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Abstract

In the literature, the finite mixture of autoregres-
sive (AR), finite mixture of autoregressive mov-
ing average (ARMA) and finite mixture of autore-
gressive generalized autoregressive conditional het-
eroscedasticity (AR-GARCH) models have been re-
spectively adopted for finance exchange rate pre-
diction. In this paper, we consider to extend the
mixture of AR-GARCH model (W.C. Wong, F.
Yip and L. Xu, 1998) to the mixture of ARMA-
GARCH model and investigate its application in
stock price prediction. A generalized expectation-
maximization (GEM) algorithm is proposed to learn
the mixture model. Experimental simulations show
that the mixture of ARMA-GARCH model yields
better prediction results than either the mixture of
AR, or the mixture of AR-GARCH models.

Introduction
Financial time series prediction deals with the task of
modelling the underlying data generation process using
past observations and using the model to extrapolate the
time series into the future. Due to its intrinsic difficulty
and widespread applications, much effort was devoted in
the past few decades to the development and refining of
financial forecasting models.

In the literature, two major classes of models were
studied by econometricians for the purpose of forecast-
ing. They are the statistical time series models and struc-
tural econometric models. Linear time series models
such as the Box-Jenkins autoregressive integrated mov-
ing average (ARIMA) models were among the first to
be developed and subsequently widely studied. De-
spite its simplicity and versatility in modelling several
types of linear relationship such as pure autoregressive,
pure moving average and autoregressive moving average
(ARMA) series, such type of models was constrained by
its linear scope.

However, real-world systems are seldom linear. To
tackle the problem of nonlinear modelling, several finite
mixture models have been studied. For example, the fi-
nite mixture of AR model was used for forecasting finan-
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cial time series with satisfactory results obtained. Fur-
ther empirical comparisons between the mixture of AR
and mixture of ARMA models for predicting financial
exchange data were also conducted (Kwok et al., 1998).
Recently, a theoretical study on the mixture of AR model
was shown in (Wong et al., 2000), which highlights its
advantages over conventional AR model.

It is not uncommon that many financial time series
is still conditionally heteroscedastic after stationarity
transformation. To specifically deal with this intricacy,
the well-known generalized autoregressive conditional
heteroscedasticity (GARCH) model (Bollerslev, 1986)
was adopted in (Wong et al., 1998) to derive the so-
called mixture of AR-GARCH model used in exchange
rate prediction. Motivated by fact that financial time
series can demonstrate behaviors of both ARMA and
GARCH, this paper explores the mixture of ARMA-
GARCH model for stock price prediction. A generalized
expectation-maximization (GEM) algorithm is proposed
for model parameter learning.

The rest of the paper is organized in the following way.
Section introduces the finite mixture of ARMA-GARCH
model. Section derives the GEM algorithm for imple-
mentation. Experimental simulations of the model for
stock price prediction are given in section . Section con-
cludes the paper.

The Finite Mixture of ARMA-GARCH
Model

The mixture of ARMA-GARCH model is similar to the
mixture of AR-GARCH model proposed in (Wong et
al., 1998). Specifically, each component of the mixture
model can be denoted as a normal ARMA series

yt,j =
R∑

r=1

brjyt−r,j +
S∑

s=1

asjεt−s,j + εt,j , (1)

Furthermore, each residual termεt,j is assumed gaussian
white noise with variance denoted by the GARCH model

σ2
t,j = δ0j +

Q∑
q=1

δqjε
2
t−q,j +

P∑
p=1

βpjσ
2
t−p,j , (2)

where δqj > 0 for q = 1, . . . , Q and βpj > 0 for
p = 1, . . . , P .
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Mathematically, the finite mixture of ARMA-GARCH
model can be denoted as a K-component gaussian mix-
ture model

p(yt) =
K∑

j=1

αjG(yt; ŷt,j , σ
2
t,j), (3)

ŷj,t =
R∑

r=1

brjyt−r,j +
S∑

s=1

asjεt−s,j , (4)

whereαj > 0 and
∑K

j=1 αj = 1.

