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Model reconstruction and pose acquisition using
extended Lowe’ s method

Michael Ming-Y uen Chang and Kin-Hong Wong

Abstract—Finding the pose and structure of an unknown object from an image sequence has many
applications in graphics, virtual reality and multimedia processing. In this paper we address this
problem by using a two-stage iter ative method. Starting from an initial guess of the structure, thefirst
stage estimates the pose of the object. The second stage uses the estimated pose information to refine
the structure. This process is repeated until the difference between the observed data and data
re-projected from the estimated model is minimized. Thismethod isa variation of the classical bundle
adjustment method, but is faster in execution and is ssmpler to implement. Synthetic and real data
have been tested with good results.

Index Terms—3D structure acquisition, structure from motion, pose estimation, L owe s method, bundle adjustment.
I. INTRODUCTION
his work investigates the problem of finding both the pose and structure of an unknown object from an image
sequence. This line of research is known as structure from motion (SFM) in the literature. There are many
applications related to this research. For example, in 3D object reconstruction, in creating a real-life scene useful in
virtual reality, and in mixing real sceneswith artificial objectsin augmented redlity.

Many SFM approaches are based on the method of factorization proposed by Tomasi and Kanade [37]. The main
idea is that the motion of the 2D features depends on the object’s structure and the motion parameters (rotation,
tranglation) involved. Factorization provides a way to recover the structure and motion parameters involved in
generating the motion. The method is originally designed for orthographic cameras but later versions are able to handle
other projection models such as weak perspective, para-perspective, affine and full perspective [22][32].

Another common approach is based on epipolar geometry. A pair of frames in the image sequence is used to
calculate the fundamental matrix, which contains information about the camera motion. If the camera intrinsic

parameters of the camera are known, the camera motion (or extrinsic parameters) can be obtained up to a scale factor.
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If the parameters are not known, we can still obtain the camera motion and 3D structure but only up to a particular
projective cameramodel. These techniques and a gorithms are explained in [40]. If we have a sequence of more than
two images of an object, we can utilize the additional information to improve the result. The Kalman filter based
approach is a popular choice [12] for combining information from an image sequence.

Some researchers work on a class of techniques based on space carving and silhouette ([14], [15]). The concept isto
usethe information in the i nput imagesto remove those 3D parts that are inconsistent with the projections to obtain the
final 3D model. However, since each volume element (VOXEL) is required to be processed independently, it isin
general avery slow process and requires a lot of working memory.

Another novel approach is based on the Markov-Chain Monte Carlo (MCMC) method, which is able to recover the
model with little prior knowledge [6]. The drawback is that the computational cost is considerable.

Models produced by the algorithms described above typically require further refinement. Bundle adjustment is the
most accurate and common technique in use. It is a global optimization technique that aims to reduce the errors
between the 2D feature points and the predicted feature points from the modd ([41], [39] and [2]). A system that
combines the use of epipolar geometry, Kalman filtering and bundle adjustment has been reported by Pollefeys [28].
Themodel obtained by making use of epipolar geometry and Kalman filtering istreated astheinitial guessfor abundle
adjustment process. The main drawback of bundle adjustment is its slow speed. This problem is particularly acute if
the number of parametersinvolved is large. Ways of improving the speed of the process are suggested in [28].

In this paper, we propose to solve the SFM problem by using a two-stage bundle adjustment method. It is similar to
the classical bundle adjustment method, but can run at afaster speed. In our method, each iterative step hastwo stages.
The first stage uses an approximate model to estimate the pose of the object. The second stage uses the pose
information to refine the model structure. The two stages are executed repeatedly until the difference between the
observed data and data re-projected from the estimated model is minimized.

A number of pose estimation algorithms have been proposed in theliterature [17], [18], [24], [25] and [26]. The pose
estimation algorithm we used is based on the work by Lowe [19]. Lowe's method is a model-based al gorithm, which
can estimate the pose of the model provided that the structure of the model is known. Our method can be considered as
an extension of Lowe’ smethod. In applicationsthat require thetracking of the pose of an unknown object, e.g. the pose
of aperson’s head [16], our algorithm could be used to recover the pose even if amodel of the person’s head is not
available.

