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Abstract—In current IaaS datacenters, tenants are suffering
unfairness since the network bandwidth is shared in a best-
effort manner. To achieve predictable network performance for
rented virtual machines (VMs), cloud providers should guar-
antee minimum bandwidth for VMs or allocate the network
bandwidth in a fairness fashion at VM-level. At the same time,
the network should be efficiently utilized in order to maximize
cloud providers’ revenue. In this paper, we model the bandwidth
sharing problem as a Nash bargaining game, and propose the
allocation principles by defining a tunable base bandwidth for
each VM. Specifically, we guarantee bandwidth for those VMs
with lower network rates than their base bandwidth, while
maintaining fairness among other VMs with higher network
rates than their base bandwidth. Based on rigorous cooperative
game-theoretic approaches, we design a distributed algorithm
to achieve efficient and fair bandwidth allocation corresponding
to the Nash bargaining solution (NBS). With simulations under
typical scenarios, we show that our strategy can meet the
two desirable requirements towards predictable performance for
tenants as well as high utilization for providers. And by tuning
the base bandwidth, our solution can enable cloud providers to
flexibly balance the tradeoff between minimum guarantees and
fair sharing of datacenter networks.

I. INTRODUCTION

Cloud computing has reformed the way of running today’s
business in many industries. By multiplexing large-scale com-
putation, storage and network resources, cloud providers can
offer an economical choice for enterprises to create and run
their respective jobs independently in data centers. However,
unlike the CPU and memory resources, the scarce network
bandwidth in current data centers is shared across many
tenants in a best-effort manner. The bandwidth between two
rented virtual machines (VMs) can be significantly affected by
other traffic using the same congested link, leading to unpre-
dictable job completion times for tenants. Since in today’s IaaS
data centers, such as Amazon EC2 [1], the VMs are charged
according to their renting time durations, the tenants will suffer
unpredictable costs if they are not aware of their achieved
bandwidth. Without any performance guarantees, enterprises
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may be reluctant to migrate their businesses or services to the
cloud, which will in turn harm the provider’s revenue.

To share data center networks, we argue that the following
two basic requirements should be considered from the view-
points of both cloud providers and tenants:

First, cloud providers, with their overall system perspec-
tive, expect to achieve high utilization of network resources
throughout the data center. The network resources should be
fully allocated across VMs if there exist unsatisfied demands,
rather than being statically reserved. If a VM is able to utilize
the residual bandwidth left by other idle VMs, the increase in
throughput will shorten the completion times of jobs that are
bottlenecked by network resources. In this way, more appli-
cations or VMs can be deployed with the same infrastructure,
which will further increase the providers’ revenues.

Second, tenants, in their individual perspective, have a
strong desire for predictable network performance. Based
on the state of the arts, two approaches can be applied to
achieve predictable performance: minimum bandwidth guar-
antee and fair bandwidth allocation. Bandwidth guarantee
provides strong isolation for VMs or tenants, since it ensures
a lower bounded bandwidth irrespective of the communication
patterns of other applications. For potential network intensive
applications like MapReduce, this guarantee policy makes
it possible to achieve predictable job completion time by
reserving bandwidth for them. Fair bandwidth allocation is to
share bandwidth in a fairness fashion at VM-level irrespective
of the competition at flow level. This can be achieved by
extending the traditional fairness notion to a VM-level, such
as proportional share, max-min fairness and etc. By fairly
allocating bandwidth among VMs/tenants, cloud providers are
able to ensure a certain portion of the shared bandwidth for
each VM/tenant. For example, in a proportional shared data
center network, each VM/tenant is assigned with a certain
weight, and then the network resource is shared in proportion
to these weights on congested links.

To provide flexible choices for tenants and cloud providers,
we believe that both bandwidth guarantee and fair bandwidth
allocation are needed for an IaaS data center. Unfortunately,
the current policy, either solely relying on bandwidth guarantee
or fair bandwidth share, has its shortage on sharing the
data center networks. Specifically, if one chooses to reserve
bandwidth for VMs in the data center, the precious network
resources may be wasted when the traffic demand decreases



below the reserved bandwidth, which is against the require-
ment of high utilization. On the other hand, if one solely
resorts to a fair bandwidth allocation policy among VMs, e.g.,
proportional share, the amount of bandwidth shared by a VM
will be determined by the number of VMs using the same
physical bandwidth resources. Thus, the minimum expected
bandwidth of VMs cannot be guaranteed. These tradeoffs, also
illustrated in previous work [2], increase the challenges in
sharing data center networks.

In this paper, we make the first attempt in the literature
to apply rigorous game-theoretic approaches to model and
solve datacenter network sharing problem with constraints on
both efficiency and fairness. Specifically, we make two main
contributions: First, we develop a cooperative game based
framework for allocating bandwidth to VMs, which achieves
the Nash bargaining solution (NBS) for sharing data center
networks. The bargaining solution guarantees minimum band-
width for each connection between a VM-pair, while keeping
fairness among all the VM-pairs. In particular, a distributed
bandwidth allocation algorithm is designed to achieve the
NBS solution and high utilization across the entire datacenter
networks. The allocation procedure for each connection can
be executed in parallel and only requires the local bandwidth
information of two involved servers (source and destination).

Second, we assign a base bandwidth to each VM as a
tunable design knob. Specifically, our policy guarantees the
bandwidth for those VMs with bandwidth demands lower
than their base bandwidth, while maintaining fairness across
other VMs with bandwidth demands higher than their base
bandwidth. Through extensive simulations under typical sce-
narios, we show that by tuning our proposed design knob,
cloud providers can flexibly balance the tradeoff between the
two potentially conflicting objectives of minimum bandwidth
guarantee and fair bandwidth share.

