shengyun Liu, Peng Huang, Zheng Qin, Kai Chen, and
Yongqiang Xiong. 2019. URSA: Hybrid Block Storage for Cloud-Scale Virtual Disks. In Proceedings of the Fourteenth
EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for Computing Machinery, New York, NY,
USA, Article 15, 17 pages.

[39] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan RK Ports. 2020. Pegasus: Tolerating skewed workloads in
distributed storage with in-network coherence directories. In 14th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 20). 387–406.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

Di�Forward: On Balancing Forwarding Tra�ic for Modern Cloud Block Services via Di�erentiated Forwarding 15:25

[40] Jinhong Li, Qiuping Wang, Patrick PC Lee, and Chao Shi. 2020. An in-depth analysis of cloud block storage workloads
in large-scale production. In 2020 IEEE International Symposium on Workload Characterization (IISWC). IEEE, 37–47.

[41] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G. Andersen, and Michael J. Freedman. 2016. Be Fast, Cheap and
in Control with SwitchKV. In 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16).
USENIX Association, Santa Clara, CA, 31–44.

[42] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lianjie Zhu, Wenjun Dai, Jin Jiang, and Guangzhong Sun. 2018.
Metis: Robustly tuning tail latencies of cloud systems. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
981–992.

[43] Qixiao Liu and Zhibin Yu. 2018. The elasticity and plasticity in semi-containerized co-locating cloud workload: a view
from alibaba trace. In Proceedings of the ACM Symposium on Cloud Computing. 347–360.

[44] Shuyang Liu, Shucheng Wang, Qiang Cao, Ziyi Lu, Hong Jiang, Jie Yao, Yuanyuan Dong, and Puyuan Yang. 2019.
Analysis of and Optimization for Write-Dominated Hybrid Storage Nodes in Cloud. In Proceedings of the ACM
Symposium on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’19). Association for Computing Machinery, New York,
NY, USA, 403–415.

[45] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion Stoica.
2019. DistCache: Provable Load Balancing for Large-Scale Storage Systems with Distributed Caching. In 17th USENIX
Conference on File and Storage Technologies (FAST 19). USENIX Association, Boston, MA, 143–157.

[46] Chenyang Lu. 2002. Aqueduct: Online data migration with performance guarantees. In Conference on File and Storage
Technologies (FAST 02).

[47] James Mickens, Edmund B. Nightingale, Jeremy Elson, Darren Gehring, Bin Fan, Asim Kadav, Vijay Chidambaram,
Osama Khan, and Krishna Nareddy. 2014. Blizzard: Fast, Cloud-scale Block Storage for Cloud-oblivious Applications.
In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14). USENIX Association, Seattle,
WA, 257–273.

[48] Microsoft. 2022. Azure Disk Storage. https://azure.microsoft.com/en-us/services/storage/disks/#overview.
[49] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008. Write o�-loading: Practical power management

for enterprise storage. ACM Transactions on Storage (TOS) 4, 3 (2008), 1–23.
[50] Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh Elnikety, and Antony IT Rowstron. 2008. Everest:

Scaling Down Peak Loads Through I/O O�-Loading.. In OSDI, Vol. 8. 15–28.
[51] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John Wilkes. 2013. {AGILE}: Elastic Distributed

Resource Scaling for {Infrastructure-as-a-Service}. In 10th International Conference on Autonomic Computing (ICAC
13). 69–82.

[52] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy, Mike Paleczny,
Daniel Peek, Paul Saab, et al. 2013. Scaling memcache at facebook. In 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13). 385–398.

[53] Diego Ongaro, Stephen M Rumble, Ryan Stutsman, John Ousterhout, and Mendel Rosenblum. 2011. Fast crash recovery
in RAMCloud. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. 29–41.

[54] Swapnil Patil and Garth Gibson. 2011. Scale and Concurrency of {GIGA+}: File System Directories with Millions of
Files. In 9th USENIX Conference on File and Storage Technologies (FAST 11).

[55] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. Cloudscale: elastic resource scaling for
multi-tenant cloud systems. In Proceedings of the 2nd ACM Symposium on Cloud Computing. 1–14.

[56] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010. The hadoop distributed �le system. In
2010 IEEE 26th symposium on mass storage systems and technologies (MSST). Ieee, 1–10.

[57] Ioan Stefanovici, Bianca Schroeder, Greg O’Shea, and Eno Thereska. 2016. {sRoute}: Treating the Storage Stack Like a
Network. In 14th USENIX Conference on File and Storage Technologies (FAST 16). 197–212.

