
Model reconstruction and pose acquisition using extended Lowe’s method, by M.M.Y. Chang and K.H. Wong 1

  

Abstract—Finding the pose and structure of an unknown object from an image sequence has many 
applications in graphics, virtual reality and multimedia processing. In this paper we address this 
problem by using a two-stage iterative method. Starting from an initial guess of the structure, the first 
stage estimates the pose of the object. The second stage uses the estimated pose information to refine 
the structure. This process is repeated until the difference between the observed data and data 
re-projected from the estimated model is minimized. This method is a variation of the classical bundle 
adjustment method, but is faster in execution and is simpler to implement. Synthetic and real data 
have been tested with good results. 
 

Index Terms—3D structure acquisition, structure from motion, pose estimation, Lowe’s method, bundle adjustment.  

I. INTRODUCTION 

his work investigates the problem of finding both the pose and structure of an unknown object from an image 

sequence. This line of research is known as structure from motion (SFM) in the literature. There are many 

applications related to this research. For example, in 3D object reconstruction, in creating a real-life scene useful in 

virtual reality, and in mixing real scenes with artificial objects in augmented reality. 

Many SFM approaches are based on the method of factorization proposed by Tomasi and Kanade [37]. The main 

idea is that the motion of the 2D features depends on the object’s structure and the motion parameters (rotation, 

translation) involved. Factorization provides a way to recover the structure and motion parameters involved in 

generating the motion. The method is originally designed for orthographic cameras but later versions are able to handle 

other projection models such as weak perspective, para-perspective, affine and full perspective [22][32].  

Another common approach is based on epipolar geometry. A pair of frames in the image sequence is used to 

calculate the fundamental matrix, which contains information about the camera motion. If the camera intrinsic 

parameters of the camera are known, the camera motion (or extrinsic parameters) can be obtained up to a scale factor. 
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If the parameters are not known, we can still obtain the camera motion and 3D structure but only up to a particular 

projective camera model. These techniques and algorithms are explained in [40]. If we have a sequence of more than 

two images of an object, we can utilize the additional information to improve the result. The Kalman filter based 

approach is a popular choice [12] for combining information from an image sequence.  

Some researchers work on a class of techniques based on space carving and silhouette ([14], [15]). The concept is to 

use the information in the input images to remove those 3D parts that are inconsistent with the projections to obtain the 

final 3D model. However, since each volume element (VOXEL) is required to be processed independently, it is in 

general a very slow process and requires a lot of working memory. 

Another novel approach is based on the Markov-Chain Monte Carlo (MCMC) method, which is able to recover the 

model with little prior knowledge [6].  The drawback is that the computational cost is considerable.  

Models produced by the algorithms described above typically require further refinement. Bundle adjustment is the 

most accurate and common technique in use. It is a global optimization technique that aims to reduce the errors 

between the 2D feature points and the predicted feature points from the model ([41], [39] and [2]). A system that 

combines the use of epipolar geometry, Kalman filtering and bundle adjustment has been reported by Pollefeys [28]. 

The model obtained by making use of epipolar geometry and Kalman filtering is treated as the initial guess for a bundle 

adjustment process. The main drawback of bundle adjustment is its slow speed. This problem is particularly acute if 

the number of parameters involved is large. Ways of improving the speed of the process are suggested in [28]. 

In this paper, we propose to solve the SFM problem by using a two-stage bundle adjustment method. It is similar to 

the classical bundle adjustment method, but can run at a faster speed. In our method, each iterative step has two stages. 

The first stage uses an approximate model to estimate the pose of the object. The second stage uses the pose 

information to refine the model structure. The two stages are executed repeatedly until the difference between the 

observed data and data re-projected from the estimated model is minimized.  

A number of pose estimation algorithms have been proposed in the literature [17], [18], [24], [25] and [26]. The pose 

estimation algorithm we used is based on the work by Lowe [19]. Lowe’s method is a model-based algorithm, which 

can estimate the pose of the model provided that the structure of the model is known. Our method can be considered as 

an extension of Lowe’s method. In applications that require the tracking of the pose of an unknown object, e.g. the pose 

of a person’s head [16], our algorithm could be used to recover the pose even if a model of the person’s head is not 

available. 

