
Conference Organization

Conference Information

Author Index

Welcome Message

Table of Contents

Search This CD-ROM

CD-ROM Help

EXIT

October, 22-25, 2003
Gyeongju TEMF Hotel, Gyeongju, KOREA
October, 22-25, 2003
Gyeongju TEMF Hotel, Gyeongju, KOREA

ICCAS2003ICCAS2003
International Conference  on Control, Automation and SystemsInternational Conference  on Control, Automation and Systems

http://www.iccas.org



Development of a General Purpose PID Motion Controller Using a Field Programmable Gate Array 360

Jung Seul and Kim Sungsoo

Frequency weighted model reduction using structurally balanced realization 366

Oh Dochang and Kim JongHae

THE SPEED CONTROL OF DC SERIES WOUND MOTOR USING DSP(TMS320F2400) 371

Bae Jong Il, Je Chang Woo and Lee Man Hyung

Sensorless Vector Control for Induction Motor Drive using modified tabu search algorithm 377

Lee Yangwoo, Kim Dongwook, Lee Symyoung and Park Kyunhun

Positioning control of pzt actuators using neuro control with hysteresis model 382

Lee Soohee, Lee Heemyung, Lee Byungryong, Yang Soonyong and Ahn Kyungkwan

Robust H_infinity Control for Bilinear Systems with Parameter Uncertainties via Output Feedback 386

Kim Young-Joong, Lee Su-Gu, Chang Sae-Kwon, Kim Beom-Soo and Lim Myo-Taeg

Multi-step Predictive Control of LMTT using DR-FNN 392

Lee Jin Woo, Sohn Dong Sop, Min Jung Tak and Lee Kwon Soon

EIT imaging with the projection filter 396

Kim Bong-Seok, Kim Min-Chan, Kim Sin and Kim Kyung-Youn

Mixture Experts and BYY based Mixture Experts ARMA-GARCH models for stock price prediction 402

Tang Him and Xu Lei

A new recursive least-squares estimation algorithm based on matrix pseudoinverse 408

Quan Zhonghua, Han Soohee and Kwon Wookhyun

Model based optimal FIR synthesis filter for a nosy filter bank systems 413

Lee Hyun Beom, Han Soo Hee and Kwon Wook Hyun

Development of AMESim model of Main Control Valve for Hydraulic excavator 419

Lim Tae Hyeong, Yang Soon Yong, Lee Byung Ryong and Ahn Kyung Kwan

Developments of Brake System with ABS Functions for Aircraft 423

Jeon Jeongwoo, Woo Guiaee, Lee Gichang and Kim Yongjoo

A new method for designing QFT controllers usinggenetic algorithms 428

Bokharaie Vaheed Samadi and Sedigh Khaki

Using linear matrix inequality optimazation methods for desining QFT controllers 433

Bokharaie Vaheed Samadi and Sedigh Khaki

Mixed H2/Hinf control of two-wheel mobile robot 438

Roh ChiWon, Lee KwangWon and Lee JaSung

TP01 : Control Theory II

Discripter Linear Parameter Dependent System Modeling and Control of Lagrange Dynamics 444

Kang Jin-Shig

On the stability of singular bilinear systems 449

Liang Jia-Rong, Choi Ho-Lim and Lim Jong-Tae

Design of output regulator for rejecting periodic eccentricity disturbance in optical disk drive 452

Shim Hyungbo, Kim Hyungjong, Kim Wonhee and Chung chungchoo

A Concept on Seat Assignment Systems 458

Premasathian Nol, Tantipisalkul Tasanee and Sinapiromsaran Charoen

An Optimal Structure of Finite-Word-Length Controller Problems in The Two Degree of Freedom Against 
Colored Noise

462

Ohkubo Keiji and Miyazawa Kazuma

Dual-rate Digital Controller Design for Continuous-time Linear Systems 468



MIXTURE-OF-EXPERT ARMA-GARCH MODELS FOR STOCK PRICE
PREDICTION
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ABSTRACT

