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ABSTRACT

In this paper, we introduce a new approach such that the re-
cently developed arbitrage pricing theory (APT) based tem-
poral factor analysis (TFA) coupled with the linear alterna-
tive mixture-of-experts model is used for stock price and
index prediction. The original TFA model is extended such
that the driving noise is capable of modelling any ARCH(p)
process. Moreover, we use the linear alternative mixture-of-
experts model rather than the traditional back-propagation
networks in view of its automated model selection and bet-
ter generalization ability. Comparisons with other tradi-
tional approaches are performed, with results indicating su-
perior performance of the proposed approach.

1. INTRODUCTION

Financial time series prediction deals with the task of mod-
elling the underlying data generation process using past ob-
servations and using the model to extrapolate the time series
into the future. The application of backpropagation nets in
the prediction of stock prices was initiated by [5] and sub-
sequently developed in [3, 2]. To retain the benefit of bet-
ter generalization of linear models yet exploit the advantage
of wider scope of modelling power endowed with nonlin-
ear modelling, the linear gaussian alternative mixture-of-
experts model which is capable of modelling nonlinear rela-
tion via piecewise linear functions weighted by probability
was adopted. For instance, stock price prediction based on
learned extended normalized radial basis function (RBF) net
as a special case of the alternative mixture-of-experts was
realized in [6]. In the literature, Refenes [3] attempted to
forecast stock prices within the framework of the arbitrage
pricing theory (APT). However, the technique suffered from
the constraint that factors could not be extracted from past
time series data but had to be subjectively assumed to be
some items on the balance sheets of companies in the uni-
verse of U.K. stocks.
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Recently, a new technique aiming at further analysis
of the classical financial APT model termed temporal fac-
tor analysis (TFA) was proposed in [7]. In this paper, we
consider how the APT-based gaussian TFA model can be
integrated with the linear gaussian alternative mixture-of-
experts model for stock price and index prediction. The
proposed approach bases forecasting on a few APT fac-
tors recovered via TFA. Moreover, the TFA model is ex-
tended such that the driving noise is capable of modelling
any ARCH(p) process. Comparisons with some similar,
previously adopted techniques are also studied.

The rest of the paper is organized in the following way.
Sections 2 briefly review the APT, the gaussian TFA model
and the alternative mixture-of-experts model, respectively.
Section 3 illustrates, via experimental comparisons, how
gaussian TFA can be applied to stock index forecasting.
Section 4 concludes the paper.

2. BRIEF REVIEW ON RELATED MODELS

2.1. The Arbitrage Pricing Theory

The APT begins with the assumption that then×1 vector of
asset returns,Rt, is generated by a linear stochastic process
with k factors [4]:

Rt = R̄ + Aft + et (1)

whereft is thek × 1 vector of realizations ofk common
factors,A is then× k matrix of factor weights or loadings,
andet is an× 1 vector of asset-specific risks. It is assumed
that ft and et have zero expected values so thatR̄ is the
n× 1 vector of mean returns.

2.2. The Gaussian Temporal Factor Analysis Model

The gaussian TFA model assumes the relationship between
a stateyt ∈ Rk and an observationxt ∈ Rd is described by
the first-order state-space equations as follows:

yt = Byt−1 + εt,
xt = Ayt + et, t = 1, 2, . . . , N.

(2)
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whereet andεt are further assumed to come from the fol-
lowing gaussian process:

G(et|0,Σe), E(et) = 0, E(yteT
t ) = 0

G(εt|0,Σε), E(εt) = 0, E(yt−1ε
T
t ) = 0, E(etε

T
t ) = 0,

εt andet are called driving and measurement noise respec-
tively.

In implementation, an adaptive algorithm suggested in
[10] is adopted and shown below. Unlike its earlier coun-
terpart [8] which uses first order approximation under the
assumption of conditional independence between different
states, this algorithm achieves marginal independence via
the integralp(y(j)

t ) =
∫

p(y(j)
t |y(j)

t−1)p(y(j)
t−1)dy

(j)
t−1.

