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ABSTRACT 
 

A robust simultaneous pose tracking and structure 
recovery algorithm based on the Interacting Multiple 
Model (IMM) for augmented reality applications is 
proposed in this paper. A set of three extended Kalman 
filters (EKFs), each describes a frequently occurring 
camera motion in real situations (general, pure 
translation, pure rotation), is applied within the IMM 
framework to track the pose of an object. Another set of 
EKFs, one filter for each model point, is used to refine the 
positions of the model features in the 3D space. The filters 
for pose tracking and structure refinement are executed in 
an interleaved manner. The results are used for inserting 
virtual objects into the original video footage. The 
performance of the algorithm is demonstrated with both 
synthetic and real data. Comparisons with different 
approaches have been performed and show that our 
method is more efficient and accurate.  
 

1. INTRODUCTION 
 

The research work presented in this paper falls into the 
category of structure and motion (SAM) in computer 
vision. The goal is to reconstruct a 3D structure and its 
pose from a sequence of 2D images. A major stream of 
the solutions is to tackle the problem in a batch. 
Factorization [2] and bundle adjustment [4] are common 
approaches. Besides, there are solutions that deal with the 
problem in a recursive way. Most of them are based on 
Kalman filtering. The work in [1] adopts iterated extended 
Kalman filter (IEKF) for structure updating. The series of 
methods in [5] [6] [7] recover both the structure and 
motion. The work in [7] is the ancestor of this series of 
researches. The authors apply a single IEKF to recover the 
structure and pose of an object. Azarbayejani and 
Pentland describe a method in [6] that improves [7] by 
making an extension in recovering the camera focal length 
and the representation of the 3D model. The most recent 
recursive method is by Chiuso et al [5]. Similar Kalman 
filtering techniques in SAM have also been applied to 
simultaneous localization and map-building for robot 
navigation [8].  

The Interacting Multiple Model (IMM) based 
algorithm presented in this paper aims to solve the 
problem of structure and pose ambiguities encountered in 
most of the existing SAM algorithms, which has been 
reported by Szeliski and Kang in [9]. Inaccuracy due to 
the ambiguities can be minimized if prior information 
about the structure or motion is utilized. In our algorithm, 
the three extended Kalman filters (EKFs) for pose 
estimation embedded within the IMM framework describe 
three different motion dynamics that represent frequently 
occurring camera motions in real situations. The IMM [10] 
provides a mechanism to “select” suitable filters 
automatically in order to set constraints on the camera’s 
motion once prior information is available. With the 
constraints, the total number of parameters to be estimated 
is reduced and the accuracy can be improved. In addition, 
the problem of motion discontinuity in real image 
sequences can be handled properly with the IMM. 

Our structure and motion algorithm consists of N+3 
small EKFs. This arrangement has the advantage of 
avoiding tripling the computation time. Indeed, it reduces 
the time complexity from quadratic to linear compared to 
the approaches that use a single full covariance EKF. It is 
necessary since the computation speed is crucial for 
augmented reality applications. The rigidity of the object 
under reconstruction is maintained by expressing the 3D 
point features in terms of the first images that they appear. 
Experimental results show that our IMM-based approach 
can resolve the ambiguities among the Yaw angle, Pitch 
angle and the structure notably. Our method also has 
higher computation efficiency than the interleaved bundle 
adjustment method [4] and the EKF by Azarbayejani and 
Pentland [6]. We have tested our algorithm by tracking 
the pose of a real scene. The recovered pose sequence has 
been applied to produce an augmented reality video. 
 

2. PROBLEM MODELING 
 

Figure 1 shows the geometry of our system. 
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is a point on the image plane. The recovered structure is 
centered at the origin Oo. The relationship between the 
object frame and the camera frame is as follows: 
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Rt  is a 3x3 rotation matrix and Tt is a 3x1 translation 
vector. TC is a 3x1 vector that brings the object in the 
object frame to the camera frame. Parameter Rt and Tt 
compose of the pose sequence. The camera is calibrated 
with fixed focal length f. The camera model is full 
perspective and the projection can be expressed as: 
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Figure 1. The geometry of our system. 
 
 

3. OVERVIEW OF THE ALGORITHM 
 

The system can be divided into four parts: feature 
extraction and tracking, model initialization, pose 
estimation and structure updating. 
 

