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ABSTRACT

Modern storage systems use thousands of inexpensive disks
to meet the storage requirement of applications. To enhance
the data availability, some form of redundancy is used. For
example, conventional RAID-5 systems provide data avail-
ability for single disk failure only, while recent advanced cod-
ing techniques such as row-diagonal parity (RDP) can pro-
vide data availability with up to two disk failures. To reduce
the probability of data unavailability, whenever a single disk
fails, disk recovery (or rebuild) will be carried out. We show
that conventional recovery scheme of RDP code for a single
disk failure is inefficient and suboptimal. In this paper, we
propose an optimal and efficient disk recovery scheme, Row-
Diagonal Optimal Recovery (RDOR), for single disk failure
of RDP code that has the following properties: (1) it is read
optimal in the sense that it issues the smallest number of
disk reads to recover the failed disk; (2) it has the load bal-
ancing property that all surviving disks will be subjected to
the same amount of additional workload in rebuilding the
failed disk. We carefully explore the design state space and
theoretically show the optimality of RDOR. We carry out
performance evaluation to quantify the merits of RDOR on
some widely used disks.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance; D.4.2 [Operating Systems]: Stor-
age Management—Secondary storage
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1. INTRODUCTION
The tremendous growth of information makes designing

a massive data storage system more challenging nowadays.
As pointed out by authors in [20], there were around 5 ex-
abytes of new information generated in the year 2002, and
the amount of information produced in the world increases
by 30% every year. This massive amount of information
translates to a huge demand for large and cost-effective stor-
age systems, which use thousands or even hundreds of thou-
sands of inexpensive disks to preserve large volumes of data
[17, 16, 6].

The continuing increase of system size and the usage of
inexpensive but less reliable components for economical con-
sideration make component failures (e.g., disk failure) more
common, and this has a huge impact on the reliability and
data availability of large scale storage systems [27, 25]. How-
ever, a fundamental requirement of building large storage
systems is to make sure information is reliable and available
even under the presence of component failure. High reliabil-
ity and data availability can be achieved by maintaining a
sufficient amount of redundancy in the storage system. For
example, in recent years, several erasure codes [26, 15, 7,
14, 8], such as row-diagonal parity (RDP) [5], EVENODD
[2], and X-code [36] were proposed to protect data against
more than one disk failure and still can maintain higher level
reliability as compared to the conventional RAID-5 systems.

When the number of failed disks is more than the erasure
capability, information will be lost and data will be unavail-
able. Thus, to maintain a high system reliability level, a
key approach is to repair and recover a failed component as
quickly as possible [1]. In general, the recovery process re-
quires multiple reads to surviving disks, and the total data
that must be processed during recovery plays a crucial role
in the overall recovery time [5]. Moreover, as the storage ca-
pacity of modern disk is growing at a much faster rate than
the disk I/O speed, the disk recovery process for modern
disks takes much longer time. This translates to lengthen-
ing the window of vulnerability (WOV) and increases the
probability of data loss [34]. Thus, reducing the disk reads
will accelerate the recovery process and improve system re-
liability.

Another fact which should be taken into consideration is
that most of the storage systems have an online failure re-
covery mode [10], in which the system still provides service
to the users during the recovery period. However, multi-
ple reads from disks for recovery consume I/O bandwidth
of the system and influence the system service performance



[12]. Therefore, by reducing the number of disk reads, one
can also improve the performance to users during the on-
line failure recovery mode. Additional benefits for reducing
disk reads include conserving disk energy and relieving the
communication load of the entire storage system.

Systems based on double fault tolerant array codes (e.g.,
RDP, EVENODD) usually contain two parity disks to pro-
tect against double disk failures. However, the frequency of
single disk failure is much higher than double disk failures
(this is especially true when the aggregated disk failure rate
is much lower than the disk recovery rate). Therefore, one
should focus on designing an efficient recovery scheme of a
single failed disk for storage systems that can tolerate mul-
tiple disk failures. However, most commonly adopted disk
recovery strategies only use single parity for single failure
recovery [2, 5, 36], and there is no research which focuses
on designing a fast and efficient recovery scheme for single
failure recovery of double fault tolerant array codes.

Recent studies show that memory reads are about 100
times faster than disk reads. For instance, a state-of-the-
art SATA disk driver has a linear read speed of approxi-
mately 60MB/sec, while DDR2-800 memory read speed is
6400MB/sec [32]. If some disk reads can be substituted by
memory reads, one can speed up the disk recovery process
and reduce the communication load of the storage system.

The aim of this work is on designing an optimal recovery
scheme for single disk failure in a storage system that uses
double fault tolerant array codes. We consider the single
failure recovery problem for storage systems which use the
RDP codes. We show that one can exploit both parity disks
to reduce the number of disk reads for the recovery of single
disk failure and propose a hybrid recovery scheme RDOR.
Using RDOR, the disk reads for recovery can be reduced by
approximately 25% compared with the conventional recov-
ery strategies. The main contributions of this paper are:

1. We propose an optimal recovery scheme for single disk
failure which can reduce disk reads and therefore im-
proves system recovery performance.

2. We derive the lower bounds on the total amount of disk
reads needed for any single failure recovery of RDP
code storage systems.

3. RDOR has the load-balancing property that all sur-
viving disks will experience the same amount of work-
load to recover the failed disk, and the recovery scheme
matches the lower bound on the number of disk reads.

This paper is organized as follows. We will briefly in-
troduce the concept of storage system and the construction
mechanisms of RDP code in Section 2. Section 3 presents the
main idea of our recovery scheme using a simple example.
In Section 4, we theoretically analyze the lower bounds of
the disk reads and propose the RDOR scheme which is read-
optimal and load balanced. In Section 5, we present the ex-
perimental results to show the advantage of RDOR. Section
6 introduces the related works on disk recovery. Conclusion
and discussion of future work are presented in Section 7.

2. BACKGROUND ON RDP STORAGE SYS-

TEMS
RDP code storage system can be realized by multiple in-

expensive disks. Disks of the same size which are arranged

in an array constitute a disk array storage system. Among
these disks, some of them are information disks and the rest
are parity disks.

Erasure codes are defined by parity symbol construction
mechanisms to protect information from disk failure. When
a disk fails in the system, to maintain the system reliability
level, the data in the failed disk should be reconstructed by
reading corresponding information and parity data from the
surviving disks, and the reconstructed data should be stored
in a spare disk as soon as possible. To deal with disk failures,
each erasure code has its specific recovery algorithm.

RDP code is one of the most important double fault tol-
erant erasure codes which achieves optimality both in com-
putation efficiency and I/O efficiency. It is also named as
RAID-DP in NetApp’s commercial products [19]. The RDP
encoding takes a (p− 1)× (p + 1) two-dimensional array (or
what we call a stripe), where p is a prime number greater
than 2. The first p − 1 columns in the array are informa-
tion columns and the last two are parity columns. In actual
implementations, the identities of information and parity
columns are rotated between stripes [26], so all the disks
will get the same workload.