Once the model has been learned, one-step ahead pre-
diction can be done via taking expectation ofyt

E(yt) = α1ŷt,1 + . . . + αK ŷt,K . (5)

Derivation of the Generalized
Expectation-Maximization (GEM)

Algorithm for Implementation

The E step

The joint probability of the finite mixture model is

p(y) =
T∏

t=1

K∑

j=1

αjG(yt; ŷt,j , σ
2
t,j), (6)

and we want to maximize the log-likelihood of (6)

Θ̂ = arg max
Θ

ln p(y) (7)

whereΘ = {{asj}S
s=1, {brj}R

r=1, {βpj}P
p=1, {δqj}Q

q=1,

αj}K
j=1, y = {yt}T

t=1.

We use the EM algorithm (Dempster et al., 1977) to
maximize the log-likelihood. Let the unobserved vari-
ables areZ = {Zt}T

t=1. We define that ifyt is produced
by theuth component, thenZt = u. And so

p(yt|Zt = u) = G(yt; ŷt,u, σ2
t,u), (8)

p(Zt = u) = αu. (9)

The complete data joint distribution is

p(y,Z) =
T∏

t=1

p(yt|Zt)p(Zt), (10)

and its log-likelihood is

ln p(y,Z) =
T∑

t=1

ln p(yt|Zt)p(Zt), (11)

And theQ function of the EM algorithm will be

Q(Θ,Θ∗)

= EZ|y,Θ∗

{
T∑

t=1

ln[p(yt|Zt)p(Zt)]

}

=
K∑

Z1=1

· · ·
K∑

ZT =1

{
T∑

t=1

ln[p(yt|Zt)p(Zt)]
T∏

l=1

p(Zl|yl, Θ∗)

}

=
K∑

Zt=1

T∑
t=1

ln[p(yt|Zt)p(Zt)]p(Zt|yt, Θ∗)

=
T∑

t=1

K∑

j=1

ln[p(yt|Zt)p(Zt = j)]p(Zt = j|yt, Θ∗)

=
T∑

t=1

K∑

j=1

p(Zt = j|yt, Θ∗) ln αjG(yt; ŷt,j , σ
2
t,j). (12)

The probabilityp(Zt = j|yt,Θ∗) (denoted ashj(t)) can
be obtained as follows,

hj(t) = p(Zt = j|yt, Θ∗) =
αjG(yt; ŷt,j , σ

2
t,j)∑K

i=1 αiG(yt; ŷt,j , σ2
t,i)

.

(13)
This is the E step of the EM algorithm.

The M step

In the M step we maximize (12). Sinceβ, δ andα must
bigger than zero, so we replace them by:

δ0j = eγ0j , (14)

δqj = eγqj , whereq = 1, . . . , Q (15)

βpj = eρpj , wherep = 1, . . . , P (16)

To ensure{αj}K
j=1 sum to unity and eachαj is larger

than zero, we useαj = emj∑K
i=1 emi

.

The parameters that we will need to adjust are
mj andΩ = {a1j , . . . , aSj , b1j , . . . , bRj , ρ1j , . . . , ρPj ,
γ0j , . . . , γQj}K

j=1.
The first derivatives of (12) with respectmj is

∂Q(Θ, Θ∗)
∂mj

= hj(t)− αj . (17)

For all other parameters, the first derivative is

∂Q(Θ, Θ∗)
∂ω

= hj(t)

[
1

2σ2
t,j

(
ε2t,j
σ2

t,j

− 1

)
∂σ2

t,j

∂ω
− εt,j

σ2
t,j

∂εt,j

∂ω

]

(18)

Whereω ∈ Ω. To calculate (18), we also need the fol-



lowing first derivatives:

