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Abstract 
 

Tracking human head pose has many applications such as building input devices for game players and for the disabled. 
Traditional vision methods detect the image of the head to deduce its pose. Our approach is the reverse, we attach cameras 
to the head so head pose tracking becomes camera pose tracking. The main problem with camera centered vision based pose 
tracking is that, if one camera is used, translation and rotation will produce very similar effects on the images hence the pose 
cannot be correctly detected; this problem is called the translation/rotation ambiguity problem. The novelty of our approach 
is that we attach multiple cameras to the head to tackle the ambiguity problem and obtain very accurate pose result. As the 
costs, sizes and weights of cameras are reducing quickly, this is in fact a very practical approach for making a head pose 
input device. Experiments on simulation and real data have shown the effectiveness of the method.  
 
 
1. Introduction 
Most traditional head motion tracking systems use the images of the head and computer vision method to find the pose 
[1][3][4][5][6][9]. Part of the difficulty is that the image of the head only occupies a portion of the whole image and reliable 
face features are difficult to find. Hence the system cannot be very robust.  We take a different and novel approach that the 
camera is not looking at the head but mounted on the head to look at surrounding patterns. It has the advantage that all the 
information in the images is used for tracking, and head tracking becomes the same as camera pose tracking. However, it is 
well known that the camera centered pose estimation method by one camera suffers from a problem called 
translation/rotation ambiguity [7],[8]. For example, by just looking at the image of a moving camera, it is not easy to find 
whether the 2-D motion is created by a rotation around the vertical axis or translation along the horizontal axis. Some 
researchers have used multiple cameras for pose estimation [10][12][13], however, our contributions are: (1) give an analysis 
of why this ambiguity happens and (2) solve the translation/rotation ambiguity problem by using a pair of back-to-back 
cameras and create a head pose input system as in Figure 1. As the costs, sizes, and weights of the cameras are dropping fast, 
it is in fact a practical and feasible scheme for head tracking.  
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Figure 1a:  A user with the head mount with one camera pointing at the forward direction (right), another pointing 
at the backward direction (left). 
 

 
Figure 1b: Close-up of the head mount with two cameras 

The organization of the paper is follows: in section 2, we study the ambiguity problem for a single camera; we then extend 
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our work to include multiple cameras and propose a method to remove the ambiguity. In section 3, we describe the 
experimental results, and in section 4 we conclude our work with a discussion.  

 
2. Theory and Algorithm 
2.1. The reference camera k=1 
Using the first camera k=1 as the reference (the world coordinate coincides with the camera coordinate of the camera k=1. 
Since k=1 is the reference, so the index k is not shown here for simplicity. i jP is the 3D position of the given model feature 

point iM  observed by the camera (k=1) at the jth frame. 

     ( )
T

i j i j i j i j j i jP X Y Z R M d⎡ ⎤= = −⎣ ⎦ ,                                 

jR and jd  are rotational matrix and the translation vector, respectively, of the camera at the jth frame; and  Let 

[ ]Tj X Y Z X Y Zp t t t θ θ θ= be the pose vector of the camera at the jth frame, where [ ]Tj X Y Zd t t t= and 

[ ]TX Y Zθ θ θ are the rotational angles that produce jR .  

If f is the focal length of the camera the image coordinates of the feature are 
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e  can be measured since it is the motion of the image features, we want to find pδ  that best fits the above equation. It is a 
non-linear least squares problem and the normal equation is  
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If we study closely the Jacobian in equation (2) we will see the problem of translation/rotation ambiguity. Without loss of 
generality, we simplify our analysis by choosing the jth frame as the reference frame, so that jR I= . The Jacobian has the 

following explicit form
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The ambiguity arises if the object is a planner and the field of view is small. That means there is little variation in i jZ , so 

that  i jZ  is close to a constant value Z . When the field of view is small     and i j i j i j i jX Z Y Z� � . From (3), it can be 

seen that the confounding between translation in x-axis and rotation in y-axis is due to the high correlation between the 1st 
and the 5th columns in J. Given that  i jZ Z≈ ,     and i j i j i j i jX Z Y Z� � , the two columns differ only by a constant factor 

Z− . Similarly, the 2nd and the 4th columns are almost linearly dependent, which explains the confounding between 
translation in y-axis and rotation in x-axis. Under these conditions, the rank of J is close to 4. A larger field of view can 
reduce this ambiguity problem as the images can include points with larger values of  i jX and  i jY , which has the desired 
effect of reducing the correlation between the confounded columns.  

