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Abstract— Several theories are proposed for unsupervised
learning in one layer nonlinear network. It has been shown
that all the learning rules developed under the theories merge
at performing PCA type tasks when the network reduces into
linear one. However, for nonlinear networks the performances
of these rules become different, which indicates many possi-
bilities for nonlinear extensions of PCA. These theories pro-
vide a number of potential guidelines for further explorations
on nonlinear PCA type learning. Moreover, the relations be-
tween these proposed theories as well as to some existing
theories have also been discussed.

1. INTRODUCTION

Since Oja’s pioneer work on Principal Component Analysis
by a single neuron(18), a large volume of papers have been
published on PCA networks in the literature!. The develop-
ments can be roughly summarized into five directions: (1) to
a layer of many neurons, including various asymmetrical and
symmetrical architectures and algorithms for true PCA and
subspace analyses [34] [6][16][17){7] [8][40] [9][29]{30][14][15];
(2) to constrained PCA[13][26][10]; (3) to MCA (Minor Com-
ponent Analysis)[36][37][23][33]; (4) to robust PCA [36] [37]
[38] [33]; (5) to nonlinear networks [21] [35] [36][37][39] [31]
[25] [24] [32] [12] [11] [27]; as well as a great number of appli-
cations.

The development from the single neuron to a layer of many
neurons encounted two crucial problems. The first problem is
how the learning rule for single neuron can be extended to let
different neurons in the layer to response different features or-
thogonally such that the network can perform true PCA. One
type of efforts is to externally well design some asymmetrical
network structure plus lateral interaction[29[30]). Although
these efforts solve the problem, the asymmetrical structure
needs externally helps and non-parallel implementation, as
well as has the weak point of increasing error accumulation
in computation. The other possibility is to use a symmetrical
or homogeneous network instead. Oja (1989) proposed a gen-
eralization of his single neuron constrained Hebbian rule for
such symmetrical single layer linear network. However, only
a partial success has been achieved: the network can only
perform principal subspace analysis but can not separate the
component eigenvectors that span the subspace[20]. The sec-
ond problem is whether we can find some global principles
that guide the unsupervised learning such that PCA emerges
automatically instead of basing on heuristically proposed lo-
cal Hebbian-type rules. There are some such principles for a
single neuron([16][17][8][40][36], but seldomly see such princi-
ple for a layer of neurons, especially for Oja subspace learning
on the symmetrical structure.

At the beginning of 1990, Oja believed that one growing
point for studies on PCA-type networks should be the exten-
sions to nonlinear networks. Sharing his opinion and also mo-
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LA long reference list is given in [39]; and a much more detailed
reference list is provided recently by Oja's research group.

tivated to find a global interpretation for Oja subspace rule,
I also fallen the interest of studying PCA-type networks?. In
the beginning of 1991, Oja published two papers which ex-
plicitly proposed his views for extending PCA nets to nonlin-
ear cases[21][22]. Paper [21] proposed a number of nonlinear
constrained Hebbian learning rules and also demonstrated
through experiments that the introduction of nonlinearity
can let the learning resist very strong noises or outerliers.
In the same time, Oja found that in one our joint work on
a single neuron for Minor Component Analysis (MCA) and
curve fitting (The work was later published in [36]), the suc-
cess can also be explained as that some nonlinear factor has
been introduced into the learning although the derivation of
learning role was based on an other interpretation.

