
Exploring the Optimal Replication Strategy in
P2P-VoD Systems: Characterization and Evaluation

Weijie Wu John C.S. Lui
Computer Science & Engineering Department

The Chinese University of Hong Kong
Email: {wjwu,cslui}@cse.cuhk.edu.hk

Abstract— Content providers of P2P-Video-on-Demand (P2P-

VoD) services aim to provide a high quality, scalable service

to users, and at the same time, operate the system with a

manageable operating cost. Given the volume-based charging

model by ISPs, it is to the best interest of the P2P-VoD content

providers to reduce peers’ access to the content server so as to

reduce the operating cost. In this paper, we address an important

open problem: what is the “optimal replication ratio” in a P2P-

VoD system such that peers will receive service from each other

and at the same time, reduce the traffic to the content server.

We address two fundamental problems: (1) what is the optimal

replication ratio of a movie given its popularity, and (2) how to

achieve the optimal ratios in a distributed and dynamic fashion.

We formally show how movie popularities can impact server’s

workload, and formulate the video replication as an optimization

problem. We show that the conventional wisdom of using the

proportional replication strategy is non-optimal, and expand the

design space to both passive replacement policy and active push
policy to achieve the optimal replication ratios. We consider

practical implementation issues, evaluate the performance of

P2P-VoD systems and show that our algorithms can greatly

reduce server’s workload and improve streaming quality.

I. INTRODUCTION

Adapting the peer-to-peer (P2P) technology into video-on-
demand (VoD) service has received a lot of attention in the
past few years. There are a number of successful P2P-VoD
systems like PPLive, PPStream and UUSee. The key advan-
tage of using this technology is that the system can utilize
peers’ resources to satisfy other peers’ viewing requirement,
and thereby achieve a more scalable system as compared to
the traditional client-server architecture. The main difference
between P2P-VoD systems and P2P live streaming systems
is that peers in P2P-VoD service need to contribute a much
larger local cache space1 as well as their upload bandwidth.
For example, in PPLive system [5], each peer needs to dedicate
1 GB of local storage for a scalable P2P-VoD service. This
local storage is for caching some previously watched movies
so that in case a new peer arrives, this peer does not need
to download from the VoD server but rather, obtains the data
directly from other peers. This unique feature not only frees up
the server to serve other peers, but more importantly, reduces
the upload bandwidth traffic of P2P-VoD content providers.
Since content providers usually pay ISPs based on the volume-

based charging scheme, it is to the best interest of a P2P-

1In this paper, local cache space refers to physical memory or storage space
that is dedicated to cache any multimedia data.

VoD content provider to reduce the server’s upload traffic,
and a proper caching policy can achieve such goal. Given the
distributed cache spaces of all peers, we aim to address how
to utilize them efficiently so as to reduce the operating cost of
the P2P-VoD content provider. Specifically, given the caching
and upload capacities, what is the “optimal caching policy” so
as to minimize the traffic to the P2P-VoD server?

Unlike the P2P file sharing applications, to support peers
in a P2P-VoD service, one has to guarantee (a) a low start-up
latency in accessing the movies; (b) supporting the required
playback-rate for all peers which want to watch the movie.
Therefore, a good replication policy should duplicate enough
replicas so as to support the required workload. To illustrate,
consider a P2P-VoD system with 100 cache units (i.e., each
cache unit can store one movie). There are two movies M1,M2

with the same viewing popularity, i.e., each with 50 viewers.
Assume a replication policy keeps 99 replicas for M1 but only
one replica for M2. Then, requests for M2 will fail to find
enough peers’ support and have to go to the server, yet there
are excessive replicas of M1 and some peers which cache M1

will not be using their upload bandwidth efficiently.
Characterizing the optimal caching policy is challenging,

especially when peers have different upload capacities and
movies have different viewing popularities. These factors make
designing the optimal replication policy an open problem so
far. In this paper, we address the following problems:

• Given movies’ viewing popularities, what is the optimal

ratio of total storage space that should be dedicated to
each movie such that when a new peer arrives, it is most
likely to be served by other peers in the system?

• Given the system dynamics (e.g., peers’ churn), how to
design distributed and adaptive algorithms to achieve the
optimal replication ratios?

Previous work [5] and conventional wisdom suggested
to use the proportional replication strategy, i.e., replicating
movies proportionally to their popularities. However, authors
in [13] reported a contradicting result that the proportional
replication may have poor performance, especially for unpop-
ular movies. In this work, we give the formal justifications on
the above contradiction and provide insights to characterize
the optimal replication ratios. These insights provide us with
the principles in designing practical and effective replication
algorithms. The contributions of our paper are:

This paper was presented as part of the main technical program at IEEE INFOCOM 2011

978-1-4244-9921-2/11/$26.00 ©2011 IEEE 1206

• We show that proportional replication is not the optimal
strategy. Instead, one should replicate movies proportion-
ally to the deficit bandwidth (we will formally define this
concept in Sec. II-B). The optimal replication strategy
should be more greedy for unpopular movies.

• We expand the design space by considering both passive

and active replication. We propose a passive replacement
algorithm to decide which movie to purge when a local
storage is full; we also propose an active replication
algorithm to aggressively push data to peers so as to
achieve the desired replication ratios. We evaluate our
proposed algorithms and show significant improvement
of video quality and large reduction on server’s workload.

This is the outline of our paper. In Section II we present
a mathematical model for P2P-VoD system and give an
optimization framework for the replication problem. In Section
III, we discuss the optimal replication ratios in software based
systems. In Section IV, we present our passive replacement
and active push algorithm to achieve the optimal replication
ratios. In Section V, we consider several important practical
issues in implementation and present the performance results
of our algorithms. Section VI states the related work and
Section VII concludes.