The two parity columns in the array, named as the row
parity column and the diagonal parity column respectively,
ensure all information is recoverable when there are no more
than two disk failures. A row parity symbol, just like in
RAID-4, is generated by XOR-summing all the information
symbols in that row, and a diagonal parity symbol is by
XOR-summing all symbols along the same diagonal. Fig-
ure 1 shows the construction mechanism of RDP code when
p = 5, where di,j is the i-th symbol in column j. The
first four disks, Disk 0 to Disk 3 are information disks,
while the last two disks, Disk 4 and Disk 5, are parity
disks. Disk 4 contains all the row parity symbols, e.g., d0,4

is the XOR-sum of data blocks {d0,0, d0,1, d0,2, d0,3}, while
Disk 5 contains the diagonal parity symbols, e.g., d0,5 is
the XOR-sum of data blocks {d0,0, d3,2, d2,3, d1,4}. Diagonal
p− 1 ({di,j |i + j ≡ p− 1 (mod p)}) is called the missing di-
agonal as it does not have a corresponding diagonal parity.
Symbols {d0,4, d1,3, d2,2, d3,1} consist of the missing diago-
nal. Refer to [5] for more details.

Disk0 Disk1 Disk2 Disk3

d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

Information Disks

d0,4

d1,4

d2,4

d3,4

d0,5

d1,5

d2,5

d3,5

Disk4 Disk5

Parity Disks

Figure 1: Storage system with RDP code of p = 5.

2.1 Conventional Recovery Scheme for RDP
Storage Systems

In this subsection, we will discuss the “conventional” ap-
proach of recovering a failed disk in the RDP storage sys-
tems.

For RDP, if the failed disk is an information disk, the



conventional approach is to use row parity and information
symbols in that row to recover each erasure symbol. For
example, if Disk 0 fails, one can read {d0,1, d0,2, d0,3, d0,4}
to recover d0,0.

If the failed disk is a parity disk, recovery is equivalent
to the corresponding encoding. For example, if Disk 4 fails,
one can XOR-sum {d0,0, d0,1, d0,2, d0,3} to reconstruct d0,4.
If Disk 5 fails, one can XOR-sum {d0,3, d1,2, d2,1, d3,0} to
reconstruct d3,5.

It is important to note that the conventional strategy for
single failure recovery of RDP code only uses a single par-
ity column. However, all data blocks are protected by two
different parity groups. In the following, we will present the
RDOR scheme which uses both parities. The interesting
properties of RDOR are that (1) it reduces the number of
disk read operations; (2) it maintains load balancing prop-
erty among all surviving disks.

3. HYBRID RECOVERY APPROACH FOR

SINGLE FAILURE
In this section, we will first introduce an example to illus-

trate the idea of RDOR for single failure recovery, and then
we formally present the recovery process.
Example 1: Let us consider a storage system in Figure 2
which uses an RDP code with p = 7. Assume that Disk
0 (column 0) failed. The six information symbols di,0 (0 ≤
i ≤ 5) are to be recovered. With the conventional recovery
strategy, di,0 (0 ≤ i ≤ 5) are all recovered from row parity
(or Disk 6). Therefore, 36 symbols need to be read from
disks for the recovery. As illustrated in Figure 2, the era-
sure symbols are labeled with “×”, and the symbols used for
recovery are labeled with “©”.

Disk0 Disk1 Disk2 Disk3 Disk4 Disk5 Disk6 Disk7

Figure 2: Conventional scheme to recover Disk 0.

Minimizing Disk Reads:1 Because an information sym-
bol can be recovered from either row parity or diagonal
parity, the conventional recovery strategy is only one of
many possible schemes. Suppose that in Example 1, if the
d0,0, d1,0, d2,0 are recovered from row parity and d3,0, d4,0,
d5,0 are recovered from diagonal parity, there are 9 over-
lapping symbols which will be read twice for the recovery
process. Figure 3 illustrates this case, where the symbols la-
beled with “©” are read for the recovery through row parity
and the symbols labeled with “�” are read for the recovery
through diagonal parity. If an overlapping symbol is stored

1The main idea of using double parities for single failure
recovery to reduce the number of disk reads can be gen-
eralized to other double fault tolerant array codes such as
EVENODD and X-code.

Disk0 Disk1 Disk2 Disk3 Disk4 Disk5 Disk6 Disk7

Figure 3: Reducing the number of disk reads for

recovering Disk 0.

in memory after it is read from a disk at the first time, it
can be read from memory for the recovery of other infor-
mation symbols. So a total of 36 − 9 = 27 symbols will be
read from disk for the recovery, while 9 symbols are read
from memory. Because the speed of memory read is much
faster than that of disk read, reading symbols from memory
instead of from disk will speed up recovery process. Since
this recovery scheme reduces disk reads by using memory
read instead of disk read, the recovery process will be sped
up and the communication load of the storage system will
be reduced. The main idea of using previously read symbols
to recover data so as to reduce I/O operation is appealing.
Theoretically, we also like to answer the following questions:

• What is the lower bound of disk reads for single failure
recovery?

• How to design a recovery scheme which matches this
lower bound?

Balancing Disk Reads: During recovery, one would ex-
pect the recovery read requests are uniformly distributed
among all surviving disks to speed up the recovery process.
For conventional recovery scheme, this can be achieved by
parity rotation between stripes. However, by using double
parities for the recovery, the numbers of symbols read from
each surviving disk are determined by the recovery scheme
we choose and can not be balanced simply by rotating par-
ities between stripes. For example, simply rotating parities
between stripes, if the recovery scheme in Figure 3 is carried
out in each stripe, nearly all the data from Disk 1 need to
be read for the recovery of the failed Disk 0, while only half
from Disk 4.

Consider another hybrid recovery scheme in Example 1,
where d2,0, d4,0, d5,0 are recovered from row parity and d0,0,
d1,0, d3,0 are recovered from diagonal parity. Figure 4 de-
picts the symbols being read for the recovery with this scheme.
In Figure 4, 27 symbols are read from disks for the recovery,
the same as that in Figure 3. However, in Figure 4, the num-
bers of symbols we need to read from Disk 1 to Disk 6 for
recovery are all equal to 4. In other words, the additional
workload to recover data in Disk 0 are perfectly balanced
among all surviving disks. One interesting question we like
to address is:

• Whether there exists a balanced recovery scheme with
which the numbers of read operations from each disk
are the same?

In the following sections, We will analyze the minimum
disk reads and balanced disk reads for the recovery. We will



Disk0 Disk1 Disk2 Disk3 Disk4 Disk5 Disk6 Disk7

Figure 4: Load balancing in recovering Disk 0.

also design recovery schemes for single disk failure recov-
ery of RDP code which match the minimum disk reads and
balanced disk read simultaneously.

4. THE RECOVERY OF SINGLE DISK FAIL-

URE

4.1 Lower Bounds of Disk Reads for Single
Failure Recovery

In this section, we derive the lower bound of the number
of symbols to be read from the disks for any single column
erasure recovery under the RDP code. Because an erasure
symbol can be recovered either from the row parity or the
diagonal parity, we will show that there are many choices
for the recovery of an erasure column. Among the different
recovery choices, we want to find one which minimizes the
number of disk reads. To describe the different recovery
choices, we define the following notations.