In May 1991, another work was completed by the present
author[35]. This work proposed the LMSER(Least Mean
Square Error Reconstruction) principle? for self-organizing
nets and particularly studied the properties of LMSER for a
single layer net 7 = S(7),§ = W' with S(§) = [s(31),---,
s(ym)]* and s(r) being a nonlinear sigmoid function. Sev-
eral interesting results were been obtained. For the linear
case s(r) = r, it has be proved that by the global guide of
LMSER the PCA automatically emerges for m = 1 and that
the principal subspace analysis PCA automatically emerges
for m > 1; it has also been proved that the evolution direc-
tion of Oja rule (for both single neuron and subspace) has
a positive projection on that of LMSER and thus two rules
have the similar convergence properties and the same solu-
tions. This result provides a global convergence analysis for
Oja rule, which was believed to be a difficulty task[10]. For
the nonlinear cases that s(r) is a sigmoid function, it was
clearly pointed out and also demonstrated through experi-
ments that the introducing of the nonlinearity can automat-
ically break the symmetry of the homogeneous networks and
let the weight vectors separate the different features (i.e., it
seems the network performs the true PCA). Unfortunately,
due to mathematical difficulties I could not prove this view-
point. Later in [39], in help of Brockett's result[7], I only
proved that a modified LMSER as well as a modified Oja sub-
space rule performs the true PCA in the semi-asymmetrical
linear case of S(#) = [a1y1, -, amym)]t with a;,- - - am being
different positive numbers. A few months after the work [35],
Oja proposed his weighted subspace rule[25] which performs
the true PCA for linear networks. This rule, the Brockett
rule [7], the modified LMSER and the modified Oja subspace
rule given in [39] are closely related, but different from each
other, as well as derived from different aspects. Motivated
by the finding of {35] on the function of nonlinearity, Oja also
demonstrated in [25] through experiments that a nonlinear
subspace algorithm, obtained by introducing sigmoid nonlin-
earity to his weighted subspace rule, can also separate the
weight vectors to the different feature directions and perform

2During 1989.2-1990.5, I was worked at his laboratory as a
visiting senior researcher. It is this visit and the discussions with
him that arose my interest and gave me many insights on PCA-
type networks.

31ts differences from the related work {34] [3] [6] are given in
[39], and will be further discussed later in Section VI.
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similarly to his weighted subspace rule. Later in [24], Oja has
further theoretically proved that under certain conditions the
nonlinear PCA rules given in [35] [25] can indeed perform the
true PCA. No doubt, it is an important result.

Recently, the research on nonlinear PCA has gained an
increasing interest in the literature. Some intersting results
have also been reported on using nonlinear PCA for signal
separation and image [11][12][33]. In WCNN-1993, a self-
association method similar to the LMSER principle [35] [39]
has been proposed by Palmieri [28]. The method applies
the LMSER principle and the sigmoid nonlinear neurons to
an asymmetrical architecture that resembles to those given
in [29][13]. It consists of the Hebbian type rule that is the
same as the modified oja rule proposed in [35] [39] and the
anti-Hebbian type rules for lateral connections which is an
essential difference from the methods by [35] [39]. A pre-
liminary experimental result has also been given by [28] to
demonstrate the potential of this approach in function decom-
position. Moreover, there are also many other works which
are closely related to nonlinear PCA [36][37}[38][31][32].

The present paper will propose several theories as some
global guiding principles for unsupervised learning in one
layer nonlinear network. In the special case of linear network,
we show that all the learning rules developed under the the-
ories merge at performing automatically PCA or subspace
analysis. However, for nonlinear networks the performances
of these rules become different, and thus indicates that the
extensions of PCA from linear cases to nonlinear cases may
have many possibilities,and that the theories proposed in this
paper provide for nonlinear PCA type learning a number of
potential rules that may deserve further explorations. More-
over, the relations between these proposed theories as well as
to some other existing theories have also been discussed.

II. THEORIES AND THEIR RELATED RULES
A. Quasi-Linear Networks

We consider a quasi-linear networks as follows

F=S(9), 7=WwW'z (1)

where 7 = [z1,+ -, zm], = 11, -+, 9m]’, =21, -+, znl’
Moreover, W' is a m X n matrix with W = [@y, -+, @m], @i =
[wii, -, wnil's (7) = [81 (1), -+, 3m (ym)]* with s;(r) being
a nonlinear sigmoid function. So, this network consists of
a linear system and a sigmoid nonlinear transform following
the outputs of the linear system. Thus we call the network a
quasi-linear networks. This is a slight different version of the
network studied in (Xu, 1991, 1993) {35][39]

Particularly, when s;(z) is a linear function sp(r) = r,
eq.(1) becomes an one-layer linear network used in Oja sub-
space rule[20]. In the special case of m = 1, we return back
to a single PCA neuron originally studied by (Oja, 1982)[18].