II. RELATED WORK

Recently, there have emerged a number of proposals to
provide predictable network performance for VMs in data
centers. Taking the perspective of performance isolation at VM
level, such prior works either attempted to guarantee minimum
bandwidth or to share bandwidth among VMs or network flows
in a proportional way.

First, several existing studies focused on bandwidth guar-
antees via the idea of reserving specified bandwidth for VMs.
Oktopus [3] and SeconNet [4] used static reservations through-
out the data center to ensure the bandwidth provisioning of
inter-VM networks. The virtual topologies presented in these
studies provide strong network isolation at VM level. Since
the virtual topology is not against bandwidth allocation for
VMs, our design can be combined with such virtual topologies.
However, it may sacrifice the high utilization of data center
networks, if the statically reserved bandwidth is not fully
utilized. Gatekeeper [5] assumed a full bisection bandwidth
network, and provided minimum bandwidth guarantee for
VMs by shaping the traffic of VMs. Yet, the residual band-
width is shared in a best-effort manner.

Second, other existing solutions provided network isolation
at VM level by sharing the network resources proportion-
ally. NetShare [6] assigned different weights among differ-
ent servers to allocate their relative bandwidth in a central-
ized fashion. It provides constant proportionality for tenants
throughout the datacenter network. Seawall [7] provided a
hypervisor based mechanism to share network proportionally.
It divides the bandwidth of each congested link according
to associated weights of source VMs. Seawall’s congestion
control inspires us with a lightweight method to realize our
distributed algorithm with varying demands. Faircloud [2]
offered a deep understanding of the key requirements and
properties for network sharing in data centers. The presented
policies lay the foundation of exploring the tradeoff space in
sharing data center networks. While such competition based
policies can achieve high network utilization, they cannot
provide hard guarantees on network performance for cloud
tenants.

With these existing efforts, we are at the point to design a
flexible strategy for the cloud providers to balance the tradeoff
between bandwidth guarantee and fair bandwidth allocation, as
both the two desirable features are needed by tenants. In order
to achieve such goals, we use a game theory based method
to share the data center networks. Different from another
work [8] that utilized the bargaining game to maximize multi-
dimension resource utilization in video streaming data centers,
our paper focuses on designing a datacenter network sharing
policy with bandwidth guarantee and fairness for multi-tenant
IaaS cloud.

III. MODEL FORMULATION

We first describe the assumptions and model of data center
networks in this section, and then formulate the requirements
of our bandwidth allocation policy design.

A. Data Center Network Model

Based on recent works on sharing data center networks [2],
[5], we abstract the connections of VMs into a hose model [9]
shown in Fig. 1, where the network throughput of each VM
can only be blocked by its access link. Since existing works
such as multi-path routing (e.g., [10]) and multi-tree topologies
(e.g., [11]) have considerably improved bisection bandwidth,
our policy assumes a full bisection bandwidth network where
the physical bandwidth of servers can be fully utilized without
considering the bottleneck links inside the data center. Note
that even if we cannot fully utilize the bandwidth of each
server, we can adjust our model by setting proper capacity
constraints for servers.

We consider an IaaS data center consisting of M servers
M = {p1, p2, . . . , pM}, and N VMs N = {v1, v2, . . . , vN}
are located across these servers. The bandwidth demand be-
tween VMs is described by a matrix DN (t) = [Di,j(t)]N×N
(as SecondNet [4]), where Di,j(t) denotes the traffic demand
from VM vi to vj at time t. We specify a bandwidth allocation
strategy by giving a rate matrix rN (t) = [ri,j(t)]N×N , where
ri,j(t) is the bandwidth allocated for VM vi to vj at time t.
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Fig. 1: Data center hose model, where N VMs are connected to a
unblocked virtual switch.

In our model, the VM should announce a minimum band-
width to be guaranteed, which we call it as the base bandwidth.
The base bandwidth is a borderline value for choosing certain
policies when allocating bandwidth. Specifically, if the band-
width demand of a VM is lower than its base bandwidth, we
allocate sufficient bandwidth to satisfy its demand. Otherwise,
we set an upper-bounded bandwidth for each VM-pair to
maintain fairness among VMs. In addition, the total amount
of base bandwidth of VMs on a server should be less than the
server’s bandwidth capacity, in case of guarantee failure when
all VMs have unsatisfied demand.

Accordingly, the VM vi with its associated
base bandwidth Bi can be denoted by a 6-tuple,
vi : (rIi (t), rEi (t), DI

i (t), DE
i (t), BIi , B

E
i ) with total ingress

(egress) bandwidth demand DI
i (t) (DE

i (t)) and ingress
(egress) rate rIi (t) (rEi (t)) at time t. Let DI

j (t) and DE
j (t)

denote the total ingress and egress demands of VM vj ,
respectively. Then, we have DI

j (t) =
∑N
i=1Di,j(t) and

DE
j (t) =

∑N
i=1Dj,i(t). Similarly, the total ingress and

egress rates of VM vj are rIj (t) =
∑N
i=1 ri,j(t) and

rEj (t) =
∑N
i=1 rj,i(t), respectively.

We use a 3-turple pm : (CIm, C
E
m, Vpm) to represent server

pm, where CIm and CEm are the ingress and egress capacity,
respectively, and Vpm ⊂ N denotes the set of VMs hosted on
server pm. Without loss of generality, we assume the physical
ingress and egress bandwidth of each server are the same, then
we have Cm = CIm = CEm.

