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Abstract Three Bayesian related approaches, namely,
variational Bayesian (VB), minimum message length
(MML) and Bayesian Ying-Yang (BYY) harmony learn-
ing, have been applied to automatically determining
an appropriate number of components during learning
Gaussian mixture model (GMM). This paper aims to
provide a comparative investigation on these approaches
with not only a Jeffreys prior but also a conjugate
Dirichlet-Normal-Wishart (DNW) prior on GMM. In
addition to adopting the existing algorithms either di-
rectly or with some modifications, the algorithm for
VB with Jeffreys prior and the algorithm for BYY with
DNW prior are developed in this paper to fill the miss-
ing gap. The performances of automatic model selection
are evaluated through extensive experiments, with sev-
eral empirical findings: 1) Considering priors merely on
the mixing weights, each of three approaches makes bi-
ased mistakes, while considering priors on all the pa-
rameters of GMM makes each approach reduce its bias
and also improve its performance. 2) As Jeffreys prior is
replaced by the DNW prior, all the three approaches
improve their performances. Moreover, Jeffreys prior
makes MML slightly better than VB, while the DNW
prior makes VB better than MML. 3) As the hyper-
parameters of DNW prior are further optimized by each
of its own learning principle, BYY improves its perfor-
mances while VB and MML deteriorate their perfor-
mances when there are too many free hyper-parameters.
Actually, VB and MML lack a good guide for optimizing
the hyper-parameters of DNW prior. 4) BYY consider-
ably outperforms both VB and MML for any type of
priors and whether hyper-parameters are optimized. Be-
ing different from VB and MML that rely on appropriate
priors to perform model selection, BYY does not highly
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depend on the type of priors. It has model selection
ability even without priors and performs already very
well with Jeffreys prior, and incrementally improves as
Jeffreys prior is replaced by the DNW prior. Finally,
all algorithms are applied on the Berkeley segmentation
database of real world images. Again, BYY considerably
outperforms both VB and MML, especially in detecting
the objects of interest from a confusing background.
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1 Introduction

Gaussian mixture model (GMM) [1,2] has been widely
applied to clustering, object detection, image segmenta-
tion, marketing analysis, speaker identification, and op-
tical character recognition, etc. [3–5]. Learning a GMM
includes parameter learning for estimating all the un-
known parameters and model selection for determining
the number k of Gaussian components. Parameter learn-
ing is usually implemented under the maximum likeli-
hood principle by an expectation-maximization (EM)
algorithm [2,6,7]. A conventional model selection ap-
proach is featured by a two-stage implementation. The
first stage enumerates k to get a set M of candidate
models with the unknown parameters of each candidate
estimated by the EM algorithm. In the second stage, one
best candidate is selected by a model selection criterion.
Examples of such criteria include Akaike’s information
criterion (AIC) [8], Bayesian inference criterion (BIC)
[9], minimum description length (MDL) criterion [10,11]
(which stems from another viewpoint but coincides with
BIC when it is simplified to an analytically computable
criterion), etc. However, this two-stage implementation
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suffers from a huge computation because it requires pa-
rameter learning for each k ∈ M. Moreover, a larger k

often implies more unknown parameters, and then pa-
rameter estimation becomes less reliable so that the cri-
terion evaluation reduces its accuracy (see Sect. 2.1 in
Ref. [12] for a detailed discussion).

One road to tackle the problems is referred to auto-
matic model selection that automatically determines k

during parameter learning. An early effort is rival penal-
ized competitive learning (RPCL) [13–15] with the num-
ber k automatically determined during learning. More-
over, three Bayesian related approaches can be imple-
mented with a nature of automatic model selection. One
is Bayesian Ying-Yang (BYY) learning, proposed in Ref.
[16] and systematically developed in the past decade
and a half, which provides a general statistical learning
framework that can handle both parameter learning and
model selection under a best harmony principle. BYY is
capable of automatic model selection even without im-
posing any priors on the parameters, and its performance
can be further improved with appropriate priors incor-
porated according to a general guideline [12,17].

With the help of appropriate priors, efforts have been
made on minimum message length (MML) [18] and vari-
ational Bayes (VB) [19–21] for learning GMM with auto-
matic model selection. MML approach minimizes a two-
part message for a statement of model and a statement
of data encoded by that model, which involves a Fisher-
term computing the determinant of Fisher information
matrix [22,23]. Figueiredo and Jain in Ref. [18] developed
such an MML algorithm for GMM with a prior that is
the product of independent Jeffreys priors on the mix-
ing weights and the parameters in Gaussian components
individually, and the Fisher information matrix was ap-
proximated by a block-diagonal matrix. VB tackles the
difficulty in computing the marginal likelihood with a
lower bound by means of variational method. The ex-
isting VB algorithms for GMM [20,24] are featured by
a Dirichlet prior on mixing weights and an independent
Normal-Wishart (NW) prior on each Gaussian compo-
nent’s parameters.

Still, there is lack of a systematic comparative in-
vestigation on the relative strengths and weaknesses of
the above three Bayesian related approaches in term of
their automatic model selection performances. This pa-
per aims to make such a systematic comparison. We
consider GMM with two types of priors on its param-
eters. One is the Jeffreys prior on all GMM parameters,
which is a non-informative prior defined to be propor-
tional to the square root of the determinant of the Fisher
information, via approximately using a block-diagonal
complete data Fisher information given in Ref. [18]. The
other is a parametric conjugate prior [25], which im-
poses a Dirichlet prior on the mixing weights and a joint
Normal-Wishart prior, shortly denoted as DNW.

The algorithm for MML is adopted from Ref. [18], ei-
ther used directly or with some modification for DNW
prior. The algorithm for VB with DNW prior is a vari-
ant of the one in Ref. [20]. Instead of the independent
NW prior, this variant algorithm considers the joint NW
prior suggested in Ref. [25] to take the advantage of
conjugate distributions. Moreover, the BYY algorithm
for Jeffreys prior can be regarded as a special case of
the unified Ying-Yang learning procedure introduced in
Ref. [12] (see its Sect. 3.1 and especially Fig. 7). Still,
there are no available algorithms yet in the existing lit-
erature for implementing VB with Jeffreys prior and im-
plementing BYY with DNW prior. The corresponding
algorithms have been developed in this paper.

Without any priors on the parameters, maximum a
posteriori (MAP) approach, VB and MML all degener-
ate to maximum likelihood (ML) learning, and BYY is
still capable of automatic model selection. Further con-
sidering priors merely on the mixing weights, we have
several observations via simulation study. VB is better
than MML and MAP for a Jeffreys prior, but VB de-
teriorates to be inferior to both MML and MAP with
the Jeffreys replaced by a Dirichlet prior. For either Jef-
freys or Dirichlet prior, BYY considerably outperforms
MAP, VB and MML. For the Jeffreys, MAP and MML
bias to oversized models, while VB and BYY bias to
undersized models. For the Dirichlet, all the approaches
incline to oversized models. Moreover, optimizing the
hyper-parameters of the Dirichlet prior further improves
the performances of BYY, but brings down the other
approaches.

Next, we consider a full prior on all parameters. The
performances of automatic model selection are evaluated
through extensive experiments on a wide range of ran-
domly generated data sets, via controlling the hardness
of tasks performed by varying the dimension d of data,
the number N of samples, the number k∗ of Gaussian
components, and the overlap degree β of Gaussian com-
ponents. It is empirically found that considering priors
on all the parameters of GMM makes each approach
reduce its bias and also improve its performance. Com-
paring with Jeffreys priors, this performance increment
is more obvious as the Dirichlet is added with a joint
NW, such that a full DNW prior outperforms a full Jef-
freys prior for most approaches. The Jeffreys prior makes
MML slightly better than VB, while the DNW priors
make VB better than MML. BYY considerably outper-
forms the rest approaches for any type of priors and
whether or not hyper-parameters are optimized.

As the hyper-parameters of DNW prior are optimized
by each of its own learning principle, BYY further im-
proves its performance considerably and outperforms the
others significantly, which concurs with the nature that
learning hyper-parameters is a part of the entire BYY
harmony learning (see the learning procedure shown
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in Fig. 6(a) in Ref. [17] or in Fig. 5(a) in Ref. [26]).
Also, MAP improves its counterpart with the hyper-
parameters pre-fixed too, which could be understood
from the relation that MAP can be regarded as a de-
generated case of the BYY harmony learning (see Eq.
(A.4) in Ref. [17] or Eq. (39) in Ref. [26]). However,
both VB and MML deteriorate when there are too many
free hyper-parameters, especially the performance of VB
drops drastically, becoming even inferior to MAP. The
reason is that VB and MML maximize the marginal like-
lihood via variational approximation and Laplace ap-
proximation respectively. Maximizing the marginal like-
lihood with respect to a free priori q(Θ|Ξ) makes it tend
to the maximum likelihood, which is not good for op-
timizing the hyper-parameters, see Sect. 5.2. In other
words, VB and MML lack a good guide for optimizing
the hyper-parameters of DNW prior.

Finally, we apply all the algorithms to unsuper-
vised image segmentation on the Berkeley segmentation
database of real world images. The segmentation per-
formances are evaluated by the probabilistic Rand (PR)
index [27]. Again, BYY outperforms VB and MML con-
siderably, with a better ability to detect the objects of
interest that are even highly confused with the back-
ground. Still, the DNW prior results in a better per-
formance than the Jeffreys prior for all the three ap-
proaches, while BYY-DNW always performs the best.

The remainder of this paper is organized as follows.
Section 2 introduces GMM, model selection, and two
types of priors. Section 3 considers learning algorithms
of BYY, MML, and VB with Jeffreys prior. Section 4
further proceeds to learning algorithms for VB, MML,
and BYY with the Dirichlet prior on the mixing weights
and the DNW prior on all the parameters of GMM. Sec-
tion 5 is devoted to experimentally evaluate the per-
formances of automatic model selection by these algo-
rithms through a wide range of synthetic data sets and
the Berkeley segmentation database. Finally, concluding
remarks are made in Sect. 6.

2 Gaussian mixture, model selection, and
using priors

2.1 Gaussian mixture model and EM algorithm

GMM [1] assumes that an observation x ∈ Rd is dis-
tributed as a linear mixture of k Gaussian distributions,
i.e.,

q(x|Θ) =
k∑

i=1

αiq(x|θi),

q(x|θi) = G(x|µi, T
−1
i )

=
|Ti|1/2

(2π)d/2
exp

[
−1

2
(x − µi)TTi(x − µi)

]
,(1)

with parameters Θ = α ∪ {θi}k
i=1, α = [α1, . . . , αk]T,

and θi = (µi, Ti). Therein αi is the mixing weight for
the ith component with each αi � 0 and

∑k
i=1 αi = 1,

and G(x|µ, T−1) denotes a Gaussian density with a
mean µ and a precision (inverse covariance) matrix T .
Each q(x|θi) is named as a component, and k refers to
the component number. Here and throughout this paper,
q(·) is used to denote a generative distribution, likelihood
or prior, while p(·) refers to a posterior distribution.

GMM can be also regarded as a latent vari-
able model by introducing a binary latent vector
y = [y1, y2, . . . , yk]T, subject to yi ∈ {0, 1}, ∀i, and∑k

i=1 yi = 1. The generative process of an obser-
vation x is interpreted as follows: 1) y is sampled
from a multinomial distribution with probabilities α =
[α1, α2, . . . , αk]T; 2) x is randomly generated by the �th
Gaussian components q(x|θ�) with y� = 1. Therefore,
we have

q(x|y,Θ) =
k∏

i=1

[
G

(
x|µi, T

−1
i

)]yi
,

q(y|Θ) =
k∏

i=1

αyi

i . (2)

The likelihood q(x|Θ) described in Eq. (1) can
also be computed by marginalizing q(x, y|Θ) =
q(x|y,Θ)q(y|Θ) over y, i.e., q(x|Θ) =

∑
y q(x, y|Θ).

For a set of i.i.d. samples XN = {xt}N
t=1 from GMM,

there is correspondingly a set of latent variables Y =
{yt}N

t=1 and q(XN , Y |Θ) =
∏N

t=1 q(xt|yt,Θ)q(yt|Θ) =∏N
t=1

∏k
i=1[αiG(xt|µi, T

−1
i )]yit .

Given XN , there are three levels of inverse prob-
lems in GMM modeling [28]. The first level is the in-
ference of the component labels y. The second is the
estimation of the parameters Θ given a fixed k, which
is usually implemented by maximizing the likelihood
q(XN |Θ) =

∏N
t=1 q(xt|Θ) with the help of the following

well known EM algorithm [2,6,7]:
E-step : for i = 1, 2, . . . , k, and t = 1, 2, . . . , N , let

αp
i = αold

i and get:

pit =
αp

i G
(
xt|µold

i , T old −1
i

)
∑k

j=1 αp
jG

(
xt|µold

j , T old −1
j

) , ni =
N∑

t=1

pit. (3)

M-step : Let si = ni and n0 = 0, update Θ =
α ∪ {µi, Ti}k

i=1:

αnew
i =

si∑k
j=1 sj

,

µnew
i =

1
ni

N∑
t=1

pitxt,

T new −1
i =

1
ni − n0

N∑
t=1

pit(xt − µold
i )(xt − µold

i )T, (4)

where n0 is a given constant for a regularization pur-
pose, with n0 = 0 for the maximum likelihood learning.
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Instead of αp
i = αold

i , other options of αp
i also lead to

different types of learning, as to be introduced in the
rest of this paper.

