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In the context of quantitative analysis of the arbitrage pricing theory (APT) model, con-
ventional factor analytic approaches such as maximum likelihood factor analysis (MLFA)
cannot provide satisfactory answers to two important questions. The first one concerns
the correct identification of factor number while the second one is related to the rota-
tion indeterminacy of factor loadings. In the literature, MLFA followed by likelihood
ratio (LR) test and the analysis of eigenvalues of sample covariance matrix were two
popular approaches used to determine the appropriate number of factors. However, it
was shown empirically that both of them suffered from different kinds of biases. We find
the recently developed non-gaussian factor analysis (NFA) model by Xu [24] provides a
new perspective for the determination of the appropriate factor number k in APT, with
promising empirical results demonstrated.
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1. Introduction

Well-known in the finance literature, the arbitrage pricing theory (APT) assumes

that the cross-sectional expected returns of securities follow a multi-factor model

which is characterized by their sensitivities, usually called factor loadings, to k un-

known economic factors. Pursuit to the original model [17], returns are generated

under an exact factor structure in which the residual component of returns not ex-

plained by the factors is uncorrelated among securities. Conventional factor analytic

approaches such as maximum likelihood factor analysis (MLFA) [11] were applied

to recover both the factors and factor loadings and subsequent goodness-of-fit hy-

pothesis test such as the likelihood ratio (LR) test was carried out to ascertain the

minimum number of factors required to fit the model. However, two major limita-

tions exist while applying MLFA on APT analysis and assuming the exact factor

structure. First, since earlier studies showed that the number of significant factors

as judged by the LR test increased with the number of securities q in the group,

MLFA and LR test in general could not provide a satisfactory answer to the appro-

priate number of factors k for the APT model. The reason why k increased with q
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might be explained by the higher probability of including securities with correlated

idiosyncratic returns as q increase. Second, factor loadings as found by MLFA were

not unique and were invariant to rotation.

In fact, there are many difficulties associated with the analysis of the APT model

and in the literature, various efforts have been made to solve these problems. For

example, it was shown in [8] that the problem of LR statistical test mentioned

above could be improved by the method of cross validation. Although overfit of

noise component to the model could be prevented by cross validation with out-of-

sample data, it still could not guarantee to arrive at the correct factor number. The

method tended to underestimate the number of factors most of the time because

of the criteria of minimizing prediction error was not strictly related to finding the

appropriate number of factors. Cross validation could fail in the case that several

factors implicitly related were combined and appear to be a single factor. This

might be a possible explanation why the number of factors determined via cross

validation was consistently underestimated to be two in most cases.

On the other hand, attempt to solve both problems simultaneously by extending

the exact factor structure to the so-called approximate factor structure was found

in [5]. The rationale behind the proposition was that the key requirement for the

APT that nonfactor risk be approximately eliminated through diversification could

still be achieved without the assumption of a strict factor structure. The main

difference between the exact factor structure and the approximate one was that

the residual component of the latter being no longer uncorrelated, as revealed in

[19]. For the approximate factor structure, weak correlation within the residual

component was still acceptable. It has been shown in the same paper that the

assumption of an approximate factor structure offers another perspective for the

determination of factor number k and the unique identification of factor loadings.

The use of an approximate factor model was intuitively more appealing because

it made it probable that there exists some factor pertinent to a specific industry

rather than to the whole market. Assuming an approximate factor structure, the

LR statistic was no longer useful for the factor number determination purpose

and it was proved in [5] that the analysis of eigenvalues of population covariance

matrix was a suitable criterion. If k eigenvalues of the population covariance matrix

increased without bound as the number of securities in the population increased,

then the elements of the corresponding k eigenvectors of the covariance matrix

could be used as factor sensitivities. Furthermore, it was shown in [7] that this

conclusion held for the sample covariance matrix as well. Nonetheless, Brown [4]

discovered that empirically the criterion typically biased towards too few factors

and the result consistent with one factor might be equally consistent with k equally

weighted factors that were priced. The reason was due to rotation of the original

factors that minimizes the apparent number of priced factors. Moreover, Shukla and

Trzcinka [20] criticized this approach on the ground that eigenvectors being used

instead of statistical factor loadings in the returns-generating model for a large

economy, possibly with infinitely many assets, did not necessarily imply that they
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could be used in a cross-sectional model of security pricing in finite economies. The

reason was that principal component analysis (PCA) was very different from factor

analysis in the case of finite number of securities. PCA was more constrained than

factor analysis for the application in APT because it overlooked idiosyncratic risks.

The APT model has also attracted the attention of researchers working in

other fields. Specifically, a signal processing technique called independent compo-

nent analysis (ICA) was applied in [1] to recover statistically independent non-

gaussian distributed components (factors) using multivariate financial time series.

It was well-known that ICA could exploit higher-order statistics of the underly-

ing distribution to overcome the problem of rotation indeterminacy. Although it

was reasonable to assume non-gaussian distribution of factors, the critical weak-

ness of applying ICA for this specific task was due to its assumption of negligible

idiosyncratic risks.