II. MATHEMATICAL MODEL

Let M = {M1, . . . , MK} be the set of movies which are
stored in S, the logical server of the P2P-VoD system2. Peers
which want to watch movie Mk can access the data from (1)
S, or (2) any other peer which is watching Mk, or (3) peers
which have watched and cached Mk.

A P2P-VoD content provider aims to minimize, or at least
to reduce, the upload bandwidth traffic of S so as to reduce
its operating cost. The upload consumption of S is affected
by (1) the peer scheduling policies, and (2) movie replication
strategies. For the ease of presentation, we decompose these
two design problems and use a realistic and practical peer
scheduling strategy: a peer first requests data from other peers,
and only when other peers cannot supply sufficient bandwidth,
this peer requests data from S. In here, we focus on the movie
replication strategy and show how it can significantly impact
the upload bandwidth consumption of S.

In what follows, we first state the general P2P-VoD setting,
then we give a general model to show how replication strategy
can affect the upload bandwidth consumption of S.

A. Peer Type and Peer Scheduling Policy

In general, there are two types of peers:
• Active peers: an active peer is one which is currently

watching a movie and at the same time, provides upload
service to other peers. The data that this peer uploads
may come from the movie it is currently watching, or
the data it has stored in its local cache.

• Inactive peers: an inactive peer is one which is currently
not watching any movie, but it stays online in a P2P

2A logical server may consist of many physical servers which process any
request from peers in a P2P-VoD system.

system, and this peer contributes its upload bandwidth to
other peers. This type of peers can represent those online
set-top boxes which have built-in P2P functionalities.

We differentiate these two types of peers because their dis-
tribution in a P2P-VoD system will have a major impact on
replication strategies.

A peer scheduling strategy includes two design issues: (1)
from a downloader’s viewpoint, it needs to decide which peers
to request the data from; (2) from an uploader’s viewpoint, it
needs to decide which peers to upload the data to when it
receives multiple requests.

Let us first describe how an active peer downloads a movie.
Suppose a peer wants to watch movie Mk. In general, its
request can be supported by three different sources: (a) the
server S; (b) active peers which are currently watching the
same movie Mk, and we denote these as the concurrent peers;
(c) peers which are not watching movie Mk but have stored
Mk at their local cache, and we denote these as the replication

peers. Note that a replication peer may be an active peer
watching another movie; or an inactive peer which has movie
Mk in its cache. Lastly, in order to have a short start-up latency
and good streaming quality, each peer needs to download the
movie at its playback rate r.

We consider the following practical peer scheduling policy:
a peer first seeks help from concurrent peers; if the playback
rate cannot be satisfied, the peer seeks help from replication
peers; if the playback rate still cannot be satisfied, the server
S will upload the data to this peer.

We would like to comment on the rationale of this schedul-
ing policy. We let S be the last requesting target of a peer in
order to reduce the upload consumption of S so as to reduce
the operating cost of the P2P-VoD system. Note that, in real
systems, a peer may cache only part but not the whole movie
(details are discussed in Section V). Therefore, requesting
from a replication peer may result in frequent rescheduling:
a peer Pi that requests data from a replication peer Pj needs
to look up other peers for support when Pi’s viewing part
is not cached in Pj ; however, it is more likely that Pi can
download from one particular concurrent peer Pk throughout
the watching period. This is why we prefer concurrent peers
over replication peers to support the viewing requirement.

One interesting question is how should a peer seek help
from concurrent peers? Note that only those concurrent peers
which arrived earlier than this peer can assist in data upload.
We use the “sequential-search-for-help” principle: suppose
there are nk concurrent peers watching movie Mk, and these
concurrent peers are denoted as P1, P2, . . ., Pnk , with P1

having the earliest arrival time. In here, P1 cannot get any
download from other concurrent peers but instead, may ask
replication peers or S for help, while the only concurrent peer
that P2 can seek service from is P1. In general, peer Pi will
first seek help from Pi−1; if the request cannot be satisfied,
Pi will send request to peers Pi−2, Pi−3, ..., in a sequential
manner, until it receives data to satisfy its playback rate r.

From an uploader’s viewpoint, it may receive multiple
download requests simultaneously. In our work, an active

1207

peer will serve its concurrent peers with a higher priority.
Only when its upload bandwidth is not fully consumed by
concurrent peers, the active peer will provide the remaining
upload bandwidth to other peers. For an inactive peer, it will
upload to those peers watching any movie that is stored in
its local cache. The assumption is not only for mathematical
tractability, but this simple scheduling rule can also maximize
the number of peers to receive data at the playback rate r.

B. Model of Movie Popularity on Server’s Workload

Let us illustrate how the movie popularity can affect the
server’s upload bandwidth. First, peer Pi’s download rate can
be supported partly by concurrent peers, partly by replication
peers, and partly by the server S. Let �dc

i and �dr
i be the total

download rates supported by concurrent peers and replication
peers, respectively. If �dc

i + �dr
i is below the playback rate r,

the server needs to fill up the gap r− d̃c
i − d̃r

i so as to satisfy
the QoS guarantee. For the ease of presentation, we denote
�ds
i = r − �dc

i − �dr
i (∀i ∈ NA) as the filling upload rate from

the server to Pi, where NA is the set of all active peers.
Denote Nk as the set of active peers which are currently

watching movie Mk. Obviously, we have Nk ⊆ NA. The
expected upload bandwidth consumption of the server S is
denoted as U , which can be expressed as:

U = E

�
�

i∈NA

�ds
i

�
= E

�
�

k∈M

�

i∈Nk

�ds
i

�
. (1)

Based on the peer scheduling policy above, we have:
Lemma 1: In a large scale P2P-VoD system, the expected
upload consumption at the server is approximately

U ≈
�

k∈M

�
E

�
�

i∈Nk

(r − �dc
i)