The third level is the determination of an appropri-
ate k. These three levels of inverse problems are hierar-
chically nested in order, with the third level being the
outmost.

2.2 Automatic model selection and three Bayesian
related approaches

Shortly, automatic model selection means to automat-
ically determine an appropriate k during parameter
learning. An early effort is RPCL [13–15]. The key idea
is that not only the winning Gaussian component moves
a little bit to adapt the current sample but also the rival
(i.e., the second winner) Gaussian component is repelled
a little bit from this sample to reduce a duplicated infor-
mation allocation. As a result, an extra Gaussian com-
ponent is driven far away from data, or equivalently its
mixing weight or proportion of samples that are allo-
cated to this component is driven towards zero. In gen-
eral, RPCL is applicable to any model that consists of
k individual substructures, with extra substructures dis-
carded by a rival penalized mechanism and thus model
selection made automatically [29–33].

According to its general formulation (see the last part
of Sect. 2.1 in Ref. [12] or pages 65–67 in Ref. [34]),
automatic model selection is a nature of learning a mix-
ture of k individual substructures with k initialized large
enough, by a learning rule or principle with the following
two features. First, there is an indicator on a subset of
parameters that actually represents a particular struc-
tural component, and the component is effectively dis-
carded if its corresponding indicator becomes zero. Sec-
ond, in implementation of this algorithm or principle,
there is an intrinsic mechanism that drives such an indi-
cator towards zero if the corresponding structure is re-
dundant and thus can be effectively discarded. As such,
three Bayesian related approaches can be implemented
with such a nature of automatic model selection.

MML approach [22,23] is mathematically equivalent
to a maximum a posteriori method that improves the
likelihood function q(X|Θ, k) by an improper prior that
modifies a proper prior q(Θ|k) into becoming propor-
tional to q(Θ)/|I(Θ)|1/2 by the Fisher information ma-
trix I(Θ). Figueiredo and Jain in Ref. [18] proposed
such an MML algorithm for GMM with a Jeffreys
prior (MML-Jef), where I(Θ) is approximated by a
block-diagonal matrix. VB tackles the difficulty in com-
puting the marginal q(X|k) =

∫
q(X|Θ, k)q(Θ|k) dΘ,

with a computable lower bound by means of variational
method. The existing VB algorithms for GMM [19–21]
are featured by a Dirichlet prior on mixing weights αj ,

j = 1, 2, . . . , k, and an independent Normal-Wishart
(NW) prior on each Gaussian component’s parameters.

BYY learning on typical structures leads to new model
selection criteria, new techniques for implementing regu-
larization and a class of algorithms that implement auto-
matic model selection during parameter learning. Details
are referred to Refs. [12,17,31–33,35]. Both MML and
VB perform automatic model selection based on appro-
priate priors q(Θ|k), as well as an approximated expres-
sion of I(Θ) by an analytical function of parameters.
Favorably, BYY is capable of automatic model selection
even without imposing any priors on the parameters, and
its performance can be further improved as appropriate
priors are incorporated according to a general guideline
[12,17].

Still, there is lack of a systematic comparative in-
vestigation on the relative strengths and weaknesses of
the above three Bayesian related approaches in term of
their automatic model selection performances. This pa-
per aims to make such a systematic comparison.

2.3 Jeffreys prior and Dirichlet-Normal-Wishart prior

We consider GMM in Eq. (1) with two types of priors
q(Θ) on its parameters Θ = {αj, µj , Tj}. One is the Jef-
freys prior, which is a non-informative prior defined to
be proportional to the determinant of the Fisher infor-
mation. The other is a parametric conjugate prior [25],
which imposes a Dirichlet prior on the mixing weights
αj , a joint Normal-Wishart prior that consists of a Nor-
mal distribution on µj conditional on the Wishart dis-
tributed Tj , and thus we shortly denote this conjugate
prior as DNW.

The Jeffreys prior is computed as

q(Θ) ∝
√
|I(Θ)|,

I(Θ) = −E
[

∂2 ln q(XN |Θ)
∂vec(Θ)∂vec(Θ)T

]
, (5)

where I(Θ) is the Fisher information matrix. Due to
the difficulty of getting an exact analytical expression of
I(Θ), it is usually computed approximately.

We follow Ref. [18] to approximate I(Θ) by the fol-
lowing block-diagonal complete-data Fisher information
matrix Ic(Θ) such that Ic(Θ)−I(Θ) is positive definite:

Ic(Θ) = N × Block-Diag[α1Ic(θ1), α2Ic(θ2), . . . ,
αkIc(θk), Ic(α)], (6)

|Ic(θi)| ∝ |Ti|−d, |Ic(α)| ∝
k∏

i=1

α−1
i , (7)

where Ic(θi) is the Fisher information of the ith Gaus-
sian component, and Ic(α) is the Fisher information of
the mixing weights. It follows from Eqs. (5)–(7) that

|I(Θ)| ∝ Nk(ρ+1)
∏k

i=1 αρ−1
i

∏k
i=1 |Ti|−d,
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q(Θ) ∝ N
k(ρ+1)

2
∏k

i=1 α
ρ−1
2

i

∏k
i=1 |Ti|−

d
2 , (8)

where ρ = d + d(d + 1)/2 is the number of free param-
eters in each Gaussian component. Readers are referred
to Appendix B for an alternative perspective with Eq.
(8) derived from a block-diagonal approximation to the
Fisher information matrix of a lower bound of the like-
lihood function.

The DNW prior is expressed by

q(Θ) = D(α|λ, ξ)
k∏

i=1

G(µi|mi, T
−1
i /β)W(Ti|Φ, γ), (9)

D(α|λ, ξ) =
Γ(ξ)∏k

i=1 Γ(ξλi)

(
k∏

i=1

αξλi−1
i

)
,

λ = [λ1, λ2, . . . , λk]T,
k∑

i=1

λi = 1, λi � 0, ξ > 0, (10)

W(Ti|Φ, γ) =
|Φ| γ

2 |Ti|
γ−d−1

2 2−
dγ
2

Γd(γ
2 )

exp
{
−1

2
Tr(TiΦ)

}
,

β > 0, γ > d − 1, (11)

where Γ(·) is the Gamma function, and Γd(·) is
the generalized Gamma function with Γd(a/2) =
πd(d−1)/4

∏d
j=1 Γ(a−j+1

2 ).
It follows from Ref. [25] that the independent NW

prior used in Ref. [20] is not conjugate to Gaussian like-
lihood when both mean and precision of a Gaussian are
unknown. To take the advantage of conjugate distribu-
tions, this paper considers the joint NW prior suggested
in Ref. [25]. For the Normal priori G(µi|mi, T

−1
i /β) on

the mean vectors µi, this paper considers two alterna-
tives. Following Refs. [20,24,25], one considers the same
mi = m for all the mean vectors µi. Also, we relax
each mi to be freely adapted instead of being bundled
together.

3 Algorithms with Jeffreys priors

3.1 BYY harmony learning and BYY-Jef algorithms

Firstly proposed in Ref. [16] and systematically devel-
oped over a decade and half, BYY harmony learning
theory is a general statistical learning framework that
provides not only new model selection criteria but also
automatic model selection algorithms, under a best har-
mony principle [17]. Readers are referred to Ref. [12] for
a latest systematical introduction about BYY harmony
learning.

Briefly, a BYY system consists of Yang machine and
Ying machine, respectively corresponding to two types
of decomposition, namely, Yang p(R|X)p(X) and Ying
q(X|R)q(R), where the data X is regarded as generated
from its inner representation R = {Y ,Θ} that consists

of latent variables Y and parameters Θ, supported by a
hyper-parameter set Ξ that consists of both the hyper-
parameters Ξq in the distributions of Ying machine and
the hyper-parameters Ξp in Yang machine. The harmony
measure is mathematically expressed as follows [12,17]:

H(p||q,Ξ) =
∫

p(R|X)p(X) ln[q(X|R)q(R)] dXdR.

(12)

Maximizing the above H(p||q,Ξ) leads to not only a best
matching between the Ying-Yang pair, but also a com-
pact model with a least complexity. Such an ability can
be observed from several perspectives (see Sect. 4.1 in
Ref. [12]).

Being different from MML and VB that both base
on an appropriate prior q(Θ|Ξ) to make model selec-
tion, the BYY harmony learning by Eq. (12) bases on
q(R) = q(Y |Θ)q(Θ|Ξ) to make model selection, with
q(Y |Θ) in a role that is not only equally important to
q(Θ|Ξ) but also easy computing, while q(Θ|Ξ) is still
handled in a way similar to MML and VB. As addressed
in Sect. 2.2 of Ref. [12], the BYY harmony learning leads
to improved model selection via either or both of im-
proved model selection criteria and learning algorithms
with automatic model selection.

Maximizing H(p||q,Ξ) is implemented with the help
of the general two-stage iterative procedure shown by
Fig. 6(a) in Ref. [17] (also see Eqs. (6) and (7) in Ref.
[28] and Fig. 5(b) in Ref. [12]). The first stage esti-
mates Ξ (usually via estimating Θ) by an optimization
of continuous variables, while the second stage involves
a discrete optimization on one or several integers that
index candidate models. This paper only considers the
first stage where automatic model selection actually per-
forms, though the second stage may be also considered
to further improve the model selection performance with
much more computing costs.

For GMM in Eq. (1), H(p||q,Θ,Ξ) takes a specific
expression as given by Eq. (10) in Ref. [12], which is
rewritten as below:

H(p||q,Θ,Ξ) =
k∑

i=1

N∑
t=1

p(i|xt,Θ) ln
[
αiG

(
xt|µi, T

−1
i

)]

+
k∑

i=1

R (h, θi) ,

p(i|xt,Θ) =
αiG

(
xt|µi, T

−1
i

)
∑k

j=1 αjG
(
xt|µj , T

−1
j

) ,

R (h, θj) = ln [q (h |XN ) q (θj)] −
1
2
Tr

(
h2Tj

)
,

θi = {αi, µi, Ti}, (13)

which comes from Eq. (12) on the following BYY system:

Y ing : q(X, R) = q(X|R)q(R), q(R) = q(Y |Θ)q(Θ),

q(Y |Θ) =
N∏

t=1

q(yt|Θ),
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q(X|R) =
N∏

t=1

q(xt|yt,Θ),

Y ang : p(R, X) = p(R|X)p(X),
p(R|X) = p(Θ|X)p(Y |X,Θ),
ph(X) = G

(
X|XN , h2I

)
,

p(Y |X,Θ) =
N∏

t=1

k∏
i=1

p(i|xt,Θ)yit , (14)

where q(xt|yt,Θ), q(yt|Θ) of the Ying machine are
given by Eq. (2). For the Yang machine, ph(X) is a
smoothed expression of a sample set XN = {xt} with
p0(X) at h = 0 being the empirical distribution. p(R|X)
is designed as a functional of the Ying-machine accord-
ing to the variety preservation (VP) principle, see Sect.
4.2 and especially Eq. (28) in Ref. [12]. One typical ex-
ample is the Bayesian posterior of the Ying-machine. In
this paper, p(i|xt,Θ) is designed via the Bayesian pos-
terior by Eq. (13), while p(Θ|X) is simply considered
as a free structure that maximizes the harmony measure
H(p||q,Ξ) in Eq. (12), which makes the maximization of
H(p||q,Ξ) become equivalent to

p(Θ|X) = δ(Θ − Θ̂), Θ̂ = arg max
Θ

H(p||q,Θ,Ξ). (15)

Putting all the above settings into Eq. (12) leads us
to Eq. (16). Details are referred to Sect. 3.1 of Ref.
[12] and especially its Fig. 7 for a unified Ying-Yang
learning procedure for implementing the maximization
of H(p||q,Θ,Ξ) via iterating the Yang-step and Ying-
step alternatively.