In this paper, we focus on solving the allocation problem
under instantaneous demand at a specific time, hence, the time
variable t in the following sections are dropped for simplicity.

B. Bandwidth Allocation Principles

Before presenting the requirements for our allocation policy,
we first define two types of VMs in data centers based on
whether they have fully utilized the base bandwidth: 1) Poor
VM whose rate is lower than its base bandwidth, 2) Rich VM
whose rate has fully occupied or exceeded its base bandwidth.

Due to the aggression of TCP flows, the stable rate of a
VM will always reach to the allocated bandwidth if there is
unsatisfied demand, but cannot exceed the allocated bandwidth
or the bandwidth demand. Hence, given the bandwidth demand
Di and base bandwidth Bi, a VM will be “poor” if Di < Bi.
Otherwise, if a VM’s bandwidth demand is higher than its
base bandwidth (Di ≥ Bi), it will be “rich” with higher rate,
which is at least be guaranteed with the base bandwidth. Based
on the above model and notions, the desirable requirements of
our allocation policy are as follows.

1) Predictable performance: Minimum bandwidth guar-
antee is to ensure a certain bandwidth allocation for a VM
irrespective of the bandwidth demands from other VMs. It
provides strong network isolation for VMs and is the basic
property to achieve predicable performance in data center
networks. In our model, we guarantee the base bandwidth
for VMs, which implies that we should satisfy the traffic
demand for those poor VMs. This is naturally acceptable
as the poor VMs only consume bandwidth that belongs to
themselves, if cloud providers charge for such guaranteed
bandwidth. However, rather than reserving the base bandwidth
in a fixed manner, we allocate bandwidth according to the
actual instantaneous demand of these VMs, so as to improve
the entire utilization of data center networks.

Fair bandwidth allocation intends to share bandwidth by
extending the notion of fairness at flow level to VM-level.
Network resources in today’s data center are shared in a
best-effort manner among VMs or servers, which makes it
hard for cloud providers to assign certain weights to different
applications. By using weighted proportional share among
VMs, a VM can achieve a certain share of the total amount
of available bandwidth without dictating the bandwidth com-
petitions from flow-level. For consideration of generality, we
propose to use the general notion of fairness in game theory
[12]. The advantage is that the game-theoretic framework can
achieve very flexible solutions corresponding to either max-
min fairness or proportional fairness, by customizing specific
objective functions (Sec. IV).

In this paper, we choose to maintain such fairness among
VM-pairs. One of the most obvious advantages is that it can
provide fine-grained resource management in data centers. For
example, the reduce node in a MapReduce job may shuffle data
from several map nodes (in separate VMs), and the congestion
of any shuffle process will delay the job completion time.

The tradeoff between minimum guarantee and network
proportionality is discussed in [2]. To resolve such poten-
tially conflicting objectives, we first guarantee the bandwidth
demand from poor VMs, and then consider the rich VMs
by allocating the residual bandwidth under the principle of
fairness.

2) High Utilization: This implies that datacenter network
resources should be fully used when there are unsatisfied
demands. By utilizing the idle network resources in data
centers, VMs can improve their throughput and thus shorten
the job completion times for tenants. For cloud providers, they
are able to improve their revenue by deploying more VMs with
the same underlying physical resources. Our overall objective
is to utilize precious bandwidth resources in a data center as
much as possible, while maintaining our aforementioned goals
for predictable performance.

IV. NASH BARGAINING SOLUTION FOR FAIRNESS AND
UTILIZATION

Based on the datacenter model and network requirements,
we first derive a centralized solution by taking advantage of



the Nash bargaining framework and the method of Lagrange
multipliers.

A. Nash Bargaining Framework

Nash bargaining has been widely used to balance the
tradeoff between fairness and efficiency for resource sharing
problems. Under the context of bandwidth allocation in a data
center, the game can be described as follows: N VMs can
be viewed as players who are competing for the bandwidth
resources of their hosting servers. Each VM is assigned an
initial rate u0i , which is the bandwidth to be guaranteed.

Let X ⊂ RN be the vector of available bandwidth allocation
space for N VMs in a data center, where RN is the set of
all allocation strategies. Given a vector of initial rates u0 =
(u01, . . . , u

0
N ), and a set of bandwidth allocation U = {x |

x ∈ X , xi ≥ u0i ,∀i} which ensures that each VM can get
at least their initial bandwidth, we assume that U ⊂ RN is
a nonempty convex closed and upper-bounded set. Let J =
{j | x ∈ U , xj > u0j} denote the set of VMs that can achieve
strictly higher bandwidth compared to their initial rates. The
pair (U , u0) is called a bargaining problem.

Definition 1. A mapping S : (U , u0) → RN is called
a Nash bargaining solution if it satisfies: S(U , u0) ∈ U ,
Pareto optimality, linearity axiom, irrelevant alternatives, and
symmetry axiom [13].

Suppose X is a convex and compact subset of RN and J
is nonempty, we can derive the following theorem.

Theorem 1. There exists a bargaining solution. The vector x
of the solution set solves the following optimal problem (PJ ):

max
∏
j∈J

(xj − u0j ), x ∈ X . (1)

In the Nash bargaining game, two or more players enter the
game with an initial utility as well as an utility function. They
cooperate in the game to achieve a win-win solution, in which
the social utility gains (represented by the Nash product in
Eq. (1)) are maximized. This corresponds to the requirements
in sharing data center networks, with respect to guarantee
certain bandwidth for VMs, maintain fairness among them
and achieve high network utilization across the data center.
By taking the logarithm of the objective, we can derive an
equivalent optimization problem:

max
∑
j∈J

ln(xj − u0j ), x ∈ X .