In this paper, we will base on the network eq.(1) to show
our theories. It may deserve to mention that the theories and
rules as well as the related analyses given in this paper may
be able to be extended to various other existing PCA nets
[29][30][27][13][10]; however, we would like to leave this work
elsewhere.

B. Best Reconstruction Theory and Min-Distorted
Reflection Theory

From the output of eq.(1) (i.e., ¥), we let
Z=WZz,

(&)

as a reconstruction of input £. Here, Our theory for unsu-
pervised learning on eg.(1) is that the reconstructed & should
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approzimate & best.

This theory can be realized by the LMSER (Least Mean
Square Error Reconstruction) theory proposed by the present
author in 1991 [35](39]. That is, we determine the parameters
W in eq.(1) by minimizing?*

e2(#,9) = Blj& — |, 3
As shown in [35][39], using gradient descent technique, both
batch way and on line or adpative way algorithms can be ob-
tained to implement the minimization, and the resulted solu-
tions are the same as Oja subspace rule when 3(.) is linear. It
was firstly suggested and demonstrated through experiments
by [35][39] that the measure e;(#, %) can used in the net-
work eq.(1) to break naturally its symmetrical structure and
to separate the different features.

Let us further consider the pair (£,#). Imagining that the
input layer and the output layer form two boundaries. Then
i@ can be regarded as the reflection of # bounced back by
the output boundary. Similarly, we can have #; being the
reflection of Z, bounced back by the input boundary, and >
being the reflection @, .... Denoting # by Z, and @ by @
and & by @, for i = 0,1,2,---, we can generally have

Fip = S(W'Wi.’),ﬁ,‘+1 = WS(W'G,;), (4)
Ideally, we hope that @y = @) = -+ i#; = ---and 2 = #; =
-»+Z; = +--. But this is not true since S(.) is nonlinearand W

is not full rank. Instead, our theory is that W is decided such
that the distortions of reflections can be minimized. For this
purpose, we can minimize either of the following measures

k k
t =D Bllgi ~ @l & =) Blidis -2, (5)
0 Q

The minimizations can be implemented by gradient descent
approach. One can also observe easily that d}, dj reduce into
e2(#, %) when k = 0. In other words, eq.(3) is a speical case
of eq.(5).

C. Mazimum Relative Uncertainty Theory

A random variable & takes a value with uncertainty. The
degree of this uncertainty depends on the distribution P(%).
For two different P(&), P(£), the degrees of uncertainty will
also be not same. As given below, we can use different types
of measures for describing the degrees.

First, when P(&) is a normal, the uncertainty can be fully
described by its covariance matrix £, = E[(#- EZ)(F-EZ)").
Therefore, its determinant J4(£) = det(Z:) or more generally

JJ(@) = f(det(E2)), ®)
can be used as the measeure for describing the degree of un-
certainty, where f(r) > 0 is any monotonuously increasing
differentiable function for r > 0, e.g., f(r) = r, rz,rp(p >
1),In(r), ... The measure describes how P(#) scattering. The
larger the measure J j is, the larger the scattered range, and
the larger the uncertainty. Thus, even when P(&) is not a
normal distribution, we can still use the measure eq.(6) for
describing its related uncertainty.

41t may also be written as an apparently more general form
e;(f, ) = f(E||& — ]|), where f(r) is an arbitrary monotonu-
ously increasing differentiable function for r > 0. However, it is
obvious that the solutions for minimizing ez (&, @) and eé(f, )

are the same. In this paper, we will not discuss this trivial ex-
tension. However, all our results apply to such extension.



Second, we can use the entropy

Je(2) = ~EInp(#) = - [ p(&) Inp(2)d2

or more generally

J(2) = {(-Enp(2)), (7
as a uncertainty measure, where f(r) is the same as in eq.(6).