Ignoring q(Θ|Ξ) and letting h = 0, the Ying-step has
the same expression as the M-step in Eq. (4) of the EM
algorithm, while the Yang-step is different from the E-
step of the EM algorithm in that pit by Eq. (3) is changed
into

pit = p(i|xt) + ∆it, p(i|xt) = p
(
i|xt,Θold

)
,

∆it = ∆it

(
Θold

)
, ∆it(Θ) = p(i|xt,Θ)δit(Θ),

δit(Θ) = ln p(i|xt,Θ) −
k∑

j=1

p(j|xt,Θ) ln p(j|xt,Θ)

= ln
[
αiG

(
xt|µi, T

−1
i

)]
−

k∑
j=1

p(j|xt,Θ) ln
[
αjG

(
xt|µj , T

−1
j

)]
, (16)

which actually modifies the M-step of the EM algorithm
via δit. For a sample xt, δit > 0 means that the ith
component is better than the average of all the com-
ponents to represent xt and thus the ith component is
further updated towards xt with an enhanced strength
pit > 0. If 0 > δit > −1, i.e., the ith component is
below the average for representing xt but not too far
away, the ith component is slightly updated towards xt

with a much reduced strength pit > 0. Moreover, when
−1 > δit, we get pit < 0 that reverses the direction to
become de-learning, somewhat similar to updating the

rival in RPCL learning that automatically determines
k during parameter learning [13,13–15,31]. In fact, this
nature of automatic model selection comes from the role
of q(Y |Θ), as previously introduced after Eq. (12).

To compare MML and VB that both base on an ap-
propriate prior q(Θ|Ξ) to make model selection, we also
include q(Θ|Ξ) for the BYY harmony learning. For sim-
plicity, we still let h = 0 and consider

q(Θ) ∝
k∏

i=1

[α
ρ−1
2

i |Ti|−
iT d

2 ],

R (h, θj) =
1
2
[(ρ − 1) lnαi − iT d ln |Ti|], (17)

which is put into Eq. (13). Then, simplified version of the
unified Ying-Yang learning procedure in Fig. 7 in Ref.
[12] is obtained for maximizing H(p||q,Ξ). Given in Ta-
ble 1, this simplification is shortly denoted as Algorithm
BYY-Jef. For convenience, we use an indicator iT , with
iT = 1 considering the Jeffreys prior on all parameters
Θ, with iT = 0 and ρ = 0 considering the Jeffreys prior
merely on the mixing weights α via removing from pit

a background effect 0.5/N in Table 1. Moreover, letting
iT = 1 imposes Jeffreys prior on the precision matrices
via adding a background 0.5ρ/N to pit and a diagonal
background d/N . As Yang-step and Ying-step iterate,
the ith component’s mixing weight αi will be pushed to
zero and then discarded if it is extra. Thus, the number
of Gaussians is automatically determined.

3.2 VB and VB-Jef algorithms

The Bayesian framework allows proper incorporation
of prior knowledge on the model parameters. Bayesian
model selection is implemented to choose a model
complexity k (e.g., the number of Gaussian compo-
nents of GMM) with the maximum marginal likeli-
hood, which is obtained by integrating out the latent
variables Y and the parameters Θ, i.e., q(XN ) =∫

q(XN , Y |Θ)q(Θ)dY dΘ. However, the involved inte-
gration is usually very difficult. Variational Bayesian
[19,20] tackles this difficulty via constructing a com-
putable lower bound for the log marginal likelihood by
means of variational methods, and an EM-like algorithm
is employed to optimize this lower bound. More precisely,
the lower bound is given as follows:

JVB(Ξ∗,Ξ)

=
∫

p(Θ, Y |Ξ∗) ln
q(XN , Y |Θ)q(Θ|Ξ)

p(Θ, Y |Ξ∗)
dY dΘ

= −
∫

p(Θ, Y |Ξ∗) ln
p(Θ, Y |Ξ∗)

p(Θ, Y |XN ,Ξ)
dY dΘ

+ ln q(XN |Ξ), (18)

where Y represents all hidden variables, e.g., the la-
bel y in Eq. (2) for GMM, q(Θ|Ξ) is a prior on
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Table 1 BYY-Jef for learning GMM, with iT = 1 and ρ = d + 0.5d(d + 1) considering Jeffreys priors on both mixing

weights and the precision matrices, and with iT = 0 and ρ = 0 considering Jeffreys prior merely on mixing weights, and

with iT = 0 and eγ = 0 considering no priors, respectively

Initialization: Randomly initialize GMM with a large enough component number k; set τ = 0, iα = 1 and the initial

harmony measure JBYY(τ) = −∞;

repeat

Randomly pick a sample xt from the dataset XN ;

Yang-step: For i = 1, 2, . . . , k, get pit by Eq. (16);

Ying-step: Update αnew
i = (1 − η)αold

i + η
pit + eγPk

j=1(pit + eγ)
, and update {µi, Ti}k

i=1 by

eγ =

(
0.5(ρ − 1)/N, BYY-Jef ,

0, BYY without priors;

µnew
i = µold

i + ηpit(xt − µold
i );

T−1 new
i = Snew

i Snew T
i , Snew

i = Sold
i (Id + ηGi),

Gi = pit[T
old
i (xt − µold

i )(xt − µold
i )T − Id] + iT

d

N
Id;

� for i = 1, 2, . . . , k do if αi → 0 then discard component i, let k = k − 1 and continue;

if another 5N runs have passed then let τ = τ + 1; calculate JBYY(τ) by Eqs. (13) and (17);

until JBYY(τ) − JBYY(τ − 1) < εJBYY(τ − 1), with ε = 10−5;

parameters Θ with hyper-parameters Ξ, and p(Θ, Y )
is a variational posterior with hyper-parameters
Ξ∗ to approximate the exact Bayesian posterior
p(Θ, Y |XN ,Ξ) ∝ q(XN , Y |Θ)q(Θ|Ξ). It follows from
Eq. (18) that the lower bound JVB(Ξ∗,Ξ) is tight to
ln q(XN |Ξ) when p(Θ, Y |Ξ∗) = p(Θ, Y |XN ,Ξ).

For computational convenience, q(Θ|Ξ) is usually cho-
sen to be conjugate priors, and p(Θ, Y ) is usually as-
sumed to be a factorized form p(Θ, Y ) = p(Y )

∏
i p(Θi)

with Θ = ∪iΘi, so that maximizing JVB makes the vari-
ational posterior p(Θ) to be in the same form as the
corresponding prior.

To the best of our knowledge, there is still no VB al-
gorithm yet on GMM with the Jeffreys prior q(Θ) in Eq.
(8). We develop one on the assumption that the varia-
tional posterior is factorized as follows:

p(Θ, Y ) = p(Y )p(Θ), p(Y ) =
N∏

t=1

p(yt),

p(yt) =
k∏

i=1

pit
yit ,

p(Θ) = G(vec(Θ)|vec(Θ∗),Π),
with Θ∗ = argmax

Θ
u(Θ), u(Θ) = ln q(XN ,Θ),

Π = −
[

∂2u(Θ)
∂vec(Θ)∂vec(Θ)T

]−1

, (19)

where p(y) shares the same form with q(y|Θ) by Eq.
(2) due to its conjugate nature. The inverse of the ma-
trix Π is conceptually different from the Fisher informa-
tion I(Θ) in Eq. (5). More specifically, I(Θ) concerns
the expected Hessian of the log-conditional -distribution
ln q(XN |Θ), while the inverse of Π concerns the Hes-
sian of the log-joint -distribution ln q(XN ,Θ). Because
the Jeffreys prior q(Θ) by Eq. (17) is not a conjugate
one, the exact variational posterior p(Θ) is difficult to
compute and thus approximated by a Gaussian distribu-

tion around the apex Θ∗ [17]. Here and throughout this
paper, vec(·) refers to the vectorization operator.

Since the quantity u(Θ) and the Hessian Π are still
difficult to be tackled directly, we approximate u(Θ) by
the following variational lower-bound ulb(Θ, {pit}):

ulb(Θ, {pit}) =
∑
Y

p(Y ) ln
q(XN , Y |Θ)q(Θ)

p(Y )
, (20)

and with q(XN , Y |Θ) =
∏N

t=1 q(xt, yt|Θ), it follows
from Eq. (2) that

ulb(Θ, {pit}) =
N∑

t=1

k∑
i=1

pit ln
[
αiG

(
xt|µi, T

−1
i

)]

+
k∑

i=1

[
ρ − 1

2
lnαi −

iT d

2
ln |Ti|

]

−
N∑

t=1

k∑
i=1

pit ln pit +
k(ρ + 1)

2
lnN. (21)

Accordingly, the matrix Π in Eq. (19) is approximated
by the following block-diagonal:

Π(Θ∗, {pit}) � Block-Diag[Πα,Πµ1 , . . . ,Πµk ,

ΠT1 , . . . ,ΠTk ],

Πα = −diag
[
∂2ulb(Θ, {pit})

∂α∂αT

]−1

,

|Πα| ∝
k∏

i=1

α2
i∑N

t=1 pit + (ρ − 1)/2
,

Πµi = −
[
∂2ulb(Θ, {pit})

∂µi∂µT
i

]−1

,

|Πµi | ∝
(

N∑
t=1

pit

)−d

|Ti|−1,

ΠTi = −
[

∂2ulb(Θ, {pit})
∂vec(Ti)∂vec(Ti)T

]−1

,
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|ΠTi | ∝
(

N∑
t=1

pit − d

)−d(d+1)/2

|Ti|d+1. (22)

Putting all the above into Eq. (18), solving the VB
problem is approximated as follows:

Θ∗ = arg max
Θ

ulb(Θ, {p∗it}),
{p∗it} = arg max

{pit}
JJef

VB(Θ∗, {pit}),

JJef
VB(Θ∗, {pit})

= ulb(Θ∗, {pit}) +
1
2

ln |Π(Θ∗, {pit})| + const

= ulb(Θ∗, {pit}) −
1
2

k∑
i=1

ln

(
N∑

t=1

pit +
ρ − 1

2

)

− iT
2

k∑
i=1

[
d ln

(
N∑

t=1

pit

)
+

d(d + 1)
2

ln

(
N∑

t=1

pit−d

)]

+
k∑

i=1

[
lnαi +

iT d

2
ln |Ti|

]
+ const, (23)

where we consider Jeffreys prior merely on mixing
weights by setting iT = 0 and ρ = 0, and further consider
Jeffreys priors on both mixing weights and Gaussian pa-
rameters by setting iT = 1 and ρ = d + 0.5d(d + 1).

The corresponding VB algorithm, shortly denoted as
VB-Jef, is listed in Table 2. Moreover, when iT = 0

and fixing ρ = 0, we have its special case VB-Jef(α)
with Jeffreys prior merely on mixing weights. Also, VB-
Jef(α) is shared by MML-Jef [18] via some options (see
the next subsection for details). As briefly summarized in
Table 3, VB-Jef has the same M-step as MAP-Jef, which
extends the M-step of the EM algorithm by consider-
ing the Jeffreys prior q(Θ) that affects updating α by
si = ni − 0.5(1− ρ) and also updating the precision ma-
trices by a regularization n0 = d in Table 2. Comparing
with the E-step of MAP-Jef, VB-Jef has an additional
term 1

2 ln |Π(Θ∗, {pit})| in its objective function, which
makes its E-step become different from the E-step of
both MAP-Jef and the standard EM, with pit obtained
by Eq. (3) via a modified αp

i . Also, this pit differs from
the Yang-step by Eq. (16) for Algorithm BYY-Jef. Dur-
ing learning by Table 2, the ith Gaussian component is
discarded if αi → 0, and thus the number of Gaussians
is automatically determined after convergence.

3.3 MML and MML-Jef algorithms

Proposed by Wallace and Boulton [22,23], MML is an
information theoretic restatement of Occam’s Razor.
Among different models, the one generating the short-
est overall code length is regarded most likely to be

Table 2 Learning GMM with Jeffreys prior: MML-Jef [18] with J(τ) = JJef
MML(Θ) by Eq. (25), and VB-Jef with

J(τ) = JJef
VB by Eq. (23) plus its special case VB-Jef(α) with Jeffreys prior merely on mixing weights

Initialization: Randomly initialize GMM with a large enough component number k; set τ = 0 and the initial objective
J(τ) = −∞;

repeat

E-step: For i = 1, 2, . . . , k, get

αp
i =

8>>>>>><>>>>>>:

αold
i , MML-Jef,

αold
i exp

"
− 1

2(Nαold
i − 1/2)

#
, VB-Jef(α),

αold
i exp

"
− 1

2(Nαold
i + (ρ − 1)/2)

− d

2Nαold
i

− d(d + 1)

4(Nαold
i − d)

#
, VB-Jef;

Then, get pit and ni by Eq. (3);

M-step: Get

si = ni − 1

2
(1 − δsi), δsi =

(
1 − ρ, ρ = d + d(d + 1)/2, MML-Jef,

ρ, VB-Jef and VB-Jef(α),

n0 =

(
0, MML-Jef and VB-Jef(α),

d, VB-Jef;

Update α∪ {µi, Ti}k
i=1 by Eq. (4);

� for i = 1, 2, . . . , k do if αi → 0 then discard component i, let k = k − 1 and continue;

if another five runs have passed then let τ = τ + 1; calculate the objective J(τ);

until J(τ) − J(τ − 1) < εJ(τ − 1), with ε = 10−5;

Table 3 The EM implementations of MAP-Jef, VB-Jef, and MML-Jef: common and different points

E-step: {p∗it} = arg max{pit} fE(Θ∗, {pit}) M-step: Θ∗ = argmaxΘ fM(Θ, {p∗it})
MAP-Jef fE = ulb(Θ∗, {pit}) fM = ulb(Θ, {p∗it})
VB-Jef fE = ulb(Θ∗, {pit}) + 1

2
ln |Π(Θ∗, {pit})| fM = ulb(Θ, {p∗it})

MML-Jef fE = ulb(Θ∗, {pit}) fM = ulb(Θ, {p∗it}) − 1
2

ln |I(Θ)|
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the best, where the code length is Length(X,Θ) =
Length(X|Θ) + Length(Θ), which consists of a state-
ment of the model and a statement of data encoded by
using that model. Stemming from a similar philosophy,
MDL [11] is another closely related model selection cri-
terion that is commonly used in a two-stage procedure
too [11,36]. Detailed comparisons on MML and MDL are
referred to Refs. [23,36–38].