The main contribution of this paper is to propose an efficient and practical SFM algorithm that can be used by the 

multimedia community for model generation. We also provide explicit analytic formulation in each step of the iterative 

algorithm. Our system can be used to construct models from images using simple web cameras. Both synthetic and real 

images have been tested with good results. In our experiment, we constructed a turntable for capturing the rotational 

motion of the objects. Our system was able to reconstruct 3D models of the objects, which can be viewed at different 

angles interactively by a VRML 3D browser.  
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Organization of the paper is as follows: in section II, we will describe the theory used in our approach. In III, we will 

describe the experimental results of this work. In IV we will discuss the results, and V is the conclusion. 

II. THEORY 

A. Problem setting 

A camera at the world center WO  has a focal length of f . It takes an image sequence of a model M that 

has N feature points represented by 1{ , , , , }i NP P P P= K K , where [ , , ]i i i iP X Y Z=  is the 3D position of the thi  point. The 

position of the model at time 1t =  serves as the reference position of the model. The model is moved to new positions 

by a set of rotation tR  and translation tT  transformations at time 1, ,t = ΓK . The set of 3D points P after these 

operations are projected to the image plane of the camera by the function ()g . A set of corresponding 2D image points 

1, ,{ , , }t t N tq q q= K  at time t is formed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 : Perspective projection of an object onto an image 
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represent the position of a perspectively projected point in the image plane. The image formation process can 

alternatively be expressed by ( , )q g Pθ= , where θ represents the pose information ( , )T R . 
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B. Pose estimation by Lowe’s method  
 

The pose estimation problem can be summarized as follows. Given a known model M and a set of corresponding 2D 

image points q, find the pose parameter θ of the model so that ( )i iq g RP T= +  for all i . 

Lowe’s method [19] provides a solution to this problem. Let θ%  be an initial estimate of the pose and θ  be the true 

pose, so thatθ θ δθ= +% . Expand ( )i iq g RP T= +  into a series, we have 

 
( , )

( , ) ( , ) i
i i i

dg P
q g P g P

d

θθ θ δθ
θ

= = + +
%

% L
%

                    (2) 

Rearranging the equation and let ( , )i i ie q g Pθ= − % be the residual error between the observation and the prediction, we 

have,  

 
( , )i

i

dg P
e

d

θ δθ
θ

=
%

%
                          (3) 

δθ can now be found because ie is measurable and the derivative of ( , )ig Pθ% can be calculated. Given N model points, 

equation (3) forms a system of linear equations. δθ  can be found using least-squares methods. An improved estimate 

of the pose is given by 1i i iθ θ δθ+ = +% % . This process of pose estimation is repeated iteratively until the residual error is 

sufficiently small. 

The following describes an implementation of Lowe’s method by Trucco and Verri [40]. Let the estimated pose 

1 2 3 1 2 3[ , , , , , ]T T Tθ φ φ φ=% , where 1 2 3, ,φ φ φ  are the roll, pitch, and yaw (RPY) angles respectively. For an image point 

( , )i i iq u v= , the change in ( , )i iu v as a result of the change inθ is given by 
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We would like to find jT∆  and jφ∆ in (4) so as to produce the right amount of shifts ( , )i iu vδ δ that compensate the 

error ie in (3). Since ie can be measured, if the derivatives in (4) are known, then jT∆  and jφ∆  can be found. 

 To compute these terms, first let ( , , )i i i iP X Y Z=  be a model point in the reference position. Let ( , , )R R R
i i iX Y Z be the 

position of the model point after rotation, where 
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Differentiate equation (1) with respect to the various terms, we have  

2
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If the model has N feature points, then from (4) we have 2N equations for 6 unknowns 1 2 3 1 2 3( , , , , , )T T T φ φ φ∆ ∆ ∆ ∆ ∆ ∆ . 

A solution for T∆ and φ∆ can be found using standard least squares methods [31]. Improved estimates are given by 

T T+ ∆% andφ φ+ ∆% .  

