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The current parallel storage systems use thousands of inexpensive disks to meet the storage requirement of
applications. Data redundancy and/or coding are used to enhance data availability, e.g., Row-diagonal parity
(RDP) and EVENODD codes, which are widely used in RAID-6 storage systems, provide data availability
with up to two disk failures. To reduce the probability of data unavailability, whenever a single disk fails,
disk recovery will be carried out. We find that the conventional recovery schemes of RDP and EVENODD
codes for a single failed disk only use one parity disk. However, there are two parity disks in the system, and
both can be used for single disk failure recovery. In this paper, we propose a hybrid recovery approach which

uses both parities for single disk failure recovery and we design efficient recovery schemes for RDP code
(RDOR-RDP) and EVENODD code (RDOR-EVENODD). Our recovery scheme has the following attractive
properties: (1) “read optimality” in the sense that our scheme issues the smallest number of disk reads
to recover a single failed disk and it reduces approximately 1/4 of disk reads compared with conventional
schemes; (2) “load balancing property” in that all surviving disks will be subjected to the same (or almost
the same) amount of additional workload in rebuilding the failed disk.

We carry out performance evaluation to quantify the merits of RDOR-RDP and RDOR-EVENODD on
some widely used disks with DiskSim. The off-line experimental results show that RDOR-RDP and RDOR-
EVENODD outperform the conventional recovery schemes of RDP and EVENODD codes in terms of total
recovery time and recovery workload on individual surviving disk. However, the improvements are less than
the theoretical value (approximately 25%), as RDOR-RDP and RDOR-EVENODD change the disk access
pattern from purely sequential to a more random one compared with their conventional schemes.
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1. INTRODUCTION

Today, we often need to store and process a huge amount of digital information and
this makes designing a massive data storage system more challenging. In [Lyman and
Varian 2003], authors argued that there were around five exabytes of new informa-
tion generated in the year 2002, and the amount of information produced in the world
increases by 30% every year. This massive amount of information translates to a de-
mand for large, cost-effective, and reliable storage systems, and the approach taken is
to use thousands or even hundreds of thousands of inexpensive disks to preserve large
volumes of data [Kubiatowicz et al. 2000; Joukov et al. 2007; Ghemawat et al. 2003].
The continuing increase of system size and the usage of inexpensive but less reli-

able components (for economical consideration) make component failures, such as disk
failure, more common. When disk failure occurs, it has a huge impact on the reliabil-
ity and data availability of large scale storage systems [Schroeder and Gibson 2007;
Pinheiro et al. 2007]. However, an important requirement of building large storage
systems is to make sure information is reliable and available even under the pres-
ence of component failures. System reliability and data availability can be achieved
by maintaining a sufficient amount of redundancy in the storage system. For example,
in recent years, several RAID-6 codes such as RDP [Corbett et al. 2004], EVENODD
[Blaum et al. 1995], and X-code [Xu and Bruck 1999] were proposed to protect data
against up to two disk failures and can maintain higher level reliability as compared
to the conventional RAID-5 systems.
Data will be lost (or unavailable) when the number of failed disks is more than

the number of parity disks. Therefore, to guarantee that the storage system operates
at a high reliable level, a key approach is to repair and recover a failed component
as quickly as possible [Baker et al. 2006]. In general, the recovery process requires
multiple reads to surviving disks, and the total data that must be processed during
recovery plays a crucial role in the overall recovery time [Corbett et al. 2004; Muntz
and Lui 1990]. Moreover, as the storage capacity of modern disk is growing at a much
faster rate than the disk I/O speed, the disk recovery process for modern disks takes
much longer time. This implies the lengthening of time in the window of vulnerability
(WOV) and it increases the probability of data loss [Xin et al. 2003]. Therefore, if one
can reduce the total disk reads in the recovery process, the system reliability can be
improved.
One important point we want to emphasize is that most of the modern storage sys-

tems have an online failure recovery mode [Holland 1994], in which the system still
provides service to the users during the disk recovery period. However, multiple reads
from disks for recovery consume I/O bandwidth of the system and influence the system
service performance [Holland et al. 1993]. Therefore, if one can reduce the number of
disk reads for disk recovery, this also implies that we can improve the service perfor-
mance to users during the online failure recovery mode. Other benefits for reducing
disk reads include relieving the communication load of the entire storage system and
the possibility to conserve energy, which is becoming more important for data centers
which deploy large storage systems.
Storage systems based on RAID-6 codes (e.g., RDP, EVENODD) usually contain two

parity disks to protect against double disk failures. However, the frequency of single
disk failure is much higher than double disk failures (this is especially true when
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the aggregated disk failure rate is much lower than the disk recovery rate) [Chen
et al. 1994; Corbett et al. 2004]. Therefore, it is necessary to design efficient recovery
schemes for a single failed disk in storage systems that based on RAID-6 codes. How-
ever, most commonly adopted disk recovery schemes only use single parity for single
failure recovery [Blaum et al. 1995; Corbett et al. 2004; Xu and Bruck 1999], and there
is no research which focuses on designing fast and efficient recovery schemes of single
failure recovery for RAID-6 codes.
In RAID-6 systems, each data block is protected by at least two different parity

blocks, and an erased block can be recovered from each of its parity blocks. We find
that if the two parity disks in the system are both used to recover a single failed disk,
there are many overlapping blocks which will be read twice during recovery. If an
overlapping block is stored in memory after it is read from a disk at the first time, it
can be read directly from memory at the second time which can reduce the amount of
data to be read from disks for recovery.
Recent studies show that memory read is about 100 times faster than disk read. For

instance, a state-of-the-art SATA disk driver has a linear read speed of approximately
60MB/sec, while DDR2-800 memory read speed is 6400MB/sec [Wikipedia 2010]. If
some disk reads can be substituted by memory reads, one can speed up the disk recov-
ery process and reduce the communication load of the storage system.
The aim of this paper is to explore how to design efficient recovery schemes for sin-

gle disk failure in storage systems that use RAID-6 codes. We consider single disk
failure recovery on two important RAID-6 codes, RDP code and EVENODD code. We
show that one can exploit both parity disks to reduce the number of disk reads for
recovery and propose hybrid recovery schemes RDOR-RDP [Xiang et al. 2010] and
RDOR-EVENODD for RDP and EVENODD codes respectively. By using RDOR-RDP
and RDOR-EVENODD, the numbers of disk reads for single disk failure recovery of
RDP and EVENODD codes can be reduced by approximately 25% compared with their
conventional schemes. The main contributions of this paper are:

—We propose a new hybrid recovery approach for single disk failure which can reduce
the number of disk reads and therefore improves system recovery performance for
RAID-6 codes1.

—We derive the tight lower bounds of the number of disk reads needed for any single
failure recovery of RDP and EVENODD codes respectively.

—We propose efficient recovery schemes RDOR-RDP and RDOR-EVENODD for RDP
and EVENODD codes respectively which match their disk read lower bounds and
also have the load-balancing property that all surviving disks will experience the
same amount of workload during recovery.

This paper is organized as follows. We will briefly introduce the RAID-6 storage
system, the RDP and EVENODD codes in Section 2. Section 3 presents the main idea
of our hybrid approach using a simple example of RDP code. In Section 4 and Section
5, we will theoretically analyze the lower bounds of disk reads and propose optimal
recovery schemes for RDP and EVENODD codes respectively. In Section 6 and Section
7, we will present and discuss the experimental results to show the advantage of our
hybrid approach. Section 8 introduces related work on disk recovery. Conclusions are
presented in Section 9.

1The hybrid recovery approach can only be applied to parity array codes for RAID-6 systems.
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Disk0 Disk1 Disk2 Disk3 Disk4 Disk5

D0 D1 D2 D3 P0−3 Q0−3

D5 D6 D7 P4−7 Q4−7 D4

D10 D11 P8−11 Q8−11 D8 D9

D15 P12−15Q12−15 D12 D13 D14

P16−19Q16−19 D16 D17 D18 D19

· · · · · · · · · · · · · · · · · ·

Stripe 0

Stripe 1

Stripe 2

Stripe 3

Stripe 4

. . .

Fig. 1. An Example of RAID-6 System Implementation of k = 4.

2. BACKGROUND

In this section, we first briefly introduce the specification and the current implementa-
tion of RAID-6 storage systems, and then present two important coding schemes, RDP
code and EVENODD code, which are commonly used in RAID-6 systems.

2.1. RAID-6 Storage System Implementations

A RAID storage system consists of some disks of the same size arranged in an array.
Some of the disks in a RAID system hold information data and the rests hold redun-
dant data. RAID-6 is a specification of RAID systems which protect information data
against two disk failures at the same time. A RAID-6 storage system consists of k + 2
disks, where k disks hold information data and the rest 2 disks hold coded data. The
coded data are generated from the information data and are often termed as parity
[Plank et al. 2009]. Each disk in the system is divided into strips of a fixed size, and
a parity strip is calculated from the data strips. A stripe consists of k data strips and
their corresponding 2 parity strips.
Figure 1 shows a particular RAID-6 system of k = 4. There are 6 disks in the system,

Disk 0 is divided into strips D0, D5, · · · , Disk 1 is divided into strips D1, D6, · · · , etc.
Stripe 0 is composed of data strips D0 to D3 and parity strips P0−3, Q0−3, where P0−3,
Q0−3 are generated from D0 to D3. To avoid hot spots in the system, the parity strips
are rotated between stripes, so all the disks will get the same workload. See Figure 1
for illustration.
Although RAID-6 systems can tolerant double disk failures, double disk failures are

comparatively more rare than single disk failure [Chen et al. 1994]. Moreover, once
a disk failure occurs, the system will be in a degrade mode both on users’ service
performance and system reliability level. For example, suppose in Figure 1 Disk 0
fails, a user’s read request on data strip D0 will be considered as reading D1, D2, D3,
P0−3, and XORing them to get D0. Thus, it is important to design efficient recovery
algorithm for single disk failure to minimize the degradation on system performance
and reliability under failure.

2.2. Erasure Codes

To implement RAID-6 storage systems, erasure codes are used to generate the parity
data. In information theory, an erasure code is a forward error correction (FEC) code
which encodes a message of k symbols into a coded word of n (n ≥ k) symbols such that
the original message can be recovered from a subset of the n symbols [Pless 1998].
Recently, a large number of erasure codes are proposed for RAID-6 systems. In the
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Disk0 Disk1 Disk2 Disk3

d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

Information Disks

d0,4

d1,4

d2,4

d3,4

d0,5

d1,5

d2,5

d3,5

Disk4 Disk5

Parity Disks

Fig. 2. RDP coding in a stripe of p = 5.

following of this section, we introduce two widely used RAID-6 codes studied in this
paper.

—RDP code is one of the most important RAID-6 codes which achieves optimality both
in computation efficiency and I/O efficiency. It is also named as RAID-DP in NetApp’s
commercial products [Lueth 2004]. The RDP encoding takes a (p − 1) × (p + 1) two-
dimensional array (or what we call a stripe), where p is a prime number greater than
2. The first p − 1 columns in the array are information columns and the last two are
parity columns. In actual implementations, the identities of information and parity
columns are rotated between stripes [Plank 2008].
The two parity columns in the array, named as the row parity column and the diago-
nal parity column respectively, ensure all information is recoverable when there are
no more than two disk failures. A row parity symbol2, just like in RAID-4, is gener-
ated by XOR-summing all the information symbols in that row, and a diagonal parity
symbol is by XOR-summing all symbols along the same diagonal. Figure 2 shows the
construction mechanism of RDP code when p = 5, where di,j is the i-th symbol in col-
umn j. The first four disks, Disk 0 to Disk 3 are information disks, while the last two
disks, Disk 4 and Disk 5, are parity disks. Disk 4 contains all the row parity symbols,
e.g., d0,4 is the XOR-sum of data blocks {d0,0, d0,1, d0,2, d0,3}, while Disk 5 contains the
diagonal parity symbols, e.g., d0,5 is the XOR-sum of data blocks {d0,0, d3,2, d2,3, d1,4}.
Diagonal p − 1 ({di,j|i + j ≡ p − 1 (mod p)}) is called the missing diagonal as it does
not have a corresponding diagonal parity. The missing diagonal consists of symbols
{d0,4, d1,3, d2,2, d3,1}. Refer to [Corbett et al. 2004] for details.