As introduced in Refs. [22,23], MML seeks a model Θ
by maximizing the objective function:

JMML(Θ) = ln q(XN |Θ) + ln q(Θ) − 1
2

ln |I(Θ)|, (24)

where I(Θ) is the Fisher information matrix given in Eq.
(5). It is mathematically equivalent to an MAP method
given a prior that is proportional to q(Θ)/|I(Θ)|1/2.

Using the Jeffreys prior q(Θ) ∝
√
|I(Θ)| in Eq. (5),

JMML(Θ) in Eq. (24) degenerates to be the ML principle
since ln q(Θ) − 1

2 ln |I(Θ)| = 0. To avoid this situation,
Figueiredo and Jain [18] considered

JJef
MML(Θ) = ln q(XN |Θ)

− 1
2

k∑
i=1

(ln αi + d ln |Ti|) −
1
2

ln |I(Θ)|

≈ ln q(XN |Θ) − ρ

2

k∑
i=1

lnαi −
k(ρ + 1)

2
lnN,

(25)

which comes from Eq. (24) with a decoupled approxi-

mation q(Θ) ∝
∏k

i=1

[
α
− 1

2
i |Ti|−

d
2

]
as a counterpart of

Ic(Θ) by Eq. (6) as I(Θ). The MML algorithm in Ref.
[18], shortly denoted as MML-Jef and restated in Table
2, was derived to equivalently implement the maximiza-
tion of JJef

MML(Θ).
In the special case of considering the Jeffreys prior

merely on α, we have

q(Θ) ∝
k∏

i=1

α
− 1

2
i , Ic(Θ) ∝

k∏
i=1

α−1
i , (26)

which also makes JMML(Θ) in Eq. (24) degenerate to be
the ML principle. Correspondingly, the algorithm MML-
Jef in Table 2, denoted by MML-Jef(α), degenerates to
implement the ML learning.

4 Algorithms with Dirichlet prior and DNW
priors

4.1 Algorithms BYY-Dir(α), VB-Dir(α), and
MML-Dir(α)

We consider the prior on the mixing weights q(α) re-
placed by the Dirichlet prior D(α|λ, ξ) in Eq. (10), un-
der the framework of VB, MML, and BYY respectively.

Different from the Jeffreys prior, the Dirichlet prior has a
set of hyper-parameters Ξ = {λ, ξ}, which are unknown
either to be specified before learning or to be simultane-
ously determined during learning.

We start at BYY-Dir(α). Although there is a gen-
eral guideline for implementing the maximization of
H(p||q,Ξ,Ξ∗) with priors on the parameters [12,17],
there are still no algorithm developed for implementing
BYY harmony learning with either the Dirichlet prior
or the DNW prior yet. Here, we propose such an algo-
rithm featured by an alternative decomposition of the
Yang machine part p(R|X) that differs from its coun-
terpart in Eq. (14). Specifically, we consider a Bayesian
Ying-Yang system with its Ying machine still given by
Eq. (14), together with the Dirichlet prior

q(Θ) = q(α) = D(α|λ, ξ), (27)

while p(R|X) in Eq. (14) is replaced by

p(R|X) = p(Θ|Y , XN )p(Y |X),
p(Θ|Y , XN ) ≈ p(Θ|Y ),
p(Θ|Y ) = p(α|Y ) = D(α|λ∗, ξ + N),

p(Y |X) =
N∏

t=1

k∏
i=1

p(i|xt)yit . (28)

Still in accordance with the variety preservation prin-
ciple (see Sect. 4.2 in Ref. [12]), p(α|Y ) comes from
the Bayesian posterior of

∏N
t=1 q(yt|Θ)q(α). With the

help of the conjugate property, p(α|Y ) is also a Dirich-
let D(α|λ∗, ξ + N) with a degree (ξ + N). Moreover,
p(i|xt) comes from considering the Bayesian posterior

p(i|x) ∝
∫

αiG
(
x|µi, T

−1
i

)
q(αi)dαi

= λiG
(
x|µi, T

−1
i

)
. (29)

It follows from Eq. (12) that the harmony measure is
rewritten as

HDir(α)(Θ,Ξ) =
k∑

i=1

N∑
t=1

p(i|xt,Θ, λ) ln
[
αp

i (ξ+N, λ∗)G
(
xt|µi, T

−1
i

)]

+
k∑

i=1

R(ξ+N,λ∗
i )(ξ, λi),

p(i|xt,Θ, λ) =
λiG(xt|µi, T

−1
i )∑

j λjG(xt|µj, T
−1
j )

,

αp
i (ξ + N, λ∗) = exp[δΨ((ξ + N)λ∗

i )],

R(ξ+N,λ∗
i )(ξ, λi) =

1
k

ln Γ(ξ) − ln Γ(ξλi)

+(ξλi − 1)δΨ((ξ + N)λ∗
i ),

δΨ((ξ + N)λ∗
i ) = Ψ((ξ + N)λ∗

i ) − Ψ(ξ + N), (30)

where Ξ = {λ∗, ξ,λ}, and Ψ(x) = (d/dx) ln Γ(x) is the
digamma function. This above HDir(α) is maximized via
a gradient based updating algorithm summarized in Ta-
ble 4, which is shortly denoted as BYY-Dir(α). Being
different from the one in Table 1, the H-step is added
for updating the hyper-parameters Ξ via maximizing



224 Front. Electr. Electron. Eng. China 2011, 6(2): 215–244

HDir(α) with respect to Ξ. Instead of αi, here λi is
pushed towards zero during learning and then the ith
Gaussian component is discarded, which performs au-
tomatic model selection on determining the number of
Gaussian components. Readers are referred to Appendix
A for the detailed derivations about HDir(α)(Θ,Ξ) and
the Algorithm BYY-Dir(α).

We observe a similar format to H(p||q,Θ,Ξ) in
Eq. (13) but with three different points. First, αi of
p(i|xt,Θ) in Eq. (13) is replaced by λi of p(i|xt,Θ, λ) in
Eq. (30). Second, αi of ln [αiG(xt|µi, T

−1
i )] in Eq. (13)

is replaced by αp
i in Eq. (30) that is a parametric func-

tion of ξ, λ∗
i . Third, the regularization term R (h, θj) in

Eq. (13) is replaced by R(ξ+N,λ∗
i )(ξ, λi) in Eq. (30) that

provides certain regularizing role on learning ξ, λ∗
i , λi.

Next, we introduce VB-Dir(α). With the following
pair of conjugate Dirichlet priors:

q(α) = D(α|λ, ξ), p(α) = D(α|λ∗, ξ∗), (31)

where {λ∗, ξ∗} are posterior hyper-parameters. Accord-
ingly, the variational lower bound JVB in Eq. (18) be-
comes

J
Dir(α)
VB (Θ,Ξ)

=
∫ ∑

Y

p(α)p(Y ) ln
q(XN , Y |α)q(α)

p(Y )p(α)
dα

=
N∑

t=1

k∑
i=1

pit{ln [αp
i (ξ

∗, λ∗)G(xt|µi, T
−1
i )] − ln pit}

+
k∑

i=1

[R(ξ∗,λ∗
i )(ξ, λi) − R(ξ∗,λ∗

i )(ξ∗, λ∗
i )], (32)

where αp
i (ξ

∗, λ∗) and R(ξ∗,λ∗
i )(ξ, λi) take the same forms

as in Eq. (30). Maximizing this objective leads to a VB
algorithm listed also in Table 5, shortly denoted as VB-
Dir(α).

Being different from the algorithm in Table 2, not only
α∗

i in the E-step depends on the prior hyper-parameters
Ξ, but also there is the H-step added in Table 5 that
updates the hyper-parameters Ξ, via the gradient of
J

Dir(α)
VB by Eq. (32) with respect to Ξ. Moreover, for

both VB-Dir(α) and MML-Dir(α) , the ith Gaussian
component is discarded if λi → 0. That is, automatic
model selection on the number of Gaussian components
is made also via the prior hyper-parameters instead of
checking whether αi → 0.

Finally, we move to MML-Dir(α). With the Dirichlet
prior q(Θ) = D(α|λ, ξ), the objective MML criterion by
Eq. (24) becomes

J
Dir(α)
MML (Θ) = ln q(XN |Θ) +

k∑
i=1

(ξλi − 1) lnαi

+ lnΓ(ξ) −
k∑

i=1

ln Γ(ξλi) −
1
2

ln |I(α)|,

(33)

where |I(α)| = |NIc(α)| = Nk
∏k

i=1 α−1
i as given by

Table 4 BYY-Dir(α) algorithm for GMM with Dirichlet prior on mixing weights

Initialization: Randomly initialize GMM with a large enough component number k; set τ = 0 and the initial harmony
measure JBYY(τ) = −∞;

repeat

Randomly pick a sample xt from the dataset XN ;

Yang-step: Get p(i|xt) = p(i|xt,Θold, λold) and αi = αp
i (ξ∗old, λ∗old) by Eq. (30);

Further get πit = ln [αiG(xt|µold
i , Told −1

i )] and

δit = πit −
kX

j=1

p(j|xt)πjt, pit = p(i|xt)(1 + δit);

Ying-step: Denote ξ∗old = ξold + N , and update the hyper-parameters λ∗:

λ∗new
i =

λ∗old
i + η∆λi(Ξold)Pk

j=1(λ∗old
i + ∆λj(Ξold))

, ∆λi(Ξ) = ςitξ
∗λ∗

i [Ψ′(ξ∗λ∗
i ) − Ψ′(ξ∗)],

where ςit = p(i|xt) + (ξoldλold
i − 1)/N , and Ψ′(x) = (d/dx)Ψ(x) is the trigamma function;

Then, update the parameters {µi, Ti}k
i=1 by

µnew
i = µold

i + ηpit(xt − µold
i ),

T−1 new
i = Snew

i Snew T
i , Snew

i = Sold
i (Id + ηGi),

Gi = pit[T
old
i (xt − µold

i )(xt − µold
i )T − Id];

H-step: Get νi = Ψ(ξold) − Ψ(ξoldλold
i ) − Ψ(ξ∗) + Ψ(ξ∗λ∗ old

i ) and update :

λnew
i = (λold

i + ηδλi)/
Pk

j=1(λold
j + ηδλj ), δλi = p(i|xt)δit + ξold

N
vi,

ξnew = ξold + ηδξ, δξ =
Pk

i=1{λold
i vi + Nςit[λ∗old

i Ψ′(ξ∗oldλ∗old
i ) − Ψ′(ξ∗old)]};

� for i = 1, 2, . . . , k do if λi → 0 then discard component i, let k = k − 1 and continue;

if another 5N runs have passed then let τ = τ + 1; calculate JBYY(τ) = HDir(α)(Θnew,Ξnew) by Eq. (30);

until JBYY(τ) − JBYY(τ − 1) < εJBYY(τ − 1), with ε = 10−5;
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Table 5 Learning GMM with Dirichlet prior on mixing weights : MML-Dir(α) with JMML(τ) by Eq. (33) versus VB-

Dir(α) with JVB(τ) by Eq. (32)

Initialization: Randomly initialize GMM with a large enough component number k; set τ = 0 and the initial objective

J(τ) = −∞;

repeat

E-step: Let ξ∗ = ξold + N and get

αp
i =

(
αold

i , MML-Dir(α),

exp[Ψ(ξ∗λ∗old
i ) − Ψ(ξ∗)], VB-Dir(α);

Then, get pit and ni by Eq. (3);

M-step: For VB-Dir(α), get λ∗new
i =

ξoldλold
i + ni

ξ∗
;

For MML-Dir(α), get αnew
i =

siPk
j=1 sj

with si = ni + ξoldλold
i − 1

2
;

Update {µi, Ti}k
i=1 by Eq. (4) with n0 = 0;

H-step: Update the prior hyper-parameters {λ, ξ} as follows:

λnew
i =

λold
i + ηδλiPk

j=1(λold
j + ηδλj )

,

δλi =

(
ln αold

i − Ψ(ξoldλold
i ) + Ψ(ξold), MML-Dir(α),

Ψ(ξ∗oldλ∗old
i ) − Ψ(ξ∗old) − Ψ(ξoldλold

i ) + Ψ(ξold), VB-Dir(α),

ξnew = ξold + ηδξ, δξ =
kX

i=1

λold
i δλi;

� for i = 1, 2, . . . , k do if λi → 0 then discard component i, let k = k − 1 and continue;

if another 5 runs have passed then let τ = τ + 1; calculate the variational function as J(τ);

until J(τ) − J(τ − 1) < εJ(τ − 1), with ε = 10−5;

Eqs. (6) and (7). An algorithm is developed in Table 5 to
maximize J

Dir(α)
MML (Θ), shortly denoted as MML-Dir(α).

