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Abstract— The accuracy of the reconstruction of 3D 

objects using vision-based techniques depends ultimately 
on an optimization technique known as bundle 
adjustment. However, direct application of bundle 
adjustment fails to make full use of the constraints 
inherent in the objects’ motion. Most of the scanner 
systems available today use a turntable to rotate an object 
so as to capture images of the object from different view 
points. For these systems, the motion of the object is 
constrained to rotate around a fixed axis. By 
incorporating this constraint into the traditional bundle 
adjustment method, we show that a more accurate 
reconstructed model can be obtained. This “constrained” 
bundle adjustment method should be useful in the design 
of low-cost, yet accurate, 3D scanners for use in 
manufacturing and entertainment industry.  
 

Index Terms—3D object reconstruction, bundle 
adjustment, 3D object scanner, structure from motion. 
 

I. INTRODUCTION 
canners that can capture the 3D structure of objects 
accurately have many practical applications in 
manufacturing and entertainment industry. At present, 

most of the 3D scanners are based on laser range sensors [1]. 
These scanners are robust and accurate, but they are also 
costly, and have certain restrictions on the size and on the 
surface properties of the objects. They are also unable to 
capture the color information of the objects.    
 The advent of inexpensive digital cameras has made 
vision-based scanners an increasingly attractive proposition. 
A typical system requires only a turntable and a camera. By 
rotating the object on a turntable, multiple views of the object 
are captured by the camera, and the 3D structure of the object 
can be reconstructed using structure from motion (SfM) 
techniques. Tutorials on the reconstruction scheme are 
described in [2][3]. Apart from recovering the 3D object’s 
structure, SfM can also recover the object’s pose in the image 
sequence. The pose information is useful in reconstruction 
schemes that are based on silhouette [4][5], and space carving 
[6]. Some scanning systems require the turntable be 
controlled by a computer [7]. In our work, we take a 
minimalist approach so that the turntable is not required to be 
connected to a computer.  
 

 

The main contribution in this paper is to study how 
reconstruction accuracy could be improved by employing 
constraints inherent in the object’s motion. From the 
literature on SfM, the reconstructed model is frequently 
subjected to a non-linear optimization technique known as 
bundle adjustment – a term that is originally used in 
photogrammetry. Bundle adjustment is basically a steepest-
descent algorithm that searches for an optimal model by 
minimizing the error between the observed 2D feature points 
and the re-projected feature points from the reconstructed 
model. We note, however, that the adjustment fails to capture 
constraints inherent in the object motion – namely that the 
object is constrained to rotate around a fixed axis. By 
incorporating this constraint into the optimization process, we 
expect the accuracy of the reconstruction can be improved 
substantially.  

Organization of the paper is as follows: in section II, we 
describe the theory and algorithm used in our approach. In III, 
we describe the experimental results of this work, and finally 
in IV we conclude the work and discuss the results.  
 

II.  THEORY AND ALGORITHM 

A. Problem formulation 
The 3D reconstruction of an object is usually achieved in two 
stages. The first stage creates an approximate model. The 
second stage refines the model using an optimization 
technique known as bundle adjustment [8]. The accuracy of 
the reconstruction depends critically on the second stage. 
Here, we assume that an approximate model has already been 
obtained using techniques such as Extended Kalman Filtering 
[9]. Our main focus will be on the accuracy of bundle 
adjustment and how to improve on it. 
 Consider an object with N  feature points. The object is 
rotated around a fixed axis n and its motion is captured by a 
stationary camera in a sequence of T images. Let iΜ be the 
3D coordinate of ith feature point of the model, jR be the 
rotational matrix that corresponds to the rotation of the object 
at the jth frame, and D  be the distance from the origin of the 
camera to the centre of the object, then the 3D position of 

iΜ at the jth frame is give by  
 = +ij j iP R M D    (1) 

The point , ,[ ]T
ij ij ij ijP X Y Z=  is measured with respect to 

the camera coordinate. From perspective projection, the 
observed 2D image point is given by 
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where f is the focal length of the camera. If the position of 
the observed image point is [ , ]� � T

ij ijx y , then the re-projection 
error, defined as the mean-square error between the observed 
and the re-projected image points, is  

 2 2
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ij ij ij ij
i j
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= − + −∑∑ � �     (3) 

The goal of the model reconstruction is to find the optimal 
values for M , R and D that minimizes the cost function in 
(3). From (2), if , ,[ ]T

ij ij ij ijP X Y Z=  is a solution that generates 

the re-projected data [ , ]T
ij ijx y , then so 

is [ , , ]T
ij ij ij ijP kX kY kZ= , where k is an arbitrary constant. 