 
Figure 2. The flowchart of our IMM-based SAM algorithm. 
 

The KLT tracker described in [3] is used to extract 
feature points and track them in the images. The 3D 
model is initialized by assuming that the projection of the 
first image in the sequence is orthographic. 

 The initial model and the second image are fed to the 
first step of the main loop for pose estimation. Three 
extended Kalman filters (EKFs), each represents a unique 
motion dynamics, are adopted. These three filters interact 
with one another using the Interacting Multiple Model 
(IMM) [10]. The recovered pose and the input image are 
passed to the second step for structure updating.  

The second step consists of a set of N EKFs. Each 
EKF corresponds to each coordinate point in the 
recovered 3D structure. With the observations and the 
pose recovered for the current image, the coordinates of 
each feature point are updated accordingly. The algorithm 

alternates between the step 1 and 2 until all images in the 
sequence are used.  
 

4. STEP 1: POSE ESTIMATION 
 

The three EKFs describing three different motion 
dynamics are defined as follows: 
 

1) The General Motion Filter (GMF): GMF is designed to 
handle arbitrary object motion with unrestricted rotation 
and translation. Constant velocity is assumed for the GMF.  
2) The Pure Translation Motion Filter (TMF): TMF is 
designed for tracking the objects with zero rotation 
motion. 
3) The Pure Rotation Motion Filter (RMF): RMF is 
dedicated to tackle the objects with pure rotation around 
the y-axis (i.e. non-zero pitch angle). 
 

The state vector w is common for all the filters: 
[ ]γγββαα &&&&&&

zzyyxx ttttttw =  
tx, ty, and tz are the translation parameters of the object 

along the x, y and z axis respectively. 
zyx ttt &&& ,, are their 

corresponding velocities. γβα ,,  are respectively the Yaw, 
Pitch and Roll angle with γβα &&& ,,  as their corresponding 
angular velocities. The state transition and measurement 
equation for the filters are: 
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t'γ  and t'ν  are zero mean Gaussian noise. A is a 12x12 
block diagonal state transition matrix. A is different for 
the three motion filters. t'ε

 
is an nx1 column vector 

representing the selected real measurements from the 
images. )(wgt

 is the nx1-output projection function 
similar to equation (2). With the above equations, the 
EKF implementation is straightforward and can be found 
in related textbooks. 

In brief, the IMM algorithm consists of four steps. 
Firstly, the filter likelihood, states and covariances of the 
motion filters are updated according to the switching 
matrix. These values are used by the EKFs defined 
previously in a usual way. After the EKF cycle, the new 
filter likelihood is computed according to the image 
residuals and residual covariances of the corresponding 
filters. Lastly, the usable output state and covariance are 
generated with the smoothed states and covariances 
weighted by the updated filter likelihood. The pose 
estimation step is finished. 
 

5. STEP 2: STRUCTURE UPDATING 
 

For N model points, N EKFs are needed for the structure 
update. The model is assumed to be static. The dynamic 
model of a 3D point and the measurement equation are:  



ttiti XX γ+= −1,, ''  

titti vXh += )'(,ε  

tγ  and tν are the zero mean Gaussian noise. 
ti,ε  

represents the real measurements from the image 
sequence. )'( it Xh  is the projection function, which can be 
found by substituting X’i into equation (3) (1) and then (2). 
X’i is a scalar that represents a model point: 
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Intuitively, the 3D coordinates of the points are 
expressed in terms of the first images that the features 
appear. This measure reduces the required computation 
time and maintains the rigidity of the object under the 
assumption that the measurements acquired are non-
biased. Again, the implementation of EKF in this step is 
standard and the formulation is not repeated here. 
 

6. EXPERIMENTS AND RESULTS 
 

6.1. Experiments with synthetic data 
 

An object with 300 random feature points in 3D within a 
cube of volume of 0.13m3, centered at a place 0.33m away 
from the camera, was generated. The motion of the object 
was composed of three different segments, a pure 
translation section, a pure rotation section and a general 
motion section. The sequence of occurrence of the 
sections was by random.  The motion parameters were 
generated randomly from 0.05 to 0.15 degrees per frame 
for Yaw, Pitch, Row angle and 0.0005 to 0.0015 meters 
per frame for tx, ty and tz. The length of each synthetic 
sequence is 60 frames. A total of ten independent tests 
were carried out. Our IMM-based algorithm, the 
interleaved bundle adjustment method [4] and the EKF by 
Azarbayejani and Pentland [6] were tested and compared. 