Its E-step is the same as the E-step of the EM algorithm
given in Sect. 2.1, while its M-step is similar to the one
in Table 2 with si extended to include the prior hyper-
parameters λ and ξ in consideration. Moreover, J

Dir(α)
MML

consists of unknown hyper-parameters Ξ, the H-step is
added in Table 5 to adjust the prior hyper-parameters
Ξ by a gradient method to maximize J

Dir(α)
MML (Θ) with

respect to Ξ.

4.2 Algorithms with DNW priors

We proceed to consider the DNW priors in Eq. (9) on
all the parameters. For BYY harmony learning, we have
the Ying machine still given by Eq. (14), and the Yang
machine still given by Eq. (28) but with the following
modifications:

p(α|Y ) = D(α|λ∗, ξ + N),

p(Θ|Y ) = p(α|Y )
k∏

i=1

[
G

(
µi|m∗

i ,
T−1

i

β +
∑N

t=1 yit

)

· W
(

Ti|Φ∗
i , γ +

N∑
t=1

yit

) ]
. (34)

The conjugate posteriori p(Θ|Y ) comes from the
Bayesian posterior of

∏N
t=1 q(yt|Θ)q(Θ), in accordance

with the variety preservation principle (see Sect. 4.2 in
Ref. [12]). Moreover, p(i|xt) comes from considering the
Bayesian posterior

p(i|x) ∝
∫

αiG(x|µi, Ti)q(θi|Ξ)dθi

= λiT (x|τ, mi,Υ), (35)

where T (x|τ, mi,Υ) is a multivariate Student’s T-
distribution with a degree-of-freedom τ , a mean mi and
a scatter matrix Υ [39], that is, we have

T (x|τ, mi,Υ) =
Γ( τ+d

2 )

(πτ)
d
2 Γ( τ

2 )
· 1

|Υ| 12 [1 + 1
τ (x − mi)TΥ−1(x − mi)]

τ+d
2

,

with τ = γ − d + 1, Υ =
β + 1
βτ

Φ. (36)

Putting the above terms into Eq. (12), the harmony
measure becomes

HDNW(Ξ) =
∫ ∑

Y

p(Θ|Y )p(Y |X)p(X) ln[q(X|Y ,Θ)q(Y |Θ)q(Θ|Ξ)]dXdΘ > HDNW(Ξ,Ξ∗),

HDNW(Ξ,Ξ∗) =
k∑

i=1

N∑
t=1

p(i|xt,Ξ, λ) ln
[
αp

i (ξ + N, λ∗)G
(

xt|m∗
i ,

Φ∗
i

γ∗
i + 1 − p(i|xt,Ξ, λ)

)]
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+
k∑

i=1

[R(ξ+N,λ∗
i )(ξ, λi) − R(Ξi)] + R(Φ, β, γ) − R(k) + const,

p(i|xt,Ξ, λ) =
λi[1 + β

β+1(xt − mi)TΦ−1(xt − mi)]−
γ+1
2∑k

j=1 λj [1 + β
β+1 (xt − mj)TΦ−1(xt − mj)]−

γ+1
2

,

R(Ξi) =
1
2

(
d

N∑
t=1

ln(γ∗
i + 1 − p(i|xt,Ξ, λ))

)
+

1
2
(γ − d) ln |Φ∗

i |

+
1
2
βγ∗

i (mi − m∗
i )

TΦ∗
i
−1(mi − m∗

i ) +
1
2
γ∗

i Tr(ΦΦ∗
i
−1),

R(Φ, β, γ) =
k

2
(γ ln |Φ| + d lnβ) −

d∑
j=1

[
k ln Γ

(
γ + 1 − j

2

)
− N + k (γ − d)

2
Ψ

(
γ + 1 − j

2

)]
,

R(k) =
k

2

[
d(d + 1) ln 2 +

d(d + 1)
2

lnπ + d

]
,

Ξ = {λ∗, ξ,λ, {mi, m
∗
i ,Φ

∗
i }k

i=1, β, γ,Φ}, γ∗
i = γ +

N∑
t=1

p(i|xt,Ξ, λ). (37)

Therein αp
i (ξ +N, λ∗) and R(ξ+N,λ∗

i )(ξ, λi) are the same
as in Eq. (30). An algorithm is developed in Table
6 to maximize the lower bound of harmony measure
HDNW(Ξ,Ξ∗). Readers are referred to Appendix A for
the detailed derivations about HDNW(Ξ,Ξ∗) and this
algorithm.

Again, we observe a similar format to H(p||q,Θ,Ξ) in
Eq. (13) and HDir(α)(Θ,Ξ) in Eq. (30) but with three
different points. First, p(i|xt,Θ, λ) in Eq. (30) is re-
placed by p(i|xt,Ξ, λ) in Eq. (37) that has a longer
tail and thus increases its attention on the overlapped
regions. Second, ln [αp

i G(x|µi, T
−1
i )] in Eq. (30) is re-

placed by ln [αp
i (ξ, λ)G(x|m∗

i ,Φ
∗
i /γ∗

i )] in Eq. (37) with
the mean and covariance of each Gaussian component
estimated by the regularized hyper-parameters. Third,
the regularization term R(ξ+N,λ∗

i )(ξ, λi) in Eq. (30) is re-
placed by R(ξ+N,λ∗

i )(ξ, λi)−R(Ξi)+[R(Φ, β, γ)−R(k)]/k

that provides the regularizing role on all the parameters.
Also, we can further extend Eqs. (24) and (6) to con-

sider the following JMML(Θ) with the DNW prior given
in Eq. (9):

JDNW
MML (Θ,Ξ) = ln q(XN |Θ) + lnD(α|λ, ξ)

+
k∑

i=1

lnG(µi|mi, T
−1
i /β)

+
k∑

i=1

lnW(Ti|Φ, γ) − 1
2

ln |I(Θ)|. (38)

Compared with J
Dir(α)
MML in Eq. (33), the third and fourth

terms are added due to the Normal-Wishart priors on the
Gaussian parameters, and last term comes from Eq. (6).
The algorithm to maximize this JDNW

MML (Θ,Ξ) is sketched
in Appendix B, shortly denoted as MML-DNW. Actu-
ally, a special case of this MML-DNW algorithm returns
to be the same as the MML-Jef algorithm given in Ref.
[18].

Moreover, we can also extend J
Dir(α)
VB (Θ,Ξ) in Eq.

(32) into a general variational lower bound JVB with
the DNW prior by Eq. (9). The corresponding posterior
is factorized as

p(Y ,Θ) = p(Y )p(α)
k∏

i=1

p(µi, Ti),

p(µi, Ti) = G(µi|m∗
i , T

−1
i /β∗

i )W(Ti|Φ∗
i , γ

∗
i ), (39)

where p(Y ) and p(α) remain the same as in Eq. (31),
while p(µi, Ti) is a Normal-Wishart distribution resulted
from the conjugate property. It follows that J

DNW(α)
VB

given by Eq. (32) is extended into

JDNW
VB (Ξ∗,Ξ) =

∫ k∏
i=1

p(µi, Ti)
{

J
DNW(α)
VB

+ ln
∏

i[G(µi|mi, T
−1
i /β)W(Ti|Φ, γ)]∏

i p(µi, Ti)

}
dΘ,

Ξ∗ = {λ∗, ξ∗} ∪ {m∗
i , β

∗
i ,Φ∗

i , γ
∗
i }k

i=1, (40)

which is maximized by the VB learning algorithm intro-
duced in Appendix C, shortly denoted as the algorithm
VB-DNW.

5 Empirical analysis

5.1 Performances of BYY, VB, and MML: A quick look

Based on a synthetic dataset illustrated in Fig. 1(a)
with five Gaussian components, we start from compar-
ing the performances of automatic model selection by
VB, MML, and BYY, as well as MAP, with no priors
or priors q(α) merely on the mixing weights. Learning
starts from random initializations on one GMM with 20
Gaussian components as illustrated in Fig. 1(b). Each al-
gorithm is implemented for 500 independent trials. The
results are shown in Figs. 2–4.
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Table 6 BYY algorithm on GMM with a DNW prior (BYY-DNW)

Initialization: Randomly initialize the model with a large enough number k of components; set τ = 0 and the harmony

measure JBYY(τ) = −∞;

repeat

Randomly pick a sample xt from the dataset XN ;

Yang-step: Get p(i|xt) = p(i|xt,Ξold, λold) by Eq. (37), αi = αp
i (ξ∗old, λ∗old) by Eq. (30),

wit =

»
1 +

βold

βold + 1
eT

itΦ
old−1

eit

–−1

, eit = xt − mold
i , e∗

it = xt − m∗old
i , εi = m∗old

i − mold
i , and

δit = δ
(1)
it + δ

(2)
it + δ

(3)
it , δ

(u)
it = π

(u)
it −

kX
j=1

p(j|xt)π
(u)
jt , u = 1, 2, 3;

π
(1)
jt = ln [αiG(xt|m∗ old

i ,Φ∗ old
i /(γ∗ old

i + 1 − p(i|xt)))],

π
(2)
it = −1

2

X
τ �=t

p(i|xτ )e∗T
iτ Φ∗old

i
−1

e∗
iτ , π

(3)
it = −βold

2
εT

i Φ∗ old
i

−1
εi − 1

2
Tr
“
ΦoldΦ∗ old

i
−1
”

;

Ying-step: Get ξ∗ = ξold + N , and update the hyper-parameters λ∗ :

λ∗new
i =

λ∗old
i + η∆λi(Ξold)Pk

j=1(λ∗old
i + ∆λj(Ξold))

, ∆λi(Ξ) = ςitξ
∗λ∗

i [Ψ′(ξ∗λ∗
i ) − Ψ′(ξ∗)],

where ςit = p(i|xt) + (ξoldλold
i − 1)/N , and Ψ′(x) = (d/dx)Ψ(x) is the trigamma function;

Then, get γ∗
i = γold +

PN
t=1 p(i|xt) for each i, update {µi, Ti}k

i=1 by

m∗new
i = m∗old

i + ηp(i|xt)[γ
∗old
i + 1 − p(i|xt)]e

∗
it − βoldγ∗old

i εi/N,

Φ∗new
i = Snew

i Snew
i

T, with Snew
i = Sold

i

(
Id + η

"
γ∗ old

i Φ∗
i
old −1

γ∗ old
i − d

Gi(Ξ
old
i ) − Id

#)
,

Gi(Ξi) =
γ∗old

i + 1 − p(i|xt)

γ∗old
i

Np(i|xt)(xt − m∗
i )(xt − m∗

i )T + βεiε
T
i + Φ;

H-step: Get νi = λold
i [Ψ(ξold) − Ψ(ξoldλold

i ) − Ψ(ξ∗) + Ψ(ξ∗λ∗ old
i )], and update:

λnew
i = (λold

i + ηδλi)/
kX

j=1

(λold
j + ηδλj ), δλi = p(i|xt)δit +

ξold

N
νi,

ξnew = ξold + ηδξ, δξ =
kX

i=1

{νi + Nςit[λ
∗old
i Ψ′(λ∗old

i ξ∗old) − Ψ′(ξ∗old)]},

mnew
i = mold

i + ηδmi(Ξ
old
i ), δmi(Ξi) =

1

β + 1
p(i|xt)δitwiteit +

γ∗
i

(γ + 1)N
ΦΦ∗

i
−1εi,

βnew = βold + η

»
kd

βold
− δβ(Ξold)

–
,

δβ(Ξ) =
kX

i=1

γ∗
i εT

i Φ∗
i
−1εi +

N(γ + 1)

β + 1

kX
i=1

p(i|xt)δitwit(1 + eT
itΦ

−1eit),

Φnew = SnewSnewT, with Snew = Sold

j
Id + η

»
1

kγ
G(Ξold) − Id

–ff
,

G(Ξ) =
kX

i=1

»
γ∗

i ΦΦ∗
i
−1 − βN(γ + 1)

β + 1
p(i|xt)δitwiteite

T
itΦ

−1

–
,

γnew = γold + η

24N
kX

i=1

p(i|xt)δit lnwit +
N + k(γold − d)

2

dX
j=1

Ψ′
„

γold + 1 − j

2

«
+ δγ(Ξold)

35 ,

δγ(Ξ) = k ln |Φ| −
kX

i=1

h
ln |Φ∗

i | + Tr(ΦΦ∗
i
−1) + βεT

i Φ∗
i
−1εi

i
;

� for i = 1, 2, . . . , k do if λi → 0 then discard component i, let k = k − 1 and continue;

if another 5N runs have passed then let τ = τ + 1; calculate JBYY(τ) = HDNW(Ξ, Ξ∗) by Eq. (37);

until JBYY(τ) − JBYY(τ − 1) < εJBYY(τ − 1), with ε = 10−5;

The first column of Fig. 2 shows the results of MAP,
VB, MML, and BYY, without considering any priors
on the parameters. MAP, VB, and MML degenerate to
maximum likelihood (ML) learning and thus they all
largely bias to oversized models, while BYY is still ca-
pable of model selection with a bias towards undersized
models.

