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Abstract
We developed an algorithm which incorporates the pose
estimation algorithm into the image matching problem.
First we formulate the warping function which maps the
image coordinates of a point to its transformed counter-
part. The Jacobian which relates the image coordinates
with the motion information is then derived. Finally, us-
 ing the sum of squared differences measure, we link up the
motion information with the intensity gradients. The mo-
tion recovery can thus be proceeded as an iterative process
which takes account of the intensity profile changes across
frames. An important contribution here is that we showed
that the classical Longuer-Higgins equation of image mo-
tion is actually another form of a full projective formula-
tion of Lowe’s Gauss Newton method-another well known
pose estimation algorithm. The Longuet-Higgins equation
is applied to the pose estimation problem in the framework
of Lowe's formulation. The result is significant in that the
classical Lowe's algorithm can now be applied to the di-
Tect estimation problem, which implies more flexibility in
tracking complicated object such as articulated ones. On
the other hand, an improved formulation of the Longuet-
Higgins equation in handling large displacement can thus
be applied to various applications.
keyword : motion analysis, pose estimation, optic Sflow,
Sum of Squared Differences, image warping

1 Motivation

Most object tracking systems are operated by first es-
tablishing the correspondences of all the feature points
across the image frames. This process is usually per-
formed without the help of global information such as ob-
Jject movement in mind [9]. The establishment of cor-
respondences are usually based on some similarity mea-
Sures in intensity patterns of two images [4]. The dis-
Placements of the feature points are then used by a mo-
tion estimation algorithm to obtain the result. Most re-
searchers adopt this approach [5, 11, 15, 3, 16, 6]and the
State-of-the-art techniques in pose estimation perform very
well (11, 15, 3, 6, 1). By segmenting the two stages apart,
the difficulty of the tracking problem is reduced signif-
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icantly. In particular, the correspondence problem is an
open problem which cannot be solved without making fur-
ther assumptions about the scene [4).

Various techniques can be used to locate the correspon-
dences across two images (12]. One generally would di-
vide those methods into two main categories, namely the
sparse feature-based approach [12] and the dense corre-
spondences (4] approach. In feature-based approach, a set
of feature points which have the most salient image char-
acteristics are chosen from the first image. The correspon-
dences of these feature points are located by placing some
kinds of matching template in a search window in the sec-
ond image. The most popular template based method is
the normalized correlation. The drawback of feature based
approach is that the size of the searching window will have
great impact on the matching result - too big a window
would generate many possible candidates while too small
the search window may result in wrong or no match. The
optical flow method (4], which is another more widely
used term for dense correspondences method, establishes
the correspondences of all pixels in the image by minimiz-
ing the differences in gray levels of the displaced pixels
with that in previous image. The optic flow technique has
a drawback known as the aperture problem (8] and that
the displacements of the feature points should not be large.
More global information i.e. smoothness constraint is thus
needed to make the objective function into convex one to
find the solution [8]. To combat the unwanted smoothing-
out effect at the flow discontinuities, robust objective func-
tions are introduced and good results are obtained (4].

Nevertheless, this approach of separate operating stages
in motion recovery works well provided that the tracking
environment is a non-cluttered one and the captured im-
age is not noisy. A noisy image and cluttered environ-
ment would generate a lot of false matches [9]. Without
the global information of what geometric characteristics
the feature point should share, correspondences methods
we described would easily select the wrong matches. This
in turn causes the motion estimation al gorithm to report a
wrong motion of the object. The wrong prediction of the
object position would then be used by the feature tracker




in the subsequent images, resulting in a divergent behavior
of the overall tracking system.

In this paper, we proposed a new framework which
combines the 3D motion estimation and correspondence
establishment into one integral process. By combining
these two processes, stability of tracking should be guar-
anteed since it takes account of the global matching crite-
ria during the correspondence establishment. In addition,
we show that the full projective formulation [2] of the clas-
sic Guass-Newton object tracking algorithm proposed by
Lowe [11] can be viewed as another formulation of the
image motion equation derived by Longuet-Higgins and
Prazdny [10). The primary contribution here is that the
framework proposed by Lowe with stabilization can thus
be applied to image matching based on intensity. An ad-
vantage utilizing the framework proposed by Lowe is its
generality. Lowe’s method can be easily extended to es-
timate both the camera focal length as well as non-rigid
objects. We would expect more powerful non-rigid track-
ing algorithms can be derived from the results presented in
this paper.