1. INTRODUCTION

In recent years, researchers are interested in modelling
nonlinear financial time series. Conventional Autore-
gressive Moving Average (ARMA) assume that a time
series can be modelled using a linear difference equa-
tion. However, most time series can be modelled by
using more than one time series, i.e. a mixture of linear
time series. In the literature, finite mixture of autore-
gressive (AR) model, finite mixture of autoregressive
moving average (ARMA) model [1], and finite mixture
of autoregressive generalized autoregressive conditional
heteroscedasticity (AR-GARCH) model [2] have been
adopted for finance exchange rate prediction. These
mixture models have been shown to successfully cap-
ture more than one time series information from the
data points, and can give a better prediction perfor-
mance than using single linear time series model. Re-
cently, finite mixture of ARMA-GARCH model has
been developed [3] which can model a larger class of
time series structures and gives better prediction per-
formance than other finite mixture models.

In this paper, we introduce finite mixture-of-expert
ARMA-GARCH model for financial time series fore-
casting. Mixture-of-expert architecture has been well
developed and has been published in many artificial
intelligence literature [4, 5, 6]. The mixture-of-expert
model is different from finite Gaussian mixture model
in the way that data distribution in mixture-of-expert
is conditioned on input vector. In the case of ARMA-
GARCH model, the input vector corresponds to the
lagged time series data. This causes the weights of
different experts change along with time, where the
weights are constants in the case of Gaussian mixture.
The mixture-of-expert ARMA-GARCH model has been

The work described in this paper was fully supported by a
grant from the Research Grant Council of the Hong Kong SAR
(Project No: CUHK 4169/00E).

derived and we use GEM algorithm to train the mix-
ture model.

Experiments have been conducted for four mixture
models: finite Gaussian mixture AR-GARCH and ARMA-
GARCH model, finite mixture-of-expert AR-GARCH
and ARMA-GARCH model. These models have been
used to predict the daily stock prices of HSBC Holding
(HSBC HDG) and Cheung Kong Holding (CK HDG).
It will be shown that for the second step prediction,
mixture-of-expert model outperforms the finite Gaus-
sian mixture model.

2. FINITE MIXTURE-OF-EXPERT
ARMA-GARCH MODEL

The mixture-of-expert ARMA-GARCH model is simi-
lar to the Gaussian mixture of ARMA-GARCH model
proposed in [3]. Specifically, each expert can be de-
noted as a normal ARMA series

xt,j =
R∑

r=1

brjxt−r +
S∑

s=1

asjεt−s + εt,j , (1)

Furthermore, each residual term εt,j is assumed gaus-
sian white noise with variance denoted by the GARCH
model

σ2
t,j = δ0j +

Q∑
q=1

δqjε
2
t−q +

P∑
p=1

βpjσ
2
t−p,j , (2)

where δqj > 0 for q = 1, . . . , Q and βpj > 0 for p = 1, . . . , P .
In this paper, we use the alternative mixture-of-

expert model proposed in [7]. Mathematically, the fi-
nite mixture-of-expert ARMA-GARCH model can be
denoted as a K-expert mixture model

p(xt, yt) =
K∑

j=1

αjG(yt; µj ,Λj)G(xt; x̂t,j , σ
2
t,j), (3)

x̂j,t =
R∑

r=1

brjxt−r +
S∑

s=1

asjεt−s, (4)



where αj > 0 and
∑K

j=1 αj = 1. The gating network is
a multivariate Gaussian distribution

G(yt; µj ,Λj) =
1

(2π)
n
2
√|Λj |

e−
1
2 (yt−µj)

T Λ−1
j (yt−µj),

(5)
µj is the mean and Λj is the covariance matrix of the
Gaussian. yt is the input vector, which has the form

yt = (xt−1, . . . , xt−R, εt−1, . . . , εt−S ,

σ2
t−1,1, . . . , σ

2
t−P,1, . . . , σ

2
t−1,K , . . . , σ2

t−P,K)′.