The above maximization problem has a unique bargaining
solution equivalent to (PJ ). We refer the reader to [14] for
details of the Nash bargaining solution.

B. Optimization Problem based on NBS

Based on the bargaining framework, we now define the
optimization problem in our model, which aims to achieve
the NBS for network resource allocation. First, for a VM
(rIi , r

E
i , D

I
i , D

E
i , B

I
i ), with given base bandwidth and band-

width demand, the rate ri,j is what we need to obtain and

v1 v2
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BI
BE

BE

B1
E B2

I

Fig. 2: Guarantee minimum bandwidth B1,2 from VM v1 to v2.

allocate to the connection from vi to vj . The allocation
is bounded by the physical bandwidth of each server, i.e.,∑
vi∈Vpj

ri ≤ Cj for both ingress and egress bandwidth
capacities. To guarantee the minimum bandwidth, we use the
constraint ri,j ≥ Li,j to ensure that each VM can obtain an
initial minimum bandwidth, thus

Li,j = min{Di,j , Bi,j}. (2)

Bi,j represents the base bandwidth for the connection of
vi to vj , which needs to be specified by using the respective
base bandwidth of VMs and the traffic demands across these
VMs. Specifically, we use a simple method to specify Bi,j as
follows:

Bi,j = min{BEi
BIj∑

Dik 6=0B
I
k

, BIj
BEi∑

Dkj 6=0B
E
k

}, (3)

∀k ∈ {1, 2, . . . , N}, where Dij 6= 0 implies that there exists
certain traffic from vi to vj .

As shown in Fig. 2, each VM may be in communication
with one or more VMs. We explain base bandwidth Bi,j of
a VM pair as (i) a portion of the egress base bandwidth of
VM vi, or (ii) a portion of the ingress base bandwidth of VM
vj . Since the base bandwidth is the minimum guarantee for
VMs, it indicates the weights of the VMs. In other words,
a connection should obtain a higher base bandwidth if it is
associated with VMs of higher base bandwidth. Hence, the
portion of Bi,j to BEi is set as the portion of the ingress base
bandwidth of VM vj to all the destination VMs from source
VM vi. This is similar for the portion of Bi,j to BIi . Then Bi,j
is determined by the smaller value in case that the total base
bandwidth exceeds the physical bandwidth, causing failure on
guaranteeing the base bandwidth Bi,j .

After determining the minimum bandwidth guarantee for
each connection via Eq. (3), we have the joint profit optimiza-
tion problem (Pr) as follows:

max
r

∑
j

∑
i

ln(ri,j − Li,j) (4)

s.t. ri,j ≤ Ui,j , ∀i, j ∈ {1, . . . , N}, (5)
ri,j ≥ Li,j , ∀i, j ∈ {1, . . . , N}, (6)∑
vi∈Vpm

rIi ≤ Cm, ∀pm ∈M, (7)

∑
vi∈Vpm

rEi ≤ Cm, ∀pm ∈M, (8)

where rIi =
∑N
j=1 rj,i and rEi =

∑N
j=1 ri,j are total ingress

and egress rate of VM vi, respectively.



Ui,j is the upper bound for bandwidth allocation from vi to
vj , which is denoted by

Ui,j = min{Di,j , Cm, Cn}, s.t. vi ∈ pm, vj ∈ pn. (9)

C. Centralized Optimal Solution

We use the matrix V = (vmi)M×N to denote the placement
of VMs on each server, where vmi is a binary variable defined
as follows:

vmi =

{
1, vi is on pm;

0, otherwise.

Let rI = (rI1 , r
I
2 , . . . , r

I
N ) ( rE = (rE1 , r

E
2 , . . . , r

E
N )) be

the vector of ingress (egress) rates of VMs and C =
(C1, C2, . . . , CN ) be the vector of bandwidth of the servers.
To derive the formal optimal solution to problem Pr, we apply
the method of Lagrange multipliers. Note that the constraints
of the variable r are linear, the Kuhn-Tucher conditions are
necessary and sufficient for an existing optimal solution.

Theorem 2. There exists γIm ≥ 0 and γEm ≥ 0 (m ∈
{1, 2, . . . ,M}) such that
• ∀i, j ∈ {1, . . . , N} :

r∗i,j = Li,j +
1∑M

m=1 γ
E
mvmi +

∑M
m=1 γ

I
mvmj

, (10)

Li,j ≤ ri,j ≤ Ui,j ,

• ∀m ∈ {1, 2, . . . ,M} :

γIm
[
(V · rI)m − Cm

]
= 0,

γEm
[
(V · rE)m − Cm

]
= 0,

where r∗i,j is the unique NBS for the optimization problem
(Pr).