 

C. Overview of the two-stage algorithm for finding pose and structure from an image sequence 
 
If the structure of a model is known, then one can find the pose of the model by Lowe’s method. Alternatively, if the 

pose of the model is known, then it is possible to recover the model’s structure. Based on these ideas, the two-stage 

algorithm proposed here first uses a rough model to estimate the poses of a sequence of images by Lowe’s method. The 

information obtained is then used to refine the model. This process is repeated iteratively.  

 

D. Steps of our algorithm 
Steps of our structure from motion algorithm for an image sequence of N features and Γ  frames are described 

below. 

1) Camera calibration and Feature extraction 
 

The camera is calibrated by the tools described in [4]. Then we use the KLT tracker described in [38] to extract the 

feature set ,{ }i tq  from a image sequence, where 1, 2,..., ,i N= and 1, 2,.., .t = Γ  

 

2) Model and system initialization 
 
The first stage of our method uses an approximate model to estimate the pose of an image sequence.  Such a model can 

readily be obtained if we could assume the projection is orthographic. Our algorithm can deal with perspective images, 

but using orthographic projection for the first guess will provide an initial model for us to start the iteration. Based on 

this assumption, the depth of the object should be less (e.g. 1/3 or less) than the distance between the object and the 

camera. The unknown model can then be approximated by a planar object located at a distance initZ  from the camera. If 

the value of initZ cannot be known exactly, then we can still recover the model structure, but only up to a scale factor. 



Model reconstruction and pose acquisition using extended Lowe’s method, by M.M.Y. Chang and K.H. Wong 6

The orthographic projection assumption is used only once at the initialization stage so as to provide the initial model. 

Perspective projection mapping is used throughout subsequent operations. 

In our work, we use the first image in the sequence to construct this initial planar model. Features in the first image 

are back-projected from the image plane to an object plane located at a distance initZ  from the camera. Specifically, 

the ith image point in the first frame ,1 ,1 ,1[ , ]i i iq u v=   is mapped to a 3D point [ , , ]i i iX Y Z  of the model by 

 ,    ,    and init init
i i i i i init

Z Z
X u Y v Z Z

f f
= = =                           (5) 

The initial model can also be obtained in a variety of ways. If the object’s geometry is known to be concave or 

convex, then we can use a concave or convex surface to serve as the initial guess. We could also replace the planar 

model by a random model with a random set of initZ . If the initial guess is too poor, then the iterative method will 

produce an incorrect model that has a large residual error. In this case, we can use a different random model and repeat 

the process until a good model is found. This type of RANSAC-like approach could produce a good result, however, is 

very time-consuming. From our experience, we found that a planar surface was good enough for most experiments. 

 
3) First pass -- Use an estimated model to find the pose sequence 

 
For t=1 to Γ  

Use 1{ , , }NP PK  and the corresponding image features 1, 2, ,{ , ,.., }t t N tq q q of the tht image frame to find tθ%  by 

Lowe’s method  

End 

Result: An estimated pose sequence 1{ , , }θ θ θΓ=% % %K is found. 

 

Description: Based on the planar model obtained from the initialization, we can estimate the pose tθ% of the tht image 

by Lowe’s method as described earlier. It is important to note that the pose for each of the Γ frames can be estimated 

independently. Hence the altogether 6× Γ unknown pose parameters can be found in Γ steps. Each step involves the 

estimation of only 6 unknowns. The same number of unknowns reduces the computational cost considerably. 

 

4) Second pass – Based on the estimated poses, re- estimate the model from a sequence of images 
 

For i=1 to N 

From the estimated poses 1{ , , }θ θΓ
% %K  and the ith image features in all the image frames ,1 ,2 ,{ , ,.., }i i iq q q Γ , 

refine the model point iP by a least-squares method to minimize residual image error.  

End 

Result: An improved structure 1{ , , }NP PK  is found. 
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Description: Based on the pose sequence 1{ , , }θ θΓ
% %K  obtained from the first pass, we can now improve our 

estimation of the 3D model points 1{ , , }NP PK  using the similar approach as in equation (2). Like step 3, each model 

point can be estimated independently. The estimation of the complete model can be divided into N independent steps. 