The second column of Fig. 2 shows the results
by MAP-Jef(α), VB-Jef(α), MML-Jef(α), and BYY-
Jef(α). It can be observed that VB and BYY bias to
undersized models while MAP and MML bias to over-

sized models. To be specific, MML-Jef(α) degenerated
to ML according to Eq. (26), VB-Jef(α) performs better
than MAP-Jef(α), and BYY-Jef(α) further outperforms
VB-Jef(α).

The third column of Fig. 2 compares MAP-Dir(α),
VB-Dir(α), MML-Dir(α) and BYY-Dir(α) based on
Dirichlet prior with the prior hyper-parameters pre-fixed
at λi = 1/k (∀i) and ξ = k/4. As the Jeffreys is replaced
by a Dirichlet, all algorithms improve while VB deterio-
rates. Also, all approaches incline to oversized models.

It is natural to wonder whether the values of the prior
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Fig. 1 Synthetic data and initialization. (a) A dataset of 300 samples is generated from a 2-dimensional 5-component
GMM, with equal mixing weights 1/5; (b) all the three algorithms start from randomly initialized 20-component GMMs
and shown here is an example (Each red curve indicates to a contour of equal probability density per component, and the
red diamonds indicate the Gaussian means.)

Fig. 2 Model selection results on a synthetic dataset illustrated in Fig. 1(a) by algorithms with priors q(α) (Each algorithm
is implemented for 500 independent trials. The histograms show the frequencies fi of the estimated component number being
i, and the values of S that stands for the times of successfully selecting the true component number k∗ = 5. When there
is no prior, MAP, VB, and MML all degenerate to the maximum likelihood learning, with its resulted histogram actually
stretching beyond the rightmost boundary (the rightmost bar being the sum of all the bars beyond the boundary for a rough
visualization).)

hyper-parameters λi and ξ affect the performances of
model selection. For this purpose, the fourth column of
Fig. 2 compares MAP-Dir(α), VB-Dir(α), MML-Dir(α)
and BYY-Dir(α) with the prior hyper-parameters λi and
ξ optimized under each of its own learning principle.
The results show that VB deteriorates considerably, and

MAP and MML decline slightly, while BYY obtains a
further improvement.

Next, we move to examine the performances of three
algorithms on the same synthetic dataset illustrated
in Fig. 1(a) but with priors on all parameters. As
shown in Fig. 4, considering a full prior improves all the
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Fig. 3 Statistics of model selection results in Fig. 2 (The “average”(red) bar indicates k̄ = 1
500×5

P
i(fi · i), and the

“roughCor” (blue) bar indicates a rough correct selection rate by f̄ = (f4 + f5 + f6)/500. For both types of bars, the better
a method is, the more closer its “average” is to 5 and its “roughCor” is to 1.)

approaches except MAP with merely priors on the mix-
ing weights.

As shown by the first column of Fig. 4, considering
the Jeffreys prior on all the parameters of GMM makes
each approach reduce its bias shown by its counterpart
of Fig. 2, except that a full prior increases the bias of
MAP to oversized models. MAP-Jef is the worst, MML-
Jef gets S = 146 that is bigger than S = 136 by VB-Jef,
while VB-Jef performs slightly better than MML-Jef in
an average sense. Moreover, BYY-Jef outperforms both
VB and MML much significantly, with its errors mainly
skewed to oversized models.

The second column compares MAP-DNW, VB-
DNW, MML-DNW and BYY-DNW, with the hyper-
parameters of the Dirichlet prior still pre-fixed at λi =
1/k (∀i) and ξ = k/4 and with the hyper-parameters
of the Normal-Wishart (NW) priors fixed at β = 1,
Φ = Id, and γ = d + 1, as well as mi = m and
m = 1

N

∑N
t=1 xt. In implementation, the H-step in each

algorithm is skipped. From Jeffreys to DNW, one ob-
serves that, in contrast to MAP and VB, both MML and
BYY improve their performances, and the DNW prior
makes VB incline obviously to oversized models. Still,
BYY outperforms both MML and VB significantly.

Next, we consider to optimize the hyper-parameters
under each of its own learning principle. Shown in the
third column are the results by considering the DNW
prior in Eq. (9), featured with each mi to be freely
adapted, as introduced in Sect. 2.3. It can be observed
that BYY further improves its performance consider-

ably and outperforms the others significantly, which con-
curs with the nature that BYY best harmony provides a
guideline to optimize the hyper-parameters [17,26] and
learning hyper-parameters is a part of the entire learning
implementation (e.g., see the learning procedure shown
in Fig. 6(a) in Ref. [17] or in Fig. 5(a) in Ref. [26]). Also,
it is observed that MAP improves its counterpart with
the hyper-parameters pre-fixed too, which could be un-
derstood from the relation that MAP can be regarded
as a degenerated case of the BYY harmony learning (see
Eq. (A.4) in Ref. [17] or Eq. (39) in Ref. [26]).

However, it also follows from the third column that
both VB and MML deteriorate, especially the perfor-
mance of VB drops drastically, becoming even inferior
to MAP. The reason is that VB and MML maximize the
marginal likelihood q(XN |Ξ) =

∫
q(XN |Θ)q(Θ|Ξ)dΘ,

via variational approximation and Laplace approxima-
tion respectively. Maximizing q(XN |Ξ) with respect to
a free q(Θ|Ξ) tends to becoming maxΘ q(XN |Θ) and
q(Θ|Ξ) = δ(Θ − Θ∗) with Θ∗ = arg maxΘ q(XN |Θ),
i.e., towards maximizing the likelihood function. In other
words, the learning principle of VB and MML, i.e., max-
imizing the marginal likelihood, may not be good for op-
timizing the hyper-parameters. To get a further insight
on this observation, we consider the DNW prior in Eq.
(9) with every mi = m constrained to be the same. This
constraint reduces the number of free parameters and
prevents a deep optimization with respect to the hyper-
parameters. Observed from the fourth column of Fig. 4,
the performances of MAP, VB and MML are actually
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Fig. 4 Model selection results on a synthetic dataset illustrated in Fig. 1(a) by three algorithms with priors on all parameters

improved considerably. In other words, the learning prin-
ciple of VB and MML with certain constraints also pro-
vide some guide for optimizing the hyper-parameters.
But it is not comparable to BYY that still outperforms
MAP, VB and MML considerably.

Summarizing the above observations, we iterate the

following key points:
1) Considering a full prior improves all the approaches

with merely priors on the mixing weights.
2) With a full prior, BYY consistently improves from

the first column to the last column, and significantly
outperforms all the other approaches.
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3) As the hyper-parameters of DNW prior are opti-
mized by each of its own learning principle, BYY and
MAP improve their performances while VB and MML
deteriorate their performances when there are too many
free hyper-parameters.

4) Lacking a good guide for optimizing the hyper-
parameters, VB performs no obvious improvements as
Jeffreys prior is replaced by DNW prior. Also, for DNW
prior with the hyper-parameters optimized, MAP out-
performs VB considerably.

5) Better than nothing, the learning principle of VB
and MML with certain constraints also provide some
guide for optimizing the hyper-parameters.

5.2 VB, MML, and BYY with full priors: Extensive
comparisons

Based on the major observations at the end of the previ-
ous subsection, we make further investigations on a wide
range of synthetic datasets. Though the performances of
VB are inferior to MAP with the hyper-parameters of
DNW prior optimized, MAP is not further considered
since it can be regarded as a degenerated case of BYY.
We compare the performances of VB, MML, and BYY,
with priors fully on all parameters.

The datasets are repeatedly generated from GMM
with {αi, µi, Ti}k∗

i=1 by Eq. (1) or Eq. (2), where k∗ de-
notes the true component number, {µi, Ti}k∗

i=1 is ran-
domly generated according to the joint Normal-Wishart
distribution G(µi|mi, T

−1
i /β)W(Ti|Φ, γ) given in Eq.

(9), with the hyper-parameters set at ∀αi = 1/k∗, γ = 50
and Φ = Id, as well as mi = m and m = 0.

To cover a wide range of experimental conditions, we
vary the values of the sample size N , the data dimen-
sionality d, the true component number k∗, and the
overlap degree β of Gaussian components, where the
hyper-parameter β increases from small to large indi-
cates that the degree of separation of the Gaussian com-
ponents changes from large to small. Generally speaking,
the model selection task becomes more and more diffi-
cult as N decreases, or d increases, or k∗ increases, or β

increases.
We consider four series of experiments specified in Ta-

ble 7. Starting from a same point in the 4-dimensional
factor space, each series varies one factor of (N, d, k∗, β)
while the remaining three are fixed. For each specific
setting of (N, d, k∗, β), 500 datasets are generated inde-
pendently, and all the algorithms are implemented with

Table 7 Four series of experiments

starting case (N, d, k∗, β) = (300, 5, 3, 0.02)

series 1 vary N ∈ {300, 290, 280, . . . , 30} and fix d, k∗, β

series 2 vary d ∈ {5, 6, 7, . . . , 30} and fix N, k∗, β

series 3 vary k∗ ∈ {3, 4, 5, . . . , 20} and fix N, d, β

series 4 vary β ∈ {0.1, 0.2, 0.3, . . . , 2.0} and fix N, d, k∗

a same initial component number 25.
The performances of model selection by VB, MML,

and BYY on the four series are shown in Fig. 5 with
the Jeffreys prior on all parameters. Jeffreys prior makes
MML better than VB, and further makes BYY outper-
form MML except for a large sample size N in series
1, where MML is the best. Comparing with Fig. 2 that
considers Jeffreys priors merely on the mixing weights,
adding Jeffreys priors on {µj, Tj} makes MML improved
more than VB does.

We further compare VB, MML, and BYY with DNW
priors on all parameters. As previously discussed on the
results shown in the 3rd column of Fig. 4, the learning
principle of VB and MML is not good for guiding the
searching of the hyper-parameters. Also, it is difficult to
search hyper-parameters in a try-and-test manner for a
series of experimental settings. Being different from Fig.
4 where fixing Ξ results in better performances than up-
dating Ξ under VB and MML, heuristically fixing Ξ usu-
ally make the performances of VB and MML not good
enough. Taking the datasets of series 1 as an example,
shown in Fig. 6 are the performances of VB, MML and
BYY with the hyper-parameters Ξ fixed at the same val-
ues as those in Fig. 4, which are actually worse than their
counterparts that optimize the hyper-parameters under
each of its own learning principle. Better than noth-
ing, as previously discussed on the results shown in the
4th column of Fig. 4, the learning principle of VB and
MML with every mi = m constrained to be same still
provide some guide for optimizing the hyper-parameters.
With this consideration, we compare the performances of
model selection by VB, MML, and BYY with the DNW
prior, via optimizing the hyper-parameters under each of
its own learning principle and also under the constraints
mi = m for VB and MML. Shown in Fig. 7 are results
on the four series. Also, the performances of those with
the Jeffreys prior versus the DNW prior are re-plotted
together in Fig. 8 for an easy comparison. We obtain
further observations as follows:

1) BYY considerably outperforms both VB and MML
for both types of priories, except the large values of N

in series 1 where MML is the best.
2) Jeffreys prior makes MML slightly better than VB,

while the DNW prior makes VB better than MML.
3) All the three approaches improve their perfor-

mances as Jeffreys is replaced by DNW, as shown in
Fig. 8. The Wishart prior on the precision matrix with
appropriate hyper-parameters can effectively avoid the
singularity of the covariance matrix caused by a very
small sample size, and thus improve the model selection
performance.

4) VB is more sensitive than MML to which type of
prior is used, as Jeffreys prior makes VB inferior to MML
while DNW prior makes VB better than MML. BYY is
much robust than VB and MML for either Jeffreys or
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Fig. 5 Performances by Algorithms VB-Jef, MML-Jef and BYY-Jef in the four series of experiments

Fig. 6 Performances of VB-DNW, MML-DNW and BYY-DNW on the dataset of series 1: hyper-parameters fixed (at
λi = 1/k (∀i), ξ = k/4, β = 1, Φ = Id, γ = d + 1, mi = m (∀i) and m = 1

N

PN
t=1 xt) versus hyper-parameters optimized

DNW prior.

