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During the construction of a virtual walk-through environment, the most tedious
work is to take pictures of the interior of an environment for forming the textures
of the walls. The texture images must be taken with known intrinsic and extrinsic
parameters of the camera used. Many existing methods can obtain the intrinsic
parameters correctly. However, the inverse problem of tracking extrinsic param-
eters (or tracking the pose) of a camera from a long image sequence is a more
difficult task because of the problem of point correspondence. Our work attempts
to solve this problem by a probabilistic method that rejects poor correspondences
to increase the accuracy for the tracking. Our approach is based on a recursive
Bayesian filtering method called Condensation working in conjunction with a pose
algorithm. Simulation results show that it is robust for tracking object poses in a
long image sequence.

1 Introduction

Pose estimation is important in many applications such as robotics, model
constructions and virtual reality system development. For most pose estima-
tion problems we generally assume that we have the model of the object and
an image sequence, and our target is to find the pose (rotation and trans-
lation) of the object with respect to the camera [1]. The problem is usually
solved by an iterative algorithm based on the correspondences of the 3D model
features and their 2D image points. And the pose of the object obtained is
defined by 3 rotational angles and 3 translations in the 3D Cartesian space.
The pose estimation problem has two variations: (a) pose estimation of an
object based on one image. For example, if we want to recognize objects found
in the Internet, we have to find the pose of the object before actual object
recoguition begins. (b) The second problem is the pose-tracking problem for
an image sequence of an object in motion. Of course, one can solve it by
finding the pose for each image separately, and then combine the result at the
end. However, the dynamics of the object motion may give extra information
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for the tracking. The Kalman filter method is an example for this kind of
approaches [5].

We are interested in applying pose estimation in virtual environment sys-
tem development. For example, in constructing a virtual environment for the
interiors of a real building, developers have to capture large number of im-
ages of the environment and paste them onto a 3D graphics rendering system.
This image taking process is a tedious one because the camera extrinsic and
intrinsic parameters should be recorded for each picture taken. Qur aim is to
automate this picture taking process by a robot and a robust pose estimation
algorithm. That is the reason why we studied the problem of pose tracking.

In fact, pose estimation algorithms for one single image already exist, the
lowest number of point correspondence pairs needed is 3 and there are algo-
rithms use 4, 5 or 8 or more [3,4]. By combining the pose estimation results
of individual images within an image sequence we can have a pose tracking
system. However, all these algorithms assume the point correspondences are
available and accurate. Usually least square algorithms are employed for han-
dling noise problems in these pose estimation algorithms. However, if a large
percentage of mismatches occur these algorithms may fail. This mismatch
problem becomes more serious as the video length becomes longer. Many re-
searchers have experienced this lost track problem in dealing with long image
sequences. That is, at the beginning of an image sequence the pose track-
ing is quite accurate, however, the error accumulates fast and the tracking
will soon fail. The main problem is usually not the pose estimation itself, it
is mainly caused by the fact that some 2D to 3D point correspondences are
incorrect, and the least square pose estimation cannot recover this mistake.
There are many causes to this mismatch problem in the correspondence pro-
cess. Kalman filtering can provide a solution to reduce the effect of mismatch
but it cannot eliminate the effect totally.

We use a Bayesian filtering method called Condensation [2] to solve this
problem. First we know that the minimum number of point correspondences
is 3, so if we have a large number of point correspondences available,we do
not need to use all of them. The reason is, within the pool of correspondences
some are erroneous. Our approach is to select randomly a subset of the n
point correspondences (hoping to select only the good correspondences) say
m (where n is greater than m), to form a pose. By repeating this selection
process many times, we will have a collection of poses found. Then we can use
a statistical method to determine the accurate result. However, if all possible
choices (C) of selections are considered, it is too large. To solve this, a Monte
Carlo type search method may be suitable. We use this method for tracking
the pose of the object with mismatch noise and found that the algorithm can
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improve the accuracy of the tracking.

In section 2, we will describe the theory used in our approach. In section
3, we will describe the implementation. And in section 4, we will show the
experimental results. Conclusion can be found in section 5.

2 Theory

2.1 Problem formulation

We have a camera viewing an object as in Figure 1, the camera is at the
center of the 3D world coordinate center O.. The movement of any point from
p = [pz,py,p:]* to p' in the 3D space can be described by a transformation
of p' = Rp+ T ([]Tis the matrix transpose operator). In here, R(6,,8,,0.)
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is a 3x3 rotation matrix and T = [T, T,,7:]" is a 3x1 translation vector,
where 6,,6,,0. are rotation angles about the X, Y, Z-axis, and Ty, T}, T, are
translations along the XY, Z-axis, respectively. Also, the poses (or states)
of the object up to time ¢ is described by x: = {z1,22,...,2¢}, where z; =
(R, Ty).

