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Abstract

A novel model-based pose estimation algorithm is presented which estimates the motion of a

three-dimensional object from an image sequence. The nonlinear estimation process within iter-

ation is divided into two linear estimation stages, namely the depth approximation and the pose

calculation. In the depth approximation stage, the depths of the feature points in three-dimensional

space are estimated. In the pose calculation stage, the rotation and translation parameters between

the estimated feature points and the model point set are calculated by a fast singular value de-

composition method. The whole process is executed recursively until the result is stable. Since

both stages can be solved e�ciently, the computational cost is low. As a result, the algorithm

is well-suited for real time computer vision applications. We demonstrate the capability of this

algorithm by applying it to a real time head tracking problem. The results are satisfactory.
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1 Introduction

Tracking the pose (position and orientation) of a moving object from an image sequence is useful in

applications such as photogrammetry, passive navigation, industry inspection and human-computer

interfaces [11, 2]. However, this is a di�cult problem because of the following reasons. Firstly, the

depth information has been transformed by a nonlinear mapping to yield the foreshortening e�ect in

the captured image. Moreover, the rotation of the object in 3D space leads to a nonlinear formulation

which increases dramatically the computational requirement for generating the solution.

In this paper we are interested in the model based pose estimation problem or the 2D to 3D problem

as categorized by Huang [12]. That is, when the 3D structure of the object being investigated is known

and its 2D projected image is available, we want to compute the pose of the object. In practice, the

model or the 3D positions of the feature points of the object can be measured manually before tracking

begins. A 2D correlation method can be used to track the movements of the projected 2D feature

points. Using these information we would like to �nd the rotation (R) and translation (T ) of the object

in 3D. A number of techniques have been developed by previous researchers [7, 23, 18, 14, 13, 6, 2, 8] to

solve this problem. One way is to compute the motion information directly from the optical ow [3, 13],

which require massive computation power. In [7], a closed form solution for the pose from six points

is derived. The method is extended to the estimation of more points by a consensus of sampling from

the set. Robustness is achieved in this method at the expense of intensive computation of motion

information from sampled subsets of the points.

Another method to increase the robustness is the use of the method of least squares. Depending

on the formulation (using Euler angles or quaternions to represent rotation), various methods can be

used to recover the pose from exact data. However, the problem will become a nonlinear least squares

one when noise exists. Iterative algorithms such as the Newton{Raphson method [14] are applied to

�nd the solution but with the drawback of being heavily dependent on the initial guess.

It is observed that a long image sequence can provide more information for the estimation process

to suppress noise. Extended Kalman �lter is used to model the problem as a recursive estimation

process by Broida et al. [5, 4] and Azarbayejani et al. [2]. The authors demonstrated that the pose

of a moving object can be successfully recovered. However, the Kalman Filter method is found to be

successful in those applications where the observed objects would not change their appearance rapidly,
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e.g. aerospace and vehicles applications [14]. In other applications such as human motion tracking,

owing to the complexities of the motion involved, more work is needed to increase the robustness of

the overall tracking system.

Our interest is in developing an e�cient algorithm which is suitable for various applications on

human motion analysis. This area is characterized by the rapid motion of the object concerned and

high probability of occlusion/re-appearance of part of the object in the subsequent frames.

Speci�cally we are interested in solving the 2D to 3D problem as mentioned by Huang[12]. We

notice that there is already a solution for the 3D to 3D problem as mentioned in [1]. That is when

the 3D structure of an object is known and the 3D locations of the features in the new positions

are available, we can use the method of singular value decomposition (SVD) to �nd out the motion

parameters[1, 19, 10]. A least squares solution is found. However the algorithm will sometimes give a

wrong (reection of the correct answer) solution when the input data are severely corrupted by noise.

This was �xed by Umeyama [19] and later shown to be valid even when both point sets are noisy [10].