The main contribution of this paper is to propose an efficient and practical SFM a gorithm that can be used by the
multimediacommunity for model generation. We also provide explicit analytic formulation in each step of theiterative
algorithm. Our system can be used to construct model s from images using simple web cameras. Both synthetic and real
images have been tested with good results. In our experiment, we constructed a turntable for capturing the rotational
motion of the objects. Our system was able to reconstruct 3D models of the objects, which can be viewed at different

anglesinteractively by aVRML 3D browser.
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Organization of the paper isasfollows: in section |1, we will describe the theory used in our approach. In 111, we will

describe the experimental results of thiswork. In IV we will discuss the results, and V isthe conclusion.

Il. THEORY

A. Problem setting
A camera at the world center G, has a foca length of f . It takes an image sequence of a model M that

has N feature points represented by P={P,...,P,...,P,} , whereP =[X,,Y,,Z] isthe 3D position of the i"" point. The
position of the model at timet =1 serves asthe reference position of the model. The model is moved to new positions

by a set of rotation R and trandation T, transformations at timet=1,...,I". The set of 3D points P after these
operations are proj ected to the image plane of the cameraby the function g() . A set of corresponding 2D image points

q ={0,....qy,} atimetisformed.

Model M att=1

P =[X.Y.Z]
Y-axis
T 0, (World
P c(;lmage cemrl1ter)
s center)
IR Soul i
t-axis f=focal
length

X-axis

Figure 1 : Perspective projection of an object onto an image

Specifically, the 2D projection point ¢, can be expressed as ¢, =(u,.v,,)=9g(RP +T,) where T, =([T,T,.T,]"), is

r].1 r-].2 r13
thetranslation vector, R =|r, I,, I, |istherotational matrix, and

r.31 r32 r33

M X +,Y +1,Z2+T,
I X +15,Y + 1,72 + T,
T X+ 1Y + 1,2 +T,
T X +1,Y + 1,72+ T,

u=f

1)

v=f

represent the position of a perspectively projected point in the image plane. The image formation process can

aternatively be expressed by q= g(8,P), where 9 represents the pose information (T,R).
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B. Pose estimation by Lowe' s method

The pose estimation problem can be summarized as follows. Given aknown model M and a set of corresponding 2D
image points g, find the pose parameter & of the model sothatg, = g(RP +T) forall i.

Lowe’s method [19] provides a solution to this problem. Let 8 be an initial estimate of the pose and 6 be the true

pose, so that @ = + 66 . Expand g =g(RR +T) into aseries, we have

~9(6.P)=g(6,P)+ dgfémam... o

Rearranging the equation and let € = — 9(é, P) betheresidual error between the observation and the prediction, we

have,

O'Q(t9 P)
G @)

66 can now be found because ¢ is measurabl e and the derivative of g(é, P) can be calculated. Given N model points,
equation (3) forms a system of linear equations. 8¢ can be found using least-squares methods. An improved estimate
of the poseis given by 49,+1 = é, + 06, . This process of pose estimation is repeated iteratively until the residual error is

sufficiently small.

The following describes an implementation of Lowe's method by Trucco and Verri [40]. Let the estimated pose
é:[Tl,T2,T3,¢1,¢2,¢3] , Where ¢,,¢,,4, are the roll, pitch, and yaw (RPY) angles respectively. For an image point

=(u,v), thechangein (u,,v ) asaresult of the changeinéis given by

5U-=23:[%AT.+ L Ag],
ST, ! 0p

J

(4)
oV, = ]Z;[BTAT +£A¢]]
Wewould like to find AT, and Ag, in (4) so as to produce the right amount of shifts(du,,dv;) that compensate the
error g in (3). Sinceg can be measured, if the derivativesin (4) are known, then AT, and Ag; can be found.