�
−Rk

�+

, (2)

where Rk is the maximal upload bandwidth from all replica-
tion peers that can contribute to Mk, or

�
i∈Nk

dr
i ≤ Rk; and

(x)+ =max(0, x).
Due to the page limit, we omit the proofs of lemmas and

propositions in this paper. Interested readers may refer to our
technical report [16] for details.
Let us define the following important notation.
Definition 1: For movie Mk, we define deficit bandwidth as

�Dk(nk) =
�

i∈Nk

(r − �dc
i) =

�

i∈Nk

(�dr
i + �ds

i), (3)

and let
Dk(nk) = E

�
�Dk(nk)

�
(4)

be the expected deficit bandwidth of having nk concurrent
peers in Nk, i.e., the bandwidth gap between the total required
playback rates and the total download rates that can be
supported by nk concurrent peers. We can now rewrite Eq. (2)
and directly obtain the following lemma:
Lemma 2: Given the number of concurrent peers in each
movie, the expected upload consumption at the server is

U =
�

k∈M
(Dk(nk)−Rk)+. (5)

Our objective is to find a replication strategy, which de-
termines Rk, such that U , the average upload bandwidth
consumption of the server S, can be minimized. Thus, we
want to explore how the popularity of a movie may affect
Dk(nk), which in turn will affect the choice of replication. In
what follows, we state an important lemma:
Lemma 3: Deficit bandwidth can be iteratively calculated by

�Dk(nk) = nkr −
�

i∈Nk

�dc
i , (6)

�dc
i =

�
0, i = 1;
min

��i−1
j=1(�uj − �dc

j), r
�

, i ≥ 2,
(7)

where �uj denotes the maximal upload rate of Pj .
Let us use an example to illustrate the above framework

in calculating dc
i and �Dk(nk). Assume six peers are watching

movie Mk. These peers are P1,. . . , P6, with P1 arriving the
earliest. We fix the movie playback rate at r = 500 kbps. If
we know their upload capacities �ui as illustrated in Tab. I, we
can calculate �dc

1, . . . , �dc
6 respectively, and by summing up all

(r − �dc
i) we can get the deficit bandwidth, or �Dk(6) = 1000

kbps. This �Dk(6) represents the bandwidth required to support
all these six peers.

P1 P2 P3 P4 P5 P6

ui (kbps) 500 800 200 800 300 1000
dc

i (kbps) 0 500 600 400 600 500
�Dk(6) (kbps) 1000

TABLE I: Example for calculating �dk
i and �Dk(nk)

In summary, given each peer’s upload capacity (or �ui), one
can determine �dc

i and �Dk(nk). Furthermore, given the upload
capacity distribution of Nk, we may determine Dk(nk) by
taking the expectation. Based on this framework, we can show
how movie’s popularity may impact the upload bandwidth
consumption of the server S. In Section III, we will show
some interesting implications.

C. Model of Replication on Server’s Workload

Let us show how replication can help to reduce the server’s
workload. Intuitively, without using replication (or when �dr

i =
0), Dk(nk) will be the upload bandwidth consumption of
server S for movie Mk. Replication helps to reduce server’s
upload bandwidth consumption since peers could use replicas
to partially support the deficit bandwidth Dk(nk). For the ease
of presentation, we have the following assumptions:
• The system contains K movies and N peers, of which

αN are active peers. An active peer watches movie Mk ∈
{M1, ..., Mk} with probability ρk, with

�K
k=1 ρk = 1.

• Each peer, either active or inactive, caches one movie that
it has watched before. An active peer can also upload the
movie it is currently watching to other peers3.

3Note that the typical cache size of a peer is 1 GB (e.g., in PPLive), and
typical movie size is about 500 MB. Therefore, we assume that besides the
currently watching movie, an active peer can cache one extra movie so as to
cope with typical settings of real systems.

1208

• Peers’ scheduling strategy follows the assumptions in
Section II-A.

To model the distribution of number of active peers in each
movie, one can use a closed queueing network to represent the
P2P-VoD system. Let random variable �nk denote the number
of peers watching movie Mk. Similar to the work in [14], we
can express the probability for movie Mk having nk viewers,
for k = 1, 2, . . . , K, as:

P (�n1 = n1, . . . , �nK = nK) = (αN)!
ρn1
1

n1!
. . .

ρnK
K

nK !
, (8)

with
�K

k=1 nk = αN . Here, ρi implies the relative popularity
of movie Mi. Based on this queueing model, we have the
following proposition:
Proposition 1: The average upload consumption of S is

U(q) =
�

�
nk=αN

�
(αN)!

ρn1
1

n1!
. . .

ρnK
K

nK !
×

K�

k=1

�
Dk(nk)−

qk

K�

l=1

(Cu
l (nl) +Dl(nl)− nlr)− qkCu

I ((1− α)N)
�+

�
, (9)

where qk is the fraction of cache space dedicated to Mk,
Cu

k (nk) = E
��

i∈Nk
�ui

�
, Cu

I (nI) = E
��

i∈NI �ui

�
, and

NI is the set of inactive peers.
Now the model of the optimal replication strategy can be

formulated as follows. We seek to find a set of replication
ratios q which satisfies:

min
q

U(q)

subject to q
T · 1 = 1. (10)

In other words, we want to determine the number of replicas
for each movie Mk ∈ M, so that the average upload
bandwidth consumption of S can be minimized.

In general it is difficult to get a close form solution for this
optimization problem. However, as we will show in the fol-
lowing section, when we consider some common deployment
cases, one can get some interesting implications and insights
in designing replication strategies.