Basically our idea is using the image based rendering
techniques [14] to warp an image such that the resulting
image is as closely resemble the matching image as possi-
ble. By reformulating the sum of squared differences(SSD)
measure in optical flow based method to allow for recovery
of 3D motion, we can determine the 3D motion parameters
which best explain the changes in intensity values in the
image. This may help as the last stage in motion analysis
to refine the results obtained by existing pose estimation
techniques [6, 11, 3, 15]. We believe this would bridge up
the two stages and result in more stable tracking behavior.

Our paper is organized as follow. In section 2, we will
briefly review the techniques related to our algorithm. In
section 3, we derive the Jacobian that relates the changes
in intensity values to the 3D motion parameters. Various
experiments which evaluate the performance of the derived
Jacobian are discussed in section 4. In section 5 we present
an algorithm for image matching of 3D objects using our
derived results. Finally some discussions will be presented
in section 5.

2 Optic Flow using SSD

The sum of squared differences measure (12, 4] is
widely used in intensity based matching method to deter-
mine image correspondence. In this method, one would
try to minimize the differences between two image patches
I1(p’) and I»(p) at image point p and p respectively:

Ba) = ) [L(p}) - R
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In the above, q is the parameter vector which defines the
transformation between the two images, g;r denotes the
transpose of the image gradient vector g;, and J; is the

8z 48 T i
(a_q! Eﬁ) , where z and y is the coordi-

nates of the image point. previous iteration [14]. It is well

known that the above equation has a simple solution given
by [14]

Jacobian, J;

Aq = -b, (3)

where
A = ) Jigigldi, (4)
b = ) eligi ®)

3 Our Approach

Considera point P = (X, Y, Z,1)T in 3D space, which
is being transformed by a 3 x 3 rotation matrix R followed
by a 3 x 1 translation vector T yielding P’, we can write
their relationship in homogeneous coordinate 7] as

X' X
Y| _(R T Yol _
P = 27 1=l o 1 7 | = DP. (6)
1 1

Assuming that the camera is placed at the origin, the 2D
image projections of P and P’ are given by
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where f is the focal length of the camera, d and d’ are the
depth values of the original and transformed point respec-
tively. The above equation relates the positional changes of
an image point after a rigid transformation given its depth
value. It is thus possible to generate a novel image from



Figure 1: Image warping of a 128 by 128 image. a) Origi-
nal dragon image, b) Warped image.

the 3D transformation specified. One should note that the
above proposal is valid only when the inverse exists for the
transfer matrix M, i.e, [M| # 0.

Fig. 1 illustrates some results of applying the above sim-
ple algorithm to a sample image with a given depth map.
From the novel view generated, it can be seen that the de-
tails of the dragon is accurately predicted under the novel
pose. Some occluded area are revealed when the original
depth map is transformed to the novel pose, but they are
being smoothed out by the super-sampling process. The
above method showed the potential in application for solv-
ing the pose estimation problem — since we can generate
an image of an object under different poses, it should also
be possible to compare these 'warped’ version with the
now obtained image to see any significant difference ex-
ists. If the warped image agrees with the obtained image to
a certain extent, it should be highly probable that the object
in the scene has undergone a similar rigid transformation.
The above reasoning led to our proposal in the subsequent
section.

Consider Eq. 8 again, assuming a very small increment
both in rotation (R, ) and translation (AT), we have

d'z) dz;
dy | _w( @+R)R T+AT \ ., | du
¢ |=8 ( 0 1 ) 2 d

1 1

)

Since H is a diagonal matrix, we have

-

V-l o
0 1

f 00
) where V=| 0 f 0 (10)
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Expanding the R.H.S of Eq. 9 and rearranging terms, we

have
d:; J.Y
R, O - dy; &Y
(”H(o o)H M1 a 6z |
1 0
(1)
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where

axX
Y
VA

6P = ):vm*r-m,:m. (12)

We thus have the following compact form for a new M
which due to small changes in D

(13)

M = (I+Dy)M,
_ Re ONycy 70 8PXN ..oy
Dy = H(O O)H +(0 O)M s

When small rotation is assumed, we can reduce the pa-
rameter space by using the incremental rotation matrix in
place of R,

R + R(I+R,), (14)

0 —w, wy
R, = w; 0 —w: |. (15)
~Wy  Wg 0

As a result, we use only a six parameters vector q =
{wz,wy,w:,u,v,w} to control the warping of the im-
age where {u, v, w} is the incremental translation vector,
{wz,wy,w:} is the incremental rotation.