To compute these terms, first let P =(X,,Y;,Z) be amodel point in the reference position. Let (X,Y*,z%) be the

position of the model point after rotation, where

R

Xi" =1y X +1,Y; + 132
R _

Y," = X + 1Y 1.7, .

R _
27 =1y X, +15,Y, + 137

And finally, let (X,Y,,Z) be the model point after rotation and transl ation, represented by

X, =XF+T,
Y=Y AT,
Z, =ZF+T,
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Differentiate equation (1) with respect to the various terms, we have
gy _f dy 0 oy, ¢ X,

oz g

v, a, f oy Y,

_:Oi —— T _:_f_21

oT, aT, z' oT, Z

M _ XV o XiX(+ZZ7 u YT

99, zz ' ¢, zz ' 9, z'

v, YYF+ZZE o oy XY v X
and —L=-fTS%  Thof NG o f o

a¢1 Zi a¢2 Zi a¢3 Zi

If the model has N feature points, then from (4) we have 2N equations for 6 unknowns(AT,, AT, ,AT,,Ad,,Ad,,Ag,) .

A solution for AT and A¢ can be found using standard least squares methods [31]. Improved estimates are given by

T+ATandg+Ag.

C. Overview of the two-stage algorithm for finding pose and structure from an image sequence

If the structure of amodel is known, then one can find the pose of the model by Lowe’s method. Alternatively, if the
pose of the model is known, then it is possible to recover the model’ s structure. Based on these ideas, the two-stage
algorithm proposed herefirst uses arough model to estimate the poses of a sequence of images by Lowe’ s method. The
information obtained is then used to refine the model. This processis repeated iteratively.

D. Stepsof our algorithm
Steps of our structure from motion algorithm for an image sequence of N features and I" frames are described

bel ow.
1) Camera calibration and Feature extraction

The camerais calibrated by the tools described in [4]. Then we use the KLT tracker described in [38] to extract the

feature set { g .} from aimage sequence, where i =1,2,...,N,and t=1,2,..,I".

2) Model and systemiinitialization

Thefirst stage of our method uses an approximate model to estimate the pose of an image sequence. Such amodel can
readily be obtained if we could assume the projection is orthographic. Our a gorithm can deal with perspective images,
but using orthographic projection for the first guess will provide an initial model for usto start the iteration. Based on
this assumption, the depth of the object should be less (e.g. 1/3 or less) than the distance between the object and the

camera. The unknown model can then be approximated by aplanar object located at adistanceZ,;, from the camera. If

thevalueof Z

init

cannot be known exactly, then we can still recover the model structure, but only up to a scale factor.
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The orthographic projection assumption is used only once at the initialization stage so as to provide the initial model.
Perspective projection mapping is used throughout subsequent operations.
In our work, we use the first image in the sequence to construct thisinitial planar model. Featuresin the first image

are back-projected from the image plane to an object plane located at adistance Z . from the camera. Specifically,

init
the " image point in the first frame G,=[u,v,] ismappedtoa3dD point [X,,Y;,Z] of the model by

X =%Ui’ le%\ll, andZ =7, ()

The initial model can also be obtained in a variety of ways. If the object’s geometry is known to be concave or

convex, then we can use a concave or convex surface to serve as the initial guess. We could also replace the planar

model by a random model with a random set of Z .. . If the initial guess is too poor, then the iterative method will

init
produce an incorrect model that hasalargeresidual error. In this case, we can use adifferent random model and repeat
the process until agood model isfound. Thistype of RANSAC-like approach could produce agood result, however, is

very time-consuming. From our experience, we found that a planar surface was good enough for most experiments.

3) First pass-- Use an estimated model to find the pose sequence

Fort=1to I"
Use{R,...,R} andthe correspondingimage features {q,,0,,,.., 0y} of thet"image frameto find 6, by

Lowe s method

End
Result: An estimated pose sequence 6 ={4,,...,6.} isfound.