With the above measures, for two distributions P(E),P(ﬂ
we further call pg(7,7) = J5(&)/75(€), pe(2,8) = I (@) -
J{({) as the relative uncertainty measures of P(#) to P(g),
with g(r) # f(r),g() > O being monotonuously increasing
and differentiable for » > 0. The measures indicate how
scattering or uncertain of Z in comparison with g

Through the network eq.(1) # will become the transformed
variable Z with P(Z). Let us also consider another variable
f of the same dimension as # Assume that f comes from
the standard normal distribution N(5, I), then Ewill become
77 with P(%) after the network eq.(1). Our theory here is
that we mazimize the relative uncertainty measure p(Z,7) to
determine the parameters W in eq.(1), where p(Z,7) can be
either of the follwoing two:

pa(Z,77) = f(det(E2))/g(det(Zn)), (8
pe(Z,7) = f(~EInp(7)) - 9(—~Elnp(7)). )

Moreover, considering that f,g are arbitrary, we actually
have two spectrums of different learning rules.

All the rules obatained under this theory can be imple-
mented by the gradient ascent algorithm in the batch way,
ie., W(k+1) = W(k)+a 22500
1€, dw
stepsize a > 0.

Finally, let us explain the motivation behind the theory.
On one hand, the uncertainty of & reflects the complexity of
its distribution P(Z) or the richness of information contained
in P(#), and we naturally hope that the our network’s out-
put can retain this complexity; thus we want to maximize the
uncertainty of output Z. On the other hand, when we talk
about how large or small of the uncertainty of #, we actu-
ally compare it with some reference ¢ implicitly in our mind.
Through the network, the uncertainty of e' may also change,
and the uncertainty measure of output # may also contain
this type of changes. So in eq.(8)(9), we use the uncertainty
of E to re-calibrate our reference. Here, we take £ from the
standard normal distribution N (6, I) as our reference.

D. Other Theories

We also give some more heuristic theories. The first one is
to determine the parameters W in eq.(1) by maximizing the
followin measure:

with an appropraite learning

JE =tr(E.271), (10)
where the notations are the same as in the previous subsec-
tion. It is motivated by the reason simliar to the above one.
The uncertainties of 7, £ are described by Iz, £y, and and
we use the uncertainty of reference ¢ to discount the related
part in the uncertainty of 2.

The second one is to maximize one of the following two
measures:

J3 = JN@) + cg(ltr(Sq - 1))
= f(det(Z2)) + co(ltr(Eq - D)), (1)
72 T (@) + ca(ltr(Eq — D))

f(-Enp(%)) +cg(ltr(Zn - D),  (12)

where g(r) # f(r) is the same as in q.(8)(9), and ¢ > 0 is
an arbitrary constant. The motivation is also related the one
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in the previous subsection. We want to maximize the uncer-
tainty of Z, while in the sametime, and to keep the change of
uncertainty from ¢ to n being minimum.

One step further, we can simply constrain that the the
uncertainty of the reference keeps invariable, i.e., £, = I.
This leads to the third choices—the constrained maximizations
as follows

f
Jd
J!

f(det(Z:)), s.t.Zp=1,,
f{(-Elnp(?), st.Iy=1,

(13)
(14)

III. ANALYSES ON THE LINEAR CASES:
CONVERGED AT PCA
When si(r) is a linear function s;(r) r, eq.(1) becomes

the one-layer linear network studied in [20]. In this case,
Z=¢y=W'Z and T, = WL, W, Ly = WHW = WtW.

A. On the Rules for Best Reconstruction and
Min-Distorted Reflection

In this linear case, the rules eq.(3) and eq.(5) become

@ = Bj2- Ww2|? = E||(I - P)a|1?,
k
df = Y EWI-PYFIF =Y EII- P)PP,
) 0
k
@ = ZEH(I—P"“)fII’, (15)
0

where P = WW?! is called as projection operator.