In this paper, we propose an algorithm which extends the above methods to handle the problem of

recovery of motion information from 2D projections of a given 3D point set. Our solution consists of

the following two modules. (1) From the 2D features on the image plane, we estimate the locations of

the features in 3D. (2) Using the estimated 3D information we use the method of SVD as in [1, 19, 10]

to develop the motion parameters of the object. The above two processes are executed recursively

until the solution is stable. Our contribution here is that our algorithm requires signi�cantly reduced

computation compared with other techniques [14, 2] under the situation of large number of feature

points, say over 20.

The rest of this paper is organized as follows. In Section 2, the model-based pose estimation

problem is formulated. Section 3 contains the �rst version of our algorithm together with the con-

vergence analysis of the algorithm. The weakness of that algorithm is identi�ed and a more robust

algorithm is then proposed. In Section 4, the performance of the improved algorithm is compared

with two established approaches, namely the Gauss{Newton method and the Extended Kalman Filter

method. In Section 5, we tested our algorithms on both synthetic and realistic image data. A head

tracking application is implemented to test the validity of our approach on realistic images. Finally

some possible enhancements of our algorithms are discussed in Section 6.
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2 Problem formulation

Consider a camera with the origin of the focal plane placed at (0; 0; f), as shown in Fig. 1, where

f is the focal length of the plane. Assume that a set of N model points fPi; i 2 1; 2; : : : ; Ng in 3D

space are given, which represents an object model. A rigid transformation (a rotation followed by a

translation) is applied to this point set, yielding fP 0

ig, which is then projected on the image plane,

giving f(XQi
; YQi

), i 2 1; 2; : : : ; Ng.1 These 2D feature points in our 3D coordinate system are given

by

Qi = (XQi
; YQi

; f):

Let the 3D coordinates of the transformed points P 0

i be (XP 0

i
; YP 0

i
; ZP 0

i
). The coordinates of P 0

i and

Qi are related by

XQi
= f �

XP 0

i

ZP 0

i

; YQi
= f �

YP 0

i

ZP 0

i

:

In this arrangement, any point Qi tracked in the image will give an inverse projection ray from the

focal centre with unit vector �i given by (X2

Qi
+ Y 2

Qi
+ f2)�

1

2 (XQi
; YQi

; f). The actual coordinates of

this point in 3D space are given by

P 0

i = di�i (1)

where di is the depth (a scalar) of the actual object from the perspectivity center.

The problem of pose estimation can be described as follows. Given fQi; i 2 1; 2; : : : ; Ng, and a

3D model fPi; i 2 1; 2; : : : ; Ng where Pi = (XPi
; YPi

; ZPi
) are the coordinates of the model points at a

reference instant. We seek R; T and fdig such that the following measurement function

e2(R; T; fdig) =
NX
i=1

kdi�i � (RPi + T )k2 (2)

is minimized. The scalar di corresponds to the depth (Z) which determines where in 3D space should

the actual point be located along the projection ray.

In the formulation above, least squares minimization methods can be applied to theN+6 parameter

space to �nd the minimum of the measurement function e2 where N is the number of feature points

of the object. This approach is adopted by [17, 21]. Since the original 3D coordinates are being

transformed by a perspective projection, the objective function is thus nonlinear. To solve for the

1In this paper, we use bolded font to represent the 2D vector on the image plane.
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solution, nonlinear minimization methods are required, which are usually time consuming as the

number of points increases.

3 Our algorithm

Recently some work has been presented which focus on using the projection rays as a guide to determine

the pose of an object in an image [22]. However, that approach used the iterative point matching

method, which demands much computational e�ort. Inspired by the inverse projection ray approach,

we propose that the minimization process can be broken down into two stages: the �rst stage will

estimate the position of all the feature points in the 3D space, i.e. fdig. The estimated point set will

be passed to the second stage, which is a least squares �tting of the 3D model set and estimated 3D

point set. The above procedure is repeated until the result converges. By dividing the estimation

process into two stages, the size of the solution space in each stage is much reduced and the cost in

locating the solution is minimized signi�cantly. The resulting algorithm is very e�cient and can run

in real time.