From (1), this follows that if ,  j iR M and D are solutions, 
then so are ,  j iR kM and kD . Hence we can only recover the 
model and translation parameters up to a scale factor. The 
rotation matrix is invariant to scale. 

 

B. Bundle adjustment 
From (1) and (2), the observed data is a function of the model 
and pose parameters. Let M�  and θ�  be the optimal model 
and pose parameters respectively, where 

1{ , , }NM M M=� � �…  and 1 1{ , , , , , },T TR R D Dθ =� � � � �… …  

then ( , )= ���x f M θ and ( , )= ���y g M θ . If M and θ are the 
current estimate of the parameters, so that 
M M Mδ= + +� … , and θ θ δθ= + +� … ,  then by Taylor 
expansion, we have 

   ( , ) ∂ ∂
= + + +

∂ ∂
� "f fx f M M

M
θ δ δθ

θ
   and    

( , ) ∂ ∂
= + + +

∂ ∂
� "g gy g M M

M
θ δ δθ

θ
.  

Keeping only the linear terms, we have 
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so that 

 =e Js      (5) 
where  

,    ,    and  

∂ ∂ 
    ∂ ∂= = =    ∂ ∂    
 ∂ ∂ 

f f
x MMe J s
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M

δ δθ
δ δθ

θ

. 

The unknown variables [ , ]Ts Mδ δθ=  can be solved using 
the least square method, as 

 1( ) ( )−= T Ts J J J e  (6) 
The estimate is improved iteratively by 
making → +M M Mδ and → +θ θ δθ . The procedure is 
repeated until the residual error e cannot be reduced 
significantly. Given N feature points and T image frames, we 
have 3N unknowns for the model and 6T unknowns for the 
pose parameters (3 unknowns for the angles of rotation per 
frame, and 3 unknowns for the displacement vector per 
frame). The total number of unknowns is 3 6N T+ . 
 

C. The constrained bundle adjustment method 
The bundle adjustment method described above does not 

make full use of the constraints available. Since the position 
of the rotation axis of the turntable is fixed, the displacement 
vectors 1, ,… TD D are the same for all frames. Furthermore, 
the rotation matrices 1, ,… TR R of the object should be 
constrained to model a circular motion around a fixed axis n, 
where 1 2 3[ , , ]= Tn n n n . To impose the fix position constraint, 
we make 1, , =… TD D D . To impose the rotational constraint, 
we use the Rodrigue formula to model the rotational motion, 
in which 

 

3 2

3 1

2 1

0
cos (1 cos ) sin 0

0

j

T
j j j

n n
I n n

n n
φ φ φ

=

− 
 + − + − 
 − 

R

nn
(7) 

where jφ  is the rotation angle at the jth frame. To facilitate 

the differentiation of R with respect to n, we represent the 
axis n  by the spherical coordinate, in 
which [cos( )cos( ),cos( )sin( ),sin( )]= Tn α β α β α . The 
motion of the object can be completely described by 

1{ , , , , , }TDθ α β φ φ= …  - a total of 5T +  unknowns. 
Comparing with the 6T unknown pose parameters in the 
unconstrained bundle adjustment, the total number of 
unknowns has been reduced drastically. 

With this new set of unknown parameters, we repeat the 
steps described in equations (5) and (6). The Jacobians 

/ ,f M∂ ∂  /f θ∂ ∂ , /g M∂ ∂  and /g θ∂ ∂  in (5) are tedious 
to derive manually. Instead, the symbolic computational 
package in Matlab was used to obtain the derivatives. 

       

D. Initialization 
We use the bundle adjustment method to obtain an initial 

value of the pose parameters 1[ , , ]… TR R and 1[ , , ]… TD D . 
To enforce the displacement constraint, we set 

1

1 T

j
j

D D
T =

= ∑ . Since the model’s orientation is measured 

using the first frame as reference, therefore 1R  is a 
3 3× identity matrix. To estimate the rotational axis n , note 
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that =Rn n , i.e., the rotational axis is not changed by 
rotation. Hence ( ) 0− =R I n . The optimal n  for a given 

2[ , , ]… TR R  can be obtained from the equation 

 
2

0,          where 
− 

 = =  
 − 

#

T

R I
An A

R I
 (8) 

This follows that the vector n is in the null space of TA A , 
which corresponds to the eigenvector in TA A that has the 
zero eigenvalue. In practice, the eigenvector that has the 
smallest eigenvalue is picked.  

To find 2 , ,… Tφ φ , rearrange the equation (7) into the form 

Bx b= , where [cos ,sin ]T
j jx φ φ= . Since R and n are 

known, x can be solved. Depending on the sign of 
cos jφ and sin jφ , the angle jφ obtained is between 0 to 2π . 