We need to determine the Jacobian of the image coordi-
nates with respect to the parameter vector. Consider an im-
age formed from an incremental rigid transformation, from
eq. (13) we have

d'z! dz;

% | _a+DyM| (16)
d d
1 1

Minimizing the differences between the two images can

_be interpreted as minimizing the differences between the

second image frame and a warped version of the original

image defined by M (we denote the warped image as ;).
From Egq. 16, the warped coordinates

(df‘tf'd‘yP, dn‘j l)T = (I + DM](dﬂ:H"dﬁyJ.‘,dﬂl l)T are

given by
wed'z"4d"y" = fwed" +f(v=w, Te+w:T:) !

(7)
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where (T3, Ty, T:) is_the translation vector estimated in

previous turn. In addition, we now sample in the warped
image (/) instead of the original image I;.

To simplify the notation, we write all the symbols in

the warped version of original image back into no double

T

y'+fwyd" +f (utw, Ty=—wyT;)
et Lt Te—w. Ty

d”:.'”-—w.
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prime format, i.e. d” is written back as d, etc. The Jucobian
is thus given by
1(.‘51 B —dy+ f1, —:)
_y K

- [0
d\C D de—fT. 0 f

where 4 = —;r{‘i!i—-Ty). B=f(d-T:) —.r{—“}—‘-i-T;}.
C=f(T. —d) — y(% - T,).and D = y( ¥ - T¢).

From this Jacobian, we have the following observations.
Writing (X, ¥, Z)T as the 3D coordinates of the point with
only rotation applied, T = (7%, T, ,T:)7T is the translation
in the camera coordinate frame, we have

(18)

X! X+T:
Y =] Y+T, (19)
z' Z+T:

Noting that d’ in Eq. 18 is just Z’ i.e. Z + T..inthe
Jacobian above, thus we have

1( -z(¥)_ fZ+zX Y [ 0 —;)
&\ —fZ —yY uX -fX 0 f -y
(20)
Writing
B = 1
(a,b,c) = (X +T, Y + Ty, Z'-:-T_.)' (21)

we have the same format for the Jacobian in the fully pro-
jective formulation of Araijo et al. [2],

(

fe(Z +acX) —fe¥ fe 0
fher X feX 0 fe

—f_acgf/ _
—felZ + beY)
(22)

Finally consider Eq. 20 again, writing each 3D coordi-

nates in its 2D image formie. X = %‘- where I represent
the image projection of X, etc., we have
! ( =0 fz)+= —jE f 0 s
7 > wZi yZE Z:
7\ -fz-¥1 2 E g oy
. _(23)
Taking the approximation of X" = X.Y’" = Y and

Z' = Z, we have the same format for the rotational and
translational components of the classic Longuet-Higgins
equation [10]

3 2 r
( ~ [ -}-: ! -y & 0 _Z:Ta ) (24)
3+ 2 # 5 . -
_U_!af_l = r 0 JZL e

It should be noted that the Jacobian derived Eq.18 can
be viewed as another representation than that of the clas-
sical Longuet-Higgins equation (24) since it takes less ap-
proximation in evaluating the step increment in each itera-
tion. It should therefore result in more accurate estimation
result.

seen that the image motion equation used by Longyer.

—fac®

—fbe?

) |
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4 Performance Analysis of Derived Jacobig,

Itis in general difficult to assess the performance of i,
age matching algorithm due to the complicated reflectanc,
properties of real world objects and immense possibij;.
ties of the movements an object can assume. We hay,

Higgins (Eq. 24) is a variation of our Jacobian (Eq. 20), [,
addition, since the derived formula is in the form of a Jacg.
bian, it should thus be possible to apply it in the framework
of pose estimation algorithm by Lowe where the change ip
parameter vector is calculated from the Jacobian also.