5.3 Application on image segmentation

We further apply the algorithms to unsupervised im-
age segmentation on the Berkeley segmentation database
of real world images (http://www.eecs.berkeley.edu/
Research/Projects/CS/vision/bsds/). We choose the
features proposed by Varma and Zisserman [40], shortly
denoted as VZ features, which has been used in image
segmentation with promising results [41]. Specifically, a
VZ feature is constructed for each pixel by picking a
w × w-sized window centered around the pixel, vector-
izing the color information of all pixels in this window,

and then performing dimensionality reduction to v di-
mensions by principal component analysis (PCA). The
VZ features have considered the neighborhood informa-
tion and are insensitive to noise because of PCA. Fol-
lowing Refs. [40,41], we start from the LAB color space,
and set w = 7 and v = 8 to construct the VZ features.

For every image, each of the learning algorithms out-
puts a GMM model that assigns each image pixel to
the cluster (represented by a Gaussian component) by
the maximum posterior probability. Since the true com-
ponent number is unknown, we evaluate the resulted
segmentations from the GMM clusters by PR index [27],
which takes values between 0 and 1. A higher PR score
indicates a better segmentation with a higher percentage
of pixel pairs in the segmentation having the same labels
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Fig. 7 Performances by Algorithms VB-DNW upd, MML-DNW upd and BYY-DNW upd in the four series of experiments

as in the ground truth segmentation provided by the
database. A good model selection performance is closely
related to, but not necessarily implies, a high PR score.
To investigate the performance of each algorithm, we
do not conduct further post-processing operations such
as region merging and graph cut [42,43], although they
would further improve the segmentation results.

The component number is initialized as 10 for each
algorithm in experiments. Table 8 gives the average PR
scores of five runs on all of the 100 testing images of the
Berkeley image segmentation database. The segmenta-
tion performances are consistent with their model selec-
tion performances. Again, BYY-DNW obtains the high-
est average PR scores.

Shown in Fig. 9 are two examples chosen from the
database. It can be observed that BYY-DNW is able
to detect the objects of interest from a confusing back-
ground. Interestingly, the average PR score of VB-DNW
on all 100 images is even lower than that of BYY-Jef, as
given in Table 8, though the PR scores of VB-DNW on
the above two images are higher than those of BYY-Jef.

6 Concluding remarks

This paper has presented a comparative investigation on
the relative strengths and weaknesses of MML, VB and
BYY in automatic model selection for determining the
component number of a GMM with either a Jeffreys or a
Dirichlet-Normal-Wishart (DNW) prior. The algorithm
for MML is adopted from Ref. [18], either used directly
for Jeffreys prior or with some modification for DNW
prior. The algorithm for VB with DNW prior comes
from modifying the one in Ref. [20] via the NW prior
suggested in Ref. [25]. Moreover, the BYY algorithm for
Jeffreys prior is a special case of the unified Ying-Yang
learning procedure introduced in Ref. [12]. Furthermore,
the algorithm for VB with Jeffreys prior and the algo-
rithm for BYY with DNW priors have been developed
in this paper. Through synthetic experiments, we have
the following empirical findings.

Considering priors only on the mixing weights, VB is
better than MML and MAP for the Jeffreys prior, but

Table 8 Average PR scores of five runs on the 100 testing images of the Berkeley image segmentation database (without
post-processing operations)

VB-Jef MML-Jef BYY-Jef VB-DNW upd MML-DNW upd BYY-DNW upd

0.772 0.752 0.816 0.803 0.788 0.851
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VB deteriorates to be inferior to both MML and MAP
with the Jeffreys replaced by the Dirichlet prior. For
either Jeffreys or Dirichlet prior, BYY considerably out-
performs MAP, VB and MML. For the Jeffreys, MAP
and MML bias to oversized models, while VB and BYY
bias to undersized models. For the Dirichlet, all the ap-
proaches incline to oversized models. Moreover, optimiz-
ing the hyper-parameters of the Dirichlet prior further
improves the performances of BYY, but brings down the
other approaches.

Considering a full prior on all parameters of GMM
makes each approach reduce its bias and also improve its
performance. Jeffreys prior makes MML slightly better
than VB, while the DNW prior makes VB better than
MML. BYY considerably outperforms VB, MAP and

MML for any type of priors and whether or not hyper-
parameters are optimized. Being different from VB and
MML that rely on appropriate priors to perform model
selection, BYY does not highly depend on type of pri-
ors. It has model selection ability even without priors
and performs already very good with Jeffreys prior, and
incrementally improves as Jeffreys prior is replaced by
the DNW prior.

As Jeffreys prior is replaced by DNW prior with ap-
propriate hyper-parameters, all the approaches improve
their performances. As the hyper-parameters of DNW
prior are optimized by each of its own learning principle,
BYY and MAP improve their performances while VB
and MML deteriorate their performances when there are
too many free hyper-parameters. Via DNW prior with

Fig. 9 Two image segmentation examples from Berkeley segmentation database (Segmentation results by each algorithm
are illustrated by the highlighted green curves.)
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the hyper-parameters optimized, MAP may also out-
perform VB considerably, while VB and MML lack a
good guide for optimizing the hyper-parameters of DNW
prior. Better than nothing, the learning principle of VB
and MML with certain constraints also provide some
guide for optimizing the hyper-parameters.

Furthermore, all algorithms are applied to a real
world database for image segmentation. BYY is again
confirmed to considerably outperform VB and MML,
especially BYY-DNW is superior for its robustness
in detecting the objects of interest from a confusing
background.

Appendix A Derivations about BYY-DNW

Here we provide further details on the derivations of HDNW(Ξ) and the BYY-DNW algorithm. Its special case HDir(α)(Θ,Ξ)
and the algorithm BYY-Dir(α) can be obtained by similar derivations via simply considering Ξ = {λ, ξ} and Ξ∗ = {λ∗}.

We rewrite the harmony measure in Eq. (37) as follows:

HDNW(Ξ) =
X
Y

p(Y |XN )
˘
EΘ|Y [ln q(XN , Y |Θ)] + EΘ|Y [ln q(Θ)]

¯
= EY |XN

˘
EΘ|Y [ln q(XN , Y |Θ)] + EΘ|Y [ln q(Θ)]

¯
, (A.1)

where EΘ|Y [·] denotes expectation with respect to p(Θ|Y ) given by Eq. (34), and similarly we use EY |X [·] to denote
expectation with respect to p(Y |X) given by Eq. (28) and p(i|xt,Ξ, λ) by Eq. (37). Specifically, we get

EΘ|Y [ln q(Θ)] = EΘ|Y lnD(α|λ, ξ) +
kX

i=1

EΘ|Y ln
ˆ
G(µi|mi, T

−1
i /β)W(Ti|Φ, γ)

˜
, (A.2)

EΘ|Y [lnD(α|λ, ξ)] =
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i=1
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where if we denote ξ∗ = ξ + N , then

EΘ|Y [ln αi] = Ψ(ξ∗λ∗
i ) − Ψ(ξ∗), EΘ|Y [µi] = m∗
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Putting the above details into Eq. (A.2), we have
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Also, we get

EΘ|Y [ln q(XN , Y |Θ)] = EΘ|Y
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With the help of the above equations, Eq. (A.5) is further expressed as
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Adding Eqs. (A.4) and (A.7) and combining some terms, we get
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in which the term β +
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t=1 yit in the denominator has been canceled out according to
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It is still difficult to compute Eq. (A.1) by directly using Eq. (A.8). For computational convenience, we further approximate
Eq. (A.8) by
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in which we have applied the monotonic increasing property of the digamma function Ψ(·) on the last term of Eq. (A.8), i.e.,
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Next, we compute the details of Eq. (A.1) by taking expectation EY |X (·) on Eq. (A.10) for which we need to calculate the
following terms:

EY |X [yit] = p(i|xt) = p(i|xt,Ξ, λ),
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Based on the above equations, the lower bound of harmony measure given by Eq. (37) is obtained as follows:
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with all notation details listed in Eq. (37).
The learning task is to maximize HDNW(Ξ∗,Ξ) by Eq. (A.13) with respect to Ξ∗ = {λ∗} ∪ {m∗

i , Φ∗
i }k

i=1 and Ξ =
{λ, ξ, β,Φ, γ}∪{mi}. A gradient method is adopted for this maximization. Generally, we update each ϑ ∈ Ξ∗∪Ξ as follows:
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The gradient ∇ϑHDNW is calculated by
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where the gradient of the first term of HDNW in Eq. (A.13) is similar to Eq. (16), i.e.,
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For ϑ = λ∗
i ∈ Ξ∗, Ξ∗ = {λ∗} ∪ {m∗
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which provides a term Ψ′(ξ∗) of the same scale as Ψ′(ξ∗λ∗
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For ϑ = λi ∈ Ξ, Ξ = {λ, ξ, β,Φ, γ} ∪ {mi}, we have
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and then the Eq. (A.21) follows from Eq. (A.16) with
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Similar to Eq. (A.19), we calculate ∇λi ln Γ(ξ) in the above equation by
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which provides a term Ψ(ξ) of the same scale as Ψ(ξλi) to get a stable gradient by Ψ(ξ) − Ψ(ξλi).
Similarly, we get
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β + 1

NX
t=1

p(i|xt)δitwitΦ
−1(xt − mi) + γ∗

i Φ
∗
i
−1

(m∗
i − mi),

∇βHDNW ∝ kd

β
− γ + 1

β + 1

NX
t=1

kX
i=1

p(i|xt)δitwit[1 + (xt − mi)
TΦ−1(xt − mi)] −

kX
i=1

γ∗
i (mi − m∗

i )TΦ∗
i
−1

(mi − m∗
i ),

∇ΦHDNW ∝ β(γ + 1)

β + 1

NX
t=1

kX
i=1

p(i|xt)δitwitΦ
−1(xt − mi)(xt − mi)

TΦ−1 + γkΦ−1 −
kX

i=1

γ∗
i Φ

∗
i
−1

, (A.25)

∇γHDNW ∝
NX

t=1

kX
i=1

p(i|xt)δit ln wit + k ln |Φ| + N + k(γ − d)

2

dX
j=1

Ψ′
„

γ + 1 − j

2

«

−
kX

i=1

[ln |Φ∗
i | + Tr(ΦΦ∗

i
−1

) + β(mi − m∗
i )

TΦ∗
i
−1

(mi − m∗
i )],

where the term δit ln wit in the equation for γ comes from the part
∂w

(γ+1)/2
it
∂γ

, and is different from the former three terms
δitwit in the equations for mi, β and Φ.

Appendix B MML

One major difficulty in implementing MML lies in the computation of the determinant of the Fisher information matrix
I(Θ). In Eq. (25), the determinant of I(Θ) is calculated by Eq. (7), where I(Θ) is approximated by a block-diagonal
complete-data Fisher information matrix Ic(Θ) in Eq. (6) which is taken from Ref. [18]. Alternatively, we provide another
equivalent derivation of Eq. (8) by using the following lower-bound trick similar to Eqs. (21) and (22) for tackling Π in the
VB-Jef algorithm:

ln q(XN |Θ) ≈ ulb(Θ, {pit}) − ln q(Θ),
I(Θ) ≈ Block-Diag[I(α), I(µ1), I(µ2), . . . , I(µk), I(T1), I(T2), . . . , I(Tk)],

I(α) = −E

»
∂2[ulb(Θ, {pit}) − ln q(Θ)]

∂α∂αT

–
, |I(α)| =

kY
i=1

N

αi
,

I(µi) = −E

»
∂2[ulb(Θ, {pit}) − ln q(Θ)]

∂µi∂µT
i

–
, |I(µi)| = (Nαi)

d|Ti|,

I(Ti) = −E

»
∂2[ulb(Θ, {pit}) − ln q(Θ)]

∂vec(Ti)∂vec(Ti)T

–
, |I(Ti)| = (Nαi)

d(d+1)/2|Ti|−(d+1). (B.1)

The computational details of MML-Jef to maximize JJef
MML(Θ) by Eq. (25) are listed in Table 2. It should be noted that the

MML objective used in Ref. [18] is JJef
MML(Θ) + kρ(1− ln 12), with an additional term (coming from an optimal quantization

[18]) which is irrelevant to Θ and thus takes no effect on automatic model selection. Therefore, the Eq. (25) is equivalent to
the MML objective in Ref. [18] for automatic model selection.