 

E. The measurement of 3D residual error 
 The quality of the reconstruction is usually measured by 

the residual 2D re-projection error as shown in (3). However, 
since a small 2D residual error does not necessarily translate 
into a small 3D residual error, a better measure is to find the 
absolute difference between the original and reconstructed 
3D models.  

Let iM� and iM be the corresponding 3D points in the 
original and reconstructed models respectively. Both models 
are measured with respect to the first frame of the sequence, 
i.e. the rotation matrix 1R is an identity matrix, so that the 
orientations of both models are aligned to the same direction. 
The reconstructed model M  is differed from the original 
model M�  by i) an arbitrary scale factor, and ii) an arbitrary 
shift between the two models’ centers. Let k be the unknown 
scale factor and d be the shift between the models’ centre, 
then the average 3D residual error can be defined as 

 
2

1

1 ( )
N

i i
i

e M k M d
N =

= − −∑ �     (9) 

Given the set of model points 1{ , , }NM M� �…  and 

1{ , , }NM M… , we can find the optimum scale factor k and 
shift factor d that minimizes the error in (9) using least square 
method. Once k and d are known, the residual 3D error can 
be found. However, since the scale of the residual error is 
quite arbitrary, it is more meaningful to normalize the 
residual error by the size of the original model, so that the 
error can be expressed in percentage, as  

 1

1

( )
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N

i i
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N

i
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III. EXPERIMENTAL RESULTS 

A. Simulation results 
In this section, we compare the performance of the 

constrained and unconstrained bundle adjustments by 
simulation. We use Matlab to generate a random 3D model of 
200 points. A sequence of sixty images was generated from 
the model under perspective projection. Different amount of 
zero-mean Gaussian noise were added to the images in order  

to model the tracking error. The noise added represents the 
lower bound of the 2D re-projection error that can be 
obtained if the model is recovered perfectly. At each noise 
level, 50 independent runs were made, and the average 
results are reported here. We had also simulated the effect 
due to occlusion. On average about half of the points were 
occluded by the object itself. The occluded points were 
represented by NaN (Not-a-Number) in the image sequence. 

  
Noise added  
(unit: pixel) 

Unconstrained  
bundle adjustment 

Constrained  
bundle adjustment

0 00.0 0.0  
1 0.97  0.98 
2 1.95 1.96 
3 2.91 2.94 
4 3.89 3.93 
5 4.84 4.90 
6 5.83 5.89 
7 6.79 6.85 
8 7.77 7.84 
9 8.78 8.86 

  Table 1. Residual 2D errors of the constrained and 
unconstrained bundle adjustments 

 
Table 1 compares the average 2D residual error between 

the two methods. The residual errors obtained by both 
methods were smaller than the noise added. This shows that 
both methods had been trying too hard, and had over-fitted 
the parameters for the sake of minimizing the re-projection 
error.  Secondly, the unconstrained method produced a 
smaller residual error than the constrained method at every 
noise level. This is expected because the lack of constraints 
made it easier for the unconstrained method to over-fit the 
data, and to produce a smaller residual error.  

 
 Fig. 1 compares the 3D residual errors between the two 

methods. This time the picture is different. The constrained 
method is clearly the better one. Although the unconstrained 
bundle adjustment has a smaller 2D residual error, the 
reconstructed model obtained from the constrained bundle 
adjustment has a much smaller 3D residual error. The 
reduction of the error is between 30 to 40%. The constraints 
help to model the object motion more realistically, thereby 
suppress over-fitting, and produce a more accurate model.  
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Fig 1. Comparison between the residual 3D errors of the 
methods 

B. Real image results: A model house object on a 
turn table 

  

 

 

 
Figure 2:  Results for the reconstruction of a model house. 
The first row contains the first and last (15th) image of the 
input sequence. The second and third rows contain two 
reconstructed textured views and their wire-frames. 

In Fig.2, features in the image sequence were extracted by 
the Kanade-Lucas-Tomasi (KLT) Feature Tracker. The 
features were passed to our algorithm for model 
reconstruction and saved as a VRML file for display.  

IV. DISCUSSION AND CONCLUSION 
In this work, we have compared the reconstruction 

accuracy between classical (unconstrained) bundle 
adjustment and constrained bundle adjustment. In our 
experiment, we found that although classical bundle 
adjustment produced a smaller 2D re-projection error, it 
actually had a much larger 3D residual error. We believe the 
3D residual error is a more meaningful and accurate measure 
of the reconstruction results. In our experiment, the 
constrained bundle adjustment method can reduce the 3D 
error by as much as 30 to 40%, at the cost of only a few 
seconds in CPU time. A more accurate model reconstruction 
also leads to a more accurate pose estimation. Hence the 
constrained bundle adjustment is also useful for 
reconstruction schemes that depend critically on the accuracy 
of the pose parameters, such as those that are based on 
silhouette or space carving.  
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