Definition 1.

1) Define Ri = {di,r|0 ≤ r ≤ p−1} as the i-th row parity
set, 0 ≤ i ≤ p− 2;

2) Define Dj = {di,r|(i+r) mod p = j, 0 ≤ i ≤ p−2, 0 ≤
r ≤ p} as the j-th diagonal parity set, 0 ≤ j ≤ p− 2.

From Definition 1, |Ri| = p for 0 ≤ i ≤ p−2 and |Dj | = p
for 0 ≤ j ≤ p− 2 (Note that dj,0 ∈ Dj and dj,p ∈ Dj).

Ri is the set of symbols in row i except for the diagonal
parity symbol di,p in column p. According to RDP code,
di,p−1 ∈ Ri is the XOR-sum of all the other symbols in
Ri, i.e. di,p−1 =

⊕p−2
j=0 di,j . So given a symbol d ∈ Ri, d

can be recovered by XOR-summing all the other symbols in
Ri − {d}. While Dj is the set of symbols in the diagonal
which contains dj,p, the j-th symbol in column p. With the
same reason, given a symbol d ∈ Dj , d can be recovered by
XOR-summing all the other symbols in Dj − {d}. So we
have the following Lemma 1.

Lemma 1. Given a symbol d in an RDP disk array,

1) if d ∈ Ri, d can be recovered by XORing all symbols in
Ri − {d}; (For the ease of presentation, we say that d
can be recovered from Ri throughout this paper.)

2) if d ∈ Dj , d can be recovered from Dj;

3) d can only be recovered by 1) and/or 2)

Remark: Erasure symbols can only be recovered from
their parity sets, but the surviving symbols for the recovery
can be either directly read from disks or further generated
from other parity sets. In this paper, we only consider that
all the surviving symbols are read directly from disks. In the
appendix, we will show that the lower bound of disk reads
in the following Theorem 1 can not be further reduced by
generating surviving symbols from other parity sets.

To illustrate, consider the example in Figure 1. We have
R0 = {d0,0, d0,1, d0,2, d0,3, d0,4}, D0 ={d0,0, d3,2, d2,3, d1,4,
d0,5 }, d0,0 ∈ R0 and d0,0 ∈ D0. d0,0 can be recovered from
R0 or from D0. d0,4 ∈ R0, but d0,4 /∈ Dj for 0 ≤ j ≤ p − 2.
So d0,4 can only be recovered from R0.

Assume that Disk k in the disk array fails. We need to
recover all the erasure symbols di,k (0 ≤ i ≤ p−2) in column
k (0 ≤ k ≤ p). Based on RDP code, we have the following
Lemma 2.

Lemma 2. Given an erasure column k, 0 ≤ k ≤ p,

1) If 0 ≤ k ≤ p − 1, which means that column k is not
the diagonal parity column.

a) If i 6= p − 1 − k, di,k ∈ Ri and di,k ∈ D<i+k>p .
Symbol di,k can be recovered from either Ri or
D<i+k>p . 2

b) If i = p − 1 − k, only di,k ∈ Rp−1−k. Symbol
dp−1−k,k is in the missing diagonal and can only
be recovered from Rp−1−k.

2) If k = p, which means that column k is the diagonal
parity column, then di,p ∈ Di, di,p can only be recov-
ered by Di.

Remark: Lemma 2 shows the possible choices for the recov-
ery of an erasure symbol. Case a) indicates that an erasure
symbol, which is not in the diagonal parity column and not
in missing diagonal, can be recovered from a row parity set
and from a diagonal parity set. Case b) indicates that an
erasure symbol, which is not in diagonal parity column but
in missing diagonal, can be recovered only from a row parity
set. Case 2) indicates that all symbols in the diagonal parity
column can be recovered only from diagonal parity sets.

Figure 5 shows the possible recovery choices of each era-
sure symbol with p = 5. Instead of using di,j to denote the
data at the ith row and the jth column, we use a pair of
numbers to identify the parity sets the corresponding sym-
bol belongs to. The first number in the pair is the subscript
of the row parity set, and the second number is the subscript
of the diagonal parity set. The symbols in column 5 only
belong to their diagonal parity sets, and the symbols along
the missing diagonal only belong to their row parity sets.
For example, (2, 3) at row 2, column 1 means that d2,1 can
be recovered from R2 or D3; (1, null) at row 1, column 3
means that d1,3 can only be recovered from R1.

We can choose a combination of parity sets (Note: We
call it recovery combination in the following.) to recover
the p − 1 erasure symbols in a column. Consider Disk 1 in
Figure 5, we can choose a combination of (R0, D2, R2, R3)
to recover Disk 1, which means that R0 is used to recover
d0,1, D2 is used to recover d1,1, and so on. Since there are

2For the ease of presentation, we denote r mod p as < r >p

in this paper.



Disk Disk Disk Disk Disk Disk

0 1 2 3 4 5

0:0 0:1 0:2 0:3 0:null null:0

1:1 1:2 1:3 1:null 1:0 null:1

2:2 2:3 2:null 2:0 2:1 null:2

3:3 3:null 3:0 3:1 3:2 null:3

Figure 5: RDP coding with Ri, Dj representation.

two choices for the recovery of d0,1 (from R0 or D1), d1,1

and d2,1 respectively, and only one choice for the recovery of
d3,1 (from R3 only), there are all together 2× 2× 2× 1 = 8
recovery combinations to reconstruct symbols in Disk 1. The
conventional recovery scheme, (R0, R1, R2, R3), is just one
such possible combination. Since Disk p (or column p) is
the diagonal parity column, which can only be recovered by
diagonal parity set, there is only one recovery combination
for column p. So we only consider the recovery of Disk k,
with k 6= p in this paper.

Our objective is to find the read-optimal one from all pos-
sible recovery combinations which has the minimum number
of disk reads. This is equivalent to find a recovery combina-
tion which has the highest number of overlapping symbols.
We have the following Lemma 3 stating the property of over-
lapping symbols between two parity sets.

Lemma 3.

1) There is just one overlapping symbol between each pair
of Ri and Dj for 0 ≤ i, j ≤ p− 2, and the overlapping
symbol is Ri ∩Dj = {di,<j−i>p}.

2) There is no overlapping symbol between each pair of Ri

and Rj , or Di and Dj , i.e. Ri∩Rj = ∅ and Di∩Dj = ∅
for 0 ≤ i, j ≤ p− 2, i 6= j.

It is interesting to point out that the conventional recovery
strategy for single disk failure only uses row parity sets for
the recovery. Lemma 3 shows that there is no overlapping
symbol during the recovery process with the conventional
recovery strategy. Therefore, one cannot reduce the read
operations using the conventional recovery scheme. Also ac-
cording to Lemma 3, if we use both the row and the diagonal
parity sets to recover Disk k (k 6= p), we can reduce disk read
operations by putting overlapping symbols in memory. The
following Theorem 1 gives a lower bound of disk reads for
any single erasure column recovery.