Each step can be computed efficiently. As in (2), by keeping θ% constant, and varying iP , we have  

,

( , )
( , ) ( , ) i

i t t i t i i

i

dg P
q g P g P P

dP

θθ θ δ= = + +
% %

% %% % % L
%

 

Rearranging and keeping only the first order terms, we have 

,

( , ) ( , ) ( , ) ( , )i i i i i i i
i t i i i i

i i ii i i i i

dg P dg P dP dg P dP dg P dP
e P X Y Z

dX dY dZdP dP dP dP

θ θ θ θδ δ δ δ= = + +
% % % %% % % % % % %

%
% % % %

, 

where  

 , , , ,( , ) [ , ]i t i t t i i t i te q g P u vθ δ δ= − =% %                          (6) 

is the discrepancy between the position of the observed image point and the predicted value. From (1), differentiating 

u and v with respect to , ,i i iX Y Z , we have 

 , 11 12 13

, 21 22 23

i i i
i t i i i

i i i
i t i i i

u a X a Y a Z

v a X a Y a Z

δ δ δ δ

δ δ δ δ

= + +

= + +
                         (7) 

where 

31 32 13 3311 12
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21 22 232 2 2
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i i i i i i

i i ii i i
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r Y r Y r r Yr r
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Z Z Z Z Z Z

     
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     
     
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     

  

 

For a sequence of Γ  images, we have Γ  observations of the same model point. This gives us 2Γ  equations with 

only three unknowns [ , , ],X Y Zδ δ δ  
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                          (8) 

 

[ , , ]i i iX Y Zδ δ δ  can be solved from (8) by least-squares methods. An improved estimate of the ith model point is given 

by[ , , ] [ , , ]i i i i i iX Y Z X Y Zδ δ δ+ . If a particular model point is not observable in some of the images, probably due to 
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occlusion, we could discard the corresponding ,
i
m na  parameters in (8).  

 
5) Stopping rule 

 
Error in the model and pose estimation can be measured directly by summing up all the re-projection errors in (6), as 

 2
,

1 1

1
      (unit pixel)

N

i t
i t

error e
N

Γ

= =

=
Γ∑∑                        (9) 

This figure measures the average re-projection error per point per frame. The algorithm is terminated if the rate of 

reduction of the error becomes too small (0.01 pixels). Otherwise the algorithm loops back to step 3.  

 

6) Mismatched Feature filtering step  
 

Features are tracked by the KLT tracker. Nevertheless, errors due to measurement or feature mismatches do arise. 

Errors due to measurement noise could be contained by using a standard weighted least squares method to replace the 

ordinary least squares method used here. The magnitude of the re-projection errors in equation (6) can be used to form 

the weighting matrix in the weighted least squares method. For errors due to feature mismatches, it will be difficult to 

find a model point that can provide a good fit to the observed data. Consequently, some of the re-projection errors will 

be significantly larger than the rest of the measurement. In this work, we compute the mean and standard deviation of 

the magnitude of the re-projection error ( ,i te ) in (6). Points that lie far away from the mean (e.g. five times the 

standard deviation) are considered as mismatched features. These points are filtered. Step 1 to 6 can be executed many 

times until no bad feature is found. 

 

E. Comparison with the classical bundle adjustment method 
 

Both classical bundle adjustment and our two-stage adjustment aim at estimating the pose ( )θ and model ( )P  

parameters by minimizing the error 2
,

1 1

[ ( , )]
N

i t t i
i t

q g Pθ
Γ

= =

= −∑∑ % % . The main difference between the two methods is that the 

classical method estimates the pose and model simultaneously, while the two-stage method estimates the pose and 

model separately. Compare with classical bundle adjustment, the main advantages of the two-stage method are speed, 

simplicity, and self-initialization. From our simulation results (section III), we did not find any significant difference in 

accuracy between the two methods. 