So, we make the following assertion:

The Longuet-Higgins equation for the image motion js
a variation of the Jacobian of image displacement with re.
spect to the parameter vector consists of small angle ro.
tation and translation (Eq. 20). In addition, the Jacobian
is of the same form as the full projective formulation of
Lowe's pose estimation algorithm.

We have already showed that the approximation in ob-
taining the Longuet-Higgins equation is that we take the
assumption that the coordinates of the rotated coordinates
of a point is the same as the acrual rransformed coordi-
nates, i.2. the translational component is treated as zero in
the Jacobian. In general, when both the original and trans-
formed points are just a small distance apart, this should
not caused any problem in the estimates obtained. How-
ever one would expect wrong estimates would be obtained
as the translational components rise to a certain threshold !,

Effect of Translation on Estimate To contirm the
above assertion on the behavior of the algorithm, we per-
form the following experiment. A number of eight ran-
domly generated points in 3D space is transformed by the
following parameters— rotation(RPY)(0).2 — 0.10.2) and
translation of increasing values(10 « i, — 10 «£, 10 =) where
{ increase trom 3 to 200 in step 3. This is a challenging
data set since it involves both significant changes in rota-
tion and translation. The focal length is set to 1 for con-
venience whereas the r and y values are chosen to within
100 times of focal length. The object has a z-dimension of
700 units and is placed at a distance of 400 units from the
focal center. This particular set up is very challenging in
that the object have significant depth variation within the
view and thus would pose problem to formulations taking
approximation such as weak perspective projection. The
projected coordinates are then passed to the estimation al-
gorithm. The squared distance between estimated point set
and projected data is plotted against iteration for each ex-
periment. We perform the test on our formulation(our algo-
rithm is abbreviated as IWJ, which stands for Image Warp
Jacobian) as well as the Longuet-Higgins equation. The

L This corresponds to the situation that the object or the camera moveat
quite a fast speed, or the sampling rate of the camera is not good enough.




behavior ol vergence behavior ol ]
Longuet-Higgins !oml-u:n e sigorthm i
mr— g
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Figure 2: Convergence comparison of the derived Jacobian 5%,’—_ —fey —Yi '!;&
and the Longuet-Higgins equation. a) Longuet-Higgins g“i 1 L L
. . N btz z z
equation, b) Derived Jacobian aai 0 0 0
ty
g —fz _ = i
results of all 40 tests are showed in Fig. 2. a—f}— =fe(z" +cy'”) '—*:—,*3- :f—:-'f—-?—
As seen from the figure, the convergence behavior of By fei(z'y) £y yz'
R . " Bwy 74 z
the Longuet-Higgins equation deteriorates as the transla- By —fez! ) fz!
tional components become more significant. The wrong 2 = A tfd
convergence behavior can be observed for those tests with 3t 0 0 0
large translations(i.e. those curves on the top). On the 5 1 L L
other hand, the pose estimates of IWJ are very accurate 2 —-fcy e o

even at large translation. Another promising properties of
our algorithm is that the convergence is very fast— there are
nearly no changes after 7 to 10 iterations for all the tests.

Comparison between /WJ, Longuet-Higgins Equa-
tion and Lowe’s Algorithm

As we have emphasized in previous section, the derived
Jacobian as well as the Longuet-Higgins equation can be
applied under Lowe’s framework to estimate the pose of
an image. At the same time, Lowe's algorithm can also
be used to perform the task of image matching. For the
ease of comparison, the expressions used by these three
approaches are listed in the Table 4.

In the above table, (z,y, z) are the 3D coordinates of
the estimated point whereas (z’,y/, ') designate the 3D
rotated coordinates of the point, i.e., without translation
added. (z;,y;) denote the image coordinates of the esti-
mated point.

To determine the accuracy of the derived Jacobian, two
methods can be used. The first is applying it to the prob-
lem of pose estimation with established correspondences.
Another method is use testing images to check its perfor-
mance under different intensity profiles. We used both
methods in our testing.