Description: Based on the planar mode! obtained from the initialization, we can estimate the posed, of thet™image

by Lowe's method as described earlier. It isimportant to note that the pose for each of theT frames can be estimated
independently. Hence the altogether 6x T unknown pose parameters can be found in I"steps. Each step involves the

estimation of only 6 unknowns. The same number of unknowns reduces the computational cost considerably.

4) Second pass— Based on the estimated poses, re- estimate the model from a sequence of images

Fori=1toN
From the estimated poses {4,....,6,} and the i"" image features in all the image frames {¢, ,, ¢} ,,...G .} ,
refine the model point P by aleast-squares method to minimize residual image error.

End
Result: Animproved structure{R,..., R} isfound.
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Description: Based on the pose seguence {671,. . .,ér} obtained from the first pass, we can now improve our
estimation of the 3D model points {R,...,R,} using the similar approach asin equation (2). Like step 3, each model
point can be estimated independently. The estimation of the complete model can be divided into N independent steps.
Each step can be computed efficiently. Asin (2), by keeping @ constant, and varying P, we have

)+ dg(i;P')é'P+

g([l |) g(t’ i

Rearranging and keeping only the first order terms, we have

tzdg(ﬁ:F?)ﬁ? dg(6,P) dP IR s5x + dg(6,P) dP 4 dg(é' R) dR R sz,
' dpP, dR dX, dP dy, dP dz,
where
e, =q,-9(6.P)=[du,,ov,] (6)

is the discrepancy between the position of the observed image point and the predicted value. From (1), differentiating
uandv with respect to X,,Y,Z , we have

5ui,t = ailéxi + aiszu + ai35Zi

oV, = 80X, +a5,0Y, +ay07,

. r. I X ’ r. I, X . r. I X
|=f£_31|’|=f£_32|’|=f£_33|,
e {z z2 } & {z z? } % {z z? }

; r r.,Y, ; r r,Y, ; I r.Y,
= f|ZL_3i|g —f|2_321|g —f B_B/i|
= {z z? } % {z z? } = {z bas }

()

where

For a sequence of I" images, we have I" observations of the same model point. This gives us 2I" equations with

only three unknowns [§X,8Y,58Z],

5ui,1 a:;.l a_iz a_is

Mg | o d d

‘ R [ 8

e PN ®)
N | e A 5

§ui,F a:;.l a_iz a_is

Nir) &y ap ay

[6X,,0Y,,6Z,] canbesolved from (8) by least-squares methods. An improved estimate of thei™ model point is given

by[X,,Y,,Z]+[0X,,0Y,,0Z]. If aparticular model point is not observable in some of the images, probably due to
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occlusion, we could discard the corresponding ajnn parametersin (8).

5) Soppingrule

Error inthe model and pose estimation can be measured directly by summing up all the re-projection errorsin (6), as
1 L, I
error = T D& (unitpixel) 9
i 1

This figure measures the average re-projection error per point per frame. The algorithm is terminated if the rate of

reduction of the error becomestoo small (0.01 pixels). Otherwise the algorithm loops back to step 3.

6) Mismatched Featurefiltering step

Features are tracked by the KLT tracker. Nevertheless, errors due to measurement or feature mismatches do arise.
Errors due to measurement noise could be contained by using a standard weighted least squares method to replace the
ordinary least squares method used here. The magnitude of the re-projection errorsin equation (6) can be used to form
the weighting matrix in the weighted least squares method. For errors due to feature mismatches, it will be difficult to
find amodel point that can provide a good fit to the observed data. Consequently, some of the re-projection errors will

be significantly larger than the rest of the measurement. In this work, we compute the mean and standard deviation of

the magnitude of the re-projection error (|qt|) in (6). Points that lie far away from the mean (e.g. five times the

standard deviation) are considered as mismatched features. These points arefiltered. Step 1 to 6 can be executed many

times until no bad feature is found.

