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Abstract. Adaptive portfolio management has been studied in the literature of
neural nets and machine learning. The recently developed Temporal Factor Anal-
ysis (TFA) model mainly targeted for further study of the Arbitrage Pricing The-
ory (APT) is found to have potential applications in portfolio management. In
this paper, we aim to illustrate the superiority of APT-based portfolio manage-
ment over return-based portfolio management.

1 Introduction

In view of the rapid expansion of today’s capital markets, quantitative analysis of fi-
nancial data has been studied in the context of neural networks and machine learn-
ing. Adaptive portfolio management [1–3] usually refers to the study of the traditional
Markowitz’s portfolio theory [8] in the context of artificial neural networks.

In literature, adaptive portfolio management via maximizing the well-known Sharpe
ratio [4] was studied in [1, 2]. However, such approaches either treat the weights as
constants or depend directly on the security returns.

Recently, a new technique called Temporal Factor Analysis (TFA) was proposed by
[5] with an aim to provide an alternative way for implementing the classical financial
APT model. In this paper, we consider how the APT-based Gaussian TFA model can be
used for adaptive portfolio management. Comparisons with another similar, previously
adopted technique is shown.

The rest of the paper is organized in the following way. Sections 2 and 3 briefly
review the APT and the Gaussian TFA model respectively. Section 4 gives an algorithm
for implementing the APT-based Gaussian TFA learning for adaptive portfolio manage-
ment. Comparisons with the other approach by way of an empirical study is shown in
section 5. Section 6 concludes the paper.

2 Review on Arbitrage Pricing Theory

APT begins with the assumption that then× 1 vector of asset returns,̃Rt, is generated
by a linear stochastic process withk factors [6]:

R̃t = R̄ + Aft + et (1)
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whereft is thek×1 vector of realizations ofk common factors,A is then×k matrix of
factor weights or loadings, andet is an× 1 vector of asset-specific risks. It is assumed
thatft andet have zero expected values so thatR̄ is then× 1 vector of mean returns.

3 Overview of Temporal Factor Analysis

Suppose the relationship between a stateyt ∈ Rk and an observationxt ∈ Rd are
described by the first-order state-space equations as follows:

yt = Byt−1 + εt, (2)

xt = Ayt + et, t = 1, 2, . . . , N. (3)

whereεt and et are mutually independent zero-mean white noises withE(εiεj) =
Σεδij , E(eiej) = Σeδij , E(εiej) = 0, Σε andΣe are diagonal matrices, andδij is
the Kronecker delta function. Specifically, it is assumed thatεt is Gaussian distributed.
The above model is generally referred to as the Gaussian TFA model. In the context of
APT analysis, (1) can be obtained from (3) by substituting (R̃t − R̄) for xt andft for
yt. The only difference between the APT model and the TFA model is the added (2)
for modelling temporal relation of each factor. The added equation represents the factor
seriesy = {yt}T

t=1 in a multi-channel auto-regressive process, driven by an i.i.d. noise
series{εt}T

t=1 that are independent of bothyt−1 andet. Details about the TFA model
including its adaptive algorithms for implementation can be found in [7].

4 Using Gaussian TFA for Adaptive Portfolio Management

When APT-based Gaussian TFA learning is adopted for portfolio management, port-
folio weights adjustment can be made under the control of independent hidden factors
[7] behind securities in the portfolio. Specifically, we consider the return of a typical
portfolio which is given by

Rt = (1− αt)r
f
t + αt

m∑

j=1

β
(j)
t x

(j)
t , subject to (4)





αt > 0,
0 ≤ βt ≤ 1,∑m

j=1 β
(j)
t = 1.

whererf
t denotes the risk-free rate of return,xt denotes returns of risky securities,αt

the proportion of total capital to be invested in risky securities andβ
(j)
t the proportion

of αt to be invested in thejth risky asset.
According to Markowitz’s portfolio theory [8], the optimal portfolio should lie on

the efficient frontier. Alternatively, we can make use of the well-known Sharpe ratio [4]
Sp = M(Rt)/

√
V (Rt) to achieve the purpose [7].

max
ψ,φ

Sp =
M(RT )√
V (RT )

subject to (5)
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αt = eζt ,
ζt = g(yt, ψ),
β

(j)
t = eξ

(j)
t /

∑m
r=1 eξ

(r)
t ,

ξt = f(yt, φ).

whereM(RT ) = 1
T

∑T
t=1 Rt is a measure of expected return andV (RT ) = 1

T

∑T
t=1[Rt−

M(RT )]2 is a measure of risk or volatility,{yt}N
t=1 is the time series of independent

hidden factors that drives the observed return series{xt}N
t=1, g(yt, ψ) andf(yt, φ) are

some nonlinear functions that mapyt to respectivelyζt andξt which in turn adjusts the
portfolio weightsαt andβ

(j)
t respectively.