Step 1 Fix A,B,Σy
t−1 andΣe, estimate the hidden factors

yt by

Π = BoldΣy
t−1B

old + I (3)

ŷt = [Π−1 + AT Σe
−1A]−1AT Σe

−1x̄t (4)

et = x̄t −Aŷt, (5)

Step 2 Fix yt, updateA,B,Σy
t and Σe by the gradient

ascent approach as follows:

Anew = Aold + ηetŷT
t , (6)

Σe
new = (1− η)Σe

old + ηeteT
t (7)

Cnew = Cold + ηdiag
[
(I −Bold2

)

(Π−1ytyT
t Π−1 −Π−1)BoldΣy

t−1

]
(8)

Σy
t = BnewΣy

t−1B
new + I (9)

whereη denotes the learning rate,B=diag[b1, · · · , bk], bj =
exp(cj)−exp(−cj)
exp(cj)+exp(−cj)

,C = diag[c1, · · · , ck].

2.3. ARCH Driven TFA Model

In fact, the TFA model can be directly extended so as to ex-
plicitly consider the presence of ARCH effect. For example,
we may just assume that each factor series has ARCH(p) ef-
fect. Mathematically, we have

ε
(j)
t = ν

(j)
t ψ

(j)
t , ν

(j)
t ∼ N(0, 1)

ψ
(j)
t

2
= a

(j)
0

2
+

pj∑
τ=1

a(j)
τ

2
ε
(j)
t−τ

2

To accommodate for the learning of ARCH effect, we do
not fix the the covariance matrix ofεt to be an identity ma-
trix. Instead, it could be modelled to simulate the ARCH(p)
process. As a result, learning ofΠ in step 1 andΣy

t in step

2 can be alternative done via updatinga
(j)
0 and{a(j)

τ }pj

τ=1

as shown below:

a
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(10)
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Π = diag
[
bold
1

2
σ(1)

y

2
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, j = 1, 2, · · · , k, ε
(j)
t

is thej-th component ofεt, bj andσ
(j)
y denote thej-th di-

agonal elements ofB andΣy
t−1 respectively.

2.4. The Linear Gaussian Alternative Mixture-of-Experts
Model

Consider the task of learning the mappingx → y in regres-
sion. From the perspective of Bayesian Ying-Yang (BYY)
harmony learning, the task can be solved with the linear
gaussian alternative mixture-of-experts model [9]:

p(y|x) =
k∑

j=1

G(y|Wjx + cj , %
2
j )p(j|x)

p(j|x) =
G(x|mj,Σj)αj∑k
i=1 G(x|mi,Σi)αi

(12)

Basically, we have the regressionE(y|x) =
∑k

j=1 p(j|x)
(Wjx + cj) weighted by the gatep(j|x). EachWT

j x + cj

represents a local linear segment. The linear gaussian al-
ternative mixture-of-experts model approximates a globally
nonlinear function by smoothly joining all piecewise linear
segments. The set of parameters to be estimated isΘ =
{mj,Σj,Wj, cj}k

j=1.

In implementation, the following iterative algorithm [9]
can be adopted for parameter learning.



Initialize αj = 1
k andτ = 1.

¨ Step 1 jt = arg min
j

[
0.5(ln %2

j + ‖et,j‖
%2

j
+ ln |Σj|

+ex
t

T Σj
−1ex

t )− ln αj

]

et,j = yt −Wjxt − cj ,
ex

t = xt −mj
old

¨ Step 2 ηt,j = η0
pt(j)

τ ,
pt(j) = δj,jt

¨ Step 3 αnew
j = exp(ςnew

j )Pk
i=1 exp(ςnew

j )
,

ςnew
j = ςold

j + ηt,j(1− αold
j ),

if αnew
j → 0, we discard the corresponding

clusterj.
¨ Step 4 mj

new = mj
old + ηt,jex

t

Σj
new = Γj

newΓj
newT ,

Γj
new = Γj

old + ηt,jGΣj
Γj

old

GΣj
= Σj

−1ex
t e

x
t

T Σj
−1 −Σj

−1

¨ Step 5 Wj
new = Wj

old + ηt,jet,jxT
t

cnew
j = cold

j + ηt,jet,j

%new
j = %old

j + ηt,j%
old
j (‖et,j‖2 − %old

j )
τnew = τold + 1

Model selection on an appropriate number of experts is
made automatically during learning withk initialized at a
large enough value. With the least complexity nature of
BYY harmony learning, model selection is effected via dis-
carding the corresponding clusterj with αnew

j → 0.