—EVENODD code is one of the most widely studied RAID-6 codes. The EVENODD
encoding considers a (p−1)× (p+2) two-dimensional array (or a stripe) with a prime
number p greater than 2. Column p and p + 1 are two parity columns while the other
p columns are information columns.
The two parity columns, column p and column p + 1, can also be named as row parity
column and diagonal parity column. A row parity symbol di,p in column p is computed
as the XOR-sum of all information symbols in row i. The XOR-sum of symbols along
diagonal p−1, which computed as h = ⊕p−1

j=1 dp−1−j,j , is called the EVENODD adjuster
and used to generate each parity symbol in diagonal parity column p + 1. A diagonal
parity symbol dj,p+1 in column p + 1 is generated by XOR-summing all information
symbols along diagonal j ({di,r|i+ r ≡ j (mod p)}) and the adjuster h. Figure 3 shows
a particular EVENODD code of p = 5. Refer to [Blaum et al. 1995] for details.

2We use the term of symbols to represent device blocks, and a symbol corresponds to a set of consecutive
sectors of a disk.
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Disk0 Disk1 Disk2 Disk3 Disk4

d0,0 d0,1 d0,2 d0,3 d0,4

d1,0 d1,1 d1,2 d1,3 d1,4

d2,0 d2,1 d2,2 d2,3 d2,4

d3,0 d3,1 d3,2 d3,3 d3,4

Disk5

d0,5

d1,5

d2,5

d3,5

Disk6

d0,6

d1,6

d2,6

d3,6

h

Information Disks Parity Disks

Fig. 3. EVENODD coding in a stripe of p = 5.

In RAID-6 systems, when a disk fails, to maintain the system reliability level, the
data in the failed disk should be reconstructed by reading corresponding information
and parity data from the surviving disks, and the reconstructed data should be stored
in a spare disk as soon as possible. To deal with disk failures, each erasure code has its
specific recovery algorithm. In the next section, we introduce the conventional recovery
schemes for a failed disk in RDP and EVENODD storage systems.

2.3. Conventional Recovery Schemes for RDP and EVENODD Storage Systems

Let us discuss the “conventional” approach of recovering a failed disk in a storage
system which uses RDP or EVENODD codes.
The conventional recovery schemes for RDP and EVENODD codes are similar to

each other. For RDP and EVENODD codes, in the case of a single disk failed, if the
failed disk is an information disk, the conventional approach is to use row parity and
information symbols in that row to recover each erasure symbol (an erasure symbol is
an unreadable symbol in the failed disk). If the failed disk is a parity disk, recovering
the disk is equivalent to recomputing parity.
Consider the example of RDP code in Figure 2, if Disk 0 fails, one can read row parity

symbol {d0,4} and information symbols {d0,1, d0,2, d0,3} to recover d0,0. If the failed disk
is the row parity disk (Disk 4) one can XOR-sum {d0,0, d0,1, d0,2, d0,3} to reconstruct d0,4,
and if the diagonal parity disk (Disk 5) fails, symbols {d3,0, d2,1, d1,2, d0,3} are used to
reconstruct d3,5.
For EVENODD code in Figure 3, if the failed disk is Disk 0, symbols {d0,1, d0,2, d0,3,

d0,4, d0,5} are used to recover d0,0. If Disk 5 fails, one can XOR-sum {d0,0, d0,1, d0,2,
d0,3, d0,4} to reconstruct d0,5, and if Disk 6 fails, according to the encoding algorithm of
EVENODD code, we should reconstruct the adjuster h (h = d3,1 ⊕d2,2 ⊕d1,3 ⊕d0,4) and
then use symbols {d3,0, d2,1, d1,2, d0,3} and h to reconstruct erasure symbol d3,6 in Disk
6.
Figure 4 shows the conventional recovery scheme of RDP code with p = 7. Assume

that Disk 0 (column 0) fails. The six information symbols di,0 (0 ≤ i ≤ 5) are to be
recovered. With the conventional recovery scheme, di,0 (0 ≤ i ≤ 5) are all recovered
from row parity (or Disk 6). During recovery, we need to read all the symbols in Disk 6
and the rest information disks to reconstruct the erasure symbols in Disk 0, and then
write the reconstructed data to a spare disk. Therefore, 36 symbols need to be read
from disks for the recovery. As illustrated in Figure 4, the erasure symbols are labeled
with “×”, and the symbols used for recovery are labeled with “©”.
We like to point out that the conventional schemes for single disk failure recovery

of RDP and EVENODD codes only use one parity column. However, because all data
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Disk0 Disk1 Disk2 Disk3 Disk4 Disk5 Disk6 Disk7
Spare

Disk

d0,0 d0,0

d1,0 d1,0

d2,0 d2,0

d3,0 d3,0

d4,0 d4,0

d5,0 d5,0

Fig. 4. Conventional scheme to recover Disk 0 of RDP code.

blocks are protected by two different parity groups, there are ways for us to take advan-
tage of this feature to speed up the recovery process. In the following, we will present
a novel approach which uses both parities. The interesting property of the new hybrid
approach is that it reduces the number of disk reads for the recovery.

3. NEW RECOVERY APPROACH FOR SINGLE FAILURE

To illutrate our recovery process, let us first use the example of RDP code in Figure
4 to demonstrate the idea of the hybrid approach for single disk failure recovery, and
then we will formally present the recovery process, both for the RDP and EVENODD
codes.
Minimizing Disk Reads: Because an information symbol can be recovered from

either row parity or diagonal parity, the conventional recovery scheme is only one of
many possible schemes. Suppose that in Figure 4, if symbols d0,0, d1,0, d2,0 are recov-
ered from row parity and d3,0, d4,0, d5,0 are recovered from diagonal parity, there are
9 overlapping symbols which will be read twice for the recovery process. Figure 5(a)
illustrates this case, where the symbols labeled with “©” are read for the recovery by
row parity and the symbols labeled with “�” are read for the recovery by diagonal par-
ity. If an overlapping symbol is stored in memory after it is read from a disk at the
first time, it can be read from memory for the consecutive recovery of other informa-
tion symbols. So a total of 36 − 9 = 27 symbols will be read from disk for the recovery,
while 9 symbols are read from memory. Because the speed of memory read is much
faster than that of disk read, reading symbols from memory instead of from disk will
speed up recovery process. On the other hand, by using memory read instead of disk
read, the communication load of the storage system will also be reduced. The main
idea of using previously read symbols to recover data so as to reduce I/O operations is
appealing. Theoretically, we would like to answer the following questions:

—What is the lower bound of disk reads for single disk failure recovery?
—How to design a recovery scheme which matches this lower bound?

Balancing Disk Reads: During recovery, one would expect the recovery read re-
quests are uniformly distributed among all surviving disks to speed up the recovery
process. For conventional recovery scheme, this can be achieved by parity rotation be-
tween stripes. However, by using double parities for the recovery, the numbers of sym-
bols read from each surviving disk are determined by the recovery scheme we choose
and can not be balanced simply by rotating parities between stripes. For example, sim-
ply rotating parities between stripes, if the recovery scheme in Figure 5(a) is carried
out in each stripe, nearly all the data from Disk 1 needs to be read for the recovery of
the failed Disk 0, while only half from Disk 4.
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Disk0 Disk1 Disk2 Disk3 Disk4 Disk5 Disk6 Disk7

(a) Disk read unbalanced

Disk0 Disk1 Disk2 Disk3 Disk4 Disk5 Disk6 Disk7

(b) Load balancing

Fig. 5. (a) Reducing the number of disk reads for recovering Disk 0 of RDP code. (b) Load balancing in
recovering Disk 0.

Consider another hybrid recovery scheme in Figure 4, where d2,0, d4,0, d5,0 are re-
covered from row parity and d0,0, d1,0, d3,0 are recovered from diagonal parity. Figure
5(b) depicts the symbols being read for the recovery with this scheme. In Figure 5(b),
27 symbols are read from disks for the recovery, the same as that in Figure 5(a). How-
ever, in Figure 5(b), the numbers of symbols we need to read from Disk 1 to Disk 6 for
recovery are all equal to 4. In other words, the additional workload to recover data in
Disk 0 is perfectly balanced among all surviving disks except for the diagonal parity
disk. One interesting question we would like to address is:

—Whether there exists a balanced recovery scheme with which the numbers of read
operations from each disk are the same?

Remark 3.1. Using hybrid approach to recover a failed disk can reduce the amount
of data needs to be read from disk for recovery. However, the hybrid approach changes
the access pattern of disk read from purely sequential accesses to more random ac-
cesses. For example, in Figure 4, if there is no foreground workload, the conventional
approach will read six sequential symbols in each surviving disk (except for Disk 7)
for recovery. However, the read requests of hybrid approach are non-sequential. See
Figure 5 for an illustration. In Section 6, we will analyze the impact of non-sequential
reads on disk recovery. Besides, in Section 7, we will show that the hybrid approach is
more applicable in some practical cases.

The main idea of our hybrid approach is using double parities for single failure re-
covery to reduce the number of disk reads for recovery. For RAID-6 codes, each symbol
is protected by at least two parity groups, so the hybrid approach can be generalized
to other RAID-6 codes such as EVENODD and X-code. In this paper, we focus on two
widely accepted RAID-6 codes, RDP code and EVENODD code. We will analyze the
minimum disk reads and balanced disk reads for the recovery of RDP and EVENODD
codes. We will also design recovery schemes of single disk failure for them which match
the minimum disk reads and balanced disk reads simultaneously.

4. THE RECOVERY OF SINGLE DISK FAILURE FOR RDP CODE

4.1. Lower Bound of Disk Reads for Single Failure Recovery

In this section, we will derive the lower bound of the number of symbols to be read from
the disks for any single column erasure recovery under RDP code. Because an erasure
symbol can be recovered either from row parity or diagonal parity, we will show that
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there are many choices for the recovery of an erasure column. Among the different
recovery choices, we want to find one which minimizes the number of disk reads. To
describe the different recovery choices, we define the following notations.

Definition 4.1. Define Ri = {di,r|0 ≤ r ≤ p − 1} as the i-th row parity set, 0 ≤ i ≤
p − 2, and Dj = {di,r|(i + r) mod p = j, 0 ≤ i ≤ p − 2, 0 ≤ r ≤ p} as the j-th diagonal
parity set, 0 ≤ j ≤ p − 2.

Based on Definition 4.1, we can see that |Ri| = p for 0 ≤ i ≤ p − 2 and |Dj | = p for
0 ≤ j ≤ p − 2 (Note that dj,0 ∈ Dj and dj,p ∈ Dj).

Ri is the set of symbols in row i except for the diagonal parity symbol di,p in column
p. According to RDP code, di,p−1 ∈ Ri is the XOR-sum of all the other symbols in

Ri, i.e. di,p−1 =
⊕p−2

j=0 di,j . So given a symbol d ∈ Ri, d can be recovered by XOR-

summing all the other symbols in Ri − {d}. While Dj is the set of symbols in the
diagonal which contains dj,p, the j-th symbol in column p. With the same reason, given
a symbol d ∈ Dj , d can be recovered by XOR-summing all the other symbols in Dj−{d}.
So we have the following Lemma 4.2.

LEMMA 4.2. Given a symbol d in an RDP disk array,

(1) if d ∈ Ri, d can be recovered by XOR-summing all symbols in Ri −{d}; (For the ease
of presentation, we say that d can be recovered from Ri throughout this paper.)

(2) if d ∈ Dj, d can be recovered from Dj;
(3) d can only be recovered from 1) and/or 2)

Remark 4.3. Erasure symbols can only be recovered from their parity sets, but the
surviving symbols in the corresponding parity set for the recovery can be either directly
read from disks or further generated from other parity sets. In this paper, we only
consider that all the surviving symbols are read directly from disks. In the appendix,
we will show that the lower bounds of disk reads of RDP and EVENODD codes in
the following Theorem 4.7 and Theorem 5.4 can not be further reduced by generating
surviving symbols from other parity sets.

Consider the example in Figure 2. We have R0 = {d0,0, d0,1, d0,2, d0,3, d0,4}, D0 ={d0,0,
d3,2, d2,3, d1,4, d0,5 }, d0,0 ∈ R0 and d0,0 ∈ D0. d0,0 can be recovered from R0 or from D0.
d0,4 ∈ R0, but d0,4 /∈ Dj for 0 ≤ j ≤ p − 2. So d0,4 can only be recovered from R0.
Assume that Disk k in the disk array fails. We need to recover all the erasure sym-

bols di,k (0 ≤ i ≤ p − 2) in column k (0 ≤ k ≤ p). Based on RDP code, we have the
following Lemma 4.4.