3.1 Depth approximation stage

We would like to estimate the approximate depth values di for all the feature points in this stage.

Consider Fig. 1, which shows a transformed point P 0 and its original position P . The point P 0 falls on

the projection ray which emanates from the origin through the image point. It is not possible to have

an accurate prediction of where on the projection ray the point would reside. However, the point must

be on the projection ray, and by the assumption that the displacement should be small, we take the

perpendicular intersection of the original point with the projection ray as the estimated position in

the �rst version of our algorithm. From the �gure, assuming that the unit vector along the projection

ray is �, the perpendicular projection is given by

Q0 = (�tP )�: (3)

In the above formula, the superscript \t" denotes the transpose of a vector. As seen in Fig. 1, the

estimated position of the feature point in the 3D space is only the perpendicular intersection of the

model point with the projection ray, therefore, it may not correspond to the actual location of the
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transformed point. However, after each iteration, the model will be transformed closer to the projection

ray. The algorithm will eventually converge to a solution when the sum of the perpendicular distances

from the estimated feature points to the projection ray becomes minimal.

3.2 Least squares �tting

In this stage, we minimize the following objective function

e2(R; T ) =

NX
i=1

kQ0

i � (RPi + T )k2 (4)

where Q0

i is the perpendicular projection given by eq. (4) obtained in the previous estimation stage

and Pi is the original (model) point. As mentioned above, various e�cient algorithms are available

for the �tting of two 3D point sets. We choose the singular value decomposition method [1, 19] due

to its robustness in noise handling and that only a 3�3 matrix decomposition procedure is needed.

The algorithm is described below. The readers are referred to [19, 1] for details.

Arun/Umeyama algorithm for 3D to 3D motion estimation:

Input: fPi; i 2 1; 2; : : : ; Ng and fP 0

i ; i 2 1; 2; : : : ; Ng in 3D space. Output: Rotation matrix R,

translation vector T and scalar value c such that

NX
i=1

kP 0

i � (cRPi + T )k2 (5)

is minimized.

1. Compute the following

�P =
1

N

NX
i=1

Pi

�P 0 =
1

N

NX
i=1

P 0

i

�2P =
1

N

NX
i=1

kPi � �P k
2

�2P 0 =
1

N

NX
i=1

kP 0

i � �P 0k2

H =
1

N

NX
i=1

(P 0

i � �P 0)(Pi � �P )
t:
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2. Find the SVD of H :

H = UWV t

where U and V are 3�3 orthonormal matrices, and W is a 3�3 diagonal matrix whose diagonal

elements contain the eigenvalues of H .

3. If the rank of H > 2, the optimal transformation is given by

S =

8><
>:

I if det(H) � 0

diag(1; 1;�1) if det(H) < 0

R = USV t

c =
1

�2P
tr(WS)

T = �P 0 � cR�P

else if the rank of H = 2,

S =

8><
>:

I if det(U) det(V ) = 1

diag(1; 1;�1) if det(U) det(V ) = �1

R = USV t

c =
1

�2p
tr(WS)

T = �P 0 � cR�P

In the above, det(x) is the determinant of x, tr(x) is the trace of a matrix x.

In Umeyama's formulation, a scaling parameter c is also recovered. In our algorithm, we �x the

value of c at one to reect the fact that the object size does not change in subsequent images.

3.3 Algorithm I

The complete algorithm is as follows:

Input:

7



fPi; i 2 1; 2; : : : ; Ng: 3D coordinates of the feature points (or the model) of the object,

fQ0

i : (XQ0

i
; YQ0

i
); i 2 1; 2; : : : ; Ng: transformed feature point coordinates on the image plane.

Procedure:

While (change in R or T not less than some threshold values)

1. Estimate di by �
t

iPi where �i is the unit vector along the projection ray formed by image point

Q0

i and the origin.