III. OPTIMAL REPLICATION UNDER SOFTWARE
DEPLOYMENT

There are two typical deployment scenarios for P2P-VoD
services: software and set-top box deployment. In software
based systems like PPLive, most users contribute their upload
bandwidth to others peers only when they are watching a
movie; while in set-box deployment, those set-top boxes are
“online” even when users are not watching any movie.

We consider both deployment cases. However, due to page
limit, in this section we focus on software deployment; inter-
ested readers may refer to our technical report [16] for analysis
and design principles in set-top box deployment.

We define two operating modes based on the average upload
capacity u and the playback rate r: we call the system operates
at deficit mode when u < r, or surplus mode when u > r.
In addition, we further divide surplus mode into two modes:

(a) slightly-surplus mode, i.e., u � r, and (b) highly-surplus

mode, i.e., u >> r.
We like to note that the deficit mode is not a rational

operating point for a software P2P-VoD system. If the system
operates in deficit mode, the server’s total upload bandwidth
consumption is at least N(r − u), so that the system cannot
be scalable with huge number of viewers. The only way to
reduce the workload in S is to lower the playback rate r so
that the system can be in the surplus mode. On the other hand,
if the system operates in the highly-surplus mode, concurrent
peers can support each other with ease, so that the abundance
of peers’ upload bandwidth makes replication unnecessary.
This abundance in resource will motivate the P2P-VoD system
designer to increase the playback rate r so as to improve video
quality,which eventually brings the system to the slightly-
surplus mode. To summarize, the only interesting case for
the software-based P2P-VoD deployment is when the system
is operating at the slightly-surplus mode. As we will show,
designing an optimal replication strategy is a non-trivial task.

Under the software deployment scenario, by setting α = 1
in Eq. (9), we have the following proposition:
Proposition 2: In software deployment, the average upload
bandwidth consumption at the server S is:

U(q) =
�

�
nk=N

�
N !

ρn1
1

n1!
. . .

ρnK
K

nK !
·

K�

k=1

�
Dk(nk)−

qk

K�

l=1

(Cu
l (nl) +Dl(nl)− nlr)

�+
�

. (11)

To minimize U , the decisions on qk are highly dependent
on the shape and characteristics of Dk(nk). We consider some
typical distributions to represent peers’ upload capacity so
as to gain a deeper understanding. In addition, we also use
numerical and fitting methods to show the characteristics of
Dk(nk). In here, we present one typical example.
Example 1 (Exploring the characteristics of Dk(nk)):
Assume nk peers are watching movie Mk, and the movie
playback rate is r = 500 kbps. According to [4], we set a
realistic upload capacity distribution as illustrated in Tab. II.
We plot the deficit workload in Fig. 1 when varying nk ∈
[1, 100]. It shows that Dk(nk) is concave in nk and can be
fitted into the form Dk(nk) = D0 −Ae−λ(nk−n0).

Due to page limit, we omit other cases which we have
studied, but we state the following observation:

bandwidth (kbps) 768 384 256 128
share 50% 30% 5% 15%

TABLE II: Peers’ upload capacity distribution
Observation 1: Dk(nk) is a concave function on movie

popularity nk, and it converges to a fixed value when nk

approaches infinity.

Physical meaning: The concavity and convergence features
imply that for unpopular movies, they have a much higher
marginal increase on the deficit bandwidth Dk(nk) while for
popular movies, the marginal increase on Dk(nk) is minimal.

1209

0 20 40 60 80 100
0.4

0.6

0.8

1

1.2

1.4

number of concurrent viewers

d
e

fi
c

it
 b

a
n

d
w

id
th

 (
M

b
p

s
)

numerical result

fitting result

D
k
(n

k
)=1.36!0.75e

!0.04(n
k
!0.16)

Fig. 1: Deficit bandwidth Dk vs. nk

An intuitive explanation of this feature is that peers within
a larger set can cooperate more effectively and thus achieve
higher utilization of peers’ upload bandwidth. Using law
of large number on Eq. (7), for large enough i, we have�i−1

j=1 �uj ≈ (i − 1)u with high probability. Furthermore, if
we assume u > r and i > r/(u− r) + 1, then we have

�dc
i � min

(i−1)u−
i−1�

j=1

�dc
j , r

 ≥ min ((i−1)(u−r), r) = r,

which means that any late arriving peer can receive sufficient
download from concurrent peers and will not incur any band-
width consumption on S.

The above analysis shows the reason why deficit bandwidth
Dk(nk) is sub-linear. This also implies that the conventional
wisdom of using the proportional replication strategy, or
caching the more popular movies [5], [17], [18], is sub-

optimal. Looking at Fig. 1, we see that a popular movie with
25 viewers needs nearly the same deficit bandwidth as a movie
with 100 viewers, while an unpopular movie of five viewers
needs more than half of the deficit bandwidth as compared
with a popular movie with 100 viewers.

Now the impact of movie popularities on server’s workload
is clear: without replication, the server’s workload for movie
Mk is simply Dk(nk). The goal of replication is to reduce
the workload on S. The non-linearity of Dk(nk) implies one
should be greedy in replicating unpopular movies. In the
following, we use examples to justify our argument, and at
the same time, determine the optimal replication ratios q.
Example 2 (Sub-optimality of the proportional replication

strategy): Assume that the system consists of N = 600 active
peers and K = 25 movies. Movie M1 - M5 are popular movies
while movie M6 - M25 are unpopular. Peers choose each of
the popular movies with a probability of ρpop = 1/6, or each
of the unpopular movies with a probability of ρunpop = 1/120.
The playback rate is set at r = 500 kbps, Peers’ upload
capacity follows Tab. II.