3. THE TFA-ME APPROACH FOR STOCK PRICE
PREDICTION

First, the gaussian TFA algorithm is used to recover inde-
pendent hidden factorsyt−1 at timet − 1 from cross sec-
tional stock returnsxt−1. According to our previous work
[1], the number of factors determined via the model selec-
tion ability of TFA is found to be 4 for HSI constituents.
Then, the linear gaussian mixture-of-experts model is adopted
for establishing the relationship betweenyt−1, x

(j)
t−1 andx

(j)
t .

This approach is abbreviated as TFA-ME
To enable comparisons to be made, we implement two

other variants of the methodology. They are respectively the
ME and ICA-ME approach. Accounts of experiments using
these two techniques can be found in [6, 8]

ME Approach The input vector at timet consisting of sta-
tionary returnsR̃t is directly used as input to the lin-
ear gaussian mixture-of-experts algorithm. The index
price at timet can be recovered from the predicted
returns viapt = pt−1(1 + R̃t + R̄), whereR̄ denotes
the mean return and̃R denotes return with mean re-
moved.

ICA-ME Approach This approach consists of two steps.
First, the inverse mappingyt = Wxt is effected via

independent component analysis (ICA) for higher-than-
second order dependence reduction. For this step the
stock returns of the corresponding index constituents
at timet− 1 are used as input to recover independent
componentsyt−1. Then, the linear gaussian mixture-
of-experts algorithm is adopted for establishing the
relationship betweenyt−1, x

(j)
t−1 andx

(j)
t .

3.1. Data Considerations

The analysis are based on past Hong Kong stock and index
data. Daily closing prices of three major stock indices as
well as 86 actively trading stocks covering the period from
January 1, 1998 to December 31, 1999 are used. The num-
ber of trading days throughout this period is 522. Of the
86 equities, 30 of them are Hang Seng Index (HSI) con-
stituents, 32 are Hang Seng China-Affiliated Corporations
Index (HSCCI) constituents, and the remaining 24 are Hang
Seng China Enterprizes Index (HSCEI) constituents.

3.2. Experimental Results

Experimental investigation is based on the performance of
prediction of the three stock indices, the HSI and one of the
stocks, the HSBC Holding, which is also a HSI constituent.
For the TFA-ME approach, we compile results based on two
assumptions, one with ARCH considerations and another
without ARCH. We use the first 400 data for training and
the remaining 120 data for test. In the test phase, learning
is carried out in an adaptive fashion such that the sample
point at t is used to modify the network parameters once
this point is known already (i.e., once the current timet is
passed tot + 1). We use static forecasts where actual val-
ues of lagged dependent variables are used. For the ARCH
driven TFA-ME approach, we presetpj = 2 for all j for
simplicity. Typical results of HSI prediction using the ME,
ICA-ME and TFA-ME approach are shown in Fig. 1(a)-(d)
respectively.

As shown in Table 1, the ARCH driven TFA-ME ap-
proach consistently outperforms the other three approaches
by having the least normalized MSE for all three indices and
the stock HSBC Holding. The TFA-ME without ARCH ap-
proach comes second and and the ME approach the worst.

Table 1. normalized MSE using different approaches

Approach HSI HSCCI HSCEI HSBC
(×10−2)

ME 5.51 6.12 5.37 5.65
ICA-ME 3.85 4.12 3.10 3.71
TFA-ME 1.36 1.89 2.31 2.99
ARCH driven TFA-ME 1.15 1.63 2.05 2.53
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(a) By the ME approach
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(b) By the ICA-ME approach
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(c) TFA-ME without ARCH
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(d) ARCH driven TFA-ME

Fig. 1. Result of prediction on HSI prices.

4. CONCLUSION

In this paper, we investigate how the ARCH driven gaussian
TFA model can be integrated with the mixture-of-experts
model for application in stock forecasting. The mixture-
of-experts model based on BYY harmony learning has the
advantage of automatic model selection such that the num-
ber of experts or basis functions could be determined along-
side parameter learning. Results by comparison reveal that
the ARCH driven TFA-ME approach is superior to others in
terms of the normalized MSE performance metrics.
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