Theorem 1.

1) For any erasure column k (k 6= p), the minimum num-
ber of disk reads for single disk failure recovery of RDP
code is 3(p− 1)2/4.

2) Any recovery combination which consists of (p − 1)/2
row parity sets and (p− 1)/2 diagonal parity sets will
match the minimum number of disk reads. There are
(

p−1
(p−1)/2

)

possible recovery combinations which match

the minimum number of disk reads.

Proof. (1) Let the erasure column be column k (0 ≤ k ≤
p−1). We need to recover all the p−1 symbols di,k(0 ≤ i ≤
p−2) in column k. Erasure symbol di,k can only be recovered
by the parity sets to which it belongs. From Lemma 3,
we know there is one overlapping symbol between each pair
of Ri and Dj . If t erasure symbols (except for dp−1−k,k)
are recovered from diagonal parity sets and the remaining
p − 1 − t symbols are recovered from row parity sets, the
number of overlapping symbols is

t(p− 1− t) = (t− (p− 1)/2)2 + (p− 1)2/4.

When t = (p − 1)/2, the number of overlapping symbols,
t(p − 1 − t), is maximized, which is equal to (p − 1)2/4.
During the recovery process, if an overlapping symbol is read
from a disk to recover an erasure symbol, it will be stored in
memory for the recovery of another erasure symbol. While
recovering the late erasure symbol, the overlapping symbol
can be read from memory instead of performing another disk
read. So the maximum of (p−1)2/4 symbols can be reduced
from disk read. The minimum number of disk reads for the
recovery is

(p− 1)2 − (p− 1)2/4 = 3(p− 1)2/4,

and a read-optimal recovery combination which matches the
lower bound should consist of (p− 1)/2 row parity sets and
(p− 1)/2 diagonal parity sets.

(2) The correctness of condition 2) follows directly from
the proof of condition 1).

Therefore, Theorem 1 concludes.

From Theorem 1, a read-optimal recovery scheme can be
stated as: for a single failed Disk k, choose any (p−1)/2 sym-
bols (Note: dp−1−k,k must be included), reconstruct them
from row parity sets and reconstruct the remaining (p−1)/2
symbols from diagonal parity sets.

However, the read operations on individual disk of some
choices are the same (or almost the same), while that of
other choices varies greatly. In the next subsection, we will
study how to balance the disk reads.

4.2 Balancing Number of Disk Reads
Let the erasure column be column k (0 ≤ k ≤ p − 1).

The minimum number of symbols to be read from disks for
the recovery is 3(p−1)2/4. Since any read-optimal recovery
combination contains (p−1)/2 diagonal parity sets, (p−1)/2
symbols will always be read from Disk p (diagonal parity
disk). Then the average number of symbols to be read from
the other surviving disks (except for Disk k and Disk p) is

3(p− 1)2/4− (p− 1)/2

p− 1
= (3p− 5)/4.

As (p−1)/2 symbols will always be read from Disk p, now
we only consider how to provide a balanced read recovery
scheme on the remaining disks (except for Disk k and Disk
p).

Given a prime number p > 2, we have to consider two
cases: either p ≡ 3 (mod 4) or p ≡ 1 (mod 4).

Case 1: If p ≡ 3 (mod 4), then 3p − 5 is divisible by 4.
A balanced read-optimal recovery combination should
read (3p− 5)/4 symbols from each of the disks (except
for Disk k and Disk p).



Case 2: If p ≡ 1 (mod 4), then 3p − 5 isn’t divisible by
4. A balanced and read-optimal recovery combination
should read ⌈(3p− 5)/4⌉ symbols from some disks and
⌊(3p− 5)/4⌋ symbols from the rest.

In the following, we will only present the analysis for the
case of p ≡ 3 (mod 4). The analysis of the case of p ≡ 1
(mod 4) is similar. So we will only list the conclusions of the
case of p ≡ 1 (mod 4) at the end of this section and omit
their analysis for brevity.

To simplify the analysis of balanced disk read, we intro-
duce a recovery sequence x0, x1, . . . , xp−2, where xi = 0
means that di,k is recovered from its row parity set, and
xi = 1 means that di,k is recovered from its diagonal parity
set. So a recovery combination can be exactly represented
by a recovery sequence.

Our analysis of balanced disk read is based on the finite
field Fp. To facilitate the analysis, we add an additional
row p − 1 with all symbols dp−1,j = 0 (0 ≤ j ≤ p) to the
encoded array throughout this section. So the row number
set {0, 1, . . . , p− 1} consists of all the elements of Fp. With
the additional row, the disk array is now a p× (p+1) array.
Since all symbols in row p − 1 are 0, dp−1,k in row p − 1
can be regarded as being recovered from its row parity set.
Because dp−1,k is recovered from its row parity set, xp−1 = 0.
Moreover, dp−1−k,k is in missing diagonal and only belongs
to its row parity set, which can only be recovered by its row
parity set. So, xp−1−k = 0. With the additional row, a
recovery sequence is x0, x1, . . . , xp−2, xp−1 with xp−1 = 0
and xp−1−k = 0.

A balanced recovery scheme will read the same (or almost
the same) number of symbols from each of the surviving
disks. Given a recovery sequence {xi}0≤i≤p−1, the following
Lemma 4 indicates that how many symbols will not be read
from a surviving disk with the recovery combination corre-
sponding to {xi}0≤i≤p−1. It helps to understand Theorem
2.

Lemma 4. Given a recovery sequence {xi}0≤i≤p−1. If an
erasure column k(0 ≤ k ≤ p−1) is recovered by the recovery
combination corresponding to {xi}0≤i≤p−1, the number of
symbols which are not read from Disk j is:

p−1
∑

i=0

xi −

p−1
∑

i=0

xix<i+j−k>p .

Proof. We define ci,j to identify whether di,j is read
for the recovery. If di,j is read for the recovery, ci,j = 0;
otherwise ci,j = 1 (0 ≤ i, j ≤ p− 1).

If xi = 0, symbol di,k is recovered by row parity set Ri, di,j

is read to recovery di,k because di,j ∈ Ri. If x<i+j−k>p =
1, symbol d<i+j−k>p,k is recovered by diagonal parity set
D<i+j>p , di,j is read to recover d<i+j−k>p,k because di,j ∈
D<i+j>p . Given di,j , either di,j ∈ Ri or di,j ∈ D<i+j>p . So
only when xi = 0 or x<i+j−k>p = 1, di,j is read for recovery.
Therefore, only when xi = 0 or x<i+j−k>p = 1, ci,j = 0. So
ci,j = xi(1− x<i+j−k>p).

The number of symbols which do not need to be read from
Disk j (0 ≤ j ≤ p− 1, j 6= k) for the recovery of Disk k is

p−1
∑

i=0

ci,j =

p−1
∑

i=0

xi −

p−1
∑

i=0

xix<i+j−k>p .

Therefore, Lemma 4 concludes.

The following Theorem 2 provides a necessary and suf-
ficient condition for a recovery sequence to be both read-
optimal and balanced.