Proof: We begin with an assumption that the allocation
space X ∈ RN×N is a nonempty, convex and compact set.
Define

θ(r) =

N∑
j=1

N∑
i=1

ln(ri,j − Li,j),

then θ(·) : X → R+ is strictly concave [13].
Let αi,j ≥ 0, ∀i, j ∈ {1, 2, . . . , N}, βi,j ≥ 0 ∀i, j ∈

{1, 2, . . . , N}, and γIm, γ
E
m ≥ 0, ∀m ∈ {1, 2, . . . ,M} denote

the Lagrange multipliers for the minimum bandwidth in Eq.
(5), upper-bound bandwidth in Eq. (6) and server capacity in
Eq. (7) and Eq. (8), respectively. Then, the Lagrangian of the
problem Pr is

L(r, α, β, γI , γE) = θ(r)−
N∑
j=1

N∑
i=1

αi,j(Li,j − ri,j)

−
N∑
j=1

N∑
i=1

βi,j(ri,j − Ui,j)−
M∑
m=1

γIm
(
(V · rI)m − (C)m

)
−

M∑
m=1

γEm
(
(V · rE)m − (C)m

)
.

To give the necessary and sufficient conditions for optimiz-
ing the objective, we have

∇L(r∗, α, β, γI , γE) = 0⇐⇒

1

r∗i,j − Li,j
+αi,j−βi,j−

M∑
m=1

γImvmj−
M∑
m=1

γEmvmi = 0, (11)

∀i, j ∈ {1, 2, . . . , N} and


αi,j(Li,j − r∗i,j) = 0, i, j ∈ {1, 2, . . . , N},
βi,j(r

∗
i,j − Ui,j) = 0, i, j ∈ {1, 2, . . . , N},

γIm
[
(V · rI)m − (C)m

]
= 0, m ∈ {1, 2, . . . ,M},

γEm
[
(V · rE)m − (C)m

]
= 0, m ∈ {1, 2, . . . ,M},

(12)

where r∗ = (r∗1,1, . . . , r
∗
i,j , . . . , r

∗
N,N ) is the optimal solution

to the problem Pr.
To derive the solutions, we should consider the values of the

multipliers in Eq. (12). For constraints ri,j = Li,j and ri,j =
Ui,j , they represent the special case when ri,j reaches the
boundary value. Hence, we focus on such a general situation
that Li,j < ri,j < Ui,j , which can derive αi,j = 0 and βi,j =
0. Then we can obtain ri,j by solving Eq. (11).

In summary, by solving the centralized problem, we have
shown how to achieve our design goals on sharing data center
networks with consideration on bandwidth guarantee, fairness
as well as utilization. The original problem Pr is a convex
optimization with 2(M+N) constraints, whose computational
complexity may increase significantly as the number of VMs
and servers scales up.

Fortunately, the solution in Eq. (10) indicates that each
optimal rate ri,j can be solved by the optimal multipliers
associated with two servers, i.e., the server hosting the source
VM vi and the server hosting the destination VM vj . Hence,
the key to maximize the objective is to obtain the optimal
Lagrange multiplier of each server, which is independent from
other servers. This motivates us to obtain the rate of each VM-
pair in a distributed manner, rather than being restricted to a
centralized approach.

V. DISTRIBUTED COOPERATIVE GAME BASED ALGORITHM

In this section, we present a distributed algorithm based
on the cooperative game framework. Specially, we apply the
gradient projection methods in constrained optimization to
guide the design of the distributed algorithm.

A. Dual-Based Decomposition

The centralized primal problem can be solved by the dual-
based decomposition. Specifically, we consider the primal



problem which has the same optimal solution as problem Pr.

min
r

P (r) = −
N∑
j=1

N∑
i=1

ln(ri,j − Li,j) (13)

s.t. ri,j ≤ Ui,j , ∀i, j ∈ {1, . . . , N}, (14)
ri,j ≥ Li,j , ∀i, j ∈ {1, . . . , N}, (15)∑
vi∈Vpm

rIi ≤ Cm, ∀pm ∈M, (16)

∑
vi∈Vpm

rEi ≤ Cm, ∀pm ∈M. (17)

We mainly discuss the situation that Li,j < ri,j < Ui,j .
Let X be the allocation space of r defined in Sec. IV-A. The
Lagrangian associated with the primal problem in Eq. (13) is
defined as L(·) : X ×RM ×RM → R, where

L(r, γI , γE) = −
N∑
j=1

N∑
i=1

ln(ri,j − Li,j)

+

M∑
m=1

γIm
(
(V · rI)m − Cm

)
+

M∑
m=1

γEm
(
(V · rE)m − Cm

)
.

Note that γI and γE are the dual variables associated with
the problem. The Lagrange dual function d(·) : RM ×RM →
R corresponding to L(r, γI , γE) is expressed as

d(γI , γE) = inf
r∈RN×N

L(r, γI , γE).

Since the primal problem has a unique optimal solution, the
dual function yields lower bounds on each optimal r∗i,j which
solves Eq. (13). For any γI , γE ∈ RM , we have d(γI , γE) ≤
L∗, where L∗ is the infimum of L(r, γI , γE). The infimum
of Lagrangian occurs where the gradient is equal to 0, thus
r∗i,j = Li,j +1/(

∑M
m=1 γ

E
mvmi+

∑M
m=1 γ

I
mvmj) according to

Theorem 2.
It is obvious that there exists such r that ∀m ∈

{1, 2, . . . ,M}, we have (V ·r)m < Cm and Li,j < ri,j < Ui,j .
It implies that there exists r in the relative interior of the
intersection of the domain of all constraint functions. And
since X is convex and P (r) is convex over X , the Slater’s
condition holds, which is a sufficient condition for strong
duality [14]. Hence, there is no duality gap and there exists
γI and γE satisfying d(γ) = L∗.

In summary, we get the dual problem corresponding to the
primal problem with no duality gap. The dual problem (Pd)
is described as follows:

max
γI ,γE∈RM

d(γI , γE) = L(r∗, γI , γE), (18)

The optimal solution of the dual problem can also be
derived through the set of Lagrange multipliers, and it can
be characterized by the following gradient projection method.