We test the performance of /WJ together with the other
two algorithms under synthetic data for established corre-
spondences. In fact, this testing procedure should better
reflect the performance of the tested algorithms since the
actual solutions are available for verification. In image sets
testing, owing to the vast number of parameters in image
formation, a complete performance characterization is al-
most impossible. In this experiment, a cube of length 30
(focal length of one unit) placed in the center of view and
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Estimatas of diffarent Jacoblans for
Increasing Roll angles

40
wol—

2% 201 ! cnai

EE 101 tews

E g‘ 0.0  —Lenguat-Higgina
1.0
Azlo e e

Input(rad./0.03)

o

(a)

Estimates of different Jacoblans for
Increasing Pitch

20
15 R o
83 1o =
& 2 osl B
=2 g0 (= Lows
2 g-as- LonguetHiggina
1.0 1
“.S e —
Input (rad./0.03)
®

Figure 3: Convergence comparison of the derived Jacobian
and the Longuet-Higgins equation under different motion.
a) Roll, b) Pitch.
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Figure 4: Convergence comparison of the derived Jacobian
and Longuet-Higgins equation under model variation. a)
Roll, b) Pitch.

at a distance 50 units from camera center. With an ini-
tial value of (0.03, 0.03, 0.03) in rotation angle (RPY for-
mat), a step increment of 0.03 is added to one of the angles
after each iteration whereas other angles keep the same.
The estimated results for roll and pitch angles are shown in
Fig. 3%

From the figure, it can be seen that the estimates of
Lowe algorithm diverge at about 0.6 radian for roll and
pitch angle, while /WJ and Longuet-Higgins equation still
give correct results. This confirms our statement that the
derived Jacboian is a full projective formulation in which
more stable estimation could be achieved.

To further test the performance of each algorithm, we
design the following set of experiment. A randomly gen-
erated point set of 8 points inside the volume of 50 x 50 x
1000 times of focal length, at a distance of 50 times of fo-
cal length from optical center, are sampled and tested under
the same condition as that in Fig. 3. This experiment tests
the performance of different Jacobians under the effect of
model variation. A number of 100 tests are performed on
each rotation value and the mean estimates are plotted as
shown in Fig. 4. As can be seen in the figure, both IWJ

2Results for yaw angle are not shown since all algorithms estimated it
satsifactorily. This also applies to the next experimentas well.
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and Longuet equation have a bigger range of convergence
for motion than Lowe. In addition, as seen from the figure,
it is interesting 1o find that Longuet-Higgins' formulation
still gives correct estimates in most cases, €.2. at around
0.7 rad. for Roll and Pitch angle whereas [W/J estimates
start to deteriorate. This is a point which deserves future
investigation. However, in other experiments in which the
model size is of bigger value, say 100 times of focal length,
the estimates of IWJ outperform the Longuet-Higgins es-
timates by having a bigger range of convergence.

We conclude that both /WJ and the Longuet-Higgins
equation have better performance in terms of the range of
convergence and model variations.

5 An Algorithm for Image Matching of 3D
Objects

Our algorithm for intensity matching works as follows,
We assumed that the depth map of the object is available
which may come from previous iterations or by other meth-
ods such as stereo vision technique [7]. During each itera-
tion. a number of feature points on the object are selected
and a window (5 x 5 in our experiments) is sampled at each
feature point both at the current and previous frame. The
locations being sampled at both frames could be the same
if the image capture rate is fast enough. The image gra-
dients of the two image would then guide the estimation
algorithm to find the correspondence. The incremental 3D
rotation and translation parameters, which warp the sam-
pled image so that the intensity differences (SSD) between
the two windows are minimal, will then be estimated. The
warped result will then replace the original image in the
next iteration and the process is repeated until convergence
established.