Theorem 2. {xi}0≤i≤p−1 is a read-optimal and balanced
recovery sequence for Disk k (0 ≤ k ≤ p−1), if the following
three conditions hold:

1) x0 + x1 + · · ·+ xp−2 + xp−1 = (p− 1)/2,

2) xp−1−k = xp−1 = 0,

3) ∀t, 1 ≤ t ≤ p− 1,
p−1
∑

i=0

xix<i+t>p = (p− 3)/4.

Proof. Condition 1) just means that (p − 1)/2 symbols
are recovered from row parity sets and (p − 1)/2 symbols
are recovered from diagonal parity sets. While condition
2) means that dp−1−k,k (which is in missing diagonal) and
dp−1,k (which is an additional symbol) are recovered from
their row parity sets. From Theorem 1, that condition 1)
and condition 2) hold is equivalent to that {xi}0≤i≤p−1 is a
read-optimal sequence.

In the following of the proof, we concentrate on condition
3).

As any read-optimal recovery will averagely read (3p−5)/4
symbols from each of the surviving disks (except for Disk p),
if the disk read of recovery is balanced,

(p− 1)− (3p− 5)/4 = (p + 1)/4

symbols will not be read from each of the disks. From
Lemma 4, The number of symbols which don’t need to be
read from Disk j (0 ≤ j ≤ p− 1, j 6= k) is

p−1
∑

i=0

xi −

p−1
∑

i=0

xix<i+j−k>p . (1)

Therefore

p−1
∑

i=0

xi −

p−1
∑

i=0

xix<i+j−k>p = (p + 1)/4. (2)

Because the recovery is read optimal, from Theorem 1,
(p − 1)/2 symbols in column k are recovered from their di-
agonal parity sets. So

p−1
∑

i=0

xi = (p− 1)/2.

From Equation (1) and (2),

p−1
∑

i=0

xix<i+j−k>p = (p− 3)/4. (3)

Let t =< j− k >p, then < i+ j− k >p=< i+ t >p. Since
0 ≤ j ≤ p − 1, j 6= k and 0 ≤ k ≤ p − 1, 1 ≤ t ≤ p − 1.
Equation (3) means that condition 3) holds.

One can prove in the similar way that if condition 3) holds,
(3p − 5)/4 symbols are read from each of the disks (except
for Disk k and Disk p). So {xi}0≤i≤p−1 is balanced.

Therefore, Theorem 2 holds.

In the following of this subsection, we use difference set
[31] to present the read-optimal and balanced recovery scheme.
Firstly, we introduce some definitions and properties of mul-
tiset and difference set.



Definition 2. A multiset M is a generalization of a set, in
which there maybe multiple instances of an element. M is
denoted as

M = {k1 × a1, k2 × a2, . . . , kn × an},

where a1, a2, . . . , an are all the distinct elements in M , and
there are ki instances of ai in M , ki is called the multiplicity
of ai(1 ≤ i ≤ n).

Definition 3. Given a recovery sequence {xi}0≤i≤p−1. De-
fine Ax = {i|xi = 1, 0 ≤ i ≤ p − 1} and the multiset
MAx = {a1 − a2|a1, a2 ∈ Ax, a1 6= a2}.

Lemma 5. Given a recovery sequence {xi}0≤i≤p−1. Then

p−1
∑

i=0

xix<i+t>p = (p− 3)/4 for 1 ≤ t ≤ p− 1

is equivalent to that Ax = {i|xi = 1, 0 ≤ i ≤ p− 1} satisfies
MAx = {[(p−3)/4]×1, [(p−3)/4]×2, . . . , [(p−3)/4]×(p−1)},
i.e. for any t, 1 ≤ t ≤ p− 1, the multiplicity of t in MAx is
(p− 3)/4.

Proof. Given t, 1 ≤ t ≤ p − 1. If
∑p−1

i=0 xix<i+t>p =
(p−3)/4, there are it1 , it2 , . . . , it(p−3)/4

with 0 ≤ itu ≤ p−1
and itu 6= itv for tu 6= tv, such that

xitu
= x<itu+t>p = 1

for 1 ≤ u ≤ (p − 3)/4. According to Definition 3, this is
equivalent to

xitu
, x<itu+t>p ∈ Ax

for 1 ≤ u ≤ (p − 3)/4, and further equivalent to that for
1 ≤ u ≤ (p− 3)/4,

(itu + t)− itu = t ∈MAx .

So for any t, 1 ≤ t ≤ p − 1, the multiplicity of t in MAx is
(p− 3)/4. Lemma 5 concludes.

Consider the example in Figure 4, (D0, D1, R2, D3, R4,
R5) is a read-optimal and balanced recovery combination of
Disk 0.

Therefore, the corresponding recovery sequence {xi}0≤i≤6

= {1101000}, and Ax = {0, 1, 3}. MAx = {a1 − a2|a1, a2 ∈
Ax, a1 6= a2} = {1, 2, 3, 4, 5, 6}, which satisfies that ∀t (1 ≤
t ≤ 6), t has a multiplicity of (p− 3)/4 = 1 in the multiset
MAx .

Definition 4. Let G be an additive group of order v and
S be a subset of G with k elements. S is called a (v, k, λ)-
difference set if each nonzero element in G has a multiplicity
of λ in the multiset MS = {s1 − s2 |s1, s2 ∈ S, s1 6= s2} .

Definition 5. Let p be a prime number. Sp = {i2 mod
p|1 ≤ i ≤ p − 1} is called the nonzero square set of Fp.
S′

p = Fp \ (Sp ∪ {0}) is called the non-square set of Fp.

Theorem 3. [31] Let p be a prime number with p ≡ 3
(mod 4), Sp and S′

p both are
(

p, p−1
2

, p−3
4

)

-difference sets
in the additive group of Fp.

Since (p− i)2 ≡ (p2− 2pi + i2) ≡ i2 (mod p), the nonzero
square set Sp = {i2 mod p|1 ≤ i ≤ p − 1} = {i2 mod p|1 ≤
i ≤ (p− 1)/2}. The following theorem gives a read-optimal
and balanced recovery sequence {xi}0≤i≤p−1 for any failed
Disk k (k 6= p), when p ≡ 3 (mod 4).

Theorem 4. Given a prime number p with p ≡ 3 (mod 4).
For the nonzero square set Sp and the non-square set S′

p in
Fp, then

A =

{

S′
p − (k + 1) k ∈ Sp

Sp − (k + 1) k /∈ Sp

corresponds to a read-optimal and balanced recovery sequence
{xi}0≤i≤p−1 for the recovery of Disk k (k 6= p), where S′

p −
(k+1) = {s−(k+1)|s ∈ S′

p} and Sp−(k+1) = {s−(k+1)|s ∈
Sp}.

Proof. We only prove the case of k ∈ Sp. The proof of
the case of k /∈ Sp is similar and therefore omitted.