∂σ2
t,j

∂asj
= 2

Q∑
c=1

εt−c,je
γcj

∂εt−c,j

∂asj
+

P∑

d=1

eρdj
∂σ2

t−d,j

∂asj
,

∂εt,j

∂asj
= −εt−s,j −

S∑
c=1

acj
∂εt−c,j

∂asj
,

∂σ2
t,j

∂brj
= 2

Q∑
c=1

εt−c,je
γcj

∂εt−c,j

∂brj
+

P∑

d=1

eρdj
∂σ2

t−d,j

∂brj
,

∂εt,j

∂brj
= −yt−r,j −

S∑
c=1

acj
∂εt−c,j

∂brj
,

∂σ2
t,j

∂γ0,j
= eγj0 +

P∑
c=1

eρcj
∂σ2

t−c,j

∂γ0j
,

∂σ2
t,j

∂γqj
= ε2t−q,je

γqj +
P∑

c=1

eρcj
∂σ2

t−c,j

∂γqj
,

∂σ2
t,j

∂ρpj
= σ2

t−p,je
ρpj +

P∑
c=1

eρcj
∂σ2

t−c,j

∂ρpj
,

∂εt,j

∂γ0j
=

∂εt,j

∂γqj
=

∂εt,j

∂ρpj
= 0.

Wherer = 1, . . . , R, s = 1, . . . , S, q = 1, . . . , Q, p =
1, . . . , P .

Since we use GEM algorithm, we only adjust each pa-
rameter more towards the maximum in each M step. Let
θ be one of the parameters. To updateθ we use:

θ(n+1) = θ(n) + λn
∂E(lt)

∂θ
, (19)

whereθ ∈ Θ.
To ensure the estimated model will be stationary, the

initial characteristic equations of every ARMA model

1− b1,jz − b2,jz
2 − · · · − bR,jz

R = 0, (20)

and every GARCH model

1− β1,jz − β2,jz
2 − · · · − βP,jz

P = 0, (21)

must have all their roots lie outside the unit circle
(Greene, 2000). During our experiments, if the initial
characteristic equations have all their roots lie outside the
unit circle, the estimated results will also be stationary.

Experimental Simulations
We apply the mixture of ARMA(3,3)-GARCH(3,3)
model to predict the daily stock prices of Cheung Kong
Holding (CK HDG) and HSBC Holding (HSBC HDG)
respectively. The period used to train the model is from
Sep 15, 1995 to Jul 16, 1999, consisting of 1001 data
points. Prediction is then effected on the following 120
days stock prices, which constitutes our test set. To en-
able comparisons, we also present results using conven-
tional ARMA(3,3)-GARCH(3,3) model and the mixture
of AR(3)-GARCH(3,3) model.

Results for CK HLD prices prediction using the
conventional ARMA-GARCH model, mixture of AR-
GARCH model and mixture of ARMA-GARCH model
are shown in Figures 1, 2 and 3 respectively, with that of
HSBC HDG shown in 4, 5 and 6 respectively.
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Figure 1: Prediction of CK prices with conventional
ARMA-GARCH.
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Figure 2: Prediction of CK prices with mixture of AR-
GARCH.
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Figure 3: Prediction of CK prices with mixture of
ARMA-GARCH.

Results Evaluation
By comparing the mean square error performance met-
rics shown in table 1, we can see that both the mixture
of ARMA-GARCH and mixture of AR-GARCH models
outperform the conventional ARMA-GARCH model by
quite a significant margin. The reason is probably due
to the capability of non-linear modelling by the mixture
models. Another observation as revealed by the results
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Figure 4: Prediction of HSBC prices with conventional
ARMA-GARCH.
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Figure 5: Prediction of HSBC prices with mixture of AR-
GARCH.
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Figure 6: Prediction of HSBC prices with mixture of
ARMA-GARCH.

Table 1: A summary of mean square errors for different
approaches

CK HDG HSBC HDG
Conv. ARMA-GARCH 2.7571 2.3714
Mixture AR-GARCH 2.6037 2.2409
Mixture ARMA-GARCH 2.5609 2.1828

is that the mixture of ARMA-GARCH is better than the
mixture of AR-GARCH model.

Conclusion
In this paper, we derive a GEM algorithm for the mix-
ture of ARMA-GARCH model. Its relative empirical
performance in stock price prediction against the con-
ventional ARMA-GARCH and mixture of AR-GARCH
model is investigated. Results reveal that both mixture
models outperform the conventional ARMA-GARCH
model, with the best results obtained by the mixture of
ARMA-GARCH model.
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