LEMMA 4.4. Given an erasure column k, 0 ≤ k ≤ p,

(1) If 0 ≤ k ≤ p − 1, which means that column k is not the diagonal parity column.
(a) If i 6= p− 1− k, di,k ∈ Ri and di,k ∈ D<i+k>p

3. Symbol di,k can be recovered from
either Ri or D<i+k>p .

(b) If i = p − 1 − k, only di,k ∈ Rp−1−k. Symbol dp−1−k,k is in the missing diagonal
and can only be recovered from Rp−1−k.

(2) If k = p, which means that column k is the diagonal parity column, then di,p ∈ Di.
Symbol di,p can only be recovered from Di.

Remark 4.5. Lemma 4.4 shows the possible choices for the recovery of an erasure
symbol. Case (a) indicates that an erasure symbol, which is not in the diagonal parity

3For the ease of presentation, we denote r mod p as < r >p in this paper.
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Disk Disk Disk Disk Disk Disk
0 1 2 3 4 5

0:0 0:1 0:2 0:3 0:null null:0

1:1 1:2 1:3 1:null 1:0 null:1

2:2 2:3 2:null 2:0 2:1 null:2

3:3 3:null 3:0 3:1 3:2 null:3

Fig. 6. RDP coding with Ri, Dj representation.

column and not in missing diagonal, can be recovered from a row parity set and from a
diagonal parity set. Case (b) indicates that an erasure symbol, which is not in diagonal
parity column but in missing diagonal, can be recovered only from a row parity set.
Case (2) indicates that all symbols in the diagonal parity column can be recovered only
from diagonal parity sets.

Figure 6 shows the possible recovery choices of each erasure symbol with p = 5.
Instead of using di,j to denote the data at the ith row and the jth column, we use a pair
of numbers to identify the parity sets the corresponding symbol belongs to. The first
number in the pair is the subscript of the row parity set, and the second number is
the subscript of the diagonal parity set. The symbols in column 5 only belong to their
diagonal parity sets, and the symbols along the missing diagonal only belong to their
row parity sets. For example, (2, 3) at row 2, column 1 means that d2,1 can be recovered
from R2 or D3; (1, null) at row 1, column 3 means that d1,3 can only be recovered from
R1.
We can choose a combination of parity sets (Note: We call it recovery combination

in the following.) to recover the p − 1 erasure symbols in a column. Consider Disk 1
in Figure 6, we can choose a combination of (R0, D2, R2, R3) to recover Disk 1, which
means that R0 is used to recover d0,1, D2 is used to recover d1,1, and so on. Since there
are two choices for the recovery of d0,1 (from R0 or D1), d1,1 and d2,1 respectively, and
only one choice for the recovery of d3,1 (from R3 only), there are 2 × 2 × 2 × 1 = 8
recovery combinations to reconstruct symbols in Disk 1. The conventional recovery
scheme, (R0, R1, R2, R3), is just one of possible recovery combinations. Since Disk p
(or column p) is the diagonal parity column, which can only be recovered by diagonal
parity sets, there is only one recovery combination for column p. So we only consider
the recovery of Disk k, with k 6= p in this paper.
Our objective is to find the read optimal one from all possible recovery combinations

which has the minimum number of disk reads. This is equivalent to find a recovery
combination with most overlapping symbols. We have the following Lemma 4.6 indi-
cating the property of overlapping symbols between two parity sets.

LEMMA 4.6.

(1) There is just one overlapping symbol between each pair of Ri and Dj for 0 ≤ i, j ≤
p − 2, and the overlapping symbol is Ri ∩ Dj = {di,<j−i>p}.

(2) There is no overlapping symbol between each pair of Ri and Rj , or Di and Dj , i.e.
Ri ∩ Rj = ∅ and Di ∩ Dj = ∅ for 0 ≤ i, j ≤ p − 2, i 6= j.

It is interesting to point out that the conventional recovery scheme for single disk
failure only uses row parity sets for the recovery. Lemma 4.6 shows that there is
no overlapping symbol during the recovery process with the conventional recovery
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scheme. Therefore, one cannot reduce the read operations using the conventional re-
covery scheme. Also according to Lemma 4.6, if we use both the row and the diagonal
parity sets to recover Disk k (k 6= p), we can reduce disk read operations by putting
overlapping symbols in memory. The following Theorem 4.7 gives a lower bound of
disk reads for any single erasure column recovery.

THEOREM 4.7.

(1) For any erasure column k (k 6= p), the minimum number of disk reads to recover
column k of RDP code is 3(p − 1)2/4.

(2) Any recovery combination which consists of (p−1)/2 row parity sets and (p−1)/2 di-

agonal parity sets will match the minimumnumber of disk reads. There are
(

p−1
(p−1)/2

)

possible recovery combinations which match the minimum number of disk reads.

PROOF. (1) Let the erasure column be column k (0 ≤ k ≤ p − 1). We need to recover
all the p − 1 symbols di,k(0 ≤ i ≤ p − 2) in column k. Erasure symbol di,k can only
be recovered by the parity sets to which it belongs. From Lemma 4.6, we know that
there is one overlapping symbol between each pair of Ri and Dj . If t erasure symbols
(except for dp−1−k,k) are recovered from diagonal parity sets and the remaining p−1− t
symbols are recovered from row parity sets, the number of overlapping symbols is

t(p − 1 − t) = −(t − (p − 1)/2)2 + (p − 1)2/4.

When t = (p−1)/2, the number of overlapping symbols, t(p−1−t), is maximized, which
equals to (p−1)2/4. During the recovery process, if an overlapping symbol is read from
a disk to recover an erasure symbol, it will be stored in memory for the recovery of
another erasure symbol. While recovering the later erasure symbol, the overlapping
symbol can be read from memory instead of performing another disk read. So the
maximum of (p− 1)2/4 symbols can be reduced from disk read. The minimum number
of disk reads for the recovery is

(p − 1)2 − (p − 1)2/4 = 3(p − 1)2/4,

and a read optimal recovery combination which matches the lower bound should con-
sist of (p − 1)/2 row parity sets and (p − 1)/2 diagonal parity sets.
(2) The correctness of condition (2) follows directly from the proof of condition (1).

Therefore, Theorem 4.7 concludes.

Based on Theorem 4.7, a read optimal recovery scheme can be stated as: for a single
failed Disk k, choose any (p − 1)/2 symbols (Note: dp−1−k,k must be included), recon-
struct them from row parity sets and reconstruct the remaining (p−1)/2 symbols from
diagonal parity sets.
However, the number of disk reads on individual disk of some recovery combinations

are the same (or almost the same), while that of others varies greatly. In the next
subsection, we will study how to balance the disk reads.

4.2. Balancing Disk Reads

Let the erasure column be column k (0 ≤ k ≤ p − 1). The minimum number of symbols
to be read from disks for the recovery is 3(p − 1)2/4. Since any read optimal recovery
combination contains (p − 1)/2 diagonal parity sets, (p − 1)/2 symbols will always be
read from Disk p (diagonal parity disk). Then the average number of symbols to be
read from the other surviving disks (except for Disk k and Disk p) is

3(p − 1)2/4 − (p − 1)/2

p − 1
= (3p − 5)/4.
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As (p − 1)/2 symbols will always be read from Disk p, now we only consider how to
provide a read balanced recovery scheme on the remaining disks (except for Disk k and
Disk p).
Given a prime number p > 2, we have to consider two cases: either p ≡ 3 (mod 4) or

p ≡ 1 (mod 4).

Case 1. If p ≡ 3 (mod 4), then 3p−5 is divisible by 4. A balanced and read optimal
recovery combination should read (3p− 5)/4 symbols from each of the disks (except
for Disk k and Disk p).
Case 2. If p ≡ 1 (mod 4), then 3p − 5 isn’t divisible by 4. A balanced and read
optimal recovery combination should read ⌈(3p − 5)/4⌉ symbols from some disks
and ⌊(3p − 5)/4⌋ symbols from the rest.

For example, if p = 7 and k = 0, as 7 ≡ 3 (mod 4), a balanced and read optimal
recovery combination of Disk 0 should read (3p− 5)/4 = 4 symbols from Disk 1 to Disk
6. See Figure 5(b) for an illustration.
In the following, we will only present the analysis for the case of p ≡ 3 (mod 4). The

analysis of the case p ≡ 1 (mod 4) is similar. So we will only list the conclusions of the
case p ≡ 1 (mod 4) at the end of this section and omit their analysis for brevity.
To simplify the analysis of balanced disk read, we introduce a recovery sequence

x0, x1, . . . , xp−2, where xi = 0 means that di,k is recovered from its row parity set,
and xi = 1 means that di,k is recovered from its diagonal parity set. So a recovery
combination can be exactly represented by a recovery sequence.
Our analysis of balanced disk read is based on the finite field Fp. To facilitate the

analysis, we add an additional row p − 1 with all symbols dp−1,j = 0 (0 ≤ j ≤ p) to the
encoded array throughout this section. So the row number set {0, 1, . . . , p− 1} consists
of all the elements of Fp. With the additional row, the disk array is now a p × (p + 1)
array. Since all symbols in row p − 1 are 0, dp−1,k in row p − 1 can be regarded as
being recovered from its row parity set. Because dp−1,k is recovered from its row parity
set, xp−1 = 0. Moreover, dp−1−k,k is in missing diagonal and only belongs to its row
parity set, which can only be recovered by its row parity set. So, xp−1−k = 0. With
the additional row, a recovery sequence is x0, x1, . . . , xp−2, xp−1 with xp−1 = 0 and
xp−1−k = 0.
A balanced recovery scheme will read the same (or almost the same) number of

symbols from each of the surviving disks. The number of symbols need to be read from
each surviving disk is decided by the recovery sequence we choose. Given a recovery
sequence {xi}0≤i≤p−1, we consider that how many symbols need to be read from each
surviving disk under this recovery sequence. We still take p = 7 and k = 0 to illustrate,
suppose the recovery sequence being {xi}0≤i≤6 = {1101000}, its corresponding recovery
scheme is shown in Figure 5(b).
According to the recovery sequence, as x2 = x4 = x5 = x6 = 0, symbols d2,0, d4,0, d5,0,

d6,0 are recovered from R2, R4, R5, R6 respectively, then d2,j ∈ R2, d4,j ∈ R4, d5,j ∈ R5,
and d6,j ∈ R6 in Disk j (1 ≤ j ≤ 6) will be read for recovery. As x0 = x1 = x3 = 1,
symbols d0,0, d1,0, d3,0 are recovered from D0, D1, D3 respectively, then dp−j,j ∈ D0,
d<1−j>p,j ∈ D1, and d<3−j>p,j ∈ D3 in Disk j will be read for recovery.
Now we can find that if a symbol di,j in Disk j needs to be read for recovery, either

Ri or D<i+j>p is chosen for recovery, which equals to xi = 0 or x<i+j>p = 1.
Given a recovery sequence {xi}0≤i≤p−1, the following Lemma 4.8 indicates that how

many symbols will not be read from a surviving disk with the recovery combination
corresponding to {xi}0≤i≤p−1. It helps to understand Theorem 4.9.

LEMMA 4.8. Given a recovery sequence {xi}0≤i≤p−1. If an erasure column k(0 ≤ k ≤
p−1) is recovered by the recovery combination corresponding to {xi}0≤i≤p−1, the number
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of symbols which are not read from Disk j is:

p−1
∑

i=0

xi −

p−1
∑

i=0

xix<i+j−k>p .

PROOF. We define ci,j to identify whether di,j is read for the recovery. If di,j is read
for the recovery, ci,j = 0; otherwise ci,j = 1 (0 ≤ i, j ≤ p − 1).
If xi = 0, symbol di,k is recovered by row parity set Ri, di,j is read to recover di,k

because di,j ∈ Ri. If x<i+j−k>p = 1, symbol d<i+j−k>p ,k is recovered by diagonal parity
set D<i+j>p , di,j is read to recover d<i+j−k>p ,k because di,j ∈ D<i+j>p . Given di,j ,
either di,j ∈ Ri or di,j ∈ D<i+j>p . So only when xi = 0 or x<i+j−k>p = 1, di,j is
read for recovery. Therefore, only when xi = 0 or x<i+j−k>p = 1, ci,j = 0. So ci,j =
xi(1 − x<i+j−k>p ).
The number of symbols which do not need to be read from Disk j (0 ≤ j ≤ p−1, j 6= k)

for the recovery of Disk k is

p−1
∑

i=0

ci,j =

p−1
∑

i=0

xi(1 − x<i+j−k>p ) =

p−1
∑

i=0

xi −

p−1
∑

i=0

xix<i+j−k>p .