Denote qunpop as the fraction of cache space (which can
store 600 movies) that is dedicated to cache any unpopular
movie (M6 - M25) while 1 − qunpop is the fraction of cache
space of caching popular movies (M1 - M5). We develop
a simulator to explore the replication strategy. In particular,
we vary the fraction of cache space that is used to store
unpopular movies from 0% (i.e., all cache space is used to

0 20 40 60 80 100

2

4

6

8

10

12

14

fraction of caching unpopular movies

s
e

rv
e

r’
s
 w

o
rk

lo
a

d
 (

M
b

p
s
)

 proportional

replication

optimal

 replication

Fig. 2: Replication impact on server’s workload in a software-
deployed system, where r = 500 kbps.

store popular movies) to 100% (i.e., all cache space is used to
store unpopular movies), and evaluate the system performance.
Fig. 2 illustrates the upload bandwidth consumption on the
server when we vary qunpop.

If the system only replicates popular movies, then all deficit
bandwidth Dk of unpopular movies will contribute to the
server’s workload. This corresponds to the first point from the
left (about 15 Mbps) in Fig. 2. Similarly, if all replications
are for unpopular ones, the server’s workload is around 6
Mbps and this corresponds to the last point at the right of
the figure. Since 5/6 fraction of the requests are for popular
movies, using the proportional replication strategy, only 1/6
or 17% of the cache space should be dedicated to store the
unpopular movies. From the figure, we see that the workload
on the server will be around 10 Mbps. However, the optimal

replication fraction for unpopular movie should be around
70% where the server’s upload bandwidth consumption is less
than 2 Mbps. This simple example validates the following
observation:
Observation 2: In a software-based system, proportional

replication is far from optimal and incurs a higher server’s

workload as compared with the optimal replication strategy.

Example 3 (Exploring optimal replication ratio): We con-
sider a P2P-VoD system with 700 peers and 35 movies. M1

- M5 are popular movies with ρpop = 1/7; M6 - M15 are
moderately popular movies with ρmid = 1/70; while M16 -
M35 are unpopular movies with ρunpop = 1/140. We simulate
this system and explore the server’s workload at each possible
integral fraction combination q ∈ {(qpop, qmid, qunpop) :
qpop + qmid + qunpop = 100%}. Using exhaustive search,
the popularity fractions and optimal replication fractions of
different movies are shown in Tab. III. Obviously, the optimal
replication strategy should be “aggressive” in caching unpop-
ular movies.

popular moderate unpopular
proportional fraction 71% 14% 14%

optimal replication fraction 18% 32% 50%
deficit bandwidth fraction (q̂k) 21% 30% 49%

TABLE III: Optimal replication ratios vs. popularity fractions

It is mathematically difficult to derive the optimal ratios
of replication from the optimization problem, and one cannot
afford to use exhaustive search for large scale P2P-VoD sys-

1210

tems. However, we obtain an interesting finding: the optimal
ratio for replication for movie Mk should be close to the
fraction of deficit bandwidth Dk(nk) for movie Mk among
the total deficit bandwidth, i.e., let q̂k = Dk(nk)� K

i=1Di(ni)
, then

we have qopt
k � q̂k. For instance, in the above example

q̂pop = 21%, q̂mid = 30% and q̂unpop = 49%, which are near
to the optimal ratios for replication. This example reveals the
following observation:
Observation 3: Proportional deficit bandwidth replication is

a good estimate to the optimal replication ratios.

Due to page limit, we omit examples using other typical
settings, but they all strongly support our observations. We like
to point out that there is an intuitive explanation to the above
resource allocation strategy: without replication, Dk(nk) is
exactly the server’s bandwidth consumption for movie Mk,
thus, allocating remaining bandwidth in this ratio is the most
efficient method to balance each movie’s request load to the
server S. This idea leads to the replication algorithm which
we will discuss in the next section.

IV. ALGORITHMS TO CONTROL REPLICATION RATIOS

Let us present several algorithms to achieve the optimal
replication ratio q in a P2P-VoD system. Note that a P2P-VoD
is with high churn, therefore, the replication algorithms need
to be robust and efficient in minimizing the server’s workload.

In general, there are two ways to control or adjust the
replication ratios:
• Passive adjustment: peers adjust the replication ratio

in the P2P-VoD system using replacement algorithms,
i.e., when a peer’s local cache is full, it decides which
movie(s) to purge so as to accommodate a new movie
that can reduce the server’s workload;

• Active adjustment: the server S and all peers actively
push out (or upload) data for which the replicas are not
at the desired replication ratios.

Passive Adjustment via Replacement Algorithm: When the
cache space of a peer is full, a peer has to decide which
movie(s) to purge from the cache space such that new movies
could be cached. Since we want to explore the impact of movie
popularities to the server’s workload, we consider replication
algorithms that replace the whole movie, instead of partial
replacement. Nevertheless, generalization can be easily made.

Previous work [5] suggested a weight-based evaluation
scheme, or replicating proportionally to a movie’s popularity.
Our previous examples already show the sub-optimality of
such replication algorithm and one should replicate movie pro-
portionally to its deficit bandwidth. This leads to the following
replacement algorithm, which is illustrated in Algorithm 1.

The main idea behind this algorithm is to keep the number
of replicas proportional to the deficit bandwidth. We define
satisfaction index (SI) to express the extent that a movie has
enough replicas. When SIk < 1, it means that the number of
replicas for movie Mk is below the desired replication ratio.
On the other hand, if SIk > 1, the number of replicas of Mk

exceeds the desired ratio. Therefore, in each round, we purge
the movie that has the highest SI from the local cache.