B. Gradient Projection Method

To solve the primal problem Pr, we first obtain the optimal
solution to the dual problem Pd. Specifically, by using a
suitable step-size, we design an algorithm that converges to

the optimal γI (γE) in the gradient projection method. Since
the strong duality holds as discussed above, we can achieve
the optimal Nash bargaining solution with Eq. (10).

Let the set Γ denote the optimal solution to the dual problem
and the set R be the solution to the primal one. We define the
following recursion:

γ(k+1)
m = max(0, γ(k)m + ξ

∂d

∂γm
),∀m ∈ {1, 2, . . . ,M}, (19)

where ξ is the step-size. We first discuss the sequence for γI ,
while regarding γE as a constant.

Theorem 3. For the recursive sequence {γI(k)}, if γI(0) ∈
R+M and ξ ∈ (0, 2

K ], then {γI(k)} converges, thus

lim
k→∞

γI(k) = γI∗ ∈ Γ, (20)

where K is the Lipschitz constant [15] of the dual function in
Eq. (18), such that

K =
√
M

N∑
j=1

N∑
i=1

(Ui,j − Li,j)2. (21)

Proof: The first step is to characterize that the dual
function d(γ) is K-Lipschitz continuous. We define a function
hi,j(x) = Li,j + 1

x , ∀i, j ∈ {1, 2, . . . , N}, where x ≥
1

Ui,j−Li,j
.

By changing the variable of d(γI , γE) and replacing r∗i,j in
Eq. (18) with

r∗i,j(γ
I , γE) = hi,j(

M∑
m=1

γEmvmi +

M∑
m=1

γImvmj), (22)

we get the partial derivatives of d(γI , γE) as

∂d(γI , γE)

∂γIm
=

N∑
j=1

vmj

N∑
i=1

r∗i,j − Cm. (23)

It is explicit that the Lipschitz constant of the real
function hi,j is (Ui,j − Li,j)

2. If we define fm(γ) =∑N
j=1 vmj

∑
i hi,j(γ), then we can get the following relation-

ship, ∀γ and γ′ ∈ RM :

|fm(γ)− fm(γ′)|

≤
N∑

j=1,vmj=1

|
N∑
i=1

hi,j(γ)−
N∑
i=

hi,j(γ
′)|

≤
[ N∑
j=1,vmj=1

N∑
i=1

(Ui,j − Li,j)2
]
‖γ − γ′‖1,

where ‖ ·‖1 is the L1 norm in vector space. Summing up both
sides of the equation for m ∈ {1, 2, . . . ,M} yields

‖f(γ)− f(γ′)‖1

≤
[ M∑
m=1

N∑
j=1,vmj=1

N∑
i=1

(Ui,j − Li,j)2
]
‖γ − γ′‖1

=

N∑
j=1

N∑
i=1

(Ui,j − Li,j)2‖γ − γ′‖1.



For ∀γ ∈ RM , we have ‖γ‖ ≤ ‖γ‖1 ≤
√
M‖γ‖ in metric

space, where ‖ · ‖ or ‖ · ‖2 is the Euclidean norm. Hence we
obtain the following inequality

‖f(γ)− f(γ′)‖

≤
√
M
( N∑
j=1

N∑
i=1

(Ui,j − Li,j)2
)
‖γ − γ′‖.

The Lipschitz constant can be derived from the above
relationship. It has been proved in [13] that when d(·) is K-
Lipschitz continuous, (γI)(k) converges in Γ as k →∞ if we
choose such a step size that ξ ∈ (0, 2

K ].
For the sequence {γE(k)}, we have the conclusion that the

partial derivative is derived as follows

∂d(γI , γE)

∂γEm
=

N∑
j=1

vmj

N∑
i=1

r∗i,j − Cm. (24)

In Theorem 2, we have obtained the explicit form of optimal
rate r∗i,j . The sequences generated by Eq. (19) converge to
the optimal solution to the dual problem (Pd) in Eq. (18)
according to Theorem 3. Since there is no duality gap in
the dual decomposition, the rate vector r associated with
γI and γE converges to the Nash bargaining solution, thus
∀i, j ∈ {1, 2, . . . , N}

lim
k→∞

r(γI(k), γE(k)) = r∗ ∈ R. (25)

C. Distributed Cooperative Algorithm

Based on the theoretical guidelines above, we are able to
design a distributed allocation algorithm in Algorithm 1.

From the sequence in Eq. (19), the dual variables γI and γE

decrease within each update. The update rate is determined by
the step-size and the gradient of the dual function. Specifically,
the step-size ξ is bounded by the global constant 2

K in
Theorem 3, and the absolute value gradient is equal to the
unused bandwidth of each server.

Let rEpm and rIpm represent the allocated egress and ingress
bandwidth of server pm, respectively. Without loss of gen-
erality, suppose vi is hosted on a certain server pm and vj
is hosted on a certain server pn, we use the notation γE

and γI to represent γIn and γEm in Algorithm 1, respectively.
Then the algorithm is a parallel iteration of r∗i,j with the dual
variables γI and γE . For example, if there exists unsatisfied
demand for ri,j and residual bandwidth on server pm, the dual
variable γEm will decrease and the server allocates its residual
bandwidth to ri,j . Otherwise, if the total allocated rates exceed
the bandwidth capacity of server pm, the dual variable γEm will
increase so as to reduce the excessive bandwidth of pm.