Therefore, Lemma 4.8 concludes.

The following Theorem 4.9 provides a sufficient condition for a recovery sequence to
be both read optimal and balanced.

THEOREM 4.9. If a recovery sequence {xi}0≤i≤p−1 of Disk k (0 ≤ k ≤ p − 1) satisfies
that:

(1) x0 + x1 + · · · + xp−2 + xp−1 = (p − 1)/2;
(2) xp−1−k = xp−1 = 0;

(3) ∀t, 1 ≤ t ≤ p − 1,
p−1
∑

i=0

xix<i+t>p = (p − 3)/4.

{xi}0≤i≤p−1 is a read optimal and balanced recovery sequence for the recovery of Disk
k (0 ≤ k ≤ p − 1).

PROOF. Condition (1) just means that (p − 1)/2 symbols are recovered from row
parity sets and (p − 1)/2 symbols are recovered from diagonal parity sets. While con-
dition (2) means that dp−1−k,k (which is in missing diagonal) and dp−1,k (which is an
additional symbol) are recovered from their row parity sets. From Theorem 4.7, that
condition (1) and condition (2) hold is equivalent to that {xi}0≤i≤p−1 is a read optimal
sequence.
In the following of the proof, we concentrate on condition (3).
As any read optimal recovery will read (3p − 5)/4 symbols, on average, from each of

the surviving disks (except for Disk p), if the disk read of recovery is balanced,

(p − 1) − (3p − 5)/4 = (p + 1)/4

symbols will not be read from each of the disks. From Lemma 4.8, The number of
symbols which don’t need to be read from Disk j (0 ≤ j ≤ p − 1, j 6= k) is

p−1
∑

i=0

xi −

p−1
∑

i=0

xix<i+j−k>p . (1)

Let t =< j − k >p, then < i + j − k >p=< i + t >p. Since 0 ≤ j ≤ p − 1, j 6= k and
0 ≤ k ≤ p − 1, 1 ≤ t ≤ p − 1.
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Therefore,

p−1
∑

i=0

xi −

p−1
∑

i=0

xix<i+j−k>p =

p−1
∑

i=0

xi −

p−1
∑

i=0

xix<i+t>p . (2)

Because the recovery is read optimal, from Theorem 4.7, (p−1)/2 symbols in column

k are recovered from their diagonal parity sets. So
∑p−1

i=0 xi = (p − 1)/2. According to

condition (3),
∑p−1

i=0 xix<i+t>p = (p − 3)/4.
Therefore,

p−1
∑

i=0

xi −

p−1
∑

i=0

xix<i+t>p = (p − 1)/2 − (p − 3)/4 = (p + 1)/4. (3)

Equation (3) means that if condition (3) holds, (3p− 5)/4 symbols are read from each
of the disks (except for Disk k and Disk p). So {xi}0≤i≤p−1 is balanced.
Therefore, Theorem 4.9 holds.

Conditions (1) and (2) of Theorem 4.9 ensure that a recovery sequence is read op-
timal, and condition (3) ensures a recovery sequence is read balanced. Now to find a
read optimal and balanced recovery sequence is equivalent to find a recovery sequence
satisfies the three conditions of Theorem 4.9. And the most difficult part is how to find
a recovery sequence which satisfies Condition (3).
In the following of this subsection, we will use difference set [van Lint et al. 1993]

to present a read optimal and balanced recovery scheme. Firstly, we introduce some
definitions and properties of multiset and difference set.

Definition 4.10. A multiset M is a generalization of a set, in which there maybe
multiple instances of an element. M is denoted as

M = {k1 × a1, k2 × a2, . . . , kn × an},

where a1, a2, . . . , an are all the distinct elements in M, and there are ki instances of ai

in M, ki is called the multiplicity of ai(1 ≤ i ≤ n).

Definition 4.11. Given a recovery sequence {xi}0≤i≤p−1. Define Ax = {i|xi = 1, 0 ≤
i ≤ p − 1} and the multiset MAx = {a1 − a2|a1, a2 ∈ Ax, a1 6= a2}.

For example, considering the example in Figure 5(b), the recovery combination is
(D0, D1, R2, D3, R4, R5), and its corresponding recovery sequence is {xi}0≤i≤6 =
{1101000}. According to Definition 4.11, Ax = {0, 1, 3} andMAx = {(0−1) mod 7, (0−3)
mod 7, (1 − 0) mod 7, (1 − 3) mod 7, (3 − 0) mod 7, (3 − 1) mod 7} = {6, 4, 1, 5, 3, 2}.

LEMMA 4.12. Given a recovery sequence {xi}0≤i≤p−1. Then

p−1
∑

i=0

xix<i+t>p = (p − 3)/4 for 1 ≤ t ≤ p − 1

is equivalent to that Ax = {i|xi = 1, 0 ≤ i ≤ p− 1} satisfies MAx = {[(p− 3)/4]× 1, [(p−
3)/4] × 2, . . . , [(p − 3)/4] × (p − 1)}, i.e. for any t, 1 ≤ t ≤ p − 1, the multiplicity of t in
MAx is (p − 3)/4.

PROOF. Given t, 1 ≤ t ≤ p − 1. If
∑p−1

i=0 xix<i+t>p = (p − 3)/4, there are
it1 , it2 , . . . , it(p−3)/4

with 0 ≤ itu , itv ≤ p − 1 and itu 6= itv for tu 6= tv, such that

xitu
= x<itu+t>p = 1
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for 1 ≤ u ≤ (p − 3)/4. According to Definition 4.11, this is equivalent to

xitu
, x<itu+t>p ∈ Ax

for 1 ≤ u ≤ (p − 3)/4, and further equivalent to that for 1 ≤ u ≤ (p − 3)/4,

(itu + t) − itu = t ∈ MAx .

So for any t, 1 ≤ t ≤ p − 1, the multiplicity of t in MAx is (p − 3)/4. Lemma 4.12
concludes.

Consider the example in Figure 5(b), (D0, D1, R2, D3, R4, R5) is a read optimal
and balanced recovery combination of Disk 0. Therefore, the corresponding recovery
sequence {xi}0≤i≤6 = {1101000}. It is easy to verify that for 1 ≤ t ≤ 6,

∑6
i=0 xix<i+t>7 =

(p − 3)/4 = 1. For example, when t = 1,
∑6

i=0 xix<i+1>7 = x0x1 + x1x2 + x2x3 + x3x4 +
x4x5 + x5x6 + x6x0 = 1. According to Definition 4.11, Ax = {0, 1, 3} and MAx = {a1 −
a2|a1, a2 ∈ Ax, a1 6= a2} = {1, 2, 3, 4, 5, 6}, which also satisfies that ∀t (1 ≤ t ≤ 6), t has a
multiplicity of (p − 3)/4 = 1 in the multiset MAx .
According to Lemma 4.12, to find a recovery sequence satisfying Condition (3) of

Theorem 4.9 is equivalent to finding a set Ax which satisfies that the multiplicity of t
in MAx is (p − 3)/4 for any t (1 ≤ t ≤ p − 1).

Definition 4.13. Let G be an additive group of order v and S be a subset of G with
k elements. S is called a (v, k, λ)-difference set if each nonzero element in G has a
multiplicity of λ in the multiset MS = {s1 − s2 |s1, s2 ∈ S, s1 6= s2} .

Definition 4.14. Let p be a prime number. Sp = {i2 mod p|1 ≤ i ≤ p− 1} is called the
nonzero square set of Fp. S′

p = Fp \ (Sp ∪ {0}) is called the non-square set of Fp.

THEOREM 4.15. [van Lint et al. 1993] Let p be a prime number with p ≡ 3 (mod 4),
Sp and S′

p both are
(

p, p−1
2 , p−3

4

)

-difference sets in the additive group of Fp.

Since (p − i)2 ≡ (p2 − 2pi + i2) ≡ i2 (mod p), the nonzero square set Sp = {i2 mod
p|1 ≤ i ≤ p − 1} = {i2 mod p|1 ≤ i ≤ (p − 1)/2}. When p = 7, Sp = {12 mod 7, 22 mod
7, 32 mod 7} = {1, 4, 2}. From Theorem 4.15, we can find that the set Sp satisfies that
the multiplicity of t in MSp is (p − 3)/4 for any t (1 ≤ t ≤ p − 1).
The following theorem gives a read optimal and balanced recovery sequence

{xi}0≤i≤p−1 for any failed Disk k (k 6= p), when p ≡ 3 (mod 4).

THEOREM 4.16. Given a prime number p with p ≡ 3 (mod 4). For the nonzero
square set Sp and the non-square set S′

p of Fp,

A =

{

S′
p − (k + 1) k ∈ Sp

Sp − (k + 1) k /∈ Sp

corresponds to a read optimal and balanced recovery sequence {xi}0≤i≤p−1 for the re-
covery of Disk k (k 6= p), where S′

p − (k + 1) = {s − (k + 1)|s ∈ S′
p} and Sp − (k + 1) =

{s− (k + 1)|s ∈ Sp}.

PROOF. We only prove the case of k ∈ Sp. The proof of the case of k /∈ Sp is similar
and therefore omitted.
According to A = S′

p − (k + 1), define a recovery sequence {xi}0≤i≤p−1 as that if
i ∈ A, xi = 1, otherwise xi = 0. In the following, we will prove that recovery sequence
{xi}0≤i≤p−1 is read optimal and balanced. According to Theorem 4.9, we need to prove
that {xi}0≤i≤p−1 satisfies the three conditions of Theorem 4.9.
(1) Because |A| = |S′

p| = (p−1)/2, x0+x1+· · ·+xp−2+xp−1 = (p−1)/2. So {xi}0≤i≤p−1

satisfies condition (1) of Theorem 4.9.
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(2) Given k ∈ Sp and A = S′
p − (k + 1),

k ∈ Sp ⇒ k /∈ S′
p ⇒ k − (k + 1) /∈ S′

p − (k + 1) ⇒ p − 1 /∈ A ⇒ xp−1 = 0

p /∈ S′
p ⇒ p − (k + 1) /∈ S′

p − (k + 1) ⇒ p − (k + 1) /∈ A ⇒ xp−1−k = 0

So {xi}0≤i≤p−1 satisfies condition (2) of Theorem 4.9.

(3) According to Theorem 4.15, S′
p is a

(

p, p−1
2 , p−3

4

)

-difference set in the additive
group of Fp. So ∀t (1 ≤ t ≤ p − 1), t has a multiplicity of (p − 3)/4 in the multiset
MS′

p
= {s1 − s2|s1, s2 ∈ S′

p, s1 6= s2}.

Because A = S′
p−(k+1), multisetMA = {a1−a2|a1, a2 ∈ A, a1 6= a2} = {s1−s2|s1, s2 ∈

S′
p, s1 6= s2} = MS′

p
. So ∀t (1 ≤ t ≤ p− 1), t has a multiplicity of (p− 3)/4 in MA, which

is equivalent to

p−1
∑

i=0

xix<i+t>p = (p − 3)/4

for any t, 1 ≤ t ≤ p − 1. Thus, {xi}0≤i≤p−1 satisfies condition (3) of Theorem 4.9.
From (1) to (3), {xi}0≤i≤p−1 is a read optimal and balanced recovery sequence when

k ∈ Sp.

From Theorem 4.16, we give the read optimal and balanced recovery scheme of Disk
k, and it can be generalized as:

(1) Figure out the nonzero square set Sp and non-square set S′
p of Fp.

(2) If k ∈ Sp, let A be S′
p − (k + 1); if k /∈ Sp, let A be Sp − (k + 1).

(3) For the failed Disk k, there is a read optimal and balanced recovery scheme corre-
sponding to A, which means when i ∈ A, di,k is recovered by diagonal parity and
otherwise di,k is recovered by row parity.