Recently, a new factor analytic technique called non-gaussian factor analysis

(NFA) was developed under the framework of Bayesian Ying-Yang (BYY) harmony

learning. According to [24], NFA is superior to MLFA in view of its ability to

overcome rotation indeterminacy as well as determine the number of hidden factors

k via its model selection ability. Consequently, it may serve as an alternative tool

for traditional APT analysis. In this paper, we aim to explore the application of

NFA in solving the two main problems in APT discussed above and compare the

results with other conventional methods.

The rest of the paper is organized as follows. Section 2 reviews the original APT

model on which the analysis is based and Sec. 3 briefly introduces the NFA model

and highlight its benefits in the APT analysis. Section 4 describes the methodolo-

gies. Sections 5 and 6 are devoted to a comparative study on applying different

approaches to determine the factor number k, using, respectively, hypothetical and

real financial data. Section 7 concludes the paper.

2. The Arbitrage Pricing Theory

The APT begins with the assumption that the n× 1 vector of asset returns, R̃t, is

generated by a linear stochastic process with k factors:

Rt = R̄ + Aft + et , (2.1)

where ft is the k × 1 vector of realizations of k common factors, A is the n × k

matrix of factor weights or loadings, and et is a n× 1 vector of asset-specific risks.

It is assumed that ft and et have zero expected values so that R̄ is the n× 1 vector

of mean returns.

The model addresses how expected returns behave in a market with no arbitrage

opportunities and predicts that an asset’s expected return is linearly related to the

factor loadings or

R̄ = Rf + Ap , (2.2)
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where Rf is a n × 1 vector of constants representing the risk-free return, and p

is k × 1 vector of risk premiums. Similar to the derivation of the Capital Asset

Pricing Model (CAPM), Eq. (2.2) is based on the rationale that unsystematic risk

is diversifiable and therefore should have a zero price in the market with no arbitrage

opportunities.

3. Non-Gaussian Factor Analysis

3.1. An overview of NFA

Suppose the relationship between a state yt ∈ Rk and an observation xt ∈ Rd are

described by the equation as follows:

yt = εt , (3.1)

xt = Ayt + et , t = 1, 2, . . . , N , (3.2)

where εt is non-Gaussian and component-wise independent, et is zero-mean gaus-

sian white noise with E(eiej) = Σeδij , Σe is a diagonal matrix whereas δij is the

Kronecker delta function:

δij =

{
1 , if i = j ,

0 , otherwise.
(3.3)

In the context of APT analysis, Eq. (2.1) can be obtained from Eq. (3.2) by

substituting (R̃t − R̄) for xt and ft for yt. It is worth mentioning that the NFA

model is defined such that the k sources y
(1)
t , y

(2)
t , . . . , y

(k)
t in this state-space model

are statistically independent, i.e.,

p(yt) =

k∏

j=1

p(y
(j)
t ) , (3.4)

where yt = [y
(1)
t , y

(2)
t , . . . , y

(k)
t ]T and p(y

(j)
t ) =

∑
r αj,rG(y

(j)
t |mj,r, σ

2
j,r). The objec-

tive of NFA is to estimate the sequence of yt’s with unknown model parameters

Θ = {A, Σe} ∪ {αj,r, mj,r, σ
2
j,r} through the available observations.

In implementation, an adaptive algorithm suggested in [24] is shown below.

Step 1 Fix {αj,r, mj,r, σ
2
j,r} and {A, Σe}, find the factor ŷt via ŷt = argmax

yt

ln

[p(xt|yt)p(yt)] where p(yt) is given by (3.4).

Step 2 Fix {A, Σe} and yt, update

αj,r =
ecj,r

∑
l ecj,l

, (3.5)

cnew
j,r = cold

j,r + η
∑

l

hj,l[Il,r − αj,r] , (3.6)

mnew
j,r = mold

j,r + ηhj,rej,r , (3.7)
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σ2,new
j,r = σ2,old

j,r + η(e2
j,r − σ2

j,r) , (3.8)

ej,r = yj − mj,r , (3.9)

hj,r =
αj,rG(y

(j)
t |mj,r, σ

2
j,r)∑

l αj,lG(y
(j)
t |mj,l, σ2

j,l)
, (3.10)

Ii,r =

{
1 i = r ,

0 otherwise .
(3.11)

Step 3 Fix {αj,r, mj,r, σ
2
j,r} and yt, update

Anew = Aold + ηetŷ
T
t , (3.12)

Σnew
e = (1 − η)Σold

e + ηete
T
t , (3.13)

et = xt − Ayt . (3.14)

For the BYY harmony learning based NFA algorithm, the Yang machine by

nature requires finding the yt that maximizes the posterior, as in Step 1. Then,

based on the sample xt and the estimated yt in Step 1, Steps 2 and 3 update the re-

maining parameters via the typical least mean square (LMS) criterion. Moreover, as

discussed in [24], due to the least complexity property of the BYY harmony learn-

ing, the NFA algorithm is capable of selecting the number of factors. Furthermore,

the problem of local optimization could be alleviated by the two newly introduced

regularization techniques — data smoothing and normalization learning. Readers

interested are referred to [24] for further details.