Once the model has been learned, one-step ahead
prediction can be done via taking expectation of xt

E(xt) = x̂t =
α1G(yt; µ1, Λ1)∑K
i=1 αiG(yt;µi, Λi)

x̂t,1 + . . . +

αKG(yt; µK ,ΛK)∑K
i=1 αiG(yt; µi, Λi)

x̂t,K , (6)

and so
εt = xt − x̂t. (7)

For the second step prediction, it is less straight
forward. We need to calculate the second step distri-
bution. However, exact calculation of the second step
distribution is often intractable. So we will use the
Monte Carlo method. Firstly, we introduce the condi-
tional density function of the mixture-of-expert model

F (xt|Xt−1),

=
∫ +∞

−∞
p(xt, yt)∂xt (8)

where Xt−1 = {xt−1, xt−2, . . .}, and p(xt, yt) is same as
(3). So (8) represents the one step forwards conditional
density function of the mixture-of-expert model at xt,
which is conditioned on the past data Xt−1. We called
this the first step distribution. We randomly generate
many first step values xi

t using the first step distribu-
tion, F (xt|Xt−1). For each generated first step value,
we treat it as the true first step, and use it to calcu-
late the second step distribution. Mathematically, the
second step distribution can be represented as

F (xt+1|Xt−1) =
1
N

N∑

i=1

F (xt+1|Xt−1, x
i
t), (9)

where Xt−1 = {xt−1, xt−2, . . .}, F (xt+1|·) is a con-
ditional second step density function of the mixture
model. In equation (9), N number of xi

t have been
randomly generated using the first step distribution
F (xt|Xt−1).

3. DERIVATION OF THE GENERALIZED
EXPECTATION-MAXIMIZATION (GEM)
ALGORITHM FOR IMPLEMENTATION

3.1. The E step

The joint probability of the finite mixture model is

p(X,Y ) =
T∏

t=1

K∑

j=1

αjG(yt; µj , Λj)G(xt; x̂t,j , σ
2
t,j),

(10)
and we want to maximize the log-likelihood of (10)

Θ̂ = arg max
Θ

ln p(X,Y ) (11)

where Θ = {{asj}S
s=1, {brj}R

r=1, {βpj}P
p=1, {δqj}Q

q=1, αj ,

µj , Λj}K
j=1, X = {xt}T

t=1, Y = {yt}T
t=1.

We use the EM algorithm [8] to maximize the log-
likelihood. Let the unobserved variables are Z = {zt}T

t=1.
We define that if xt is produced by the uth component,
then zt = u. And so

p(xt, yt|zt = u) = G(yt;µu, Λu)G(xt; x̂t,u, σ2
t,u),

(12)
p(zt = u) = αu. (13)

And the Q function of the EM algorithm will be

Q(Θ, Θ∗)

= EZ|X,Y Θ∗

{
T∑

t=1

ln[p(xt, yt|zt)p(zt)]

}

=
K∑

z1=1

· · ·
K∑

zT =1{
T∑

t=1

ln[p(xt, yt|zt)p(zt)]
T∏

l=1

p(zl|xl, yl,Θ∗)

}

=
K∑

zt=1

T∑
t=1

ln[p(xt, yt|zt)p(zt)]p(zt|xt, yt, Θ∗)

=
T∑

t=1

K∑

j=1

ln[p(xt, yt|zt)p(zt = j)]p(zt = j|xt, yt,Θ∗)

=
T∑

t=1

K∑

j=1

[p(zt = j|xt, yt, Θ∗)

ln αjG(yt; µj ,Λj)G(xt, yt; ŷt,j , σ
2
t,j).

]
(14)

The probability p(zt = j|xt, yt,Θ∗) (denoted as hj(t))
can be obtained as follows,

p(zt = j|xt, yt,Θ∗)
= hj(t)

=
αjG(yt; µj , Λj)G(xt; x̂t,j , σ

2
t,j , yt)∑K

u=1 αuG(yt; µu,Λu)G(xt; x̂t,u, σ2
t,u, yt)

.(15)



This is the E step of the EM algorithm.