Now we use an example to explain the read optimal and balanced recovery scheme
of Disk k (k 6= p), when p ≡ 3 (mod 4). Assume that p = 7, then S7 = {i2 mod 7|1 ≤ i ≤
(7−1)/2} = {12 mod 7, 22 mod 7, 32 mod 7} = {1, 2, 4}, and S′

7 = F7\(S7∪{0}) = {3, 5, 6}.
When Disk k = 1 fails, to recover the failed Disk 1, we need to find a read optimal

and balanced recovery sequence {xi}0≤i≤6. As k = 1 ∈ S7, from Theorem 4.16, A =
S′

p − (k + 1) = S′
p − (1 + 1) = {(s− 2) mod 7|s ∈ S′

p} = {1, 3, 4} corresponds to a recovery
sequence {xi}0≤i≤6 = {0101100}. Thus, the read optimal and balanced recovery scheme
is that symbols d0,1, d2,1, d5,1 are recovered by row parity, and symbols d1,1, d3,1, d4,1

are recovered by diagonal parity.
When Disk k = 3 fails, k = 3 /∈ S7, from Theorem 4.16, A = Sp − (k + 1) =

Sp − (3 + 1) = {(s − 4) mod 7|s ∈ Sp} = {0, 4, 5} corresponds to a recovery sequence
{xi}0≤i≤6 = {1000110}. Thus, the read optimal and balanced recovery scheme is that
symbols d1,3, d2,3, d3,3 are recovered by row parity, and symbols d0,3, d4,3, d5,3 are re-
covered by diagonal parity.
The following Theorem 4.17 to Theorem 4.20 give a read optimal and balanced recov-

ery scheme for any single disk failure with p ≡ 1 (mod 4). They are similar to Theorem
4.9 to Theorem 4.16 of the case of p ≡ 3 (mod 4). Therefore they can be proved in the
similar way and we omit them for brevity.

THEOREM 4.17. Let p be a prime number with p ≡ 1 (mod 4). If a recovery sequence
{xi}0≤i≤p−1 of Disk k (0 ≤ k ≤ p − 1) satisfies that:

(1) x0 + x1 + · · · + xp−2 + xp−1 = (p − 1)/2;
(2) xp−1 = xp−1−k = 0;
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(3) ∀t (1 ≤ t ≤ p − 1), either
p−1
∑

i=0

xix<i+t>p = (p − 1)/4, or
p−1
∑

i=0

xix<i+t>p = (p − 5)/4.

{xi}0≤i≤p−1 is a read optimal and balanced recovery sequence for the recovery of Disk k
(0 ≤ k ≤ p − 1) in a disk array with RDP code.

Definition 4.18. Let G be an additive group of order v and S be a subset of G with
k elements. S is called a (v, k, λ, µ)-partial difference set of G, if each nonzero element
s ∈ S has a multiplicity of λ, and each nonzero element s′ ∈ G\S has a multiplicity of
µ in the multiset MS = {s1 − s2|s1, s2 ∈ S, s1 6= s2}.

THEOREM 4.19. [Ma 1994] Let p ≡ 1 (mod 4) be a prime number, Sp be the set
of all nonzero squares in Fp and S′

p is the non-square set of Fp. Sp and S′
p both are

(

p, p−1
2 , p−5

4 , p−1
4

)

-partial difference sets in the additive group of Fp .

THEOREM 4.20. Given a prime number p with p ≡ 1 (mod 4). For the nonzero
square set Sp and the non-square set S′

p of Fp,

A =

{

S′
p − (k + 1) k ∈ Sp

Sp − (k + 1) k /∈ Sp

corresponds to a read optimal and balanced recovery sequence {xi}0≤i≤p−1 for the re-
covery of Disk k (k 6= p) in RDP code storage systems.

4.3. Optimal Recovery Scheme for Single Disk Failure of RDP code

In the last subsection, we presented a recovery combination which is read optimal and
balanced for any erasure column k (k 6= p). In the following, we propose the RDOR-
RDP recovery scheme, which is a read optimal, balanced recovery scheme of RDP code
and pre-stores (p − 1)/2 extra symbols.
To recover any single column k, a read optimal and balanced recovery combination

we choose is according to the recovery sequence demonstrated in Theorem 4.16 and
Theorem 4.20. For 0 ≤ i ≤ p− 2, if i ∈ A, symbol di,k is recovered by diagonal parity set
D<i+k>p ; otherwise di,k is recovered by row parity set Ri. Any overlapping symbol d
can be located in the disk array by calculating intersections of the selected row parity
sets and diagonal parity sets for the recovery.
The recovery process of RDOR-RDP is shown in Algorithm 1, it is executed in a “row-

parity-first” manner, i.e., we first recover the (p − 1)/2 erasure symbols dj,k with j /∈ A
(0 ≤ j ≤ p − 2) by Rj , and then recover the rest (p − 1)/2 symbols di,k with i ∈ A
(0 ≤ i ≤ p − 2). (p − 1)/2 memory units are reserved to recover the (p − 1)/2 symbols
di,k with i ∈ A.
According to RDOR-RDP, to recover p − 1 erasure symbols in a stripe, we need to

allocate (p−1)/2 memory units for overlapping symbols. Consider an RDP code storage
system of p = 19, and a symbol size of 1M, the allocated memory size is 9 MB. Once
the p − 1 erased symbols in a stripe are successfully recovered, the allocated memory
units will be released for the recovery of the next stripe. Thus, we can find that the
allocated memory size for the recovery of a failed disk is only on the order of a few
MBs. In practical storage systems, the extra memory usage of a few MBs will bring
very little impact on the recovery performance.
We compare RDOR-RDP with the conventional recovery scheme of RDP code in the

following three aspects.

(1) Number of Disk Reads: The conventional recovery performs (p − 1)2 disk reads
while RDOR-RDP needs to read 3(p−1)2/4 symbols for recovery per stripe. RDOR-
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ALGORITHM 1: Row-Diagonal Optimal Recovery of RDP code (RDOR-RDP)

1. (p− 1)/2 memory units Mi (i ∈ A) are allocated for each erasure symbol di,k (i ∈ A) and the
symbol di stored in Mi is initialized to 0.

2. Recover the (p− 1)/2 symbols dj,k (0 ≤ j ≤ p− 2, j /∈ A).
(a) Recover symbol dj,k by XOR-summing all available symbols in Rj ;
(b) During the recovery process, for each symbol d ∈ Rj , if it is an overlapping symbol

which should be used to recover some di,k (i ∈ A) later, it is XOR-summed with the
symbol di stored in its corresponding memory locations Mi (i ∈ A) (in other words,
di ← di ⊕ d).

3. Recover the rest (p− 1)/2 symbols di,k (i ∈ A).
(a) While recovering di,k (i ∈ A), for each symbol d ∈ D<i+k>p , if it is not an overlapping

symbol, read it from disk and XOR-sum it to di.
(b) After 3(a) finished, recovered symbol di,k is stored in Mi.

4. Once the p− 1 erasure symbols are successfully recovered, the recovery process can move
on to the next stripe, and the (p− 1)/2 memory units Mi can be reused.

RDP can reduce by approximately 25% disk reads compared with the conventional
scheme at the expense of a proper extra memory usage.

(2) Read Balance: Both RDOR-RDP and the conventional scheme achieve disk read
balance during recovery.

(3) Computational Complexity: The computational cost of recovery scheme is de-
termined as the total number of exclusive or (XOR) operations needed for recovery.
Each parity set contains p symbols, so to recover any erasure symbol no matter
which kind of parity was chosen for recovery, p−2 XOR operations on p−1 symbols
are required. Thus the total number of XOR operations required for recovery of
RDOR-RDP is equal to the conventional scheme.

5. THE RECOVERY OF SINGLE DISK FAILURE FOR EVENODD CODE

With the conventional recovery scheme of EVENODD code, whenever a single column
is in erasure, it should read (p− 1)× p symbols to recover it. Figure 7 gives an example
of EVENODD code with p = 5, to recover the erasure column 0, 4 × 5 = 20 symbols
need to be read. In this section, we derive the lower bound of disk reads for single
disk failure recovery of EVENODD code and propose a single failure recovery scheme
which achieves this lower bound.

5.1. Lower Bound of Disk Reads for Single Failure Recovery

Similar to the analysis of RDP code, we will firstly analyze the possible choices for the
recovery of an erasure column in EVENODD code.
In EVENODD code, the row parity set Ri is defined as the set of all the information

symbols which are used to generate di,p (0 ≤ i ≤ p−2) (excluding the row parity symbol
di,p). Diagonal parity set Dj consists of all the information symbols which are used to
generate dj,p+1 (0 ≤ j ≤ p−2) (excluding the diagonal parity symbol dj,p+1). The formal
descriptions of Ri and Dj are presented in Definition 5.1.

Definition 5.1.

(1) Define Ri = {di,r|0 ≤ r ≤ p − 1} as the i-th row parity set, 0 ≤ i ≤ p − 2;
(2) Define H = {di,p−1−i|0 ≤ i ≤ p − 2} as the adjuster set;
(3) Define D′

j = {di,r|(i + r) mod p = j, 0 ≤ i ≤ p − 2, 0 ≤ r ≤ p − 1}. Dj = D′
j ∪ H is

called the j-th diagonal parity set, 0 ≤ j ≤ p − 2.
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Disk0 Disk1 Disk2 Disk3 Disk4 Disk5 Disk6
Spare

Disk

d0,0 d0,0

d1,0 d1,0

d2,0 d2,0

d3,0 d3,0

Fig. 7. Conventional scheme to recover Disk 0 of EVENODD code.

From Definition 5.1, |Ri| = p for 0 ≤ i ≤ p − 2 and |Dj | = |D′
j ∪ H | = 2(p − 1) for

0 ≤ j ≤ p − 2 (Note that parity sets of EVENODD code only consist of information
symbols). Consider the example in Figure 3, R0 = {d0,0, d0,1, d0,2, d0,3, d0,4}, and D0 =
D′

0 ∪ H = {d0,0, d3,2, d2,3, d1,4} ∪ {d3,1, d2,2, d1,3, d0,4}.
According to EVENODD code, given a symbol d ∈ Ri, d can be recovered by XOR-

summing all the other symbols in Ri − {d} and the row parity symbol di,p. Besides, for
d ∈ Dj , d can be recovered by XOR-summing all the other symbols in Dj − {d} and the
diagonal parity symbol dj,p+1. In the following, we say that d can be recovered from Ri

or Dj .
Assume that the erasure column is column k (0 ≤ k ≤ p + 1), all symbols di,k (0 ≤

i ≤ p − 2) in this column are to be recovered. Based on EVENODD code, we have the
following Lemma 5.2.

LEMMA 5.2. Given an erasure column k,

(1) 0 ≤ k ≤ p− 1, if the symbol di,k ∈ H , it can be recovered from either Ri or Dk−1, and
if the symbol di,k /∈ H , it can be recovered from either Ri or D<i+k>p .

(2) k = p, column k is the row parity column. Symbol di,p can only be recovered from
Ri;

(3) k = p + 1, column k is the diagonal parity column. Symbol di,p+1 can only be recov-
ered from Di.

Since column p can only be recovered from row parity sets and column p+1 can only
be recovered from diagonal parity sets, we only consider the recovery of column k with
k 6= p, p + 1 in the following.
Symbol di,k can only be recovered from its parity sets. Similar to which in RDP code,

to find the lower bound of disk reads for single disk failure recovery of EVENODD
code is also equivalent to find a recovery combination with most overlapping symbols.
Lemma 5.3 shows the possible overlapping symbols between two parity sets.

LEMMA 5.3.

(1) Ri ∩ D′
j = {di,<j−i>p} for 0 ≤ i, j ≤ p − 2;

(2) Ri ∩ H = {di,p−1−i} and D′
j ∩ H = ∅ for 0 ≤ i, j ≤ p − 2;

(3) Ri ∩ Rj = ∅ and D′
i ∩ D′

j = ∅ for 0 ≤ i, j ≤ p − 2, i 6= j.

According to Lemma 5.3, the following theorem gives a lower bound of disk reads for
any single erasure column recovery.

THEOREM 5.4.
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Disk0 Disk1 Disk2 Disk3 Disk4 Disk5 Disk6

Fig. 8. Reducing number of reads to recover Disk 0 of EVENODD code.

(1) For any erasure column k (k 6= p, p + 1), the minimum number of disk reads to
recover column k of EVENODD code is (p − 1)(3p + 1)/4.

(2) Any recovery combination which consists of (p − 1)/2 row parity sets and (p − 1)/2
diagonal parity sets will match the minimum number of disk reads.