[58] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3: Cutting tail latency in cloud data stores via
adaptive replica selection. In 12th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
15). 513–527.

[59] Igor Sysoev. 2022. Nginx. http://nginx.org/en/docs/http/load_balancing.html.
[60] Mojtaba Tarihi, Hossein Asadi, and Hamid Sarbazi-Azad. 2015. DiskAccel: Accelerating Disk-Based Experiments by

Representative Sampling. In Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (Portland, Oregon, USA) (SIGMETRICS ’15). Association for Computing Machinery, New
York, NY, USA, 297–308.

[61] Basho Technologies. 2022. Riak. Load Balancing and Proxy Con�guration. http://docs.basho.com/riak/1.4.0/cookbooks/
Load-Balancing-and-Proxy-Con�guration/.

[62] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony Rowstron, Tom Talpey, Richard Black,
and Timothy Zhu. 2013. Io�ow: A software-de�ned storage architecture. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. 182–196.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

https://azure.microsoft.com/en-us/services/storage/disks/#overview
http://nginx.org/en/docs/http/load_balancing.html
http://docs.basho.com/riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-Configuration/
http://docs.basho.com/riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-Configuration/

15:26 Wenzhe Zhu, Yongkun Li, Erci Xu, Fei Li, Yinlong Xu, and John C. S. Lui

[63] Nguyen Tran, Marcos K Aguilera, and Mahesh Balakrishnan. 2011. Online migration for geo-distributed storage
systems. In 2011 USENIX Annual Technical Conference (USENIX ATC 11).

[64] Dana Van Aken, Andrew Pavlo, Geo�rey J Gordon, and Bohan Zhang. 2017. Automatic database management system
tuning through large-scale machine learning. In Proceedings of the 2017 ACM international conference on management
of data. 1009–1024.

[65] Robbert Van Renesse and Fred B Schneider. 2004. Chain Replication for Supporting High Throughput and Availability..
In OSDI, Vol. 4.

[66] VMware. 2022. View. http://www.vmware.com/products/horizon-view.
[67] Shucheng Wang, Ziyi Lu, Qiang Cao, Hong Jiang, Jie Yao, Yuanyuan Dong, and Puyuan Yang. 2020. BCW: Bu�er-

Controlled Writes to HDDs for SSD-HDD Hybrid Storage Server. In 18th USENIX Conference on File and Storage
Technologies (FAST 20). USENIX Association, Santa Clara, CA, 253–266.

[68] Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Mahajan, Jeevitha Kirubanandam, Lorenzo Alvisi, and Mike
Dahlin. 2013. Robustness in the Salus Scalable Block Store. In 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). USENIX Association, Lombard, IL, 357–370.

[69] Michael Wei, Amy Tai, Christopher J. Rossbach, Ittai Abraham, Maithem Munshed, Medhavi Dhawan, Jim Stabile, Udi
Wieder, Scott Fritchie, Steven Swanson, Michael J. Freedman, and Dahlia Malkhi. 2017. vCorfu: A Cloud-Scale Object
Store on a Shared Log. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 35–49. https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wei-
michael

[70] Sage A Weil, Andrew W Leung, Scott A Brandt, and Carlos Maltzahn. 2007. Rados: a scalable, reliable storage service
for petabyte-scale storage clusters. In Proceedings of the 2nd international workshop on Petascale data storage: held in
conjunction with Supercomputing’07. 35–44.

[71] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng Wu. 2019. Lessons and actions: What we learned from 10k
ssd-related storage system failures. In Proc. of USENIX ATC.

[72] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A control-theoretic approach for dynamic adaptive
video streaming over HTTP. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication.
325–338.

[73] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster computing
with working sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10).

[74] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yangtao Wang, Tianheng Cheng, Li Liu,
et al. 2019. An end-to-end automatic cloud database tuning system using deep reinforcement learning. In Proceedings
of the 2019 International Conference on Management of Data. 415–432.

[75] Yu Zhang, Ping Huang, Ke Zhou, HuaWang, Jianying Hu, Yongguang Ji, and Bin Cheng. 2020. OSCA: An Online-Model
Based Cache Allocation Scheme in Cloud Block Storage Systems. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, 785–798.

[76] Deng Zhou, Wen Pan, Wei Wang, and Tao Xie. 2015. I/O Characteristics of Smartphone Applications and Their
Implications for eMMC Design. In 2015 IEEE International Symposium on Workload Characterization. 12–21.

Received October 2022; revised December 2022; accepted January 2023

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 15. Publication date: March 2023.

http://www.vmware.com/products/horizon-view
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wei-michael
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wei-michael