For an image sequence of N model points and Γ  views, let x be the state vector representing the 

3 6N + Γ unknowns, ( )g x be the perspective transformation function that yields the set of 2D image points, and y be 

the vector representing the observed points. Our goal is to find an optimal x∗  so that ( )y g x∗= . Starting from an initial 

value 0x , and assuming that g is locally linear, then a first order approximation of ( )g x∗  is given 



Model reconstruction and pose acquisition using extended Lowe’s method, by M.M.Y. Chang and K.H. Wong 9

by 0( ) ( )g x g x J∗ = + ∆ , where J  is the Jacobian and ∆ is the refinement needed to yield a better estimate. An 

improved estimate can be obtained by applying 1i i ix x+ = + ∆ iteratively. The solution of ∆ can be found by solving the 

equation 0( )y g x J= + ∆  using least-squares methods. Let 0( )e y g x= − , so that e J= ∆ , we have 

 J J J eΤ Τ∆ =                          (10) 

This equation is known as the normal equation. The size of J JΤ , ∆ , and e are (3 6 ) (3 6 )N N+ Γ × + Γ , (3 6 )N + Γ , 

and 2NΓ respectively. If the size of TJ J is large, then (10) is computationally expensive to solve. Faugeras et al [7] 

and Pollefeys [29] have described two ways to reduce the computation cost. First, since J JΤ is a sparse matrix, solving 

(10) using sparse matrix operations can reduce the cost considerably. Second, it is possible to break J JΤ  into two 

smaller matrices, each of size 3 3N N×  and 6 6Γ× Γ . This also helps to reduce the computational cost. However, if 

either N or Γ is large, the computational cost is still considerable. 

In comparison, the two-stage approach estimates the pose and model parameters separately. In the pose estimation 

stage, the estimation of the 6Γ unknowns is divided into Γ  independent steps. Each step involves solving a normal 

equation like (10) but with a Jacobian of size 6 6× only. Likewise, in the model estimation stage, the estimation of the 

3N  unknowns is divided into N  independent steps. Each step involves solving a normal equation with a Jacobian of 

size 3 3× . The computational cost of the two-stage approach grows only linearly with N and Γ , which is 

comparatively more efficient than classical bundle adjustment for large N and Γ . Furthermore, our two-stage method 

only requires the support of the most rudimentary matrix operations, and does not rely on any sparse matrix operations. 

Our method is therefore simpler to implement than the classical bundle method. 

Self-initialization is another advantage of the two-stage approach. Both of the classical bundle and two-stage bundle 

adjustments depend on Newton’s method. It is well known that the convergence of Newton’s method depends 

critically on the initial value used. For the two-stage method, this initial vector is readily available if the initial model 

can be approximated by a planar object. We can use this initial model to estimate the pose of the next frame, and then 

use the result to refine the model structure. This procedure is repeated until all views are covered, which completes the 

initialization process. The same process is then used to refine the model structure and the pose estimation until the 

error is sufficiently small. The transition from initialization to refinement is seamless. The implementation of the 

system is relatively simple. For classical bundle adjustment, it is difficult to obtain an initial vector that carries an 

approximate value for both the model and poses information. Typically the vector can only be found by using other 

methods [28]. This is why classical bundle adjustment is usually used only as part of a structure-from-motion system, 

typically at the last stage, where an approximate model is already available and the main purpose of  bundle adjustment 

is to provide an accurate final structure.  

III. EXPERIMENTAL RESULTS 

 

A. Simulation results and comparison with classical bundle method 
In this section, we compare the accuracy and the convergence rate between the classical bundle adjustment method 
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and the two-stage method. Fifty independent runs were carried out in our simulation. In each run, a model of 300 

random points was generated. All points lied inside a cube of 0.13 m3. The center of the model was 0.33 m away from 

a camera of focal length 6mm. The model was rotated and translated at a rate of [0.2, -0.2, 0.2] degrees and [0.01, 0.01, 

0.01] meters per frame. To simulate a real-life scenario, additional perturbation ranging from -0.5 to 0.5 degrees for 

rotation and from 0 to 0.04 meters for translations were added to each frame. To simulate the measurement errors, 2D 

Gaussian noise (mean=0, σ = 2 pixels) was added to the image points. Each run used a sequence of 30 image frames. 