Algorithm 1 Replacement Algorithm
1: for any peer that starts to watch a new movie do

2: if this movie is already stored in its local cache then

3: do not replace any movie;
4: else

5: for each movie Mi in its local cache do

6: calculate the expected number of caches for Mi:
Nexp

i = [Di(ni)N] /
�

k Dk(nk);
7: calculate the current number of caches for Mi:

N cur
i ;

8: calculate the satisfaction index for Mi:
SIi = N cur

i /Nexp
i ;

9: end for

10: replace the movie with the highest satisfaction index.
11: end if

12: end for

Algorithm 2 Push Algorithm
1: while system is in an idle time slot do

2: find out a list of replication peer candidates which will
most likely be inactive at the publishing instance;

3: estimate the total volume available for push
4: calculate the total volume desired for coming-to-hot

movies: �
k Dk(nk)× (movie length)

5: if total available volume is larger than desired then

6: assign each movie Mi with the volume it desires;
7: else

8: for each movie Mi do

9: assign volume
Di(ni)�
k Dk(nk) × (total available volume)

to the list of replication peer candidates;
10: end for

11: end if

12: end while

We like to mention that although requiring global informa-
tion, this algorithm is efficient in practice. Each peer reports
to the tracker the current cached movies, and the tracker can
calculate the satisfaction indices and broadcast to all peers.
These can be done in a proper frequency (e.g., once in five
minutes), and thus the overhead can be minimal. In Sec. V,
we also evaluate the impact of delay in broadcasting SI .
Active Adjustment via Push Strategy: Although our proposed
replacement algorithm can reduce the server’s workload, other
factors still constrain the system performance. For instance, the
server’s workload may dramatically increase when a popular
movie is newly released, since there will be a sudden surge
of demand but only few peers in the system have cached
this movie. By simply relying on the replacement algorithm,
the system will take a long time to converge to the optimal
replication ratios. To overcome this limitation, one can take
a proactive approach to push out a movie if we know that it
will be a popular object. This leads to the push algorithm as

1211

0 50 100 150 200 250
0

0.005

0.01

0.015

movie ID

re
p

li
c

a
 d

is
tr

ib
u

ti
o

n

(a) proportional distribution

0 50 100 150 200 250
3

4

5

x 10
!4

movie ID

re
p

li
c

a
 d

is
tr

ib
u

ti
o

n

(b) optimal distribution

Fig. 3: Proportional vs. optimal replica distribution

depicted in Algorithm 2. In essence, the push algorithm utilizes
the excessive bandwidth in idle time slots to push some data
for future use so server’s workload could be “flattened” over
time. Note that there is a daily periodicity of user behavior [5],
leading it possible to predict the peak hours and popularity
dynamics (in particular, for TV series) so as to implement
the algorithm in practice. We will illustrate the effect of the
algorithm in the following section.

V. PERFORMANCE EVALUATION

A. Performance of Replacement Algorithm

We carry out extensive simulation to validate our models
and evaluate the performance of our proposed replacement
algorithm. For a software-based P2P-VoD system where α =
1, we use the following as inputs to our simulator: (a) The
system contains N = 10, 000 active peers. Peer’s upload
capacity distribution follows Tab. II, with average of 531 kbps.
(b) The system provides K = 250 kinds of movies. Each
movie is with the playback rate of r = 500 kbps. (c) Movie
popularity follows a Zipf distribution [9] with parameter γ. (d)
At each round, an active peer requests a movie. Active peers
switch movie channel every round.

The movie playback rate and average upload capacity we set
are based on realistic settings like PPLive. The tracker in the
system records the current cache distribution in the system and
that all peers can use this information to do replacement. We
compare server’s workload using the following replacement
algorithms: (a) Our proposed algorithm, which keeps replicas
proportional to deficit bandwidth; (b) Proportional algorithm,
which keeps the replicas proportional to movie popularity; (c)
First-in-First-out (FIFO) algorithm, which keeps the newly
cached movie and purges the oldest one.

Fig. 3 illustrates the comparison of the proportional replica
distribution vs. the optimal replica distribution (both normal-
ized to 1). We set the Zipf distribution parameter γ = 1
and arrange the movies in a decreasing order of popularity.

20 40 60 80 100
0

20

40

60

80

time rounds

s
e

rv
e

r’
s

 w
o

rk
lo

a
d

 (
M

b
p

s
)

FIFO algorithm

proportional algorithm

improved algorithm

(a) γ = 1

20 40 60 80 100
0

20

40

60

80

100

120

time rounds

s
e

rv
e

r’
s

 w
o

rk
lo

a
d

 (
M

b
p

s
)

FIFO algorithm

proportional algorithm

improved algorithm

(b) γ = 1.5

Fig. 4: Comparison of replacement algorithms

20 40 60 80 100
0.96

0.97

0.98

0.99

1

time rounds

fr
a
c
ti

o
n

 o
f

s
a
ti

s
fi

e
d

 p
e
e
rs

FIFO algorithm

proportional algorithm

improved algorithm

Fig. 5: Impact of replication algorithm on satisfied peers

Our proposed algorithm keeps fewer popular movies than the
proportional distribution and is more greedy in replicating
unpopular movies. Thus, the optimal replica distribution is
“flatter” than the proportional distribution.

Fig. 4 compares the server’s workload using different re-
placement algorithms. We record the server’s load after round
20 since we are interested in the steady state performance.

In Fig. 4(a) where γ = 1, the server’s average workload
is around 9 Mbps using our proposed replacement algorithm,
but is 75 Mbps using the proportional algorithm or 74 Mbps
using the FIFO algorithm. Hence, our proposed push algorithm
reduces the server’s workload by a factor of eight. When
movies’ popularities have high variability, the performance
of our replacement algorithm shows even higher workload
reduction. Fig. 4(b) illustrates this result with γ = 1.5, or
higher variance in movies’ popularity. In the steady state,
the server’s average workload is around 10, 103 and 101
Mbps using our proposed replacement algorithm, proportional
algorithm and FIFO algorithm, respectively.