PROOF. (1) p − 1 symbols in column k need to be recovered, and erasure symbol
di,k (0 ≤ i ≤ p − 2) in column k can be recovered either from row parity set or from
diagonal parity set. Suppose that t erasure symbols are recovered from diagonal parity
sets and the other p − 1 − t symbols are recovered from row parity sets. According to
Lemma 5.3, the number of overlapping symbols is

∑

i,j

|Ri ∩ Dj | =
∑

i,j

|Ri ∩ D′
j | +

∑

i

|Ri ∩ H | = t(p − 1 − t) + (p − 1 − t).

Then the number of symbols to be read for recovery is

(p − 1 − t)p + (t(p − 1) + (p − 1)) − (t(p − 1 − t) + (p − 1 − t))

=

(

t −
p − 1

2

)2

+
(p − 1)(3p + 1)

4
.

When t = (p − 1)/2, the number of disk reads for recovery is minimized which is
equal to (p − 1)(3p + 1)/4. The read optimal recovery combination which matches the
lower bound should consist of (p − 1)/2 row and (p − 1)/2 diagonal parity sets.
(2) The correctness of condition (2) follows directly from the proof of condition (1).

From Theorem 5.4, a read optimal recovery scheme of EVENODD code can be stated
as: for a single failed Disk k (k 6= p, p + 1), use row parity sets to recover any (p − 1)/2
symbols, and use diagonal parity sets to recover the rest (p − 1)/2 symbols.
Consider an example in Figure 8 with p = 5 and k = 0, one of the read optimal re-

covery combination to recover the four erasure symbols is (D0, D1, R2, R3), from which
we need to read a number of 16 symbols for recovery. However, the number of read
operations on individual disks of this recovery combination varies from 2 to 4. In the
next subsection, we will present a recovery combination which matches the disk read
lower bound and balances the disk reads.

5.2. Balancing Disk Reads

As the analysis of balancing disk reads for EVENODD code is similar to that of RDP
code, the discussions and proofs of the similar results about EVENODD code are shown
in the appendix. In this section, we only present the results.
The following theorem gives a read optimal and balanced recovery sequence

{xi}0≤i≤p−1 for any failed Diks k (0 ≤ k ≤ p−1) of EVENODD code with p ≡ 1 (mod 4).
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Disk0 Disk1 Disk2 Disk3 Disk4 Disk5 Disk6

Fig. 9. Load balancing in recovering Disk 0 of EVENODD code.

THEOREM 5.5. Given a prime number p with p ≡ 1 (mod 4). For the nonzero square
set Sp and the non-square set S′

p of Fp,

A =

{

S′
p − (k + 1) k ∈ Sp

Sp − (k + 1) k /∈ Sp

corresponds to a read optimal and balanced recovery sequence {xi}0≤i≤p−1 for the re-
covery of Disk k (k 6= p, p + 1) in EVENODD code storage systems.

To illustrate, consider p = 5 and k = 0 as an example, Sp = {1, 4} and S′
p = {2, 3}.

Because k /∈ Sp, A = Sp − (k + 1) = Sp − 1 = {0, 3} corresponds to a read optimal and
balanced recovery sequence {10010}. See Figure 9 for an illustration. The following
Theorem 5.6 gives a read optimal and balanced recovery scheme for any single disk
failure with p ≡ 3 (mod 4).

THEOREM 5.6. Given a prime number p with p ≡ 3 (mod 4). For the nonzero square
set Sp and the non-square set S′

p of Fp,

A =

{

S′
p − (k + 1) k ∈ Sp

Sp − (k + 1) k /∈ Sp

corresponds to a read optimal and balanced recovery sequence {xi}0≤i≤p−1 for the re-
covery of Disk k(k 6= p, p + 1) in EVENODD code storage systems.

5.3. Optimal Recovery Scheme for Single Disk Failure of EVENODD code

The read optimal and balanced recovery scheme of EVENODD code, RDOR-
EVENODD, is very similar to that of RDP code. It needs one more memory unit to store
the overlapping symbols in H than RDOR-RDP. The recovery combination we choose
is according to the recovery sequence demonstrated in Theorem 5.5 and Theorem 5.6.
The recovery process of RDOR-EVENODD is also executed in a “row-parity-first” way
which is shown in Algorithm 2.
We also compare RDOR-EVENODD with the conventional recovery scheme of

EVENODD code in the following three aspects.

(1) Number of Disk Reads: The conventional recovery of EVENODD code performs
p(p− 1) disk reads while RDOR-EVENODD needs to read (p− 1)(3p+1)/4 symbols
for recovery per stripe. As

(p − 1)(3p + 1)/4

p(p − 1)
=

3

4
+

1

4p
,

with a large number of p, RDOR-EVENODD can reduce by approximately 25%
disk reads compared with the conventional scheme at the expense of a proper extra
memory usage.
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ALGORITHM 2: Row-Diagonal Optimal Recovery of EVENODD code (RDOR-EVENODD)

(1) (p + 1)/2 memory units Mi (i ∈ A) and Mh are allocated for each erasure symbol di,k (i ∈ A)
and adjuster h. The symbols di, dh stored in Mi (i ∈ A) and Mh are all initialized to 0.

(2) Recover the (p− 1)/2 symbols dj,k (0 ≤ j ≤ p− 2, j /∈ A) from row parity set Rj . During
recovery, for each overlapping symbol d ∈ Rj

(a) If d ∈ H , it is XOR-summed with the symbol dh stored in Mh (dh ← dh ⊕ d).
(b) If d ∈ D′

<i+k>p
, which should be used to recover some di,k (i ∈ A) later, it is

XOR-summed with the symbol di stored in Mi (i ∈ A) (di ← di ⊕ d).

(3) Recover the rest (p− 1)/2 symbols di,k (i ∈ A) from diagonal parity set D<i+k>p .
(a) While recovering di,k (i ∈ A), for each symbol d ∈ H , if it is not an overlapping symbol,

read it from disk and XOR-sum it to dh.
(b) For each symbol d ∈ D′

<i+k>p
, if it is not an overlapping symbol, read it from disk and

XOR-sum it to di.
(c) Symbol dh is XOR-summed to each di (i ∈ A) to reconstruct di,k (i ∈ A).

(4) Once the p− 1 symbols are successfully recovered, it can move on to the next stripe, and the
(p + 1)/2 memory units can be reused.

(2) ReadBalance:Both RDOR-EVENODDand the conventional scheme achieve disk
read balance during recovery.

(3) Computational Complexity: The total number of XOR operations required for
recovery of RDOR-EVENODD is equal to the conventional scheme.

6. PERFORMANCE EVALUATION

To evaluate the performance of our hybrid approach, we conduct experiments which
compare the read optimal recovery schemes RDOR-RDP and RDOR-EVENODD with
their conventional schemes respectively in terms of total recovery time and individual
disk access time.

6.1. Evaluation Methodology

We conduct the experiments by using a widely accepted disk simulator, DiskSim [Bucy
et al. 2008]. For RDP code, the simulated disk array subsystem is composed of p + 1
disks including two redundant disks, and for EVENODD code there are p + 2 disks
in the simulated disk array subsystem. The logical layout is rotated between different
parity stripes as in common RAID-6 implementations. Each disk is attached to a con-
troller, and all these disk controllers are under the same interleaved I/O bus. The failed
disk is reconstructed in an off-line mode, without any interruptions of outside requests
while recovering. We take it as a simplified approach to compare the performance of
RDOR-RDP and RDOR-EVENODD schemes with their conventional schemes under
the same circumstances.
For the recovery of a single failed disk, the recovery schemes are implemented into

the simulation environment. For each recovery scheme, during recovering each stripe,
we first read all the data blocks needed for recovery and then generate the failed
blocks. As soon as all the failure blocks are regenerated in memory, they are writ-
ten to the spare disk at once. Two metrics, total recovery time and individual disk
access time, are evaluated. We use recovery time ratio and average disk access time
ratio to show the comparison results. The recovery time ratio and average disk access
time ratio are the ratios of recovery time and average disk access time of our hybrid
approach to the conventional scheme. Disk access time refers to the total time of a disk
in media access during recovery. It consists of seek time, rotation time, transfer time,
etc.
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Table I. Disk array simulation parameters.

Parameter Value

I/O bus bandwidth 512MBps
XOR bandwidth 1GBps
Disk capacity 146.8G
Sustainable disk transfer rate 99MBps
Rotation speed 15000RPM
Single track seek 0.3ms
Full seek 7.2ms
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Fig. 10. (a) Average disk access time ratio of RDOR-RDP to conventional scheme with different block sizes
when p = 7, 13, and 19. (b) Average disk access time ratio of RDOR-EVENODD to conventional scheme with
different block sizes when p = 7, 13, and 19.

Note that, the data block size and the disk array size affect the system recovery
performance. Our experiments are conducted with different block sizes and different
number of disks. The simulated disk’s parameters are extracted from a modern en-
terprise hard disk [Seagate 2007], and Table I lists all the parameters used in this
section.

6.2. Performance with Different Block Sizes

To evaluate the recovery performance under different block sizes, we vary the block
size from 32KB to 1024KB with fixed p = 7, 13, and 19 respectively.

6.2.1. Disk access time. RDOR-RDP and RDOR-EVENODD improve the read access
efficiency by reducing the number of disk reads in each surviving disk. Figure 10(a)
shows that the average disk read access time of RDOR-RDP is reduced by 15.16% ∼
22.60% compared with the conventional recovery scheme of RDP code. However, the
ratio of disk access time doesn’t show a stable tendency with block size varying from
32KB to 1024KB.
Figure 10(b) shows the average disk access time ratio of RDOR-EVENODD with its

conventional recovery scheme. From Figure 10(b), the average disk read access time
of RDOR-EVENODD is reduced by 14.18% ∼ 19.73% compared with the conventional
recovery scheme.
RDOR-RDP and RDOR-EVENODD can reduce disk reads for recovery but change

the access pattern of disk read from purely sequential accesses to a more random
pattern, therefore incurs some additional disk seeks. The individual disk access time
is determined not only by the amount of data read but also by the number of disk seeks
and seek distances while reading. And it may be the main reason that the access time
improvements shown in Figure 10(a) and Figure 10(b) are less than the theoretical
value, approximately 25%.
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Fig. 11. Disk access time of RDOR-RDP and conventional scheme of each disk when p = 7 and block size is
32KB. Disk 0 is the failed and thereafter replaced disk.

Moreover, the sequentiality of reads on individual surviving disks in RDOR-RDP
and RDOR-EVENODD are not the same. For an example of RDP code in Figure 5(b),
reading all the needed data in Disk 1 is broken into 3 non-sequential read requests,
while that of Disk 4 can be completed in only one read request. Therefore, the access
time of reading in a stripe on individual surviving disk may be different. As parities
are rotated between stripes, the access time of each disk for the recovery is balanced,
which is shown in Figure 11.
Figure 11 shows the access time of each disk (Disk 0 is the failed and replaced disk)

of RDOR-RDP scheme with p = 7 and block size of 32KB. From Figure 11, the access
times of different disks (excluding the backup Disk 0) with RDOR-RDP are almost
the same, and the average disk access time is decreased by 18.25% compared with
conventional scheme.

6.2.2. Total recovery time. Figure 12(a) and Figure 12(b) show the recovery time ratio
of RDOR-RDP and RDOR-EVENODD to their conventional schemes respectively, from
which we can see that RDOR-RDP and RDOR-EVENODD constantly outperform their
conventional schemes as block size varies from 32KB to 1024KB.
For example, when p = 7, the total recovery time of RDOR-RDP is reduced by 5.72%

∼ 12.60%. With p = 7 and block size of 256KB, the total recovery times of RDOR-RDP
and its conventional scheme are 6272.62s and 6652.92s respectively. And with p = 7
and block size of 1024KB, the total recovery times of RDOR-RDP and its conventional
approach are 5337.87s and 5746.12s respectively.
As shown in Figure 12(a), the improvements of recovery time decrease as block size

varies from 32KB to 128KB first and then increase as block size varies from 128KB
to 1024KB. Figure 12(b) shows that the total recovery time of RDOR-EVENODD is
reduced by 1.67% ∼ 4.37% compared with the conventional recovery scheme of EVEN-
ODD code when p = 7.
However, in Figure 12(a) and Figure 12(b), the total recovery time ratios are mostly

larger than 0.9. Although RDOR-RDP and RDOR-EVENODD can reduce approxi-
mately 25% disk reads, the total recovery time is bottlenecked by the slowest surviving
disk in recovering each stripe (or stipe set). Also when there are no foreground request
served, recovery buffer write to the spare disk becomes another bottleneck. Thus, the
reduction on disk reads cannot be translated into equivalent saving of recovery time.
In the case of an storage system still serving the foreground requests while recovery,

the whole system will go into a degraded mode and the recovery process usually runs
in a lower priority. Then, reduction on disk read access time to surviving disks can
be translated into more saving of recovery time in online scenario. The performance
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Fig. 12. (a) Recovery time ratio of RDOR-RDP to conventional scheme with different block sizes when p = 7,
13, and 19. (b) Recovery time ratio of RDOR-EVENODD to conventional scheme with different block sizes
when p = 7, 13, and 19.