All the sequences were generated by different models but with the same pose information. The machine used was a 2.4 

GHz PC running MATLAB 6.5. To provide a fair basis for comparison, the same initial model and pose information 

were fed to both bundle adjustment methods. Because the classical bundle method was ill-suited to provide an initial 

model, the two-stage method was used to build the initial model and pose information. 

Fig. 2 and 3 show the tracking result. It can be seen that both algorithms were able to track the pose of the model 

equally well. Fig. 4 compares the convergent rate of the residual errors (an average of 50 runs) between the methods. 

The residual error is defined in (9). In theory, if the model and pose information can be recovered perfectly, then the 

residual error should be equal to the standard deviation of the Gaussian noise added, i.e., 2  pixels. The result 

showed that both algorithms did manage to converge to this theoretical limit in all 50 runs. In fact, the residual error 

was even slightly less than the theoretical minimum, which we believe was due to the over-fitting of the model and 

pose. The result clearly showed that the two-stage method had a significantly faster rate of convergence.  
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Figure 2: The pose tracking result of a test. The upper 3 diagrams show the tracked and real yaw, pitch roll angles in 

degrees.
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Figure 3: The pose tracking result of a test. The above 3 diagrams show the tracked and real translations of X, Y, Z  in pixels (the 
pixel width is 5.42µm in both image u, v dimension, the focal length is 6mm). 
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Figure 4. Compare the 2D residual errors against CPU times of our method and the classical bundle adjustment method. The lines 
represent the average of 50 runs. 
 

 

B. Experiment on the mismatched feature filter 
In this experiment, we tested the mismatch feature filter described in step 6 of our algorithm. To simulate the 

mismatch noise, noise equal to 14 pixels was added randomly to 5% of the data in section III-A.  We repeated the 

simulation of 50 runs and the average result was plotted in Fig. 5. The result showed that the noise added had an impact 

on the residual error. After applying the filter, the residual error converged again to the expected 2 pixel. 
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Figure 5. Effects of the mismatch filter. The lines represent the average of 50 runs. 
 

 

C. Real scene experiments (more results are found at http://www.cse.cuhk.edu.hk/~khwong/demo/ct/ ) 
 

A number of real objects were tested.  Features in the image sequences were extracted by the KLT [38] tracker. 

Stationary image features obtained from objects on turntables were classified as the background or noise and were 

filtered. The feature sets were passed to our algorithm for model reconstruction. For each model built, we used the first 

image of the sequence to provide the texture for the VRML file. The results were viewed by a VRML browser.   

 
1) A flask on a turntable  
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The first image of the input sequence.  

  

 
The last (10th ) image of the sequence 

  

Figure 6: First column: first and last image of the input sequence. Second and third columns: two reconstructed views and their 
wire-frames of the object. (The initial model for the algorithm is a plane; the motion has little translation and large rotation.) 
 

 

2) A box on a turntable 
 

 
The first image of the input sequence.  

  

 
The last (10th ) image of the sequence 

  

Figure 7: First column: first and last image of the input sequence. Second and third columns: two reconstructed views and their 
wire-frames of the object. (The initial model for the algorithm is a plane; the motion has little translation and large rotation.) 
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3) A laboratory scene captured by a camera moving horizontally with small amount of rotation 
 
 
 

 
The first image of the input sequence.  

  

 
The last (15th ) image of the sequence 

  

Figure 8 : First column: first and last image of the input sequence taken by a camera translating horizontally. Second and third 
columns: two reconstructed views and their wire-frames of the object. (The initial model for the algorithm is a plane; the motion has 
little rotation and large translation).  
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4) Improvement made by applying the mismatch feature filter (step 6 of our algorithm)  
 

 

  

  

Figure 9 : The first column: Texture and wire-frame of the result after the mismatched feature filter (step 6 of the algorithm) was 
applied. The second column: Texture and wire-frame of the result when the filter was not applied.  