Another important performance measure is to evaluate the
number of peers which can watch movie at the normal play-
back rate r (which we call satisfied peers) when given a finite
server upload capacity. We set the simulation environment as
the previous case and the server upload capacity is restricted at

1212

20 40 60 80 100
0

20

40

60

80

time rounds

s
e

rv
e

r’
s

 w
o

rk
lo

a
d

 (
M

b
p

s
)

FIFO algorithm
proportional algorithm

improved algorithm, p=0.7

improved algorithm, p=0.5

(a) Comparison of algorithms with random delay

20 40 60 80 100
0

20

40

60

80

100

time rounds

s
e

rv
e

r’
s

 w
o

rk
lo

a
d

 (
M

b
p

s
)

FIFO algorithm
proportional algorithm

improved algorithm

(b) Comparison of algorithms with incomplete infor-
mation

20 40 60 80 100
0

2

4

6

time rounds

s
e

rv
e

r’
s

 w
o

rk
lo

a
d

 (
M

b
p

s
)

!=2
!=3

!=1

(c) Improved algorithm with multiple cache spaces

20 40 60 80 100
0

20

40

60

80

100

time rounds

s
e

rv
e

r’
s

 w
o

rk
lo

a
d

 (
M

b
p

s
)

proportional algorithm
FIFO algorithm

improved algorithm

(d) Comparison of algorithms with peer departure

Fig. 6: Practical issues

10 Mbps. Fig. 5 shows the comparison on fraction of satisfied
peers using different replacement algorithms. From the figure,
our proposed replacement algorithm can ensure the maximum
ratio of peers that can watch the movie at the playback rate,
achieving approximately 100% of satisfied peers, while the
ratio is around 96% when using the proportional or FIFO al-
gorithm. These results validate that our proposed replacement
algorithm can reduce the server’s workload and at the same
time, improve streaming quality.
Practical issues: let us comment on some practical implemen-
tational issues and the adaptiveness of our algorithms.

First, we consider the possible delay when a peer receives
information from the tracker. We assume that a peer has prob-
ability p to successfully update SI when doing replacement.
If this is delayed, a peer will do replacement based on SI it
received previously. In Fig. 6(a), we show that our algorithm
is robust to this delay: when p = 0.7 or 0.5, the server’s
workload is much less than proportional or FIFO algorithms.

Secondly, we consider the case that some peers fail to report
its cached movie to the tracker, and thus the replacement
is based on incomplete information. Fig. 6(b) shows the
comparison of server’s workload with 10% failure to report.
The server’s workload is 16 Mbps when using our proposed
algorithm, but will be 80 Mbps or 77 Mbps with proportional
or FIFO algorithm. Compared with Fig. 4(a), our proposed
algorithm is still robust with incomplete information.

Thirdly, when there are more cache space, the server’s
workload can be further reduced. In Fig. 6(c), we allow each
peer to store up to three movies it has watched. The server’s
average workload is near zero when the variance of movie
popularity is not large (e.g., γ = 1 or 2), and is only around 4
Mbps even if the movie popularities vary a lot (e.g., γ = 3).

Lastly, peers may not watch the entire movie but may
leave after watching part of the movie. This behavior can

lead it a more challenging task in supporting latter parts of
movies. Theoretically one can use “chunk level” replication,
but it comes with an overhead. In here, we do a minor
modification on our proposed algorithm, i.e., divide a movie
into several segments (we use three as default) and separately
replicate these segments based on individual deficit workload.
In Fig. 6(d), we assume that among all peers that watch the
first part of any movie Mk, 80% of them also watch the second
segment, and only 50% watch the third segment. It shows that
our proposed algorithm is adaptive to this system, while the
proportional or FIFO algorithm performs poorly.

B. Performance of Push Algorithm

In here, we show that the proposed push algorithm can
significantly improve the system performance, particularly for
a set-top box deployed system. The key idea is to push some
data to some inactive peers in advance such that the server’s
workload could be flattened down when publishing a new
popular movie. The simulation setting is similar to the previous
one but the differences are: (a) There are 5,000 active peers and
5,000 inactive peers. (b) Playback rate of a movie is doubled to
r = 1.0 Mbps. (c) Initially there are K = 249 kinds of movies
{M1,..,M249} with a Zipf popularity distribution (γ = 1).
At the beginning of round tp, a new popular movie M250

is published. The popularities of these 250 movies follow a
new Zipf distribution and M250 is the most popular one.

Movie M1 - M249 can be stored in local cache of active and
inactive peers. In a traditional system, before round tp, movie
M250 will not be in any local cache since no peer requests
this unpublished movie. Hence, the system will have a very
heavy workload at the publishing instance.

With the push strategy, the new movie M250 can be pushed
into inactive peers’ cache before being published. We divide
a day into 24 rounds (1 hour/round), of which we allow 18
rounds in advance to push a new movie before the publication.

1213

0 5 10 15 20 25
100

200

300

400

500

600

time rounds in a day

s
e
rv

e
r

w
o

rk
lo

a
d

 (
M

b
p

s
)

w/o push strategy

w/ push strategy

Fig. 7: Performance improvement of using the push strategy

To avoid introducing much overhead, in each round we only
push the data of this new movie into forty inactive peers.
At tp = 19, the new movie is published. After the publishing
instance of the new movie, we do not push the data any more.

Fig. 7 illustrates the improvement using the push strategy.
With a limited overhead, this strategy can significantly de-
crease the server’s workload at the publishing instance of a
new movie. In other words, this allows the system to “prepare”
the data ahead of the flash crowd event. In comparison, the
system without using the push strategy will experience heavy
workload not only at the time of the new movie publication,
but also in the following rounds after publishing the movie,
as it is slow to adjust to the optimal replication ratio.