8 12 14 18 20
0.6

0.65

0.7

0.75

0.8

0.85

Number of disks(p+1)

A
ve

ra
ge

 a
cc

es
s 

tim
e 

ra
tio

64KB
256KB
1024KB

(a) RDOR-RDP vs. Conventional Scheme of
RDP Code

9 13 15 19 21
0.6

0.65

0.7

0.75

0.8

0.85

Number of disks(p+2)

A
ve

ra
ge

 a
cc

es
s 

tim
e 

ra
tio

64KB
256KB
1024KB

(b) RDOR-EVENODD vs. Conventional
Scheme of EVENODD code

Fig. 13. (a) Average disk access time ratio of RDOR-RDP to conventional scheme with different number of
disks when block size is 64KB, 256KB, and 1024KB. (b) Average disk access time ratio of RDOR-EVENODD
to conventional scheme with different number of disks when block size is 64KB, 256KB, and 1024KB.

of RDOR-RDP and RDOR-EVENODD is expected to be better in online recovery than
off-line.

6.3. Performance with Different Number of Disks

In this subsection, we analyze the impact of different number of disks on recovery
performance. We conduct experiments with different number of p from 7 to 19 with
fixed block sizes of 64KB, 256KB, and 1024KB respectively.

6.3.1. Disk access time. Figure 13(a) and Figure 13(b) show that the disk access time
ratios are almost the same with different number of disks when the block size is fixed
to 64KB, 256KB, and 1024KB respectively, which implies RDOR-RDP and RDOR-
EVENODD can be implemented in fairly large storage systems to improve the read
access efficiency.
As shown in Figure 13(a), with block size of 1024KB, the disk access time of RDOR-

RDP is reduced by 18.13% ∼ 20.17%. With block size of 1024KB, the disk access time
of RDOR-EVENODD which is shown in Figure 13(b) is reduced by 14.18% ∼ 19.80%.
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Fig. 14. (a) Recovery time ratio of RDOR-RDP to conventional scheme with different number of disks when
block size is 64KB, 256KB, and 1024KB. (b) Recovery time ratio of RDOR-EVENODD to conventional scheme
with different number of disks when block size is 64KB, 256KB, and 1024KB.

6.3.2. Total recovery time. In Figure 14(a) and Figure 14(b), the total recovery time
ratios increase as the number of disks increase. In Figure 14(a), with block size of
1024KB, the total recovery time ratio increases from 0.929 to 0.971 as the number of
disks increases from 8 to 20. With block size of 1024KB and p = 7, the total recovery
times of RDOR-RDP and its conventional approach are 5337.87s and 5746.12s respec-
tively. With block size of 1024KB and p = 17, the total recovery times of RDOR-RDP
and its conventional approach are 9432.54s and 9714.97s respectively.
Since the access time of reading in a stripe on individual surviving disk with RDOR-

RDP may be different and the write requests to the spare disk should wait until the
data has been reconstructed, the recovery process of RDOR-RDPmay cost more time in
waiting and synchronizing with large number of disks. Thus, RDOR-RDP and RDOR-
EVENODD provide comparatively smaller improvements in recovery time with large
number of disks.
The experimental results can be generalized as follows.

(1) By using our hybrid approach, the access time of an individual disk for recovery is
reduced compared with the conventional scheme. Less disk access time indicates
that the disk array system can further accelerate the recovery process in online
recovery scenario.

(2) Our hybrid approach can be used to reduce the total recovery time compared with
the conventional scheme. With block size varies from 32KB to 1024KB, RDOR-
RDP and RDOR-EVENODD constantly outperforms their conventional recovery
schemes which indicate that RDOR-RDP and RDOR-EVENODD scale well as
block size increases.

7. FURTHER DISCUSSIONS

According to the experiment results, RDOR-RDP and RDOR-EVENODD don’t show
great improvements on recovery time compared with their conventional approaches.
There are mainly two reasons, the first is that RDOR-RDP and RDOR-EVENODD
change the recovery access pattern from pure sequential to a more random one. Thus,
in off-line mode, RDOR-RDP and RDOR-EVENODD will cost more time on disk seek-
ing and rotating compared with their conventional approaches. The second is that the
recovery time is mainly composed of two parts, the time of reading symbols from sur-
viving disks and the time of writing recovered erased symbols to a spare disk. Thus,
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the reduction on disk reads cannot be translated into equivalent saving of recovery
time.
The above reasons indicates that RDOR-RDP and RDOR-EVENODD will be more

applicable in the following cases.

1) There are foregroundworkloads during recovery. In online recovery mode, the fore-
ground requests will interrupt the recovery process which will also break the se-
quentiality of disk access of the conventional approach.

2) RAID-6 systems use flash solid-state-drives (SSDs) instead of hard disk drives
(HDDs). Commonly used HDDs store data on rapidly rotating platters with mag-
netic surfaces. The disk access time is composed of seek time, rotational latency,
and data transfer time. In contrast to HDDs, flash SSDs do not have any mechan-
ically moving parts but use NAND flash memory chips to store the data [Emrich
et al. 2010]. So, the random disk access of RDOR-RDP and RDOR-EVENODDmay
not be an important problem during recovery, which indicates RDOR-RDP and
RDOR-EVENODD may perform better with SSDs than traditional HDDs.

3) Peer-to-peer distributed storage systems. RDOR-RDP and RDOR-EVENODD can
also be extended to distributed storage systems based on RAID-6 codes. In dis-
tributed storage systems, to repair a failed node, a key goal is to minimize the
repair bandwidth [Dimakis et al. 2010]. RDOR-RDP and RDOR-EVENODD can
be used to reduce the amount of data which need to be transmitted in the system
for recovery.

4) RDOR-RDP and RDOR-EVENODD are applied together with clustered RAID.
RDOR-RDP and RDOR-EVENODD focus on reducing the amount of data needs
to be read from surviving disks. However, during recovery, writing recovered data
to a spare disk is another bottleneck. The proposed clustered RAID [Muntz and Lui
1990] organization in which data plus parity are distributed over a larger number
of disks achieves that the recovery writes are distributed among all the surviv-
ing disks. So RDOR-RDP and RDOR-EVENODD can be applied together with the
clustered RAID technique to further improve the recovery performance.

8. RELATED WORK

System designers expect better recovery solutions to minimize the time taken for re-
covery and the degradation of user performance in RAID storage systems. Recent years
a large number of approaches have been proposed for recovering the failed disk more
efficiently.
Several approaches [Holland and Gibson 1992; Holland et al. 1994; Xin et al. 2004;

Greenan et al. 2010] address the problem by trading storage capacity for improved
failure recovery performance. Menon and Mattson [1992] showed that instead of using
a dedicated spare disk, there are many advantages to distributing the spare space
across the disk array. In such an array, the recovery writes are distributed as well as
the recovery reads. Clustered RAID [Muntz and Lui 1990], in which data plus parity
groups are distributed over a larger number of disks, was introduced to reduce the
increased load per disk.
To improve recovery parallelism, the Disk-Oriented Reconstruction (DOR) [Holland

et al. 1994] algorithm executes reconstruction processes associated with disks, which
keeps every surviving disk busy with reconstruction reads at all time. In another work
by Lee and Lui [2002], a pipelined recovery algorithm is proposed to take advantage
of the sequential property of track retrievals to pipeline the reading and writing pro-
cesses.
In online recovery mode, the foreground requests will interfere with the recovery

process [Merchant and Yu 1996; Thomasian and Menon 1997]. To relieve the inter-
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ference of foreground workload, Wu et al. [2009] proposed the WorkOut scheme which
temporarily redirects all write requests and popular read requests to a surrogate RAID
set to let the degraded RAID set be devoted to the recovery process. A Popularity-
based multi-threaded reconstruction optimization (PRO) algorithm [Tian et al. 2007]
was proposed to accelerate the users’ accesses and avoid performance degradation by
recovering the high-popularity data units prior to other units.
In contrast to the above recovery mechanisms which focus on reorganizing data lay-

out or optimizing recovery workflow, there are some other researches focused on de-
signing specific recovery algorithms for erasure codes according to the coding char-
acteristics. By using generator check matrix of erasure codes, Hafner et al. [2005]
proposed a code-specific hybrid reconstruction algorithm which can reduce XOR op-
erations during recovery. Due to the reduction of XOR operations, the performance
of decoding was improved. Later, a revised version of this algorithm was proposed in
[Cassidy and Hafner 2007] to further improve space and time efficiency during recov-
ery.

9. CONCLUSION

We propose a hybrid recovery approach for single disk failure of RAID-6 codes. The
hybrid approach uses both parities for data reconstruction and reduces the number of
disk reads for recovery by pre-storing overlapping symbols in memory. We derive the
lower bounds of disk reads for the recovery of RDP and EVENODD codes and design
optimal recovery schemes, RDOR-RDP and RDOR-EVENODD, which match the lower
bound of disk reads, as well as having a load balancing property on all surviving disks.
Compared with the conventional scheme, RDOR-RDP and RDOR-EVENODD dis-

rupt the sequentiality of disk reads for recovery in an off-line mode. The off-line exper-
imental results show that our recovery schemes RDOR-RDP and RDOR-EVENODD
outperform the conventional recovery schemes of RDP and EVENODD codes in terms
of total recovery time and recovery workload on individual surviving disk. However,
the improvements are less than the theoretical value. Our future works include evalu-
ating the performance of hybrid approach in online recovery mode, and extending the
hybrid approach to parity array codes that can tolerate triple failures, such as STAR,
Extended RDP code, and so on.

APPENDIX

A. PROOF OF THE CORRECTNESS OF THEOREM 4.7 AND THEOREM 5.4

In here, we will prove that only when all the surviving symbols are read directly from
disk, the number of disk reads can achieve the lower bounds in Theorem 4.7 and The-
orem 5.4. For brevity, in the following, we only prove that of RDP code, the analysis of
EVENODD code is similar and omitted.
Let the erasure column be column k (0 ≤ k ≤ p − 1). We need to recover all the p − 1

symbols di,k(0 ≤ i ≤ p − 2) in column k. Erasure symbol di,k can only be recovered
by the parity sets to which it belongs. Surviving symbols for recovery are either read
directly from disk or further generated from other parity sets.
Assume that in the recovery process, s surviving symbols are generated from other

parity sets instead of being read directly from disks. There are p−3 additional symbols
needed to be read for each of the s symbols. Therefore, p − 1 + s parity sets are needed
in total and consist of (p−1)2 + s(p−3) symbols (Note: There are some symbols counted
twice which will be subtracted later).
Among all the p−1+s parity sets, suppose there are t row parity sets and p−1+s− t

diagonal parity sets. According to Lemma 4.6, there is one overlapping symbol between
each pair of row and diagonal parity sets. So there are t(p− 1 + s− t)− 2s overlapping
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symbols (excluding the s surviving symbols which are generated by parity sets and the
s symbols which overlap at the failed disk).
So the number of disk reads for the recovery is

(p − 1)2 + s(p − 3) − (t(p − 1 + s − t) − 2s)

=(t − (p − 1 + s)/2)2 + 3(p − 1)2/4 + s(2p− 2 − s)/4.

When t = (p − 1 + s)/2, the number of disk reads is minimized, which is equal to
3(p−1)2/4+s(2p−2−s)/4. As RDP can only tolerate double disk failures, 0 ≤ s < 2p−2,
only when s = 0 and t = (p − 1)/2,

3(p − 1)2/4 + s(2p − 2 − s)/4 = 3(p − 1)2/4,

which achieves the lower bound in Theorem 4.7. Therefore, no matter how we get
surviving symbols for recovery, the lower bound of disk reads is 3(p − 1)2/4.