2. Perform a least squares �tting to eq. (5) to estimate R and T by the singular value decomposition

method [1, 19].

3. Update Pi by Pi  RPi + T .

end while

3.4 Convergence analysis

We now perform a convergence analysis of our algorithm. The analysis of the convergence condition

of a particular algorithm is usually not treated in most pose estimation literature. However, it is an

important criterion for the evaluation of algorithms. Many motion estimation algorithms are very

sensitive to noise. Moreover nonlinear algorithms usually lead to wrong results if the initial guess is

not su�ciently close to the solution. It is therefore of interest to estimate the e�ect of di�erent motion

parameters on the recovered values.

Assuming that a model point P is transformed to another location P 0 by a rigid body transform,

the perpendicular projection of P onto P 0 is Q0 (see Fig. 1), and P 0 is given by

P 0 = RP + T: (6)

From Fig. 1, Q0 can also be written as

Q0 = P 0

 
1�

(P 0 � P )tP 0

(P 0)tP 0

!
: (7)

The second term on the right hand side of the above equation, which is the fractional di�erence between

the estimated position and the true one, can be treated as the error in prediction. By studying the

dependencies of this term on feature con�gurations and motion characteristics, the performance of

our algorithm can be readily characterized.
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The second term inside the parenthesis on the right of eq. (7) can be written as

" =
(P 0 � P )tP 0

kP 0k2

(8)

=
(RP )tRP + (RP )tT + T t(T � P )� P tRP

(RP )tRP + 2(RP )tT + T tT
: (9)

The prediction error term " depends on the values of R; P , and T . From the above equation, we

would expect that for a large ratio of kTk to kPk, the algorithm would converge to a wrong result as

" approaches one.

From the above, we see that our algorithm would converge to wrong results as the ratio kTk=kPk

increases. However, imagine a scene in which an object moving at a fast speed, the feature points taken

between successive frames would probably result in signi�cant distances apart. Since our algorithm

will only try to bring the model as close to the projection ray as possible, this would result in the model

being brought to a local minimum where the algorithm will be stuck. A more robust enhancement is

therefore needed to handle the translational movement.

Recall that our original algorithm can be viewed as follows:

Iterate until convergence

1. Construct the initial estimate by projecting the model points individually onto the line formed

by the camera origin and feature points,

2. Fit a rotation matrix and a translation vector to account for the transformation between the

estimated set and model set.

We can see that the initial guess plays an important role in the overall estimation process. Assuming

there is no motion in the model points (i.e. the rotation and translation have already been determined

and the model points have been updated), the variables fdig now remain to be determined. They can

be viewed as the parameters obtained from the minimization of �, where

� =

NX
i=1

kdi�i � Pik
2 (10)

=

NX
i=1

(d2i � di�
t

iPi � diP
t

i �i + P t

i Pi):

9



In the above formula, �i is the unit vector of the projection ray (with the property �ti �i = 1).

Di�erentiating the above equation with respect to di and setting the partial di�erential equals to

zero and rearranging terms, we have

di = �tiPi (11)

which is the same form as a dot product of �i with Pi.

We can see that our original algorithm is working in the following way:

1. Assume the object has no motion, determine fdi; i 2 1; 2; : : : ; Ng.

2. Assume fdi; i 2 1; 2; : : : ; Ng are determined, estimate R and T .

3. Update the state of the solution and iterate again.

3.5 Algorithm II

At this stage, we modify the minimization function in eq. (10) so as to increase the robustness of our

algorithm. The idea is to add the translation term into the minimization function in stage 1 so that

the predicted position fdig for i 2 1; 2; : : : ; N will be more accurate.