With some mathematical work, we can derive

Ve = 2(W*'E; - WS P + W'E, — PW'E,), (16)
When m < n and X is nonsingular. Let ® = [$1, ,$n]
and A = diag[A1,- - -, An] be the matrices of eigenvectors and
eigenvalues of £, respectively. As proved in [35][39], we have
the solutions of Viye; = 0 are W = QIIDR, R is an arbi-
trary m X m rotation matrix, i.e., R*'R = I. D = [D,|0] is
m X n matrix with D; being an m x m diagonal matrix and its
diagonal elements only taking value of +1, —1,0. Il x5 is an
arbitrary permutation matrix. Furthermore, among these so-
lutions, the one consisting of the eigenvectors that correspond
to the m largest eigenvalues makes e; reach its minimum. In
other words, the learning rule eq.(3) performs Principal Sub-
space Analysis (PSA). Particularly, when m = 1, the weight
vector of the single neuron will be the eigenvector correspond-
ing to the largest eigenvalue, i.e., it performs PCA.

In the similar way, we can also derive Vwd} and Vwdy,
then via Vi d¥ = 0 and Vs d¥ = 0 prove that the minimiza-
tions of d},d} also emerge PSA automatically. We will not
give the detail mathematics here. One can also observe this
point in such a way: from W = ®IIDR we have W!W = I,
P'=P,i>1and (I-P)P = 0,P(I - P) = 0, put these into
eq.(15), we find that e; ,d},d% become indentical.

B. On the Rules for Mazimum Relative
Uncertainty

In this linear case, the rule eq.(8) becomes
pa(Z,7) = f(det(W'E,W))/g(det(WtW)).
Throught some calculation, we can obtain
Vwea=2[f'g det(W'E,W)E, W(W*'E, W)~1
—g'f det(W!W)W(W*W)=1]/g2,
where f = f(det(W*'E:W)), f' = f/(det(W'E;W)), g =



9(det(W*'W)) and g’ = g'(det(W'W)). From Vi pg = 0, we
further have

LW = WA, A=o(WW) Wi, W,
a = g'fdet(W'W)/[gf'det(W'E,W)]. (17)
Its solutions must satisfy W!W = b2 and a = 1 with b

being a constant. Thus, by single value decomposition we
have W = b®R, where ® is a n X m matrix '® = I and
R is m x m orthogonal mtarix. Putting this W in pg, we
get pg = f(b?det(®* T ®))/g(b?)). Since f(r) is monotonu-
ously increases, we see that it arrives its maximum when &
consists of the eigenvectors that correspond to the m largest
eigenvalues of Xz. Moreover, we can also show that all the
other solution for ¢ are saddle points for p4. Next, we further
check whether it is possible for a = 1. The second equation
in eq.(17) is now reduced into
a(b) = 9'(52) £ (8220} /Drog (57 (B2 o))

with Ao = det(®'L.®) > 0. a(b) is continuous on [0, cc]
since f(r),g(r) are differentiable functions. So, there exists a
b’ such that a(b’) = 1 as long as a(b) — 1 can change its sign
on [0,00]. This is a very weak condition which is generally
satisfied. In addition, we can also check that a(b) = 1 for
b=1 when f(r) = g(r) =rP withp > 1.

Therefore, we prove that the learning rule eq.(8) performs
PSA. Particularly, when m = 1, the weight vector of the
single neuron will be the eigenvector corresponding to the
largest eigenvalue.

Let us further consider the rule eq.(9). Assume that Z is
from normal distribution, thus # = § = Wt# is also normal.
In this case, after some calculation, eq.(9) will become

pe(Z,1) = f(0.5Indet(W'L; W) + h) — g(0.5Indet(WIW) + h)
with h being a constant. It further follows that

Vwoe = flE.W(WIE, W)~ - g W(WW)~!

with ' = f(0.5Indet(W*E . W) + &) and
g9’ = 9(0.5 Indet(W!W) + h). From Vi pe = 0, we again
obtain eq.(17), but now a = g'/f’. Using similar argments
for the rule eq.(8), we see the learning rule eq.(9) perform
PSA too.