Implementation Issues. As the algorithm to update each
ri,j can be performed in parallel on each server, the algorithm
can be implemented in the hypervisor by enforcing a limited
rate for each VM [5]; and each server only manages those
connections with source VMs on this server. Since the allo-
cated bandwidth is always lower than (or equal to) bandwidth
demand, the allocated bandwidth can be fully utilized by VMs.
The rate of convergence is determined by the step-size ξ

Algorithm 1: Distributed Algorithm for Bandwidth Allo-
cation

Input:
The step-size characterized by K: ξ ∈ (0, 2

K ];
Server bandwidth capacity: Cm,∀pm ∈M;
Bandwidth demand matrix of VMs: [Di,j ]N×N ,
∀i ∈ {1, 2, . . . , N};
VM placement across servers: [vm,i]M×N ,
∀m ∈ {1, 2, . . . ,M},∀i ∈ {1, 2, . . . , N};
The base bandwidth of VMs < BIi , B

E
i >, ∀vi ∈ N ;

The rounds of iteration: S;
Output:

Rate allocation matrix, [ri,j ]N×N , ∀i ∈ {1, 2, . . . , N}
1: for all ri,j do
2: Initialize Li,j and Ui,j by Eq. (2) and (9), respectively;
3: ri,j = Li,j ;
4: end for
5: while steps < S do
6: for all server pm do
7: Update rEpm =

∑
i vmir

E
i , rIpm =

∑
i vmir

I
i ;

8: γEm = max(0, γEm − ξ(Cm − rEpm)) (Eq. 19);
9: γIm = max(0, γIm − ξ(Cm − rIpm)) (Eq. 19);

10: end for
11: for all ri,j do
12: if 1

γE+γI ≤ Ui,,j − Li,j then
13: ri,j = Ui,j (Eq. 10);
14: else
15: ri,j = Li,j + 1

γE+γI

16: end if
17: end for
18: steps++;
19: end while

(characterized by K) and the initial price vector γ0. Since K
is a global constant, we need to broadcast it to all the servers
before performing the iteration. We will examine the rate of
convergence in Sec. VI.

VI. PERFORMANCE EVALUATION

A. Simulation Setup

We simulate an IaaS data center with homogeneous servers,
each equipped with equal ingress and egress network band-
width capacity of 1 Gbps. Jobs in the data center are processed
in VMs which have already been placed on these servers. In
our simulations, we assume that the data center has full bisec-
tion bandwidth network (following [2]) as the consideration
in Sec. III-A, where the server has the ability to shape the
bandwidth of its hosting VMs.

We focus on verifying whether our allocation algorithm can
satisfy the proposed requirements. Specifically, 1) we examine
the bandwidth allocation to different VMs and quantify the
convergence of our algorithm by specifying certain demand
matrix. Then we observe how different types of VMs compete
for bandwidth resources with different bandwidth demands; 2)
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Fig. 3: Sharing network with traffic
from server 2 to server 1.
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Fig. 5: Bandwidth allocation to
VMs on server 1 with increasing
demand of X1 for all-to-all com-
munication patterns.

0 50 100 150 200 250 300
0

100

200

300

400

500

600

Demand (Mbps)

B
a

n
d
w

id
th

 a
llo

c
a
ti
o
n

 (
M

b
p
s
)

 

 

X1 X2 X3 X4

Fig. 6: Rates of VM on server 1
with increasing number of itera-
tions.

by changing the base bandwidth of VMs, we test our algorithm
in several typical scenarios and observe how it balances the
tradeoff between fair share and minimum guarantee.

B. Simulation Results

For the following experiments, we consider a scenario
illustrated in Fig. 3, where VMs on server 2 send (or receive)
traffic to (or from) VMs on server 1. Since our algorithm uses
different strategies for different types of VMs, i.e., bandwidth
guarantee for poor VMs and fair bandwidth share for rich
VMs, the simulation should involve both poor and rich VMs.
We qualify the algorithm within three typical communication
patterns: 1) one-to-one (i.e., Xi to Xi+4, i = 1, . . . , 4), 2)
one-to-all (i.e., X1 to X5 ∼ X8) and 3) all-to-all (i.e., Xi to
X5 ∼ X8, i = 1, . . . , 4), each consists of 4 poor VMs and 4
rich VMs.

Bandwidth allocation for VMs. Due to similarity of
bandwidth allocation under three scenarios, we only plot the
bandwidth of the VMs on server 1 with all-to-all communica-
tion pattern. As we can see in Fig. 4, our algorithm guarantees
the bandwidth demand of VM X1 and X2, whose demands
are less than their base bandwidth, i.e., poor VMs. For VM
X3 and VM X4, they are allocated with bandwidth higher
than the minimum guarantee, by using the residual bandwidth
capacity after the guaranteed bandwidth allocations on the
server. This verifies that our NBS based solution achieves high
utilization when there are unsatisfied demands. In addition,
since the connections associated with VM X3 and X4 share
the same source and destination servers, and they also share the
same changing rates in the iterations, they get equal excessive
bandwidth compared to their own base bandwidth, which
implies that the fairness fashion in NBS is to fairly share the
residual capacity.

Rate of convergence. Fig. 5 shows the rates of the VMs
changing within the iterations of the algorithm under the above
three scenarios. The rates of VMs converge under the control
of our allocation algorithm, which verifies the correctness of
the algorithm. For each convergence process, the rate changes
slowly in the beginning and then quickly converges to a stable
value. This is because in our model, the small constant step
size (about 10−3 in these scenarios) may restrict the increase
of rate r, i.e., 1

γE+γI , which can be 1 Mbps at most when
the dual variables are larger than 1. Hence, it is necessary to
choose a proper initial value for the dual variables so as to
shorten the iterative process.