 
It was found that the mismatched feature filter helped to remove some spikes in the reconstructed model. 
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IV. DISCUSSION 

A. Effect of initial guess 
A good initial guess is critical to the convergence of any Newton-based methods. Prior knowledge of the structure 

could provide a better initial guess for the optimization.  For the kind of objects that we tested, we found that good 

results could be obtained by simply using a planar object as the initial model.  A reasonable guess of the distance of the 

object from the camera was also required, though it was not a critical factor.  

B. Error ambiguity 
It is known that the translation and rotation errors have certain correlation [35]. For example, translation error in the 

horizontal (X-axis) direction can be mixed up with rotation around the Y-axis (pitch), since both can generate a similar 

motion of the features. Future work can concentrate on how to reduce this type of error. One possible solution is to 

make use of some prior knowledge of the motion. For example, in the turntable case, we can assume the motion is 

mainly rotational; or in a robot navigation case, the motion is mainly translational. 

C. Occlusion and omni-direction surface model reconstruction 
Our implementation required all features to appear in all frames; hence it was not able to handle occluded points or 

a very long sequence (200 pictures). At present, the system can only find a partial model at a time. Nevertheless, 

several partial models can be combined in order to produce an omni-directional (360 degrees) view of the object. For 

example, a camera can capture a 360 degrees rotation of an object in a long sequence of 200 frames. The first 10 frames 

are used to produce the first partial model. Frame 6 to 15 can be used to produce the second partial model. Common 

features in the overlapping frames are responsible to find the relative pose between the two partial models so that they 

can be combined. Repeat this process until all the partial models are merged into an omni-direction surface model.   

D. Sampling rate of the input pictures 
Since the system was based on the KLT feature tracker, it was only able to track features that moved in a relatively 

small neighboring region in successive frames. For a casual user that captures the scene by a still-picture digital camera 

with a small sampling rate, unintentional panning caused by the user’s hand movement may produce a large 

translational motion between successive pictures. As a result, the tracker may fail to track the features. We propose to 

solve this problem by aligning the pictures using a prominent feature point within the scene in order to reduce the effect 

of the spurious translation. 

V. CONCLUSION 

In this paper, we developed a method of recovering the structure and pose sequence of an object from a sequence of 

images. The proposed method is a variation of the classical bundle adjustment method. Within each iteration, our 

method estimates the structure and poses separately. This separation helps to reduce the size of the Jacobian in the 

computation considerably, making the method particularly efficient for scenes that have larger number of feature 

points and longer lengths. In our experiment, we found that both the classical bundle adjustment and our two-stage 
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methods converged virtually to the same minimum. This showed that the two-stage method was as accurate as the 

classical bundle adjustment method. The separated estimation of the structure and pose also helps to simplify the 

initialization process. To start the two-stage algorithm, we only need to provide an initial model. The pose sequence 

can be estimated by using the model provided. If the model is located not too close to the camera, then we found that 

the initial model can be approximated by a planar object. Prior knowledge of the object may also help to provide a 

better initial model. A simple outlier filtering scheme is proposed to reduce tracking errors in features extraction. 

Finally the model is translated into the VRML format for viewing and interactive manipulation. 

We believe our algorithm is suitable for home users to develop models for Internet applications such as putting 3D 

objects on web pages and games. To demonstrate the feasibility, we have developed a small turntable system for 

scanning the 3D objects. The results were found to be satisfactory. In augmented reality applications, one can use the 

method to estimate the pose sequence of a scene, so that synthetic objects can be inserted into the video stream in a 

realistic way. Another application is head model generation and head tracking, which is an active research topic in 

computer vision.  

We shall focus our future research in a number of directions. The first possible direction is to investigate how to 

improve the feature tracking module so that correct features can be obtained more reliably. Probabilistic or statically 

approaches, such as Condensation (Conditional Density Propagation [11], [42]), may help to improve tracking 

performances. The second is to explore different constraints for pose tracking.  For example, the trajectories of features 

of an object on a rotating turntable are known to be confined to a series of parallel concentric circles. The third 

direction is to combine local partial models so as to construct a full omni-view surface model. The forth direction is to 

investigate how to reduce errors caused by rotation and translation ambiguity. We expect the high efficiency of our 

two-stage method will provide a firm basis to support the various improvement schemes mentioned.  
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