According to A = S′
p− (k +1), define a recovery sequence

{xi}0≤i≤p−1 as that if i ∈ A, xi = 1, otherwise xi = 0. In the
following, we will prove that recovery sequence {xi}0≤i≤p−1

is read-optimal and balanced. According to Theorem 2, we
need to prove that {xi}0≤i≤p−1 satisfies the three conditions
of Theorem 2.

(1) Because |A| = |S′
p| = (p− 1)/2, x0 + x1 + · · ·+xp−2 +

xp−1 = (p − 1)/2. So {xi}0≤i≤p−1 satisfies condition 1) of
Theorem 2.

(2) Given k ∈ Sp and A = S′
p − (k + 1),

k ∈ Sp ⇒ k /∈ S′
p ⇒ k − (k + 1) /∈ S′

p − (k + 1)

⇒ p− 1 /∈ A⇒ xp−1 = 0

p /∈ S′
p ⇒ p− (k + 1) /∈ S′

p − (k + 1)

⇒ p− (k + 1) /∈ A⇒ xp−1−k = 0

So {xi}0≤i≤p−1 satisfies condition 2) of Theorem 2.
(3) According to Theorem 3, S′

p is a
(

p, p−1
2

, p−3
4

)

-difference
set in the additive group of Fp. So ∀t (1 ≤ t ≤ p − 1),
t has a multiplicity of (p − 3)/4 in the multiset MS′

p
=

{s1 − s2|s1, s2 ∈ S′
p, s1 6= s2}.

Because A = S′
p−(k+1), multiset MA = {a1−a2|a1, a2 ∈

A, a1 6= a2} = {s1 − s2|s1, s2 ∈ S′
p, s1 6= s2} = MS′

p
. So

∀t (1 ≤ t ≤ p− 1), t has a multiplicity of (p − 3)/4 in MA,
which is equivalent to

p−1
∑

i=0

xix<i+t>p = (p− 3)/4

for any t, 1 ≤ t ≤ p− 1. Thus, {xi}0≤i≤p−1 satisfies condi-
tion 3) of Theorem 2.

From (1) to (3), {xi}0≤i≤p−1 is a read optimal and bal-
anced recovery sequence when k ∈ Sp.

From Theorem 4, we give the read-optimal and balanced
recovery scheme of Disk k, and it can be generalized as:

1) Figure out the nonzero square set Sp and non-square
set S′

p in Fp.

2) If k ∈ Sp, let A be S′
p − (k + 1); if k ∈ S′

p, let A be
Sp − (k + 1).

3) For the failed Disk k, the read-optimal and balanced
recovery scheme is corresponding to A, which means
when i ∈ A, di,k is recovered by diagonal parity and
otherwise di,k is recovered by row parity.

Now we use an example to explain the read-optimal and
balanced recovery scheme of Disk k (k 6= p), when p ≡ 3
(mod 4). Assume that p = 7, then S7 = {i2 mod 7|1 ≤



i ≤ (7−1)/2} = {12 mod 7, 22 mod 7, 32 mod 7} = {1, 2, 4},
and S′

7 = F7 \ (S7 ∪ {0}) = {3, 5, 6}.
When Disk k = 1 fails, to recover the failed Disk 1,

we need to find a read-optimal and balanced recovery se-
quence {xi}0≤i≤6. As k = 1 ∈ S7, from Theorem 4, A =
S′

p−(k+1) = S′
p−(1+1) = {(s−2) mod 7|s ∈ S′

p} = {1, 3, 4}
corresponds to a recovery sequence {xi}0≤i≤6 = {0101100}.
Thus, the read-optimal and balanced recovery scheme is
symbols d0,1, d2,1, d5,1 are recovered by row parity, and
symbols d1,1, d3,1, d4,1 are recovered by diagonal parity.

When Disk k = 3 fails, k = 3 /∈ S7, from Theorem 4,
A = Sp − (k + 1) = Sp − (3+ 1) = {(s− 4) mod 7|s ∈ Sp} =
{0, 4, 5} corresponds to a recovery sequence {xi}0≤i≤6 =
{1000110}. Thus, the read-optimal and balanced recovery
scheme is symbols d1,3, d2,3, d3,3 are recovered by row parity,
and symbols d0,3, d4,3, d5,3 are recovered by diagonal parity.

The following Theorem 5 to Theorem 7 give a read-optimal
and balanced recovery scheme for any single disk failure with
p ≡ 1 (mod 4). They are similar to Theorem 2 to Theorem
4 of the case of p ≡ 3 (mod 4) respectively. Therefore they
can be proved in the similar way and we omit them for
brevity.

Theorem 5. Let p be a prime number with p ≡ 1 (mod 4).
{xi}0≤i≤p−1 is a read-optimal and balanced recovery sequence
for the recovery of Disk k(0 ≤ k ≤ p − 1) in a disk array
with RDP code, if the following three conditions hold:

1) x0 + x1 + · · ·+ xp−2 + xp−1 = (p− 1)/2,

2) xp−1 = xp−1−k = 0,

3) ∀t (1 ≤ t ≤ p−1), either
∑p−1

i=0 xix<i+t>p = (p−1)/4,

or
∑p−1

i=0 xix<i+t>p = (p− 5)/4.

Definition 6. Let G be an additive group of order v and
S be a subset of G with k elements. S is called a (v, k, λ, µ)-
partial difference set of G, if each nonzero element s ∈ S has
a multiplicity of λ, and each nonzero element s′ ∈ G\S has a
multiplicity of µ in the multiset {s1−s2|s1, s2 ∈ S, s1 6= s2}.

Theorem 6. [21] Let p ≡ 1 (mod 4) be a prime number,
Sp be the set of all nonzero squares in Fp and S′

p is the non-

square set in Fp. Sp and S′
p both are

(

p, p−1
2

, p−5
4

, p−1
4

)

-
partial difference sets in the additive group of Fp .

Theorem 7. Given a prime number p with p ≡ 1 (mod 4).
For the nonzero square set Sp and the non-square set S′

p in
Fp,

A =

{

S′
p − (k + 1) k ∈ Sp

Sp − (k + 1) k /∈ Sp

corresponds to a read-optimal and balanced recovery sequence
{xi}0≤i≤p−1 for the recovery of Disk k (k 6= p) in an RDP
coded disk array.

4.3 The RDOR Recovery Scheme for Single
Disk Failure

In the last subsection, we presented a recovery combi-
nation which is read-optimal and balanced for any erasure
column k (k 6= p). In the following, we propose the RDOR
scheme, which is a read-optimal, balanced recovery scheme
and pre-stores (p− 1)/2 extra symbols.

To recover any single column k, a read-optimal and bal-
anced recovery combination we choose is according to the
recovery sequence demonstrated in Theorem 4 and Theorem
7. For 0 ≤ i ≤ p − 1, if i ∈ A, symbol di,k is recovered by
diagonal parity set D<i+k>p ; otherwise di,k is recovered by
row parity set Ri. Any overlapping symbol d can be located
in the disk array by calculating intersection of the selected
row parity sets and diagonal parity sets for the recovery.