The improved algorithm is as follows:

1. Minimize the function below to estimate fdi; i 2 1; 2; : : : ; Ng:

NX
i=1

kdi�i � (Pi + T )k2: (12)

The resulting fdi; i 2 1; 2; : : : ; Ng and T is given by:

di = �ti (Pi + T ) (13)

T = �

 
NX
i=1

Ai

!�1  NX
i=1

AiPi

!
(14)

where Ai is a 3 by 3 matrix given by

Ai = I � �i�
t

i : (15)

For the derivation of the above formula, please refer to Appendix I.
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2. Using the estimated fdi; i 2 1; 2; : : : ; Ng in the previous stage, apply the SVD method to deter-

mine the rigid transformation R and T .

3. Update fPi; i 2 1; 2; : : : ; Ng by Pi  RPi + T .

Note that Ai's are not needed to be stored explicitly. Firstly, each Ai depends only on �i, which is

�xed before the execution of our algorithm. Therefore the value of (
PN

i=1Ai)
�1 in eq. (14) can be pre-

computed before the iterations, which avoids the expensive inverting operation of a matrix. Moreover,

the matrix vector product AiPi can be computed e�ciently using the formula Pi��i(�
t

iPi). As a rough

estimate for the computational requirements at each iteration, for N data points, our algorithm needs

only about 41N arithmetic operations (additions, subtractions and multiplications) and one singular

value decomposition operation for a 3�3 matrix, that is about a hundred oating point operations.

We also noticed the algorithm by DeMenthon and Davies [6] which requires only 24N arithmetic op-

erations and two square root operations. However, our argument for the e�ciency is still valid by the

following reasons. Firstly, in the approach used by DeMenthon and Davies, the algorithm requires an

approximate pose estimate from the previous stage, which would inevitably contribute to the compu-

tational requirement. Moreover, their method does not guarantee the orthonormality of the resulting

rotation matrix. Whereas our algorithm uses the singular value decomposition, which provides an or-

thonormal result, hence improves the accuracy and thus justi�es the increase in computation. Hence

we conclude that the resulting algorithm is accurate and e�cient.

4 Performance comparison

Various approaches have been applied successfully to the problem of motion analysis. In this section,

we compare the performance of two established approaches with our algorithm. The main interest here

is the computational e�ciency since the main concern during the motion tracking application would

probably be the timing requirement as well as accuracy and stability. We chose the Gauss{Newton

method (by Lowe [14]) and Extended Kalman Filter method (by Broida et al. [4] and Azarbayejani

et al. [2]) due to their robustness and computational e�ciency.
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4.1 Gauss{Newton method

Lowe [14, 15] used the Gauss{Newton method augmented with stabilization with prior variance to

solve the pose tracking problem. In this method, the following matrix equation is being solved:2
64 J

W

3
75 h =

2
64 �E

0

3
75

where h is the unknown vector of corrections to be made to current estimate, E is the error between

the current measurement and that of model prediction, J is the Jacobian matrix of the error with

respect to the parameters and W is a diagonal weighting matrix which stabilizes the solution. It

should be noted that Lowe's approach minimizes the errors between the model prediction in 2D image

space, while our formulation �ts a rigid transformation between the previous model and an estimated

one in 3D object space. In our experiment, Lowe's approach is written in C and is derived from the

package on rigidity checking from the kind o�er by McReynolds [16]2.

4.2 Extended Kalman Filter method

The Kalman �lter has been investigated by many researchers for solving the motion tracking prob-

lem [2, 4]. It features an optimal least squares solution to the problem along with the prediction

mechanism. Our implementation followed that of Azarbayejani et al. [2]. The main advantage of

Azarbayejani et al.'s formulation is that it only used one parameter per feature which reduces the size

of measurement matrix and thus is computationally more e�cient.

The Extended Kalman Filter algorithm was implemented in C and was tested together with the

approach by Lowe as well as ours.