VI. RELATED WORK

Replication has long been an effective strategy to im-
prove performance in P2P systems. Existing literatures [3],
[6], [7], [12] discussed replication replacement strategies
to optimize file availability, minimize traveling distance or
maximize search effectiveness. They vary in objectives and
hence lead to different conclusions. Recent popularity of P2P-
VoD systems leads to the rethinking of replication. Previous
replication algorithms are not suitable due to a very different
objective: to minimize the server’s workload. Authors in [4]
showed the benefit of a peer-assisted VoD system by utilizing
peers’ upload bandwidth, but peers only redistribute content
to concurrent peers and hence there is no real replication.
Huang et al. [5] discussed the design and implementation
of a P2P-VoD system and showed replication can reduce
server’s workload; but the proportional replication policy was
reported to have poor performance for unpopular movies in
[13]. Similar proportional replications were also implemented
in [17], [18]. Poon et al. [8] reformulated the replication
problem in terms of minimizing server’s workload. Cheng et

al. [2] proposed and evaluated a heuristic algorithm of lazy
replication. These two works were based on simulations but
did not provide theoretical analysis. Tan et al. [11] discussed
content placement for a P2P-VoD system. Wu et al. [15]
used dynamic programming to derive the optimal replacement
strategy for P2P-VoD system. These two works assumed
homogenous upload capacity, which is different from our
model which considers peer heterogeneity. Besides, our model
differentiates concurrent peers and replication peers which is
different from [15]. Suh et al. [10] considered push-to-peer
scheme for a set of always-online homogeneous peers, where
the content server only pushes out data and the peers only

pull contents. This differs from our scheme where we let
heterogeneous peers to push out data proactively. Chen et al.

[1] considered pre-fetching strategy for a peer-assisted IPTV
system based on a structured IPTV platform, which is different
from unstructured P2P systems.

VII. CONCLUSION

Movie replication is important in the design of P2P-VoD
systems. However, it remains an open problem to answer what
the optimal replication policy should be so as to minimize
the server’s workload. In this paper, we present mathemat-
ical models and formulate an optimization framework to
understand the impact of movies’ popularities on server’s
workload, and reveal important principles in designing optimal
replication algorithms. We show that conventional proportional
replication strategy is far from optimal; rather, one should be
more “aggressive” to replicate unpopular movies. Furthermore,
to operate the system at the optimal point, we propose both
passive replacement and active push strategies. We discuss
practical implementational issues and validate via extensive
simulations to show that we achieve high QoS guarantee in
streaming and at the same time, reduce workload at the server.

REFERENCES

[1] Y.-F. Chen, Y. Huang, R. Jana, H. Jiang, M. Rabinovich, J. Rahe, B. Wei,
and Z. Xiao. Towards capacity and profit optimization of video-on-
demand services in a peer-assisted iptv platform. Multimedia System,
15(1):19–32, 2009.

[2] B. Cheng, L. Stein, H. Jin, and Z. Zhang. A framework for lazy
replication in p2p vod. In Proc. of NOSSDAV, 2008.

[3] E. Cohen and S. Shenker. Replication strategies in unstructured peer-
to-peer networks. In Proc. of ACM SIGCOMM, 2002.

[4] C. Huang, J. Li, and K. W. Ross. Can internet video-on-demand be
profitable? In Proc. of ACM SIGCOMM, 2007.

[5] Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang. Challenges,
design and analysis of a large-scale P2P-VoD system. In Proc. of ACM

SIGCOMM, 2008.
[6] J. Kangasharju, K. Ross, and D. Turner. Optimizing file availability in

peer-to-peer content distribution. In Proc. of IEEE INFOCOM, 2007.
[7] W. Lin, C. Ye, and D.-M. Chiu. Decentralized replication algorithms for

improving file availability in P2P networks. In Proc. of IWQoS, 2007.
[8] W. Poon, J. Lee, and D.-M. Chiu. Comparison of data replication

strategies for peer-to-peer video streaming. In Proc. of ICICS, 2005.
[9] T. Qiu, Z. Ge, S. Lee, J. Wang, Q. Zhao, and J. Xu. Modeling

channel popularity dynamics in a large iptv system. In Proc. of ACM

SIGMETRICS, 2009.
[10] K. Suhy, C. Dioty, J. Kurosey, L. Massoulie, C. Neumann, D. Towsley,

and M. Varvello. Push-to-peer video-on-demand system: Design and
evaluation. IEEE JSAC, 25(9):1706–1716, 2007.

[11] B. Tan and L. Massoulie. Brief announcement: adaptive content
placement for peer-to-peer video-on-demand systems. In Proc. of ACM

PODC, 2010.
[12] S. Tewari and L. Kleinrock. Proportional replication in peer-to-peer

networks. In Proc. of IEEE INFOCOM, 2006.
[13] K. Wang and C. Lin. Insight into the P2P-VoD system: Performance

modeling and analysis. In Proc. of ICCCN, 2009.
[14] D. Wu, Y. Liu, and K. Ross. Queuing network models for multi-channel

P2P live streaming systems. In Proc. of IEEE INFOCOM, 2009.
[15] J. Wu and B. Li. Keep cache replacement simple in peer-assisted vod

systems. In Proc. of IEEE INFOCOM mini conference, 2009.
[16] W. Wu and J. C. S. Lui. Exploring the optimal replication strat-

egy in P2P-VoD systems: characterization and evaluation, available at
http://www.cse.cuhk.edu.hk/~cslui/infocom_2011_TR.pdf.

[17] L. Ying and A. Basu. pcVOD: Internet peer-to-peer video-on-demand
with storage caching on peers. In Proc. of DMS, Banff, Canada, 2005.

[18] W.-P. Yiu, X. Jin, and S.-H. Chan. Vmesh: Distributed segment storage
for peer-to-peer interactive video streaming. IEEE JSAC, 25(9):1717–
1731, 2007.

1214