Moreover, if we replace the Jeffreys prior with the DNW prior, the MML objective function in Eq. (24) becomes the one
in Eq. (38), which is expressed in details as follows:

JDNW
MML (Θ,Ξ) = ln q(XN |Θ) + lnD(α|λ, ξ) +

kX
i=1

ln G(µi|mi, T
−1
i /β) +

kX
i=1

lnW(Ti|Φ, γ) − 1

2
ln |Ic(Θ)|
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= ln q(XN |Θ) +

kX
i=1

„
ξλi − ρ + 1

2

«
ln αi +

γ

2

kX
i=1

ln |Ti| − β

2

kX
i=1

(µi − mi)
TTi(µi − mi) − 1

2

kX
i=1

Tr(TiΦ)

+ lnΓ(ξ) −
kX

i=1

ln Γ(ξλi) +
kd

2
ln β − kd

2
ln(2π) +

kγ

2
ln |Φ| − kdγ

2
ln 2 − k ln Γd

“γ

2

”
− kρ

2
ln N. (B.2)

The JDNW
MML (Θ,Ξ) by Eq. (B.2) is different from JJef

MML(Θ,Ξ) by Eq. (25) in the term ln q(Θ) with q(Θ) being DNW
prior instead of Jeffreys prior. Then, the algorithm (shortly denoted as MML-DNW) to maximize Eq. (B.2) is obtained by
modifying MML-Jef accordingly with details given in Table B1 Specifically, the MML-DNW algorithm becomes the same as
the MML-Jef algorithm in Ref. [18], if we skip the H-step and fix the hyper-parameters as ξ = k/2, each λi = 1/k, β = 0,
Φ = 0 and γ = 0.

Table B1 MML algorithm on GMM with a Dirichlet-Normal-Wishart prior (MML-DNW) (Its implementation is equiv-
alent to MML-Jef in Ref. [18] when we skip H-step and fix ξ = k/2, λ = (1/k, . . . , 1/k)T, β = 0, Φ = 0 and γ = 0.)

Initialization: Randomly initialize the model with a large enough number k of components; set τ = 0 and the MML

objective function JMML(τ) = −∞;

repeat

E-step: Get αp
i = αold

i for i = 1, 2, . . . , k, then get pit and ni by Eq. (3);

M-step: Update the parameters Θ = α∪ {µi, Ti}k
i=1:

αnew
i =

siPk
j=1 sj

, si =
NX

t=1

pit + ξoldλold
i − ρ + 1

2
, ρ = d +

d(d + 1)

2
,

µnew
i =

1

ni + βold

"
NX

t=1

pitxt + βoldmold
i

#
, eit = xt − µold

i ,

T−1
i

new
=

1

ni + γold

"
NX

t=1

piteite
T
it + βold(µold

i − mold
i )(µold

i − mold
i )T + Φold

#
;

H-step: Update the prior hyper-parameters {mi} in the following two cases:

1) General case (each mi is free): mnew
i = µold

i ;

2) Special case (constrain each mi = m): ∀i, mnew
i = (

Pk
i=1 Told

i )−1(
Pk

i=1 Told
i µold

i );

Then update the prior hyper-parameters {λ, ξ, β,Φ, γ}:
λnew

i =
λold

i + ηδλiPk
j=1(λold

j + ηδλj )
, δλi = ln αold

i − Ψ(ξoldλold
i ) + Ψ(ξold),

ξnew = ξold + ηδξ, δξ =
kX

i=1

λold
i δλi,

βnew =
kdPk

i=1(µ
old
i − mold

i )TTold
i (µold

i − mold
i )

,

Φnew = kγold

 
kX

i=1

Told
i

!−1

, γnew = γold + ηδγ(Θold , Ξold),

δγ(Θ, Ξ) =
kX

i=1

ln |Ti| + k ln |Φ| − kd ln 2 − k
dX

j=1

Ψ

„
γ + 1 − j

2

«
;

� for i = 1, 2, . . . , k do if αi → 0 then discard component i, let k = k − 1 and continue;

if another 5 runs have passed then let τ = τ + 1; calculate the MML objective function as JMML(τ) by Eq. (B.2);

until JMML(τ) − JMML(τ − 1) < εJMML(τ − 1), with ε = 10−5 in our implementation;

Appendix C VB

The variational lower bound JDNW
VB given in Eq. (40) with the DNW prior can be rewritten as follows:

JDNW
VB (Ξ∗, Ξ) = EpY EpΘ [ln q(XN , Y |Θ)] − EpY [ln p(Y )] + EpΘ [ln q(Θ)]− EpΘ [ln p(Θ)], (C.1)

where EpΘ [·] and EpY [·] denotes expectations with respect to the variational posteriors p(Θ) and p(Y ) in Eq. (39).

Similar to Eqs. (A.7) and (A.4), we have

EpY EpΘ [ln q(XN , Y |Θ)] =
kX

i=1

NX
t=1

pit

(
Ψ(ξ∗λ∗

i ) − Ψ(ξ∗) − d

2
ln(2π) +

1

2

dX
j=1

Ψ

„
γ∗

i + 1 − j

2

«
+

d

2
ln 2 − 1

2
ln |Φ∗

i | − γ∗
i

2
(xt − m∗

i )
TΦ∗

i
−1

(xt − m∗
i ) − d

2β∗
i

ff
, (C.2)
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EpΘ [ln q(Θ)] = lnΓ(ξ) −
kX

i=1

ln Γ(ξλi) +

kX
i=1

(ξλi − 1)(Ψ(ξ∗λ∗
i ) − Ψ(ξ∗)) +

kX
i=1

"
− d

2
ln(2π) +

d

2
ln β − βd

2β∗
i

+
γ

2
ln |Φ|

+
γ − d

2

dX
j=1

Ψ

„
γ∗

i + 1 − j

2

«
− d2

2
ln 2 − βγ∗

i

2
(mi − m∗

i )TΦ∗
i
−1

(mi − m∗
i ) − γ − d

2
ln |Φ∗

i |

−γ∗
i

2
Tr(ΦΦ∗

i
−1

) − d(d − 1)

4
ln π −

dX
j=1

ln Γ

„
γ + 1 − j

2

«#
. (C.3)

Since p(Θ) and q(Θ) are both DNW distributions with different parameters Ξ∗ = {λ∗, ξ∗, m∗
i , β

∗
i , Φ∗

i , γ
∗
i } and Ξ =

{λ, ξ, {mi}, β,Φ, γ}, EpΘ [ln p(Θ)] is obtained by replacing Ξ with Ξ∗ in Eq. (C.3) appropriately:

EpΘ [ln p(Θ)] = ln Γ(ξ∗) −
kX

i=1

ln Γ(ξ∗λ∗
i ) +

kX
i=1

(ξ∗λ∗
i − 1)(Ψ(ξ∗λ∗

i ) − Ψ(ξ∗)) +

kX
i=1

"
− d

2
ln(2π) +

d

2
ln β∗

i − β∗
i d

2β∗
i

+
γ∗

i

2
ln |Φ∗

i |

+
γ∗

i − d

2

dX
j=1

Ψ

„
γ∗

i + 1 − j

2

«
− d2

2
ln 2 − β∗

i γ∗
i

2
(m∗

i − m∗
i )TΦ∗

i
−1

(m∗
i − m∗

i ) − γ∗
i − d

2
ln |Φ∗

i |

−γ∗
i

2
Tr(Φ∗

i Φ
∗
i
−1

) − d(d − 1)

4
ln π −

dX
j=1

ln Γ

„
γ∗

i + 1 − j

2

«#
, (C.4)

EpY [ln q(Y )] =
NX

t=1

kX
i=1

EpY [yit] ln pit =
NX

t=1

kX
i=1

pit ln pit, (C.5)

where {pit} in Eq. (C.5) are the parameters of the variational posterior p(Y ) as given in Eq. (19).
Putting the details of Eqs. (C.2)–(C.5) into Eq. (C.1) and combining like terms, we have

JDNW
VB =

NX
t=1

kX
i=1

pit

24− 1

2
ln |Φ∗

i | + 1

2

dX
j=1

Ψ

„
γ∗

i + 1 − j

2

«
− γ∗

i

2
(xt − m∗

i )
TΦ∗

i
−1

(xt − m∗
i ) − d

2β∗
i

+Ψ(ξ∗λ∗
i ) − ln pit

35+
kX

i=1

24d

2
ln

β

β∗
i

− βγ∗
i

2
(m∗

i − mi)
TΦ∗

i
−1

(m∗
i − mi) +

γ

2
(ln |Φ| − ln |Φ∗

i |)

− dβ

2β∗
i

+
γ − γ∗

i

2

dX
j=1

Ψ

„
γ∗

i + 1 − j

2

«
−

dX
j=1

ln
Γ( γ+1−j

2
)

Γ(
γ∗

i
+1−j

2
)
− γ∗

i

2
Tr(Φ∗

i
−1

Φ) +
γ∗

i d

2

35− Nd

2
ln π

−(N + ξ − ξ∗)Ψ(ξ∗) +
kd

2
+ ln

Γ(ξ)

Γ(ξ∗)
−

kX
i=1

ln
Γ(ξλi)

Γ(ξ∗λ∗
i )

+

kX
i=1

(ξλi − ξ∗λ∗
i )Ψ(ξ∗λ∗

i ), (C.6)

an algorithm maximizes which is shortly denoted as VB-DNW and listed in Table C1.

Table C1 VB algorithm on GMM with a DNW prior (VB-DNW)

Initialization: Randomly initialize the model with a large enough number k of components; set τ = 0 and the variational
function JVB(τ) = −∞;

repeat

E-step: Estimate the component responsibilities pit for i = 1, 2, . . . , k and t = 1, 2, . . . , N :

pit =
r
1/2
itPk

j=1 r
1/2
jt

, with

rit = exp

24− ln |Φ∗
i | +

dX
j=1

Ψ

„
γ∗

i + 1 − j

2

«
− γ∗

i (xt − m∗
i )TΦ∗

i
−1(xt − m∗

i ) − d

β∗
i

+ 2Ψ(ξ∗λ∗
i )

35;

M-step: Update the posterior hyper-parameters Ξ∗ = {λ∗, ξ∗} ∪ {m∗
i , β∗

i ,Φ∗
i , γ∗

i }k
i=1:

λ∗new
i =

ξoldλold
i +

PN
t=1 pit

ξold + N
, ξ∗new = ξold + N,

m∗new
i =

PN
t=1 pitxt + βoldmold

iPN
t=1 pit + βold

, β∗new
i = βold +

NX
t=1

pit, eit = xt − m∗old
i ,

Φ∗new
i =

NX
t=1

piteite
T
it + β(mold

i − m∗old
i )(mold

i − m∗old
i )T + Φold, γ∗new

i = γold +
NX

t=1

pit;

H-step: Update the prior hyper-parameters {mi} in the following two cases:

1) General case (each mi is free): mnew
i = m∗old

i ;

2) Special case (constrain each mi = m):

∀i, mnew
i = (

Pk
i=1 γ∗old

i Φ∗old
i

−1
)−1(

Pk
i=1 γ∗old

i Φ∗old
i

−1
m∗old

i );
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Table C1 VB algorithm on GMM with a DNW prior (VB-DNW) (Continued)

Then update the prior hyper-parameters Ξ = {λ, ξ, β, Φ, γ}:
λnew

i =
λold

i + ηδλiPk
j=1(λ

old
j + ηδλj )

, δλi = Ψ(ξ∗oldλ∗old
i ) − Ψ(ξ∗old) − Ψ(ξoldλold

i ) + Ψ(ξold),

ξnew = ξold + ηδξ, δξ =
kX

i=1

λold
i δλi,

βnew =
kdPk

i=1[γ∗old
i (m∗old

i − mold
i )TΦ∗old

i
−1

(m∗old
i − mold

i ) + d/β∗old
i ]

,

Φnew = kγold

 
kX

i=1

γ∗old
i Φ∗old

i
−1

!−1

,

γnew = γold + η
kX

i=1

8<:ln |Φold| − ln |Φ∗old
i | +

dX
j=1

"
Ψ

 
γ∗old

i + 1 − j

2

!
− Ψ

„
γold + 1 − j

2

«#9=; ;

� for i = 1, 2, . . . , k do if λ∗
i → 0 then discard component i, let k = k − 1 and continue;

if another 5 runs have passed then let τ = τ + 1; calculate the variational function as JVB(τ) by Eq. (40);

until JVB(τ) − JVB(τ − 1) < εJVB(τ − 1), with ε = 10−5 in our implementation;

With the prior and posterior on θi being both joint Normal-Wishart suggested in Ref. [25], this VB-DNW algorithm is
different from the VB algorithm (shortly denoted as VB-iDNW) on GMM studied in Ref. [20], where both q(θi) and p(θi) were
assumed as independent Normal-Wishart. Particularly, the independent NW prior takes q(θi) = G(µi|mi, A)W(Ti|Φ, γ) and

therein µi is independent from Ti, and such an independence also exists in the posterior p(θi) = G(µi|m∗
i , A∗

i )W(Ti|Φ∗
i , γ∗

i ).
Comparing the implementations of VB-DNW and VB-iDNW, they have one key difference that all computation formulas
related to p(θi) in VB-iDNW are modified accordingly as the independent NW prior is replaced by the joint NW prior.

Especially, to update the posterior p(θi) in the M-step, updating {m∗
i , A∗

i ,Φ∗
i , γ∗

i } in VB-iDNW is modified to updating
{m∗

i , β∗
i ,Φ∗

i , γ∗
i } in VB-DNW with the number of free hyper-parameters greatly reduced.
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