X1 X2

Y1

Y9Server

Fig. 7: X1 communicates
with one VM, while Y1 com-
municates with an increas-
ing number of VMs.
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Fig. 8: Sharing network with traffic from
server 2 to server 1 by increasedly plac-
ing the VMs of group Y on server 1.

Varying the bandwidth demand of VMs. To study the
interference between VMs caused by the changes in demand,
we run a similar experiment with all-to-all communication
pattern by varying the demand of one VM. The bandwidth
allocation to VMs on server 2 is shown in Fig. 6. When the
bandwidth demand of VM X1 is less than its base bandwidth
(from 0 Mbps to 200 Mbps), the demand of the poor VMs
(VM X1 and X2) is hardly guaranteed irrespective of such
variation. If the bandwidth demand of VM X1 is above its base
bandwidth, it suffers competition from other VMs but can still
get a fair share of the residual bandwidth capacity. The amount
of share arrives at a maximum value of 240 Mbps, when
its bandwidth demand grows higher than 240 Mbps. Such
observation indicates that the algorithm can maintain fairness
among the rich VMs, by allocating the residual bandwidth in
a fairness fashion based on the Nash bargaining solution. In
addition, the total amount of the bandwidth allocations to the
VMs can always cap the server’s bandwidth capacity, which
illustrates that the algorithm can fully utilize the congested
bandwidth.

C. Exploring the Tradeoff

Since the base bandwidth represents the amount of band-
width that should be firmly guaranteed, and the total base
bandwidth of VMs located on one server determines the resid-
ual bandwidth that can be fairly shared, the base bandwidth
can be viewed as a tunable design knob of balancing the trade-
off between minimum bandwidth guarantee and fair share.
We carry out the following experiments to verify whether
the algorithm can provide flexibility on achieving these two
requirements, by varying the base bandwidth of VMs.

In the first case, we focus on a single congested link. We use
a scenario where two VMs, X1 and Y1, are co-located on the
same server as shown in Fig. 7. VM X1 communicates with
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Fig. 9: Network allocation to VM
X1 when increasing receivers of
Y1 with different base bandwidth.
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ant X when increasing the ratio
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Fig. 11: Ratio of connections of
tenant X to Y and bandwidth allo-
cation for X to Y when increasing
receivers of Y1.
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Fig. 12: Ratio of connections of
tenant Y to X and bandwidth allo-
cation for Y to X when increasing
the ratio of sender to receivers.

one VM, while Y1 communicates with an increasing number
of VMs each time. All the VMs are assigned with the same
base bandwidth B, so as to exclude the influence caused by
the difference of base bandwidth. Since the VMs connected to
Y1 may become the bottleneck when sending (receiving) data,
we place each of them on an individual host.

Fig. 9 plots the bandwidth allocation to VM X1 with
B = 0, 250, 500 Mbps. When B = 500 Mbps, the policy
guarantees the bandwidth of X1 regardless of communications
of Y1. When B = 250 Mbps, the bandwidth allocated for VM
X1 drops as Y1 communicates with more VMs, but maintains
at least 300 Mbps. The amount of bandwidth shared by VM
X1 indicates that the policy consists of both a guaranteed
portion and a proportionally shared portion. By setting B = 0,
we can obtain the ratio of bandwidth shared by X1 to Y1
in Fig. 10 and observe that the bandwidth shared by a VM
is in proportion to the number of its connected VMs. Since
our policy maintains fairness among VM-pairs, the result
shows that the policy only considers fair share when the base
bandwidth is 0.

In the next simulation, we use a scenario illustrated in Fig.
8, where two groups (each with 8 VMs) are placed on two
servers. We change the placement of VMs in group Y by
increasing the number of VMs on server 1, from 1 to 7. We
plot the same performance metrics as the previous simulation
in Fig. 11 and Fig. 12, by varying the total amount of base
bandwidth B of VMs in group X and Y , respectively. When
B = 500 Mbps, as shown in Fig. 11, there is no residual
bandwidth that can be shared and the policy only involves the
idea of bandwidth guarantee intuitively. But as B decreases,
the policy tends to prefer fair bandwidth sharing. When it
comes to 0, all the bandwidth are shared in a fairness fashion
in the bargaining game, where the shared bandwidth is in
proportion to the number of connections within its VM group.

In summary, we validate the tradeoff between minimum
bandwidth guarantee and fair share by turning the knob, i.e.,
the base bandwidth. With its flexibility on balancing such
a tradeoff, our proposed algorithm enables flexible design
choices for cloud providers to fine-tune their data center
management tools for meeting tenants’ diverse needs.

VII. CONCLUSION

This paper takes a first step towards using game-theoretic
approaches to share multi-tenant data center networks, by

applying rigorous cooperative game framework and developing
a distributed algorithm that achieves the Nash bargaining
solution. Our allocation policy can simultaneously achieve
high network utilization for cloud providers and predictable
performance for tenants, by guaranteeing bandwidth for VMs
with bandwidth demand lower than their base bandwidth, as
well as maintaining fairness among VMs with bandwidth de-
mand higher than their base bandwidth. Extensive simulations
under typical scenarios show that by tuning the base bandwidth
as a design knob, our policy enables large flexibility for cloud
providers to balance the tradeoff between bandwidth guarantee
and fair bandwidth share.
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