Figure 3 shows the average total rotation and 
translation errors of the three approaches under the ten 
test cases. For the plots in figure 3 to 5, the line with 
asterisk (*), triangle (¢) and circle (O) markers are for our 
IMM-based approach, the interleaved bundle adjustment 
method and the EKF by Azarbayejani and Pentland 
respectively. These three algorithms were implemented in 
Matlab with a Pentium III 1GHz machine and the time 
measurement is in seconds. In figure 3, the total rotation 
error is calculated by using the axis-angle representation 
to reduce the Yaw, Pitch, Roll angle into a single angle. 
The total translation error is computed by Pythagoras 
theorem. Our approach has errors lower than the other 
two methods most of the time. It is obvious that our 
approach can recover a more accurate pose. 

Figure 4 shows the time for the three algorithms to 
optimize the image residual error of the back-projected 

model. Our algorithm falls to the lowest errors at the 
earliest time among the three methods. It can resolve the 
structure and pose ambiguities to at least a certain extent 
and thus avoids the poor local optima.  

Figure 5 shows the time needed to reconstruct a model 
when extra frames were added sequentially to the image 
sequence. The first step in creating this plot was to 
reconstruct a model with the first 10 frames. The 
succeeding 50 frames were sequentially fed to the 
algorithm as the new measurements of the scene. You can 
see that our approach outperformed the other two 
algorithms. Our algorithm takes only 0.79 seconds to 
update the structure of the scene for every extra frame 
added to the image sequence. The EKF by Azarbayejani 
and Pentland takes 2.60 seconds while the interleaved 
bundle adjustment method takes at least 4.55 seconds.  
 

 
Figure 3. The average total rotation error (top, in degrees) 
and total translation error (bottom, in meters) versus frame 
number of the 3 algorithms.  
 

 
Figure 4. The relationship between the CPU time and the 
image residual error.  
 

 
Figure 5. A graph showing the time needed for the 3 
algorithms to reconstruct the model and pose when extra 
frames are added to the image sequence. 
 
6.2. Experiments with real scene 
 

An experiment using real scene images was also 
performed. The test image sequence was captured by 
translating the camera sideway on a rig. The length of the 
image sequence is 100 frames. Our IMM-based algorithm 
was applied to track the camera motion while 
reconstructing the scene’s structure. The recovered pose 



sequence was used to produce an augmented reality video, 
in which a synthetic car was put onto the yellow box in 
the real scene. 
 

 

 
Figure 6. Results of inserting an artificial object into the real 
scene. First row: The first and the last image of the 
laboratory sequence. Second row: A synthetic car, which is 
drawn by wire-frames, was inserted into the real scene. 
Demonstration video can be found at 
http://www.cse.cuhk.edu.hk/~khwong/demo/ 
 

 
Figure 7. A plot showing the most probable EKF for pose 
estimation against frame index in the process of tracking 
the camera motion of the real image sequence. 
 

 
Figure 8. The rotation parameters recovered from the real 
scene with our IMM-based approach (the left one) and with 
a standard EKF with no IMM (the right one). 
 

Figure 6 shows the results. An augmented reality 
video has been made successfully. The orientation of the 
synthetic car is consistent with the real scene. Figure 8 
shows a comparison of the rotation parameters acquired 
with and without the IMM. The pose recovered with our 
IMM-based algorithm is smooth with no ambiguities 
among the Yaw and Pitch angle. The small jump in the 
rotation angles at the 76th frame is due to the vibration of 
the camera. On the other hand, the pose recovered using a 

standard EKF with no IMM (i.e. A 2-step EKF in which 
one GMF is for pose estimation and N EKFs are for 
structure updating) is fluctuating and has an error about 2 
degrees for the Yaw and Pitch angle. 
 

7. CONCLUSION 
 

The ambiguities between pose and structure have been 
solved by our IMM-based structure and motion algorithm 
under the following frequently occurring camera motions: 
pure translation, pure rotation or motion discontinuity. 
Our approach outperformed two other existing SAM 
algorithms in both the accuracy of the recovered pose and 
computation speed. Our algorithm also achieves a linear 
time complexity in terms of the total available point 
features, which suits the real-time requirement for many 
of the augmented reality applications.  
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