Maximizing the Sharpe ratio seeks to balance the tradeoff between maximizing the
expected return and at the same time minimizing the risk. In implementation, we can
simply use the gradient ascent approach. The time series{yt}N

t=1 can be estimated via
the Gaussian TFA algorithm in [7]. Although the functionsg(yt, ψ) andf(yt, φ) are
not known beforehand, it can be approximated via the adaptive Extended Normalized
Radial Basis Function (ENRBF) algorithm in [9]. Specifically,g(yt, ψ) andf(yt, φ)
can be modelled by the ENRBF functions shown below.

g(yt, ψ) =
k∑

p=1

(WT
p yt + cp)ϕ(µ,Σ, k) (6)

f(yt, φ) =
k̂∑

p=1

(ŴT
p yt + ĉp)ϕ(µ̂, Σ̂, k̂) (7)

whereϕ(µ,Σ, k) = e
−0.5(yt−µp)T Σ−1

p (yt−µp)Pk
p=1 e−0.5(yt−µp)T Σ

−1
p (yt−µp)

.

The set of parameters in (6) and (7) to estimated isΘ whereΘ = ψ ∪ φ, ψ =
{µp, Σp,Wp, cp}k

p=1 andφ = {µ̂p, Σ̂p, Ŵp, ĉp}k̂
p=1. In general, forθ ∈ Θ, updating

takes the following form:
θnew = θold + η0∇θSp (8)

whereη0 is the learning step size,∇θSp denotes the gradient with respect toθ in the as-
cent direction ofSp. Typically, the adaptive algorithm shown in Table 1 can be adopted
for implementation.

5 Experimental Illustrations

5.1 Data Considerations

The analysis are based on past bank interest rate, stock and index data of Hong Kong.
Daily closing prices of the 1-week bank average interest rate, 3 major stock indices as
well as 86 actively trading stocks covering the period from January 1, 1998 to Decem-
ber 31, 1999 are used. The number of trading days throughout this period is 522. The
three major stock indices are respectively Hang Seng Index (HSI), Hang Seng China-
Affiliated Corporations Index (HSCCI) and Hang Seng China Enterprises Index (HS-
CEI). Of the 86 equities, 30 of them are HSI constituents, 32 are HSCCI constituents



Table 1.An adaptive algorithm for implementation of the APT-based portfolio management

Updating rules for the parameter setψ
mnew

p = mold
p + η(∇ζT Sp)ϕ(µ, Σ, k)τ(µ, Σ, Wp, c, k)(yT − µp)

Σnew
p = Σold

p + η(∇ζT Sp)ϕ(µ, Σ, k)τ(µ, Σ, W − P, c, k)κ(µ, Σ)

W new
p = W old

p + η(∇ζT Sp)yT ϕ(µ, Σ, k)

cnew
p = cold

p + η(∇ζT Sp)ϕ(µ, Σ, k)

Updating rules for the parameter setφ
m̂new

p = m̂old
p + η̂(∇

ξ
(j)
T

Sp)(yT − µ̂p)ϕ(µ̂, Σ̂, k̂)τ(µ̂, Σ̂, Ŵp,r, ĉ, k̂)

Σ̂new
p = Σ̂old

p + η̂(∇
ξ
(j)
T

Sp)κ(µ̂, Σ̂)ϕ(µ̂, Σ̂, k̂)τ(µ̂, Σ̂, Ŵp,r, ĉ, k̂)

Ŵ new
p,r = Ŵ old

p,r + η̂(∇
ξ
(j)
T

Sp)yT ϕ(µ̂, Σ̂, k̂)

ĉnew
p,r = ĉold

p,r + η̂(∇
ξ
(j)
T

Sp)ϕ(µ̂, Σ̂, k̂)

whereη andη̂ are learning rates,
M(RT ) = 1

T

PT
t=1 Rt, V (RT ) = 1

T

PT
t=1[Rt −M(RT )]2

∇ζT Sp =
{V (RT )−M(RT )[(RT−M(RT )](1− 1

T
)}

T
√

[V (RT )]3
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ξ
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ξ
(j)
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!
eζT ,