B. BALANCING DISK READS OF EVENODD CODE

For EVENODD code, the minimum number of disk reads for the recovery of column
k (0 ≤ k ≤ p − 1) is (p − 1)(3p + 1)/4. Since any read optimal recovery combination
contains (p− 1)/2 row and (p− 1)/2 diagonal parity sets, (p− 1)/2 symbols will always
be read from Disk p and Disk p + 1 respectively. Then the average number of symbols
to be read from Disk j (0 ≤ j ≤ p − 1, j 6= k) is

(p − 1)(3p + 1)/4 − (p − 1)

p − 1
= 3(p − 1)/4.

As (p − 1)/2 symbols will always be read from Disk p and Disk p + 1, now we only
consider how to balance disk reads on Disk j (0 ≤ j ≤ p − 1, j 6= k) in the following.
Given a prime number p > 2, either p ≡ 3 (mod 4) or p ≡ 1 (mod 4).

Case 1. p ≡ 1 (mod 4), then 3(p− 1) is divisible by 4. A read optimal and balanced
recovery combination should read 3(p − 1)/4 symbols from each of the surviving
disks (except for Disk p and Disk p + 1).
Case 2. p ≡ 3 (mod 4), then 3(p − 1) isn’t divisible by 4. A read optimal and bal-
anced recovery combination should read ⌈3(p − 1)/4⌉ symbols from some disks and
⌊3(p − 1)/4⌋ symbols from the rest.

In the following, we will only give the detailed analysis of the case p ≡ 1 (mod 4).
The analysis of the case p ≡ 3 (mod 4) is similar and omitted.
Similar to the analysis of RDP code, we also assume that there is an imaginary row

p − 1 with all symbols dp−1,j = 0 (0 ≤ j ≤ p + 1) to the EVENODD encoding array.
With the additional row, the encoding array is now a p× (p+2) array. Since all symbols
in row p − 1 are 0, dp−1,k can be regarded as being recovered from its row parity set.
And for simplicity, we consider that the symbol dp−1−k,k ∈ H is recovered from its row
parity set.
Now the recovery sequence of EVENODD code is x0, x1, . . . , xp−2, xp−1 with xp−1−k =

0 and xp−1 = 0, where xi = 0 means that di,k is recovered from its row parity set, and
xi = 1 means that di,k is recovered from its diagonal parity set. The following Theorem
B.1 provides a sufficient condition for a recovery sequence to be both read optimal and
balanced of EVENODD code.

THEOREM B.1. If a recovery sequence {xi}0≤i≤p−1 of Disk k (0 ≤ k ≤ p − 1) satisfies
that:

(1) x0 + x1 + · · · + xp−2 + xp−1 = (p − 1)/2;
(2) xp−1−k = xp−1 = 0;
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(3) ∀j, 0 ≤ j ≤ p − 1, j 6= k,
p−1
∑

i=0

xix<i+j−k>p + xp−1−j = (p − 1)/4;

{xi}0≤i≤p−1 is a read optimal and balanced recovery sequence for the recovery of Disk
k (0 ≤ k ≤ p − 1).

PROOF. Condition (1) and condition (2) hold is equivalent to that {xi}0≤i≤p−1 is
a read optimal recovery sequence. In the following of the proof, we concentrate on
condition (3).
Define ci,j to identify whether symbol di,j is read for recovery. If di,j is read for re-

covery, ci,j = 0; otherwise ci,j = 1 (0 ≤ i, j ≤ p − 1, j 6= k).
If xi = 0, symbol di,k is recovered by row parity set Ri, di,j is read to recover di,k

because di,j ∈ Ri. If x<i+j−k>p = 1, symbol d<i+j−k>p,k is recovered by diagonal parity
set D<i+j>p , di,j is read to recover d<i+j−k>p ,k because di,j ∈ D<i+j>p . Given di,j (di,j /∈
H), either di,j ∈ Ri or di,j ∈ D<i+j>p . So only when xi = 0 or x<i+j−k>p = 1, di,j is read
for recovery, and ci,j = 0. Therefore, ci,j = xi(1 − x<i+j−k>p ).
Because all symbols dp−1−j,j ∈ H are always need for recovery, cp−1−j,j = 0 for

0 ≤ j ≤ p − 1 (j 6= k). Therefore,

ci,j =

{

xi(1 − x<i+j−k>p ) < i + j >p 6= p − 1

0 < i + j >p= p − 1
(4)

As cp−1−j,j = 0 for 0 ≤ j ≤ p− 1 (j 6= k), the number of symbols which do not need to
be read from Disk j(0 ≤ j ≤ p − 1, j 6= k) for the recovery of Disk k is

p−1
∑

i=0

ci,j =

p−1
∑

i=0,i6=p−1−j

ci,j =

p−1
∑

i=0,i6=p−1−j

xi(1 − x<i+j−k>p )

=

p−1
∑

i=0

xi(1 − x<i+j−k>p ) − xp−1−j(1 − x<(p−1−j)+j−k>p
)

=

p−1
∑

i=0

xi(1 − x<i+j−k>p ) − xp−1−j(1 − xp−1−k).

According to Condition (2), xp−1−k = 0, so

p−1
∑

i=0

ci,j =

p−1
∑

i=0

xi(1 − x<i+j−k>p ) − xp−1−j

=

p−1
∑

i=0

xi −

p−1
∑

i=0

xix<i+j−k>p − xp−1−j

As
∑p−1

i=0 xi = (p− 1)/2, and according to condition (3),
∑p−1

i=0 xix<i+j−k>p + xp−1−j =
(p − 1)/4, we have

p−1
∑

i=0

ci,j =

p−1
∑

i=0

xi − (

p−1
∑

i=0

xix<i+j−k>p + xp−1−j) = (p − 1)/4.

Then the number of symbols need to be read from Disk j(0 ≤ j ≤ p − 1, j 6= k) is
(p − 1) − (p − 1)/4 = 3(p − 1)/4. Therefore, condition (3) holds is equivalent to that
{xi}0≤i≤p−1 is a balanced recovery sequence for Disk k (0 ≤ k ≤ p − 1).
Theorem B.1 holds.
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According to the condition (3) of Theorem B.1, ∀j, 0 ≤ j ≤ p − 1, j 6= k,

p−1
∑

i=0

xix<i+j−k>p =

{

(p − 1)/4 xp−1−j = 0,

(p − 5)/4 xp−1−j = 1.
(5)

Given a recovery sequence {xi}0≤i≤p−1, define Ax = {i|xi = 1, 0 ≤ i ≤ p − 1} and the
multiset MAx = {a1 − a2|a1, a2 ∈ Ax, a1 6= a2}. According to Lemma 4.12, Equation (5)
is equivalent to that for xp−1−j = 0, the multiplicity of j − k in MAx is (p − 1)/4, and
for xp−1−j = 1, the multiplicity of j − k in MAx is (p − 5)/4.
Consider an example of p = 5 and k = 0, Figure 9 shows a read optimal and balanced

recovery sequence {xi}0≤i≤4 = {10010}. According to the recovery sequence, x0 = x3 =
1, Ax = {0, 3}, and MAx = {a1 − a2|a1, a2 ∈ Ax, a1 6= a2} = {2, 3}.
For xp−1−j = x0 = x3 = 1, p − 1 − j = 0 and p − 1 − j = 3, so j = 4 and j = 1.

According to Equation (5), j − k = 4 and j − k = 1 has a multiplicity of (p − 5)/4 = 0 in
the multiset MAx = {2, 3}. For xp−1−j = x1 = x2 = 0, p− 1− j = 1 and p− 1− j = 2, so
j = 3 and j = 2. According to Equation (5), j − k = 3 and j − k = 2 has a multiplicity of
(p − 1)/4 = 1 in the multiset MAx = {2, 3}.
The following theorem gives a read optimal and balanced recovery sequence

{xi}0≤i≤p−1 for any failed Diks k (0 ≤ k ≤ p−1) of EVENODD code with p ≡ 1 (mod 4).

THEOREM B.2. Given a prime number p with p ≡ 1 (mod 4). For the nonzero square
set Sp and the non-square set S′

p of Fp,

A =

{

S′
p − (k + 1) k ∈ Sp

Sp − (k + 1) k /∈ Sp

corresponds to a read optimal and balanced recovery sequence {xi}0≤i≤p−1 for the re-
covery of Disk k (k 6= p, p + 1) in EVENODD code storage systems.

PROOF. We only prove the case of k ∈ Sp. The proof of the case of k /∈ Sp is similar.
According to A = S′

p − (k + 1), define a recovery sequence {xi}0≤i≤p−1 as that if
i ∈ A, xi = 1, otherwise xi = 0. We need to prove that {xi}0≤i≤p−1 satisfies the three
conditions of Theorem B.1.
(1) |A| = |S′

p| = (p − 1)/2, x0 + x1 + · · · + xp−2 + xp−1 = (p − 1)/2. So {xi}0≤i≤p−1

satisfies condition (1) of Theorem B.1.
(2) Given k ∈ Sp and A = S′

p − (k + 1),

k ∈ Sp ⇒ k /∈ S′
p ⇒ k − (k + 1) /∈ S′

p − (k + 1) ⇒ p − 1 /∈ A ⇒ xp−1 = 0

p /∈ S′
p ⇒ p − (k + 1) /∈ S′

p − (k + 1) ⇒ p − (k + 1) /∈ A ⇒ xp−1−k = 0

So {xi}0≤i≤p−1 satisfies condition (2) of TheoremB.1. From (1) and (2),A = S′
p−(k+1)

corresponds to a read optimal sequence {xi}0≤i≤p−1.

(3) According to Definition 4.18 and Theorem 4.19, S′
p is a (p, p−1

2 , p−5
4 , p−1

4 )-partial
difference set in the additive group of Fp when p ≡ 1 (mod 4). So ∀t ∈ S′

p, t has a
multiplicity of (p−5)/4 in the multisetMS′

p
= {s1−s2|s1, s2 ∈ S′

p, s1 6= s2}, and ∀t /∈ S′
p,

t has a multiplicity of (p − 1)/4 in the multiset MS′

p

Because A = S′
p − (k + 1), multiset MA = {a1 − a2|a1, a2 ∈ A, a1 6= a2} = {s1 −

s2|s1, s2 ∈ S′
p, s1 6= s2}= MS′

p
. So ∀t ∈ S′

p, t has a multiplicity of (p − 5)/4 in MA, and

∀t /∈ S′
p (t 6= 0), t has a multiplicity of (p − 1)/4 in MA, which is equivalent to ∀t 6= 0,

p−1
∑

i=0

xix<i+t>p =

{

(p − 5)/4 t ∈ S′
p

(p − 1)/4 t /∈ S′
p

(6)
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Since p ≡ 1 (mod 4),

i) t ∈ S′
p ⇒ p − t ∈ S′

p ⇒ p − 1− < t + k >p∈ S′
p − (k + 1) = A;

ii) t /∈ S′
p ⇒ p − t /∈ S′

p ⇒ p − 1− < t + k >p /∈ S′
p − (k + 1) = A.

Therefore, ∀t 6= 0

xp−1−<t+k>p =

{

1 t ∈ S′
p

0 t /∈ S′
p

(7)

Add (7) to (6), and substitute t for < j − k >p, we have ∀j, 0 ≤ j ≤ p − 1, j 6= k,

p−1
∑

i=0

xix<i+j−k>p + xp−1−j = (p − 1)/4

From (1) to (3), {xi}0≤i≤p−1 is a read optimal and balanced recovery sequence for
Disk k (0 ≤ k ≤ p − 1).

To illustrate, consider p = 5 and k = 0 as an example, Sp = {1, 4} and S′
p = {2, 3}.

Because k /∈ Sp, A = Sp − (k + 1) = Sp − 1 = {0, 3} corresponds to a read optimal and
balanced recovery sequence {10010}. See Figure 9 for an illustration. The following
Theorem 5.6 gives a read optimal and balanced recovery scheme for any single disk
failure with p ≡ 3 (mod 4). Its proof is similar to Theorem B.2 and therefore omitted.

THEOREM B.3. Given a prime number p with p ≡ 3 (mod 4). For the nonzero square
set Sp and the non-square set S′

p of Fp,

A =

{

S′
p − (k + 1) k ∈ Sp

Sp − (k + 1) k /∈ Sp

corresponds to a read optimal and balanced recovery sequence {xi}0≤i≤p−1 for the re-
covery of Disk k(k 6= p, p + 1) in EVENODD code storage systems.
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