4.3 Results and discussions

All the simulations were performed on a SUN Ultra 1/170 workstation. The same data set was used

which involved both translation and rotation of two to four planes in 3D space. The test set was

started with 7 points, then 10 points which lie on the same plane. Five points were added after each

test and a new plane was added after each 10 points increment. The motion trajectory consists of

increasing values in both rotation and translation for 100 frames. Translation in x axis increased from

2The package can be downloaded from the following site ftp://ftp.cs.ubc.ca/pub/local/danm .
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zero to 0.5 in the �rst 50 frames whereas translation in y axis is in the negative direction and linearly

decreased to �2:0 for the whole sequence. Angles with respect to y axis and z axis are slowly increased

from zero to around 0.4 in the last 50 frames. Monte Carlo simulation was applied to the data and

Gaussian random noise with zero mean and standard deviation of one unit is added to the coordinates

of each feature point. The plots of average time per frame used by various approaches are shown in

Fig. 2. In the plot, our algorithm is represented using the title \PRA" which stands for \Projection

Ray Attraction". The computational advantage of our approach is clear from the �gure. It can be

seen that the time required by Lowe's approach increases linearly with the number of points whereas

our approach remains roughly the same. The main reason is that the Gauss{Newton method requires

the solution of an (N +6)� (N +6) matrix, where N is the number of feature points measured. This

matrix inverse operation is computationally the most demanding step. The long computation time of

the Extended Kalman Filter stems from the fact that it has to solve for a 2N � 2N matrix.

However, it should be noted that despite the computational e�ciency as shown above, our current

approach still lacks the sophistication in other approaches. For example, the Extended Kalman Filter

algorithm has the properties of motion prediction together with the recursive estimation of structure

as well as focal length. Another example is the stabilizing properties of Lowe's approach, which is

important during long sequence tracking. In view of the generality of our formulation, it is not a

di�cult problem and we will incorporate the above features in the future.

5 Experiments

5.1 Synthetic data

To test the validity of the above formulae, we use a randomly generated point set of 16 points inside a

unit cube. The point set is transformed (rotated and translated) and projected on an image plane of

unit focal length. Algorithm II is then applied to recover the transformation parameters. We vary one

of the parameters, say roll angle while keeping all the other parameters at zero. The resultant plots for

di�erent Euler angles are shown in Fig. 3. We have also tested the performance for di�erent translation

values and the results are satisfactory. Since the algorithm can estimate the translation accurately,

we did not show the plot here. It is observed that the recovered Euler angle becomes unreliable

after one or more of the input angles exceed 20 degrees. Also note that the translation terms can
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be unambiguously recovered even for a large value compared with the magnitude of original model

vectors. We have also performed the same set of experiments on algorithm I. The same performance

on recovered rotation is observed while the estimated translation quickly drops to zero when the

translation increases as shown in Fig. 4. This is to be expected according the analysis in Section 3.4.

The performance of our algorithm under noisy environment was also investigated. Two sets of

experiments were performed. We �rst describe the setup since they are common for both experiments.

A number of points are randomly generated in the 3D space such that they will project on an image

plane of size 2 by 2. These model points are then transformed by a rotation about the axis (1; 1; 1)

by 6� followed by a translation of (5:0; 3:0; 6:0). The transformed points are then projected on the

image plane. The image coordinates are then digitized to a screen resolution of 512�512. The process

of digitization introduces noise in this case. 100 random scenes are generated according to this setup

and the digitized coordinates are used together with the original generated 3D model to determine

the pose.

The errors shown in the following are all relative errors. We used quaternions to represent the

rotation such that all the estimated results are in vector form. The relative error of a vector is de�ned

by the Euclidean norm of the di�erence between the estimated and the true vector divided by the

Euclidean norm of the true vector. The �rst set of experiments tests the performance of the algorithm

under di�erent number of points in the scene. The results are shown in Fig. 5. From the plot, it is

observed that the estimated rotation is relatively stable with respect to the variation of the number

of points whereas the translation has the greatest improvement from 8 to 12 points. In addition, the

digitization only introduces a small e�ect on the estimated results, as can be seen in the range of

errors it is only within 3 percents.