C. On the Other Rules

In this linear case, the rule eq.(10) becomes
J = tr(W T W(WW)-1)
Via derivation, we have
Vwd2 = 2T W — W(WIW) = WS, W](WtW)~1
From Vi J¢ = 0, we again obtain eq.(17), but now o = 1.
So, we see the learning rule eq.(10) performs PSA too.
The rule eq.(11) becomes
Jg = f(det(W'ELW)) +cg(|tr(WW — D)),
and we have
VwJdg = 2f'det(W! T, W)E W (W!E, W)~!
—2cg’sign(tr(I - W'W)W,
with f' = f/(det(W'E, W), ¢’ = ¢([tr(W'W — I))], and
sign(z) =1,z > 0,sign(z) = -1,z < 0.
From Vy pg = 0, we further have

LW = WA, A=oW'E, W,
a = cg'sign(tr(I — W'W)/[f'det(W'E.W))]. (18)

Similar to the arguments for eq.(17), we now need to show
ab? =1 or

a(b) = [eq’(62)sign(n(1 - B2))/[b* F(52 Aa)Ao] = 1/82
When b < 1, a(b) is a positive continuous on [0,1]. So, as
long as a(b) — 1/6% can change its sign on [0, 1], we can prove
that the learning rule eq.(11) performs PSA by the arguments
similar to those for eq.(17).
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The rule eq.(12) becomes

J2 = f(0.5Indet(W'E W) + h) + cg(|tr(W'W — )|
with A being a constant. It follows that
VwJ2 = flE:W(WPEL W)™ — 2¢g'sign(tr(] — WIWw)w
with f' = f'(0.5Indet(W*E;W) + h). The other notations
are the same as above.

From Viyp4 = 0, we again obtain eq.(18), but now a =
2¢cg'sign(tr(I — WEW))/f'. Using similar argments for the
rule eq.(18), we see the learning rule eq.(12) perform PSA
too.

The rule eq.(13) becomes

JI = f(det(WEE.W)), st WIW =1,
By Lagrange law, the solution is give by
2f'det(WHE, W)Z, W(WIE, W)~-1 — 2WD = 0
with f' = f'(det(W'E:W)) and D being a diagonal matrix.

Let D = I, we again get eq.(18), but now a = 1/[f/det(W' T, W)].

The rule eq.(14) becomes
JI = f(0.5Indet(WES. W) + h), st WW =1,
By Lagrange law, the solution is give by
SEW(WEE W)~ ~2WD =0

with f' = f'(0.5Indet(W!Z; W)+h) and D being a diagonal
matrix. Let D = I, we get eq.(18) too, but now a = 2/ f'. Us-
ing similar argments for the rule eq.(18), we see the learning
rule egs.(13)(14) also perform PSA.

IV. NONLINEAR CASES: SEVERAL VIEWPOINTS

Although the learning rules based each theory poposed in
Section II perfom PCA or PSA tasks for the linear cases
studied in Section III, the theoires and rules will function
differently in general cases that s;(r) are sigmoid nonlinear
functions s;(r) = r. In addition, stricly speaking, they no
longer perform PCA or PSA.

Let us observe the points in the simple special case of single
neuron. Assume that 5(0) = 0,s(—r) = —s(r) and Z from a
normal distribution N(0,Z;). Thus E(z) = E(s()) = 0
since § is from a normal N (0,7 '£:4%) too.

The rule eq.(3) becomes e; = E||& — @s(«w *#)|]* and
Vwez =0 is given by

E[#5)7 — E[s*]d + E[s'z *#) — E[s' s ‘7@ =0, (19)

where s = s( '#) and s’ = s'(« '7).

Py
The rule eq.(8) becomes pg = ;(:[:2(:3 ': 0 where £ is a

reference from N(0,1). From Vi pg = 0, we have
f'Els(@ '8)s' (@ *£)4] - ¢’ Els(@ *€)s' (@ *E)é]) = 0, (20)
where ' = f/(E[s?(@ '2)]), g = ¢"(E(s*[w t&)]).