The object centered at O, has a model M containing a set of 3D feature
points p = {p1,p2, ..., pn} on the surface. Before tracking, assume the object
center is moved from O, to O;,;: by a transformation governed by a rotation
matrix R;,; and a translation vector Tj,;;. The 3D feature points are pro-
jected onto the image plane by the camera of focal length f to form a set of 2D
features Z; = {z1, 22, ..., 2n }+, where z = (u,v) and the perspective projection
formulas u = fg—j and u = f f)_Z' From the initial position the object moves
to a new position at time ¢, therefore we will have a set of 2D-measurement
(correspondences) historyZ; = {Zy, Zs, ..., Z;}. Our aim is to find x; from Z;
and M.

2.2 Noise problems in tracking correspondences and pose

Mismatch of correspondences is the major cause of tracking failure. We iden-
tify the major sources of mismatch as follows: (1) 2D noise caused by lighting
condition changes. (2) Pose change may introduce mismatch error. (3) 2D
Clutter noise. Our algorithm can reduce the effect of these noises.

2.8 The probability framework

A probabilistic approach is necessary to reduce the effect of the mismatch
error. The following formulas describe the probability framework of the Con-
densation approach as in [2].

p(@¢| Zt) = kep(Zi|we)p(we| Z-1) (1)
Pl Ziy) = / p(erlze1)p(ee11Z1) (2)

Equation (1) calculates the probability of having the current pose as w;
if the measurement history Z; is known. The Bayesian rule decomposes
the conditional probability p(z¢|Z;) into two components. (a) The density
p(w¢|Z;_1)calculates the probability that the object is predicted to have the
pose z; if the measurement history up to the previous time frame is Z;_1;
(b) p(Z¢|x) is the likelihood function of finding the probability of producing
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the current measure Z; if the current state is predicted to be z;. We treat
x¢ as a temporal Markov chain, therefore Equation (2) decomposes into two
terms: (a) p(z¢_1|Z;_ 1) is the probability of reaching state x; ; based on
the observations till the previous frame; (b) p(x¢|x;—1) is the probability of
all possible state transitions from the previous time to the current state x;.
Details of the formulation can be found in [2].

Equation (1) and (2) serve as an iterative loop for finding x; by maximiz-
ing p(z¢|Z;) for the given measurement history if the initialized parameters
are known. However, in actual calculation, the possible space for x; over time
is very large, and the complexity of finding p(x;|Z;) of all possible z; is huge.
So we use the Condensation algorithm to make the complexity limited to a
manageable level.

2.4 The Condensation algorithm for pose tracking

For the pose estimation of an object with n 3D features, we discussed that it
is not practical to assume we can identify all 2D to 3D point correspondences
without mistakes, because the matching may be corrupted by 2D and 3D
noise. One approach is that we can select a subset m out of all n  (where m <
n) 3D-feature points on the object and use them to find their correspondences
in the image. Then, we will use the correspondence set to find a pose by some
known iterative methods such as the algorithm in [1]. We can repeat the above
process many times, then we will have a set of poses. Then a voting algorithm
can be used to give an overall result. It is essentially a statistical approach,
however, this approach has two problems. (a) The number of combination
of selecting m out of n features can be very large, say the combination of
selection m = 10 out of n = 20 features is CZ2Y = 184756, which is a
huge number to be handled since each set has be processed by an iterative
optimization method to find the pose. (b) Wrong matches using this method
will still be bad, it will still corrupt the final result, and for the tracking of
an object in an image sequence the error will accumulate and end up with
intolerable errors.

In this work, we will solve it by the Condensation technique. It is a way
to reduce the complexity of the algorithm and at the same time minimizes
the error created by the mismatch correspondences. Assume that we have a
set of 2D-measurement (correspondences) history Z; = {Zi, Z, ..., Z;} and
a Model M. At time t, we perform N¢,,q selections. For each selection,
we select m out of the n features from Z,. That is, for the j%selection,
it creates a set It(J) = {i1,42,..,im} containing the indexes of the selected
elements from the corresponding 2D measurements Z;. Hence the selected
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set is Z(j) {Ziy ) Ziny - 2i,, }, Where z = (u,v) is a 2D feature point and

j€4{1,2,..Ncona}. And from zt(j) we can form a pose .’L’Ej) = (R;,T}) by the

1 2 Ncon
BN N L

model M. So after each time frame, Z; 2 and

X = {;vgl),xgz), ...J:Ej), ...,J:ENC"""’)} are formed.