∇
ξ
(j)
T
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[V (RT )−M(RT )(RT−M(RT )(1− 1

T
)]eζT x(j)

T
(
Pm

r=1 eξ
(r)
t −e

ξ
(j)
T )e

ξ
(j)
T

T
√

[V (RT )]3
�Pm

r=1 eξ
(r)
t

�2 ,

ϕ(µ, Σ, k) = e
−0.5(yt−µp)T Σ−1

p (yt−µp)Pk
p=1 e

−0.5(yt−µp)T Σ
−1
p (yt−µp)

,

κ(µ, Σ) = Σ−1(yT − µ)(yT − µ)T Σ−1 − 0.5diag[Σ−1(yT − µ)(yT − µ)T Σ−1],

τ(µ, Σ, Wp, c, k) =
(W T

p y
T

+cp)−Pk
p=1(W T

p y
T

+c)ϕ(µ,Σ,k)Pk
p=1 e

−0.5(yt−µp)T Σ
−1
p (yt−µp)

,

diag[M ]denotes a diagonal matrix that takes the diagonal part of a matrixM ,
ζT = g(yT , ψ) as defined in (6) andξ(j)

T is thejth output off(yT , φ) as defined in (7).

and the remaining 24 are HSCEI constituents. The index data are directly used for
adaptive portfolio management while the stock prices are used by Gaussian TFA for
recovering independent hidden factorsyt.

5.2 Methodology

We consider the task of managing a portfolio which consists of four securities, the 1-
week bank average bank interest rate and the three major stock indices in Hong Kong.
The 1-week bank average bank interest rate is used as the proxy for the risk-free rate
of returnrf

t . The first 400 samples are used for training and the last 121 samples for
testing. Both training and test are carried out in an adaptive fashion. For the sake of
comparison, three experiments are implemented. The first two, both based on the APT-
based algorithm in Table 1 and uses hidden independent factors for controlling, are
generally referred to as APT-based portfolio management. They differ only in the the
situation where short sell of risky securities is allowed or disallowed. Short selling can
be effected via modifying the algorithm in Table 1 and remembering thatα andβ(j)



in (4) are not restricted to be non-negative. The third one, called return-based port-
folio management, directly uses stock returnsxt = [R̃t−1, R̃t−2, R̃t−3]T instead of
hidden factorsyt. For eachyt under test, we can adaptively getζt = g(yt, ψ) and

ξt = f(yt, φt) and then the portfolio weightsαt = eζt andβ
(j)
t = eξ

(j)
t /

∑m
r=1 eξ

(r)
t .

Finally, returns can be computed via (4). Fig. 2 shows the returns of individual securities
that make up the portfolio during the testing period. It is clear that except for the risk-
free security, investing in any single security in the portfolio cannot always guarantee
positive returns.

Comparisons of the performance in terms of daily returns and cumulative profits
between the APT-based portfolio and the return-based portfolio using the testing data
are illustrated in Fig. 2(a) and (b) respectively. Risk-return statistics of the portfolio are
given in Table 2. We may conclude that the APT-based portfolio generally outperforms
the return-based portfolio.
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Fig. 1. Returns of individual securities in the portfolio
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Fig. 2. Returns and profits of APT-based and return-based portfolio: a comparison



Table 2.Risk-return statistics of the portfolio under test

Component Name Expected Return Risk
(Mean) (Standard Deviation)

Risk-free Security 0.0528 0.0064
HSI 0.0018 0.0148
HSCCI 0.0003 0.0251
HSCEI -0.002 0.0255
Return-based Portfolio (short sell disallowed) 0.0471 0.0110
APT-based Portfolio (short sell disallowed) 0.0538 0.0075
APT-based Portfolio (short sell allowed) 0.0709 0.0065

5.3 Performance Evaluation

The better performance of APT-based portfolio over return-based portfolio may be
attributed to the contribution of independent hidden factors in controlling portfolio
weights. Two advantages are evident. The first benefit arises from dimensionality re-
duction as there are usually only a few hidden factors for even a large number of se-
curities. Second, the portfolio weights may be controlled more appropriately by hidden
factors rather than security returns, considering the proposition of classical APT [6] that
returns are generated by several hidden factors.

6 Conclusion

In this paper, we introduce how the Gaussian TFA model can be appropriately applied
to adaptive portfolio management. We find that the APT-based portfolio management
demonstrates superior performance over return-based portfolio management.
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