Comparing the two equations eqs.(19)(20 ), one observes
that generally their solution will not be the same due to the
nonlinearity of s(.). Even for the rule eq.(8) itself, the solu-
tions will be different when £, g change. It follows from eq.(20
) that its solutions actually are not longer the principle com-
ponent vector in the common sense,

So, the so called nonlinear PCA really means “the ex-
tensions of PCA to nonlinear cases”. As shown in previous
sections, there can be many rules that perform PCA or PSA
tasks in the linear case. In the linear case, the PCA or PSA
has an unique and well-defined meaning. While in the non-
linear cases, all the rules will function differetly and thus the
nonlinear PCA or PSA has no unique or well defined mean-
ing. Vaguely, it means a class of learning rules for nonlinear
networks which functions somewhat similar to PCA or PSA
and will reduce into PCA and PSA in linear cases.

As shown in papers [35][39], the learning rule eq.(3) based
on the theory given in section ILB can let the weight vectors



in the nonlinear network eq.(1) separate the different feature
directions. It was believed in [35][39] that the rule performs
the true PCA. This opinion is actually not accurate. In fact,
the rule performs some type of function which can be re-
garded as a good approximation to the true PCA. This is
why the results of experiments in [35][39] demonstrate some
derivations between the rule and the true PCA. There remain
some important open problems to be explored. For examples,
what advantages will be gained by using nonlinear PCA ? do
they outperform the true PCA 7 what kind of performance
each of the rules given in this paper will produce ? which
theory or rule is the best 7

Generally speaking, for all the theories and rules proposed
in this paper, the implementation is actually a nonlinear op-
timization. Thus, gradient ascent or descent techniques can
be used to tackle the problem. However, the computing costs
will be different for different rules. For some rules, e.g., eq.(3)
and eq.(10), we can also get adaptive or on-line as well as lo-
cal algorithms [35](39]. Thus, the computing aspects of the
proposed theories and rules are also deserve to be further
explored.

V. SoME OTHER EXTENSIONS

As shown in Section III, all the rules under the proposed
theories perform PSA in the linear network with s;(r) =r in
eq.(1), instead of the true PCA. As argued in [35][39], the true
PCA has some advantages over PSA. It has been shown the
the best reconstruction rule eq.(3) can be modified slightly
to let the network perform the true PCA in the linear case
that s;(r) = a;r with any constants a; # az # --+ # am.
Here we show that for this special linear case the rule
eq.(10) can also be modified to perform the true PCA. The
key point is to let # pass the operator S(.) while the refer-
ence £ does not pass S(.). That is Z= S(¥) = A7, ¥ = W'&,
77 = WtE, where A = diaglay,---,am)]. As a result, the rule
becomes
JS = tr(AW S, WA(W W) ™). (21)
From Vy J2 = 0, we have
TWAWIW) LA - W(WIW)TAWIE, WA(W W) 1 =q
Similar to the analysis of eq.(17), we see that its solutions
must satisfy W!W = b2[. That is, W = 4®R, R'R = I.
Putting this into the above equation, we have
E:PRAA - PRAR'®'L, ®RA =0
which further reduces into
(R'®'E,PR)A - A(R'®*'T.PR) =0 .
It holds only when (R!'®*Z,®R) is diagonal matrix, and thus
only when R = I and ® consists of the m eigenvectors of £;.
Moreover, J2 reaches the maximum when the m eigenvectors
coressponding to the m largest eigenvalues. Moreover, we can
also show that all the other solutions for ® are saddle points
for p2. Therefore, we have that & consists of eigenvectors
that correspond to the m largest eigenvalues of £.. In the
other words, this modified rule performs the true PCA.
Another possible extension is to modify the rules eq.(8)
eq.(9) eq.(10) eq.(11) and eq.(12) in such a way: we let
the reference variable ¢ from a normal N(0,Z;) instead of
N(0,X¢) for the the linear network with s;(r) = r in eq.(1).
As a result, the rules eq.(8) eq.(9) eq.(10) eq.(11) eq.(12) be-
comes

pa = f(det(W'EW))/g(det(W'E W),

pe = f(0.5In det(W‘E;-W) + h)~g(0.51n det(W‘EEW) + h),
J = tr(WIEW(WEW)™1),

J§ = f(det(W Tz W) + cg(|tr(WEEW — I))],

J2 = f(0.5Indet(W'E, W) + k) + cg(tr(W'EW — D))|.
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We can find that the rules will performs the task of general-
ized PSA or PCA in the sense of ;' Z. W = WA