3.2. The M step

In the M step we maximize (14). Since β, δ and α must
bigger than zero, so we replace them by:

δ0j = eγ0j , (16)
δqj = eγqj , where q = 1, . . . , Q (17)
βpj = eρpj , where p = 1, . . . , P (18)

To ensure {αj}K
j=1 sum to unity and each αj is larger

than zero, we use

αj =
emj

∑K
i=1 emi

. (19)

The parameters that we will need to adjust are
{mj , µj , Λj}K

j=1 and Ω = {a1j , . . . , aSj , b1j , . . . , bRj , ρ1j

, . . . , ρPj , γ0j , . . . , γQj}K
j=1.

The first derivatives of (14) with respect to mj , µj ,
and Λj are

∂Q(Θ, Θ∗)
∂mj

= hj(t)− αj . (20)

∂Q(Θ, Θ∗)
∂µj

= hj(t)
1
2
(Λ−1

j + Λ−T
j )(yt − µj) (21)

∂Q(Θ, Θ∗)
∂Λj

= hj(t)
1
2

[
Λ−T

j (yt − µj)(yt − µj)T

−I] Λ−T
j (22)

For all other parameters, the first derivative is

∂Q(Θ,Θ∗)
∂ω

= hj(t)

[
1

2σ2
t,j

(
ε2t,j
σ2

t,j

− 1

)
∂σ2

t,j

∂ω
− εt,j

σ2
t,j

∂εt,j

∂ω

]

(23)

Where ω ∈ Ω. To calculate (23), we also need the

following first derivatives:

∂σ2
t,j

∂asj
= 2

Q∑
c=1

εt−c,je
γcj

∂εt−c,j

∂asj
+

P∑

d=1

eρdj
∂σ2

t−d,j

∂asj
,

∂εt,j

∂asj
= −εt−s,j −

S∑
c=1

acj
∂εt−c,j

∂asj
,

∂σ2
t,j

∂brj
= 2

Q∑
c=1

εt−c,je
γcj

∂εt−c,j

∂brj
+

P∑

d=1

eρdj
∂σ2

t−d,j

∂brj
,

∂εt,j

∂brj
= −yt−r,j −

S∑
c=1

acj
∂εt−c,j

∂brj
,

∂σ2
t,j

∂γ0,j
= eγj0 +

P∑
c=1

eρcj
∂σ2

t−c,j

∂γ0j
,

∂σ2
t,j

∂γqj
= ε2t−q,je

γqj +
P∑

c=1

eρcj
∂σ2

t−c,j

∂γqj
,

∂σ2
t,j

∂ρpj
= σ2

t−p,je
ρpj +

P∑
c=1

eρcj
∂σ2

t−c,j

∂ρpj
,

∂εt,j

∂γ0j
=

∂εt,j

∂γqj
=

∂εt,j

∂ρpj
= 0.

Where r = 1, . . . , R, s = 1, . . . , S, q = 1, . . . , Q, p =
1, . . . , P .

Since we use GEM algorithm, we only adjust each
parameter more towards the maximum in each M step.
Let θ be one of the parameters. To update θ we use:

θ(n+1) = θ(n) + λn
∂E(lt)

∂θ
, (24)

where θ ∈ Θ.
To ensure the estimated model will be stationary,

the initial characteristic equations of every ARMA model

1− b1,jz − b2,jz
2 − · · · − bR,jz

R = 0, (25)

and every GARCH model

1− β1,jz − β2,jz
2 − · · · − βP,jz

P = 0, (26)

must have all their roots lie outside the unit circle
[9]. During our experiments, if the initial character-
istic equations have all their roots lie outside the unit
circle, the estimated results will also be stationary.