Another set of experiments simulates the measurement noise by introducing an o�set value to both

digitized x and y coordinates. These o�set values are normal distributed with a variance of k pixels

where k is the parameter to be varied in the experiments. 16 points are used in this set of experiments.

Fig. 6 shows the results and our algorithm again is quite stable under the situation of increasing noise.

5.2 Real image testing

Pose tracking involves continuous monitoring of the pose of an object from the input image sequence.

Our algorithm can easily be adapted for continuous tracking by performing estimation between suc-
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cessive image frames. We tested our algorithm by applying it to track the head of a person in an

image sequence. Our implementation is done on an SGI Indy workstation. To verify the correctness

of the recovered pose information, we reproduce the same motion on the workstation at the same

time. Though it is di�cult in this case to estimate the performance �gure of the algorithm, an overall

estimate of the usefulness of the algorithm can be obtained.

5.2.1 Calibration

A calibrated data point set for the face to be tracked is needed in our experiment. Two methods can

be used. In the �rst approach, one can measure directly the 3D coordinates of the feature points on the

face with respect to a reference point, say the nose tip. The drawback of this approach is that careful

measurements are needed and that the process is intrusive. The second approach uses the structure

from motion algorithm. We used the second approach, following the algorithm by Szeliski [17]. An

image sequence of the object is obtained and the feature points of the model are selected and tracked

throughout the sequence to generate a batch of 2D image coordinates of these feature points. The

resulting data is input to the batch processing algorithm which performs a non-linear minimization

(Levenberg{Marquardt method). The algorithm will estimate the focal length f , the model point set

fPi; i 2 1; 2; : : : ; Ng as well as the motion parameters. This process usually requires much more time.

For the case of a total of 250 data points for a synthetic head model, the total time needed is over 10

hours on a SUN-Sparc10 workstation. In our real image experiment, only twelve points are used. All

points are selected on the criteria that they can be tracked unambiguously throughout the sequence so

as to increase the accuracy of the recovered pose. We use four points for the head boundary including

ears, four points for the mouth, and four points for each of the eyebrows.

5.2.2 Initialization

The user �rst clicks on the captured image with a mouse to select the feature points. The selected

feature points must be the same as those taken in the calibration stage. These selected feature points

are then tracked by the normalized correlation method to give coordinates in successive frames. The

correlation window is of size 5�5 whereas the search window is of size 7�7. The point inside the search

window with the highest correlation score is chosen as the feature point location in the subsequent

frame. For the �rst frame, the captured point sets are used to estimate the proper pose adjustment of
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our model set. The pose adjustment is necessary since the pose of the model point set obtained in the

calibration stage is not at the same pose with that in the captured image now. This adjustment will

bring the model point set to the most likely pose with that in the captured image now. It is inevitable

that error in selecting feature exists due to disagreement in the location of the feature selected and

that in the calibration stage. However, according to our experience, this discrepancy is minor in that

our algorithm can still maintain the tracking over a long period, say over 100 frames. Once the pose

adjustment is completed, the pose tracking procedure can be applied to the human object.

5.2.3 Tracking

Once the pose adjustment is completed, our algorithm will generate the pose estimates in all subsequent

frames. The pose estimates are in the form of a rotation matrix and a translation vector. We transform

the rotation matrix into the Euler angle format. These information will be used to control a synthetic

head model3. Results are shown in Fig. 7. Fig. 7(a) shows a snapshot during initialization. The user

is sitting right in front of the camera and the feature points on the face are being selected. Once

the initialization is done, the user is allowed to move freely within the view of the camera. Fig. 7(b)

shows another snapshot in which the user is rotating his head to the right and tilting upward. It can

be seen that the synthetic face can produce visually the same pose at the same time. Currently our

system can achieve a processing speed of around 12 frames per second for a 320 by 240 image size.

The performance �gures are obtained under the condition of the tasks of capturing, feature tracking,

motion estimation and controlling of the synthetic character all being done on the same SGI Indy

workstation.