VI. RELATIONS BETWEEN THE THEORIES AND
To OTHER WORKS

The rules developed based on the proposed theories actu-
ally can be grouped under two principles. One is the self-
reconstruction of a system’s output through the inverse map-
ping of the same system such that the reconstruction approx-
imates the input best. The rules given in Section II.B are all
under this principle. The other one is the best preservation
of some intrinsic items of the input such that we can de-
scribe, based on the system’s output, as good as possible the
key features of the objects that the original input represents.
The rules given in Section II.C&D are all under this princi-
ple. The two principles are also related. When the output
catched the intrinsic items of the input, it is more easy for us
to reconstruct the input based on these the intrinsic items.
Conversely, when the self-reconstruction is a good approxi-
mation of the input, the output that the reconstruction is
based on should contain the enough intrinsic features about
the input. This is the reason why all the rules merge at per-
forming PSA or PCA task for the linear network. The other
common point that may deserve to mention is that when we
talk about the best in the both principles, we actually make
comparision with some thing—a reference, either implicitly
or explicitly. For the self-reconstruction principle, the refer-
ence is explicitly the input itself. While for the principle of
best preservation, in Section II.C&B we have taken the data
from the standard normal distribution N(0, I) and its trans-
formation by the system as the reference for the input and
output respectively.

Next, we discuss the relations of these proposed theories
to some existing works in the literature.

The error measure eq.(3) is a more general rule which in-
culdes one of the cost function studied in [4] and into the
symmetrical learning rule of [34] as its special cases. The
error measure eq.(3) will reduce into the cost in [4] for the
special single linear neuron case that m = 1 and s(r) = r,
and the symmetrical learning rule of [34] for the special lin-
ear case of s;(r) = r for all i. The rule eq.(3) also relates
to the auto-association back propagation learning of feedfar-
ward network with one hidden layer [6]. The different point
is that in this feedfarward net the reconstruction of the in-
put from the hidden layer is implemented by the system of
output layer which is not the same as the input layer. While
our rule eq.(3) reconstructs the input through the input sys-
tem itself reversely. In addition, in our paper [35] [39] the
role of nonlinear sigmoid function, especially its roleon true
PCA type tasks, has been explicitly uncovered, and this kind
of nonlinearity has been deliberately suggested to break the
different feature directions.

The rules eq.(8) and eq.(9) are related to those methods
based information transfer theory, especially mutual informa-
tion by [16] [1] [5] [28] [2] [17]. However, the rules eq.(8) and
€q.(9) are differet from these methods in four aspects. First,
all these mentioned methods consider a linear system, while
the rules eq.(8) and eq.(9) also cover the nonlinear system
given by eq.(1). Second, in section II the so called uncer-
tainty measures are indeed closely related to the measure of
information, i.e., the entropy. The measure can exactly be
the entropy, but it can also be some other measure which is
not exactly entropy or some functions (linear or nonlinear)
of entropy. Third, we consider the system’s performance in
comparison with an explicit reference and our relative un-
certainty measure is actually a ratio of some nonlinear func-



tion of the entropy of the output transfered from the input
that is not corrupted by noise to some other nonlinear func-
tion of the entropy of output transfered from the reference.
While those mentioned methods consider noise either in the
input or in the output (or in both) and maximize the mu-
tual information between the input and the noise-corrupted
output under certain equality constraint. Fourth, the cost
functions of those methods are also not same as ¢q.(8) and
€q.(9). Moreover, the rules eq.(8) and eq.(9 are also different
from the one proposed in [15]. However, all the rules have
one thing in common: they will perform PSA or PCA tasks
for the linear systems.

Furthermore, for the special cases of a single linear neu-
ron and togather with the condition that f(r) = g(r) = r,
we can also see that eq.(8) will collapse into the cost func-
tion given in [19] [36], and eq.(11) will collapse into the cost
function given in [8](40]. In addition, for the special linear
case of 3;(r) = r the rule eq.(21) can also be regarded as an
unconstrained version of Brockett's constrained cost function
for his gradient flow{7].
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