4. EXPERIMENTS: FIRST STEP
PREDICTION

The period that we will be used to train the model is
from September 15, 1997 to July 11, 1998, which con-
sists of 300 data. Two stocks are under investigation,



Cheung Kong Holding (CK HDG) and HSBC Holding
(HSBC HDG). The model ARMA(1,1)-GARCH(1,1)
is being used. We then predict the following 300 data
points. Figures 1 to 6 show the first step prediction for
the two stocks using three different approaches: con-
ventional ARMA-GARCH, Gaussian mixture ARMA-
GARCH and mixture-of-expert ARMA-GARCH. Solid
lines are the actual stock prices, dashed lines are the
predicted prices.
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Figure 1: First step prediction of CK prices with con-
ventional ARMA-GARCH.
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Figure 2: First step prediction of HSBC prices with
conventional ARMA-GARCH.
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Figure 3: First step prediction of CK prices with Gaus-
sian mixture ARMA-GARCH.
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Figure 4: First step prediction of HSBC prices with
Gaussian mixture ARMA-GARCH.
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Figure 5: First step prediction of CK prices with
mixture-of-expert ARMA-GARCH.
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Figure 6: First step prediction of HSBC prices with
mixture-of-expert ARMA-GARCH.

CK HDG HSBC HDG
Conventional 2.3799 2.1651
Gaussian Mixture 2.1101 1.9899
Mixture-of-Expert 2.0030 1.9225

Table 1: Mean square errors of first step prediction
using different ARMA-GARCH models.



CK HDG HSBC HDG
Conventional 4.9627 4.2001
Gaussian Mixture 4.8216 3.9935
Mixture-of-Expert 4.4147 3.7120

Table 2: Mean square errors of second step prediction
using different ARMA-GARCH models.

Table 1 shows the mean square errors of the two
stocks. From the table, we can see that using mixture-
of-expert is only slightly better than using Gaussian
mixture. It seems that it is worthless to apply the
mixture-of-expert model. However, next section will
show the real power of using mixture-of-expert.

5. EXPERIMENTS: SECOND STEP
PREDICTION

We use the method introduced in section 2 to conduct
the second step prediction for the two stocks. We use
1500 random samples (i.e. N = 1500) for the Monte
Carlo approximation. Figures 7 to 12 show the results
of the second step prediction for different approaches.
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Figure 7: Second step prediction of CK prices with
conventional ARMA-GARCH.

0 50 100 150 200 250 300
50

60

70

80

90

100

110

Figure 8: Second step prediction of HSBC prices with
conventional ARMA-GARCH.
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Figure 9: Second step prediction of CK prices with
Gaussian mixture ARMA-GARCH.
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Figure 10: Second step prediction of HSBC prices with
Gaussian mixture ARMA-GARCH.
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Figure 11: Second step prediction of CK prices with
mixture-of-expert ARMA-GARCH.
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Figure 12: Second step prediction of HSBC prices with
mixture-of-expert ARMA-GARCH.



Table 2 shows the mean square errors for second
step prediction. As can be seen from the table, mixture-
of-expert can yield a much better second step predic-
tion than Gaussian mixture, which is due to the addi-
tion of the gating network in the model.

6. CONCLUSION

In this paper, we derive a GEM algorithm for the finite
mixture-of-expert ARMA-GARCH model. Its relative
empirical performance in stock price prediction against
the conventional ARMA-GARCH and Gaussian mix-
ture ARMA-GARCH model is investigated. Results
reveal that both mixture models outperform the con-
ventional ARMA-GARCH model. First step prediction
using Gaussian mixture is as good as using mixture-of-
expert. However, the mixture-of-expert do much better
second step prediction than Gaussian mixture. This
results show that the forecasting power of mixture-of-
expert extends beyond a single step prediction. This is
due to the additional gating network exists in mixture-
of-expert, which can decouple the weight in one expert
from other experts [4]. We conclude that whenever we
do first step prediction, Gaussian mixture should be
used since it required much less training time and re-
sources. For second step prediction, mixture-of-expert
is preferred.
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