6 Discussion

In the experiments on head tracking, we found that our algorithm can e�ectively recover the motion

information from the images. The main advantage of our algorithm is that it is computationally

e�cient. In addition, by performing the �tting of the model set in 3D object space and not on the

image plane, a larger range of convergence is achieved which enables our algorithm to be more stable

with respect to di�erent initial guesses. However, our algorithm also has the following drawbacks.

3The synthetic character is a public domain implementation of the facial animation work by Keith Waters [20].
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Firstly, due to the fact that our algorithm is formulated under the situation of two frames only, thus

the error in the estimation will be accumulated in the subsequent frames and may lead to failure after

a large number of frames. Moreover, in the current formulation, the problem of occlusion is not being

handled. Finally it is found that the recovered pose of the head will slowly lose track when one or

more of the correlated point fails to give the correct movement.

For the �rst problem, one solution is to bootstrap the algorithm itself after a number of frames.

This is possible since our algorithm has quite a large range of convergence (approximately 40 degrees

for the rotation angles as seen in Section 5.1). Another solution is to cross-check the pose estimation

result with two or more frames earlier so as to minimize the error itself. The second problem demands

a further enhancement of our algorithm to handle the occlusion problem, which is not too di�cult due

to the model based nature of our algorithm [9]. We are currently working in this direction. When the

above problems are solved, we can produce a robust head tracking system. An exciting application of

head tracking is in low bit rate video signal compression.

7 Conclusion

An e�cient pose estimation algorithm has been presented. By breaking down the pose estimation

process into two separate linear stages, the computation cost is signi�cantly reduced. A real time

pose tracking system has been produced. We also analysed the input tolerance of our system and

found that the range of input variation in the rotation angles should not exceed the range of 40

degrees approximately for each angle. Tests on synthetic data as well as real world head tracking have

demonstrated the e�ectiveness of our algorithm.

Appendix I: Derivation of Initial Guess for Improved Algorithm

Given fPig and f�ig, we want to minimize the function below to establish the initial guess fdig:

� =

NX
i=1

kdi�i � (Pi + T )k2

=

NX
i=1

[di�i � (Pi + T )]t[di�i � (Pi + T )]:
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Applying partial di�erentiation to � with respect to di and setting it to zero, we have

@�

@di
= 0) di = �ti (Pi + T ): (16)

Note that the above equation can be interpreted as: the optimal depth di is obtained by orthogonally

projecting the translated point onto the projection ray. Similarly applying partial di�erentiation to �

with respect to T and setting it to zero, we have

@�

@T
= 0) T =

1

N

NX
i=1

(di�i � Pi): (17)

The above equation can be interpreted as: the optimal translation T is equal to the average distance

between the orignal point set and the resulting point set. By substituting eq (16) to eq. (17), we get

T =
1

N

NX
i=1

(�ti (Pi + T )�i � Pi)

=
1

N

NX
i=1

(�tiPi�i � Pi) +
1

N

NX
i=1

�tiT�i

=
1

N

NX
i=1

[(�i�
t

i )Pi � Pi] +
1

N

NX
i=1

[(�i�
t

i )T ]:

This implies that  
N � I �

NX
i=1

�i�
t

i

!
T =

NX
i=1

(�i�
t

i � I)Pi: (18)

Writing Ai as I � �i�
t

i , we have

 
NX
i=1

Ai

!
T = �

NX
i=1

AiPi

T = �

 
NX
i=1

Ai

!�1  NX
i=1

AiPi

!
: (19)
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Fig. 2. CPU time per iteration for Extended Kalman Filter, Gauss-
Newton & PRA
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Fig.3 Recovered Angles vs. Input Angles
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Fig. 4 Recovered values for increasing translation
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Fig. 5 Plot of error dependency on the 
number of points
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Fig. 6 Plot of error in estimation vs. 
measurement noise
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Figure 7: a) Figure 7: b)
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