E. Comparison with the classical bundle adjustment method

Both classical bundle adjustment and our two-stage adjustment aim at estimating the pose (6) and model (P)

parameters by minimizing the error =

N T
i=1

>'[q, —9(6,P)]* . The main difference between the two methodsis that the
=)
classical method estimates the pose and model simultaneously, while the two-stage method estimates the pose and
model separately. Compare with classical bundle adjustment, the main advantages of the two-stage method are speed,
simplicity, and self-initialization. From our simulation results (section 111), we did not find any significant differencein
accuracy between the two methods.

For an image sequence of N model points and I" views, let X be the state vector representing the

3N + 61" unknowns, g(x) be the perspective transformation function that yields the set of 2D image points, and y be
the vector representing the observed points. Our goal istofind anoptimal X sothat y=g(x"). Starting fromaniinitial

value x, , and assuming that g is locally linear, then a first order approximation of g(x’) is given
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by g(x") =9(x,) + JA, where J is the Jacobian and A s the refinement needed to yield a better estimate. An
improved estimate can be obtained by applying X , = X + A, iteratively. The solution of A can be found by solving the
equation y = g(%,) + JA using least-squares methods. Lete=y—g(x,) , so thate=JA, we have

J'IA=J"e (10)
This equation is known as the normal equation. Thesizeof J'J, A, and eare (3N +6I')x (3N +6I'), (3N +6I),

and 2NT respectively. If the size of J"J islarge, then (10) is computationally expensive to solve. Faugeras et al [7]
and Pollefeys[29] have described two ways to reduce the computation cost. First, since J"J isasparse matrix, solving
(10) using sparse matrix operations can reduce the cost considerably. Second, it is possible to break J'J into two
smaller matrices, each of size 3N x3N and6I'x6I" . This also helps to reduce the computational cost. However, if
either N or I"islarge, the computational cost is still considerable.

In comparison, the two-stage approach estimates the pose and model parameters separately. In the pose estimation
stage, the estimation of the6I” unknowns is divided intoI” independent steps. Each step involves solving a normal
equation like (10) but with a Jacobian of size6x 6 only. Likewise, in the model estimation stage, the estimation of the
3N unknownsisdividedinto N independent steps. Each step involves solving anormal equation with a Jacobian of
size 3x3 . The computational cost of the two-stage approach grows only linearly with N and I" , which is
comparatively more efficient than classical bundle adjustment for large N andI”. Furthermore, our two-stage method
only requiresthe support of the most rudimentary matrix operations, and does not rely on any sparse matrix operations.
Our method is therefore simpler to implement than the classical bundle method.

Self-initialization is another advantage of the two-stage approach. Both of the classical bundle and two-stage bundle
adjustments depend on Newton's method. It is well known that the convergence of Newton's method depends
critically on the initial value used. For the two-stage method, thisinitial vector is readily available if the initial model
can be approximated by a planar object. We can use thisinitial model to estimate the pose of the next frame, and then
usetheresult to refine the model structure. This procedureisrepeated until al views are covered, which completesthe
initialization process. The same process is then used to refine the model structure and the pose estimation until the
error is sufficiently small. The transition from initialization to refinement is seamless. The implementation of the
system is relatively simple. For classical bundle adjustment, it is difficult to obtain an initial vector that carries an
approximate value for both the model and poses information. Typically the vector can only be found by using other
methods [28]. Thisiswhy classical bundle adjustment is usually used only as part of a structure-from-motion system,
typically at thelast stage, where an approximate model is already available and the main purpose of bundle adjustment

isto provide an accurate final structure.