The recovery process of RDOR is executed in a “row-
parity-first” manner, i.e., we first recover the (p − 1)/2 era-
sure symbols dj,k with j /∈ A (0 ≤ j ≤ p − 1) by Rj , and
then recover the rest (p − 1)/2 symbols di,k with i ∈ A
(0 ≤ i ≤ p − 1). (p − 1)/2 memory units are reserved to
recover the (p− 1)/2 symbols di,k with i ∈ A.

In summary, the following is the RDOR scheme:

1. (p − 1)/2 memory units Mi (i ∈ A) are allocated for
each erasure symbol di,k (i ∈ A) and the symbol di

stored in Mi is initialized 0.

2. Recover the (p− 1)/2 symbols dj,k (0 ≤ j ≤ p− 1, j /∈
A).

(a) Recover symbol dj,k by XOR-summing all avail-
able symbols in Rj ;

(b) During the recovery process, for each symbol d ∈
Rj , if it is an overlapping symbol which should
be used to recover some di,k (i ∈ A) later, it is
XOR-summed with the symbol di stored in its
corresponding memory locations Mi (i ∈ A) (in
other words, di ← di ⊕ d).

3. Recover the rest (p− 1)/2 symbols di,k (i ∈ A).

(a) While recovering di,k (i ∈ A), for each symbol
d ∈ D<i+k>p , if it is not an overlapping symbol,
read it from disk and XOR-sum it to di.

(b) After 3(a) finished, recovered symbol di,k is stored
in Mi.

4. Once the p− 1 erasure symbols are successfully recov-
ered, the recovery process can move on to the next
stripe, and the (p − 1)/2 memory units Mi can be
reused.

We compare RDOR with the conventional recovery scheme
in the following three aspects.

1. Number of Disk Reads: The conventional recov-
ery performs (p − 1)2 disk reads while RDOR needs
to read 3(p − 1)2/4 symbols for recovery per stripe.
RDOR can reduce by approximately 25% disk reads
compared with the conventional scheme at the expense
of a proper extra memory usage.

2. Read Balance: Both RDOR and the conventional
scheme achieve disk read balance during recovery.

3. Computational Complexity: The computational
cost of recovery scheme is determined as the total num-
ber of exclusive or (XOR) operations needed for recov-
ery. Each parity set contains p symbols, so to recover
any erasure symbol no matter which kind of parity
was chosen for recovery, p−2 XOR operations on p−1
symbols are required. Thus the total number of XOR
operations required for recovery of RDOR is equal to
the conventional scheme.



Table 1: Disk array simulation parameters.

Parameter Value

I/O bus bandwidth 512MBps
XOR bandwidth 1GBps
Disk capacity 146.8G
Sustainable disk transfer rate 99MBps
Rotation speed 15000RPM
Single track seek 0.3ms
Full seek 7.2ms

5. PERFORMANCE EVALUATION
To evaluate the performance of RDOR, we conduct ex-

periments which compare RDOR scheme with conventional
scheme in terms of total recovery time and individual disk
access time.

5.1 Methodology
We conduct the experiments by using a widely accepted

disk simulator, DiskSim [3]. The simulated disk array sub-
system is composed of p + 1 disks including two redundant
disks. The logical layout is rotated between different parity
stripes as in common RAID-6 implementation. Each disk
is attached to a controller, and all these disk controllers are
under the same interleaved I/O bus. The failed disk is re-
constructed in an off-line mode, without any interruptions
of outside requests while recovering. We take it as a simpli-
fied approach to compare the performance of RDOR scheme
with conventional scheme under the same circumstances.

For the recovery of a single failed disk, RDOR and the con-
ventional scheme are implemented into the simulation envi-
ronment. In both schemes, during recovering each stripe, as
soon as all the failure blocks are regenerated in memory, they
are written to the spare disk at once. Two metrics, total re-
covery time and individual disk access time, are evaluated.
Disk access time refers to the total time of a disk in me-
dia access during recovery. It consists of seek time, rotation
time, transfer time, etc.

Note that, the strip size and the disk array size affect
the system recovery performance. Our experiments are con-
ducted with different number of disks and different strip
sizes. The simulated disk’s parameters are extracted from
a modern enterprise hard disk [28], and Table 1 lists all the
parameters used in this section.

5.2 Performance with Different Strip Sizes
To evaluate the recovery performance under different strip

sizes, we vary the strip size from 32KB to 1024KB with fixed
number of disks, p + 1 = 8, 14, and 20 respectively.

Disk access time. RDOR improves the read access effi-
ciency by reducing the number of disk reads in each surviv-
ing disk. Figure 6 shows that the average disk read access
time of RDOR is reduced by 15.16% ∼ 22.60% compared
with the conventional scheme. However, the ratio of disk
access time doesn’t show a stable tendency with strip size
varying from 32KB to 1024KB.

RDOR reduces disk reads but changes the access pattern
of disk read from purely sequential accesses to a more ran-
dom pattern, therefore incurs some additional disk seeks.
The individual disk access time is determined not only by
the amount of data read but also by the number of disk seeks
and seek distances while reading. And it may be the main
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Figure 6: Average disk access time ratio of RDOR to

conventional scheme with different strip sizes when

p = 7, 13, and 19.
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Figure 7: Disk access time of RDOR and conven-

tional scheme of each disk when p = 7 and strip size

is 32KB. Disk 0 is the failed and thereafter replaced

disk.

reason that the access time improvements shown in Figure
6 are less than the theoretical value, approximately 25%.

Moreover, the sequentiality of reads on individual surviv-
ing disk in RDOR is not the same. As in Figure 4, reading
all the needed data in Disk 1 is broken into 3 non-sequential
read requests, while that of Disk 4 can be completed in only
one read request. Therefore, the access time of reading in
a stripe on individual surviving disk may be different. As
parities are rotated between stripes, the access time of each
disk for the recovery is balanced, which is shown in Figure
7.

Figure 7 shows the access time of each disk (Disk 0 is the
failed and replaced disk) with p = 7 and strip size of 32KB.
From Figure 7, the access times of different disks (excluding
the spare Disk 0) with RDOR are almost the same, and the
average disk access time is decreased by 18.25% compared
with conventional scheme.

Total recovery time. Figure 8 shows the total recov-
ery time ratio of RDOR to conventional scheme, from which
we can see that RDOR constantly outperforms conventional
scheme as strip size varies from 32KB to 1024KB. For ex-
ample, when p = 7, the total recovery time of RDOR is
reduced by 5.72% ∼ 12.60%. As shown in Figure 8, the
improvements of recovery time decrease as strip size varies
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Figure 8: Recovery time ratio of RDOR to conven-

tional scheme with different strip sizes when p = 7,
13, and 19.
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Figure 9: Average disk access time ratio of RDOR to

conventional scheme with different number of disks

when strip size is 64KB, 256KB, and 1024KB.

from 32KB to 128KB first and then increase as strip size
varies from 128KB to 1024KB.

However, in Figure 8 the total recovery time ratios are
mostly larger than 0.9. Although RDOR can reduce ap-
proximately 25% disk reads, the total recovery time is bot-
tlenecked by the slowest surviving disk in recovering each
stripe (or stipe set). Also when there are no foreground re-
quest served, recovery buffer write to the spare disk is slower
than read on surviving disk, which becomes another bottle-
neck. Thus, the reduction on disk reads cannot be translated
into equivalent saving of recovery time.