 
2.2. Multiple Cameras case 

If we have K cameras (k=1,,,K) tighted together we assume that they have the same pose change  pδ . The relative pose 
amongst cameras are represented by kR and kD . The points observed by the kth camera, based on the coordinate system of 

first camera k=1, is  
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Similar to equation (4) the motion of the image features for the k-th camera is  
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For all feature points,   

T
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To add more cameras to the equation, we can just stack the matrices. For example for a two camera system the total image 



Internal report number: 
khw_irep_070509 

The CSE Dept., The Chinese University of Hong Kong, Internal report, 2007-May-9  

 
 

5 

features error e  is related to the change of the pose pδ  by   
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and (e1, J1) and (e2, J2) are the flow vector and Jacobian matrix for the 1st and 2nd cameras respectively. For example, consider 
a specific configuration of a two-camera system, in which the cameras are configured back to back. The orientation of the 

second camera is obtained by rotating the first camera by 180o around the y-axis, i.e.

1 0 0
0 1 0
0 0 1

kR
−⎡ ⎤
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. To simplify our 

analysis, we take the jth frame as the reference frame, so that jR is an identify matrix. Substitute jR and kR in (4), the 
combined Jacobian for this particular configuration is 
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Examine the columns in the combined Jacobian, one can see that the 1st and 5th columns, and likewise the 2nd and 4th 
columns, are now uncorrelated. In the special case that the distances between the scene and the cameras are roughly the same, 
so that 2Z Z≈ , and if the distribution of the 3D points are random so that  i j kX  and   i j kY are uncorrelated,  then the 

columns in the combined Jacobian have the interesting property that they form a set of orthogonal basis. Since the column 
vectors are uncorrelated from each other, the translation/rotation ambiguity is completely removed. A back-to-back camera 
configuration is therefore an ideal setup for a two-camera system if the distance between the scene and the cameras is more or 
less uniform in all directions. To add more cameras into the system, it is advantageous to stack up ‘pairs’ of back-to-back 
cameras into the system, so as to maintain the orthogonality of the columns in the combined Jacobian. 

 
3. Experimental results 

3.1. Simulation results with known model 
In this section, we will study the performances of different camera systems by simulation. In the experiment the 3D feature 

points of the scene are distributed randomly on the surface of a sphere, while the camera system is located at centre of that 
sphere. A sphere model has the advantages that data can be generated easily; features can be observed by cameras at any 
directions; and if the field of view is small, the images obtained resemble planar surfaces that have small depth variation.  
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Figure2: Pose tracking of a known model by a single camera with small field of view ( 30o ) and additive noise=N(0,2) 
: (top) tracking of translation; (bottom) tracking of rotation. Solid lines are the ground truth; dotted lines are the 
estimated results. Translations are in pixels and rotations are in degrees. 
 

In our experiment, a single camera system captures around 100 points per frame; and for a two-camera system, the number 
of points captured is reduced to 50 points per frame per camera. This creates a fair basis for comparison between the two 
approaches. Zero mean Gaussian noise is added to the 2D feature points and the rotation speed of the system is limited to 0.05 
radian/frame (~ 3o /frame). The algorithms used by the single camera and two-camera systems are essentially the same. Both 
are based on the Lowe’s method [2]. The Jacobian matrices used are shown in the previous section. 
 
Figure 2 shows a typical tracking result of a known model using a single camera with a small field of view ( 30o ) and a 
moderate amount of added noise (zero mean Gaussian noise with 2 pixels standard deviation). The bold and the dotted line 
represent the ground truth and the estimation respectively. Translation is along the x and z-axis, and rotation (in degree) is 
around the y-axis. The tracking result of the single camera system is satisfactory, despite some small observable errors as 
indicated by the dotted line. 
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Figure 3: Pose tracking of a known model using two-camera system with same conditions as figure 2. Solid lines are 
the ground truth; dotted lines are the estimated results. Translations are in pixels and rotations are in degrees. 