I11. EXPERIMENTAL RESULTS

A. Simulation results and comparison with classical bundle method
In this section, we compare the accuracy and the convergence rate between the classical bundle adjustment method
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and the two-stage method. Fifty independent runs were carried out in our simulation. In each run, a model of 300
random points was generated. All points lied inside a cube of 0.13 m®. The center of the model was 0.33 m away from
acameraof focal length 6mm. The model was rotated and translated at arate of [0.2, -0.2, 0.2] degreesand [0.01, 0.01,
0.01] meters per frame. To simulate a real-life scenario, additional perturbation ranging from -0.5 to 0.5 degrees for

rotation and from 0 to 0.04 meters for transl ations were added to each frame. To simulate the measurement errors, 2D

Gaussian hoise (mean=0, o = J2 pixels) was added to the image points. Each run used a sequence of 30 image frames.
All the sequences were generated by different model s but with the same pose information. The machine used wasa 2.4
GHz PC running MATLAB 6.5. To provide afair basis for comparison, the same initial model and pose information
were fed to both bundle adjustment methods. Because the classical bundle method wasiill-suited to provide an initial
model, the two-stage method was used to build the initial model and pose information.

Fig. 2 and 3 show the tracking result. It can be seen that both algorithms were able to track the pose of the model
equally well. Fig. 4 compares the convergent rate of the residual errors (an average of 50 runs) between the methods.

Theresidual error isdefined in (9). In theory, if the model and pose information can be recovered perfectly, then the

residual error should be equal to the standard deviation of the Gaussian noise added, i.e., /2 pixels. The result
showed that both algorithms did manage to converge to this theoretical limit in all 50 runs. In fact, the residual error
was even slightly less than the theoretical minimum, which we believe was due to the over-fitting of the model and

pose. The result clearly showed that the two-stage method had a significantly faster rate of convergence.
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Figure 2: The pose tracking result of a test. The upper 3 diagrams show the tracked and real yaw, pitch roll angles in
degrees.
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Figure 4. Compare the 2D residual errors against CPU times of our method and the classical bundle adjustment method. The lines
represent the average of 50 runs.

B. Experiment on the mismatched feature filter
In this experiment, we tested the mismatch feature filter described in step 6 of our agorithm. To simulate the

mismatch noise, noise equal to 14 pixels was added randomly to 5% of the data in section 111-A. We repeated the
simulation of 50 runs and the average result was plotted in Fig. 5. The result showed that the noise added had an impact

on theresidual error. After applying the filter, the residual error converged again to the expected~/2 pixel.
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Figure 5. Effects of the mismatch filter. The lines represent the average of 50 runs.

C. Real scene experiments (moreresults are found at http://www.cse.cuhk.edu.hk/~khwong/demo/ct/ )

A number of real objects were tested. Features in the image sequences were extracted by the KLT [38] tracker.
Stationary image features obtained from objects on turntables were classified as the background or noise and were
filtered. Thefeature setswere passed to our algorithm for model reconstruction. For each model built, we used the first

image of the sequence to provide the texture for the VRML file. The results were viewed by aVRML browser.

1) Aflask onaturntable
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Figure 7: First column: first and last image of the input sequence. Second and third columns: two reconstructed views and their
wire-frames of the object. (Theinitial model for the algorithm is a plane; the motion hasllittle trandation and large rotation.)
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3) Alaboratory scene captured by a camera moving horizontally with small amount of rotation
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Figure 8 : First column: first and last image of the input sequence taken by a camera translating horizontally. Second and third
columns: two reconstructed views and their wire-frames of the object. (Theinitial model for the algorithm is a plane; the motion has
little rotation and large translation).
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4) Improvement made by applying the mismatch feature filter (step 6 of our algorithm)
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Figure 9 : Thefirst column: Texture and wire-frame of the result after the mismatched feature filter (step 6 of the algorithm) was
applied. The second column: Texture and wire-frame of the result when the filter was not applied.

It was found that the mismatched feature filter helped to remove some spikes in the reconstructed model.
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IV. DISCUSSION
A. Effect of initial guess
A good initial guessis critical to the convergence of any Newton-based methods. Prior knowledge of the structure
could provide a better initial guess for the optimization. For the kind of objects that we tested, we found that good
results could be obtained by simply using aplanar object astheinitial model. A reasonable guess of the distance of the

object from the camera was also required, though it was not a critical factor.