In the case of an RDP storage system still serving the
foreground requests while recovery, the whole system will
go into a degraded mode and the recovery process usually
runs in a lower priority. Then, reduction on disk read access
time to surviving disks can be translated into more saving of
recovery time in online scenario. The performance of RDOR
is expected to be better in online recovery than off-line.

5.3 Performance with Different Number of
Disks

In this subsection, we analyze the impact of different num-
ber of disks on recovery performance. We conduct experi-
ments with different number of disks from 8 to 20 with fixed
strip sizes of 64KB, 256KB, and 1024KB respectively.

Disk access time. Figure 9 shows the disk access time
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Figure 10: Recovery time ratio of RDOR to conven-

tional scheme with different number of disks when

strip size is 64KB, 256KB, and 1024KB.

ratios are almost the same with different number of disks
when the strip size is fixed to 64KB, 256KB, and 1024KB
respectively, which implies RDOR can be implemented in
fairly large storage systems to improve the read access effi-
ciency. With strip size of 1024KB, the disk access time of
RDOR is reduced by 18.13% ∼ 20.17%.

Total recovery time. Figure 10 shows the total recovery
time ratio increases as the number of disks increases. With
strip size of 1024KB, the total recovery time ratio increases
from 0.929 to 0.971 as the number of disks increases from 8
to 20. Since the access time of reading in a stripe on indi-
vidual surviving disk with RDOR may be different and the
write requests to the spare disk should wait until the data
has been reconstructed, the recovery process of RDOR may
cost more time in waiting and synchronizing with large num-
ber of disks. Thus, RDOR provides comparatively smaller
improvements in recovery time with large number of disks.

The experimental results can be generalized as follows.

1) By using RDOR, the access time of an individual disk
for recovery is reduced by 15.16% ∼ 22.60% compared
with conventional scheme. Less disk access time indi-
cates that the disk array system can further accelerate
the recovery process in online recovery scenario.

2) RDOR can constantly reduce the total recovery time
compared with the conventional scheme with strip size
varies from 32KB to 1024KB, which indicates that
RDOR scales well as strip size increases.

6. RELATED WORK
System designers expect better recovery solutions to mini-

mize the time taken for recovery and the degradation of user
performance in RAID storage systems. Recent years a large
number of approaches have been proposed for recovering the
failed disk more efficiently.

Several approaches [11, 13, 35] address the problem by
trading storage capacity for improved failure recovery per-
formance. Menon and Mattson [22] showed that instead of
using a dedicated spare disk, there are many advantages to
distribute the spare space across the disk array. In such
an array, the recovery writes are distributed as well as the
recovery reads. Clustered RAID [24], in which data plus



parity groups are distributed over a larger number of disks,
was introduced to reduce the increased load per disk.

To improve the recovery parallelism, the Disk-Oriented
Reconstruction (DOR)[13] algorithm executes reconstruc-
tion processes associated with disks, which keeps every sur-
viving disk busy with reconstruction reads at all time. In
another work by Lee and Lui [18], a pipelined recovery algo-
rithm is proposed to take advantage of the sequential prop-
erty of track retrievals to pipeline the reading and writing
processes.

In online recovery mode, the foreground requests will in-
terfere with the recovery process [23, 29]. To relieve the
interference of foreground workload, Wu et.al [33] proposed
the WorkOut scheme which temporarily redirects all write
requests and popular read requests to a surrogate RAID set
to let the degraded RAID set be devoted to the recovery
process. A Popularity-based multi-threaded reconstruction
optimization (PRO) algorithm [30] was proposed to acceler-
ate the users’ accesses and avoid performance degradation
by recovering the high-popularity data units prior to other
units.

In contrast to the above recovery mechanisms which focus
on reorganizing data layout or optimizing recovery workflow,
there are some other researches focused on designing specific
recovery algorithms for erasure codes according to the cod-
ing characteristics. By using generator check matrix of era-
sure codes, Hafner et.al [9] proposed a code-specific hybrid
reconstruction algorithm which can reduce XOR operations
during recovery. Due to the reduction of XOR operations,
the performance of decoding was improved. Later, a revised
version of this algorithm was proposed in [4] to further im-
prove space and time efficiency during recovery.

7. CONCLUSION
This paper proposes an optimal recovery scheme RDOR

for single disk failure of RDP code storage systems. The
RDOR scheme uses both row parity and diagonal parity for
data reconstruction, and also minimizes the number of disk
reads from surviving disks to reduce the recovery time. We
derive the lower bound of disk reads for the recovery and
design recovery schemes which match the lower bound of
disk reads, as well as have a load balancing property on all
surviving disks. Experimental results show that our scheme
outperforms the conventional recovery scheme in terms of
total recovery time and recovery workload on individual sur-
viving disk. It is important to point out that the main idea
of our approach can be generalized to other double fault
tolerant array codes such as EVENODD or X-code. Our
future work includes evaluating the performance on storage
systems which are working in online recovery mode.
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APPENDIX

In this section, we will prove that only when all the surviving
symbols are read directly from disk, the number of disk reads
can achieve the lower bound 3(p− 1)2/4.

Let the erasure column be column k (0 ≤ k ≤ p− 1). We
need to recover all the p − 1 symbols di,k(0 ≤ i ≤ p − 2)
in column k. Erasure symbol di,k can only be recovered
by the parity sets to which it belongs. Surviving symbols
for recovery are either read directly from disk or further
generated from other parity sets.

Assume that in the recovery process, s surviving sym-
bols are generated from other parity sets instead of being
read directly from disks. Each generated symbol reads p−3
additional symbols. Therefore, p − 1 + s parity sets are
needed in total and consist of (p − 1)2 + s(p − 3) symbols
(Note: There are some symbols counted twice which will be
subtracted later).

Among all the p−1+s parity sets, suppose there are t row
parity sets and p−1+s−t diagonal parity sets. According to
Lemma 3, there is one overlapping symbol between each pair
of row and diagonal parity sets. So there are t(p−1+s−t)−
2s overlapping symbols (excluding the s surviving symbols
which are generated by parity sets and the s symbols which
overlap at the failed disk).

So the number of disk reads for the recovery is

(p− 1)2 + s(p− 3)− (t(p− 1 + s− t)− 2s)

=(t− (p− 1 + s)/2)2 + 3(p− 1)2/4 + s(2p− 2− s)/4.

When t = (p − 1 + s)/2, the number of disk reads is
minimized, which is equal to 3(p−1)2/4+s(2p−2−s)/4. As
RDP can only tolerate double disk failures, 0 ≤ s < 2p− 2,
only when s = 0 and t = (p− 1)/2,

3(p− 1)2/4 + s(2p− 2− s)/4 = 3(p− 1)2/4,

which achieves the lower bound in Theorem 1. Therefore,
no matter how we get surviving symbols for recovery, the
lower bound of disk reads is 3(p− 1)2/4.