A set of examples illustrating the application of the al-
gorithm to a synthetic image are shown in Fig. 5. In this ex-
periment, a plane with a texture of repeating sine wave sur-
face is translated horizontally (Fig. 53b), vertically (Fig. 5c),
and in the direction of out of the picture (Fig. 5d) by a
steady speed of 2 pixels per frame. We use a Gaussian fil-
ter to remove the high frequency components of the input
images. A Gaussian kernel of size 1 x 5 is applied both
in the spatial and time domain before the application of
our algorithm. We apply the calculation to each pixel in
the image and the estimated 3D motion is again projected
back on the image plane to check for validation visually
on the accuracy of the algorithm. As seen from the figure,
the estimated flow is correct for most of the area in the im-
age except near the object boundary. The instability of the
result near the boundary is probably due to absence of tex-
ture outside the sithouette of the object to guide the image
motion. It therefore implies that the tracking of the object
by the algorithm should be better inside the textured object
interior.




T
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(b)

i
)

(c) (d)

Figure 5: Synthetic image testing of 3D motion estimation
algorithm. a) Original image, b) Projected flow of the part
with the plane in image frame 8 of horizontal movement,
¢) Projected flow of vertical movement, d) Projected flow
out of paper movement,

Another set of examples showing the result for estimat-
ing rotation further confirms the above implication. In
Fig. 6, separate rotation in RPY format is applied to the
same synthetic image in Fig. 5 and the estimated motion
is projected onto the image plane. It can be seen that the
estimated motion become much more unreliable near the
boundary of the object.

For the real image experiment, we encountered a prob-
lem of depth map availability in real images. Since it is
difficult to find a benchmark image set which has a depth
map available with the data. We hope that with the advent
of research on motion analysis as well as structure from
motion, reliable performance analysis can be performed on
the proposed motion analysis algorithm.

To demonstrate the feasibility of our approach, we used
two frames from the rubic cube image sequence as the test-
ing data. In the sequence, the rubic cube is rotatin g from
left to right with an interframe rotation of about 1.44 de-
gree [13]. Since a ground truth data for the depth map is not
available, we choose only a face on the rubic cube(near the
center of the image, 20 by 20 pixels window in size with
image coordinates 120140 in z-direction, 100-120 in y-
direction) and assumed the same depth values (we chose a
value of 100) for all pixels in this area. The focal length
1s assumed to have a value of 0.05. The assumption of the
Same depth values for all pixels is roughly valid in this case
since the face of the rubic cube is nearly parallel with the
image plane. For each pixel in the window, we applied the

(c)

Figure 6: Estimation of rotation a) Roll, b) Pitch, ¢) yaw

Figure 7: Real image experiment. a) Rubic cube image, b)
Reprojected 2D flow overlay on cube image(size:20 by 20}
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algorithm to estimate the motion parameters. To check the
validity of the results, we used the estimated parameters to
reproject the 2D image flow and overlay the results with the
original image. The result is shown in Fig. 7b. From the
fizure, it can be seen that the estimated flow is having a ten-
dency of coming out of the paper, which matched with the
motion of the actual cube. We emphasized that a number
of factors are affecting the accuracy of the estimated result.
Firstly the depth values of each pixel is assumed to be the
same and surely will contribute to the error in the estima-
tion. Secondly we only apply the algorithm individually to
the pixels in the selected region and a regularizing scheme
is lacked to enforce the uniformity of the results. Finally
outliers rejection scheme is not implemented so that noise
in the image would probably create some wrong estimates.
Nevertheless, the experiment clearly indicate the possibil-
ity of recovering the 3D motion directly from the image
intensity profiles.

6 Summary

A framework for estimating the 3D motion from image
intensity differences is formulated. The linkage between
the motion parameters and feature tracking is built by for-
mulating the solution to the sum of squared image difter-
ences through the Jacobian of motion parameters. Syn-
thetic as well as real image experiments have confirmed
the usefulness of our algorithm.

An important contribution here is that we showed that
the classical Longuet-Higgins equation of image motion
can actually be treated as a variation of a full projective
formulation of Lowe's Gauss Newton method—-another well
known pose estimation algorithm. The Longuet-Higgins
equation is applied to the pose estimation problem in the
framework of Lowe’s formulation and its weakness on es-
timation of large translational displacement is confirmed.
The presented results are significant in that the classical
Lowe's algorithm can now be applied to the direct esti-
mation problem, which implies more flexibility in tracking
complicated object such as articulated ones. On the other
hand, an improved formulation of the Longuet-Higgins
equation in handling large displacement can also be ap-
plied to various applications.
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