 
Figure 3 shows the tracking result using a two-camera system. The tracking result is excellent. 

3.2. Simulation results with unknown model 
 
 The good result obtained by the single camera system showed that if the model of the scene is known, the ego-motion of 
the camera system can be tracked reliably. However, in applications such as robotic navigation and structure-from-motion, a 
model of the scene is usually not available. In that case, reliable tracking is difficult to achieve because a small pose tracking 
error will produce a slightly distorted model in the reconstruction, which in turn will introduce error in subsequent pose 
estimation, making tracking difficult over an extended period of time. In fact, the model can be found by a two-pass 
alternating structure-from-motion method described in [14]. Modifying the multiple camera methods for structure from 
motion can be done accordingly. 
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Figure 4: Pose tracking of an unknown model using a single camera under the same condition as in figure 2. Solid 
lines are the ground truth; dotted lines are the estimated results. Translations are in pixels and rotations are in 
degrees. 

 
Fig. 4 shows the tracking result using a single camera for an unknown model using data generated by the same set of 

ground truth as in section 3.1. The first 10 frames have no rotation component, so that an initial model can be constructed 
directly. After the initialization, pose and model are estimated frame by frame using the interleaving algorithm. The 
translation/rotation ambiguity resulted in a small over-estimation of rotation in y-axis, and an under-estimation of 
translation in x-axis. The large translation error indicates that the reconstructed model is highly distorted. Tracking over an 
extended period of time is difficult to maintain because increasingly we are tracking the wrong model. 

Fig. 5 shows a much improved tracking result using a two-camera system. The accurate pose tracking result obtained 
leaded to an accurate model reconstruction. 
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Figure 5: Pose tracking of an unknown model using two-camera system under the same condition as in figure 2. Solid 
lines are the ground truth; dotted lines are the estimated results. Translations are in pixels and rotations are in 
degrees. 

 
     
 

 

3.3. Real scene experimental results 
We have tested our algorithm using real data and the setup is shown in Figure 1. Two webcams (one pointing forward and the 
other pointing backward) were mounted on the head of a user and two video sequences of the cameras were captured. The 
motions of the images features were extracted by a feature tracker (such as the KLT algorithm [15]) and the first image and 
the features of one of the sequences are shown in Figure 6. The feature motions of two sequences were fed to our two-camera 
pose estimation algorithm and the front camera sequence is fed to our one-camera algorithm. The results or comparing the 
two algorithms is plotted in figure 7. Although we don’t have the precise ground truth of the motion, but the direction of the 
pitch angle of the motion can be observed through the two video sequences. The result obtained by the two-camera method 
agrees with the motion sequences but not the one-camera method.  In particular, the pitch angle of the head is observed to be 
turning into a positive direction from frame 35 to 48 but the one-camera method miscalculates the result. The reason is that 
without the information from the camera pointing backward  the one-camera algorithm mixes up the horizontal translation 
and the pitch angles. 
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Figure 6: The first view with features marked (dots) for the camera pointing to the backward direction, it is a 

common office scene with no calibration objects. 
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Figure 7 Pose tracking result of a real data experiment, ‘O’=two-camera method; ‘x’ = one-camera method. 
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4. Conclusion and discussion 
 
 
We presented a method for accurately tracking the motion of a human head by mounting multiple cameras on the head of the 
user. It is more accurate than the traditional method of tracking the images of a head, where reliable features are difficult to 
find and track. In contrary, for our approach of mounting cameras on the head, all the features surrounding the user are being 
used for tracking. We have also shown that employing two back-to-back cameras for tracking can solve the 
translation/rotation ambiguity problem and produces a very robust head tracking system. This has been demonstrated using 
mathematical analysis as well as experiments on synthetic and real data. With the prices, weights and sizes of digital cameras 
keep on decreasing this method is feasible, reliable and should cause very little disturbances to users. 
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