B. Error ambiguity
Itisknown that the translation and rotation errors have certain correlation [35]. For example, trandlation error in the

horizontal (X-axis) direction can be mixed up with rotation around the Y-axis (pitch), since both can generate asimilar
motion of the features. Future work can concentrate on how to reduce this type of error. One possible solution is to
make use of some prior knowledge of the motion. For example, in the turntable case, we can assume the motion is

mainly rotational; or in arobot navigation case, the motion is mainly translational.

C. Occlusion and omni-direction surface mode reconstruction
Our implementation required all features to appear in all frames; hence it was not able to handle occluded points or

a very long sequence (200 pictures). At present, the system can only find a partial model at a time. Nevertheless,
several partial models can be combined in order to produce an omni-directional (360 degrees) view of the object. For
example, acameracan capture a 360 degrees rotation of an object in along sequence of 200 frames. The first 10 frames
are used to produce the first partial model. Frame 6 to 15 can be used to produce the second partial model. Common
featuresin the overlapping frames are responsible to find the rel ative pose between the two partial models so that they

can be combined. Repeat this process until all the partial models are merged into an omni-direction surface model.

D. Sampling rate of theinput pictures
Since the system was based on the KLT feature tracker, it was only able to track features that moved in arelatively

small neighboring region in successive frames. For acasual user that capturesthe scene by astill-picture digital camera
with a small sampling rate, unintentional panning caused by the user’s hand movement may produce a large
tranglational motion between successive pictures. As aresult, the tracker may fail to track the features. We propose to
solvethis problem by aligning the pictures using a prominent feature point within the scenein order to reduce the effect

of the spurious trandlation.

V. CONCLUSION
In this paper, we devel oped amethod of recovering the structure and pose sequence of an object from a sequence of

images. The proposed method is a variation of the classical bundle adjustment method. Within each iteration, our
method estimates the structure and poses separately. This separation helps to reduce the size of the Jacobian in the
computation considerably, making the method particularly efficient for scenes that have larger number of feature

points and longer lengths. In our experiment, we found that both the classical bundle adjustment and our two-stage
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methods converged virtually to the same minimum. This showed that the two-stage method was as accurate as the
classical bundle adjustment method. The separated estimation of the structure and pose also helps to simplify the
initialization process. To start the two-stage algorithm, we only need to provide an initial model. The pose sequence
can be estimated by using the model provided. If the model is located not too close to the camera, then we found that
the initial model can be approximated by a planar object. Prior knowledge of the object may also help to provide a
better initial model. A simple outlier filtering scheme is proposed to reduce tracking errors in features extraction.
Finally the model is translated into the VRML format for viewing and interactive manipulation.

We believe our algorithm is suitable for home users to develop models for Internet applications such as putting 3D
objects on web pages and games. To demonstrate the feasibility, we have developed a small turntable system for
scanning the 3D objects. The results were found to be satisfactory. In augmented reality applications, one can use the
method to estimate the pose sequence of a scene, so that synthetic objects can be inserted into the video streamin a
realistic way. Another application is head model generation and head tracking, which is an active research topic in
computer vision.

We shall focus our future research in a number of directions. The first possible direction is to investigate how to
improve the feature tracking module so that correct features can be obtained more reliably. Probabilistic or statically
approaches, such as Condensation (Conditional Density Propagation [11], [42]), may help to improve tracking
performances. The second isto explore different constraintsfor posetracking. For example, thetrgjectories of features
of an object on a rotating turntable are known to be confined to a series of parallel concentric circles. The third
direction isto combine local partial models so as to construct a full omni-view surface model. The forth directionisto
investigate how to reduce errors caused by rotation and translation ambiguity. We expect the high efficiency of our

two-stage method will provide a firm basis to support the various improvement schemes mentioned.
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