By using the pose set X, M and its time derivative dX;, we can find
the prediction X, ;and the possible measurement set Z;;1 for the next time
frame. The probability (;vt g} |;z: ) tells how to predict new pose for thej!"
selection. By matching the predicted measurement and real measurement,
we can calculate P(zt+1|xt 1)- If it is high, the j'* selection is good enough

and it can make prediction for the next selection of zt(i)l, otherwise a new
index set It(i)l of randomly selected 2D image points zt(ﬁ)l will be selected for
the replacement. The actual implementation can be found in the following
section.

The advantage of this method is that we only handle N,,,q4 processing
steps for each time frame, therefore the complexity of the algorithm can be
controlled to a tolerable level.

3 Implementation

3.1 Initialization and sampling

During initialization, assume the model M with n 3D features points and
(Rinit, Tinit) are known. Then we use a feature extraction method to locate
the initial feature set Z; of n 2D feature points, and establish the 2D to 3D
correspondences between Z; and M. From Z we perform N.,,q4 selections and

for each selection (e.g. the j** selection) we select m features out of the avail-
able n features to form the index set s; and Z J)l = {z1,%2,..2m} , and then
by using M and an iterative algorithm [1] we can calculate the corresponding
pose \”), . We also initialize all likelihood probabilities P(z\, |z/_, @) and
accumulated probabilities Ct(i)l (for all j ) as ones.

After initialization we have Si—1 = {s1,52,..5j, SN}, Xi=1 =

{1, 22, ..¢j,2N,,,,) and P(X2]|X1).

3.2 The main iteration loop modified from [2]:
From (t = 2) to (t = TMAX)) frame, iterate the following steps:
1. Re-sampling for the jt* selection

(a) Generate a uniformly distributed random number r € [0, 1].
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(b) Find, by binary subdivision, the smallest ¢ for which cgq) >r.

(c) Assign sij) :s§‘1_>1
2. Prediction and measurement loop for constructing the normalized likeli-
hood probability set {wt(fl } for j ={1,2,...Ncona}

(a) Prediction for the j* selection { From s

2

D and its related pose

and dzl’) make predicted pose: j,,) = ) + dal?) +
prediction_noise}

(b) Transform the model points M according to x} () and project them
to the image plane to form the prediction measurement z; _H(j).

(c) Measurement for the j* selection

P(Zt(i)l|x;5+l(j)) = \ﬁl exp (52 E)

2no

2
where E = ) (zéﬂ(w) - zt(_“ﬁ) and o = 0.398

w=all m

(d) Transforming the P(zt(i)1|;vg_)1) into a normalized probability func-
tion mg11, so that Zwt(i)l =1.
m

3. Form a cumulative probability density c;41, where,
) _

Cgi)l = Cg?r)l + Wt(i)l (7 =1,.s Neond)

3.3 Result generation

We can use the expected value of x; as the output result.

4 Experiments

4.1 Synthetic results

We generated an object of 20 features randomly at a range of 30cm?® and 1
meter away from the camera. Then moved them in the 3D space, and pro-
jected them to form an image sequence. Our pose-condensation algorithm was
used to track the object and we can see that the tracking was correct even
mismatch noise was introduced. However when no Condensation was used,
tracking failed. Parameters used for this test are as follows: total number of
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Translation in meters

features is n=20, selected number of features for each Condensation sample is
m=10, features corrupted by mismatch noise is 25 % of all features, the mis-
match noise used is a unit random generator * 0.04 * image feature positions,
Ncona=200 .
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Figure 2. Tracking result of simulated data

In the figure, the upper part are the translations and the lower part are

the rotational angles. The dotted lines are real values and the solid lines are
tracked result. The focal length used is 4 mm. The object is a cluster of
points 1 meter away from the camera. All parameters were tracked except
some initial error especially at the translation T, it can be explained that
the iterative solution is not very sensitive to depth change. And it can be
improved if good initial guess is given.
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5 Conclusion

In this work we have successfully used the Condensation algorithm for pose
tracking. The algorithm has been described and simulation results have been
produced. The next step is to apply it to track poses of objects in real images.
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