3.2. Model selection versus factor number estimation

Central to the discussion in the paper about the number of factors in APT, NFA

is superior to MLFA in view of its model selection ability. In the context of APT

analysis, the scale of complexity of the model is equivalent to the number of hidden

factors in the original factor structure. As a result, model selection refers to decid-

ing the appropriate number of factors in APT. According to Xu [22–24], we can

achieve the aim of model selection by enumerating the cost function J(k) with k

incrementally and then select the appropriate k that makes J(k) attain minimum:

min
k

J(k) = 0.5 ln |Σe| + 0.5 ln |AT A| −
1

N

N∑

t=1

m∑

j=1

ln p(y
(j)
t ) , (3.15)

where Σe is the covariance matrix of the residual et, and

p(y
(j)
t ) =

∑

r

αj,rG(y
(j)
t |mj,r, σ

2
j,r) .
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3.3. Benefits for using NFA in APT analysis

For the analysis of non-gaussian stock return series, NFA has at least two distinct

benefits over traditional factor analytic techniques. First, by considering higher

order statistical information embedded in stock returns, the factors recovered are

mutually independent and unique. Second, it can determine the number of hidden

factors via its model selection ability. On the other hand, the typical advantage of

NFA over ICA is the more realistic consideration of noise that is inherent in the

model.

4. Methodologies

For hypothetical and real experiments, we compare the sensitivity of different tests

on identifying the number of factors k with regard to the number of securities used.

As discussed above, under the assumption of exact factor structure we will first use

LR test on the results of MLFA. Then we will analyze the eigenvalues of the sample

covariance matrix, assuming an underlying approximate factor structure. Finally,

the results will be compared with that found by NFA’s model selection criterion.

4.1. Test statistics and methodology

The LR statistic proposed by Lawley and Maxwell [12] and modified by Bartlett

[2] is given by

LR =

(
N −

2q + 4k + 11

6

) {
ln

|AA′ + Σ|

|S|
+ tr[(AA′ + Σ)−1S] − q

}
, (4.1)

where N is the sample size, S is the sample return covariance matrix and q is

the total number of securities. The first and second terms in the sum of LR refer

to the variance and bias components, respectively, of the statistic. Lawley and

Maxwell [12] has shown that the maximum likelihood factor estimates are unbiased,

and consequently, the bias component will converge asymptotically to zero. As a

result, the LR statistic measures the overall error in the factor estimates of the

sample covariances by comparing the generalized variances. When the normality

assumptions apply, general properties of the LR statistic establish that it has an

asymptotic central χ2 distribution with [(q − k)2 − (q + k)]/2 degrees of freedom.

The minimum number of factors k can be inferred from the computed p value at a

specific level of significance, which is 5% in this paper.

4.2. Eigenvalues analysis

Eigenvalues of the sample correlation or covariance matrix can be obtained either

by direct calculation or indirectly via performing PCA. According to Chamberlain

and Rothschild [5], for an approximate k-factor structure, the first k eigenvalues of
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Table 1. Sensitivities of LR statistics to the number of securities.

30 Securities 60 Securities 90 Securities

k D.f. LR Stat. p-Value D.f. LR Stat. p-Value D.f. LR Stat. p-Value
1 405 20355.77 0.0000 1710 50213.04 0.0000 3915 81222.22 0.0000
2 376 14165.34 0.0000 1651 35342.23 0.0000 3826 60980.38 0.0000
3 348 7804.46 0.0000 1593 20904.84 0.0000 3738 40183.88 0.0000
4 321 2557.15 0.0000 1536 7795.64 0.0000 3651 18283.34 0.0000
5 295 393.67 0.0001 1480 1975.91 0.0000 3565 4685.65 0.0000
6 270 336.46 0.0037 1425 1833.47 0.0000 3480 4470.17 0.0000
7 246 292.51 0.0224 1371 1717.06 0.0000 3396 4287.48 0.0000
8 223 231.96 0.3262 1318 1606.57 0.0000 3313 4122.15 0.0000
9 201 193.45 0.6361 1266 1503.81 0.0000 3231 3959.43 0.0000

10 180 158.99 0.8682 1215 1413.01 0.0001 3150 3804.32 0.0000
11 160 128.05 0.9702 1165 1327.76 0.0006 3070 3647.94 0.0000
12 141 102.82 0.9934 1116 1245.64 0.0039 2991 3499.17 0.0000
13 123 79.66 0.9991 1068 1167.69 0.0175 2913 3360.09 0.0000
14 106 63.05 0.9997 1021 1085.90 0.0776 2836 3227.70 0.0000
15 90 47.58 0.9999 975 1007.82 0.2266 2760 3100.28 0.0000
16 75 34.63 1.0000 930 938.24 0.4184 2685 2970.40 0.0001
17 886 872.65 0.6190 2611 2847.79 0.0007
18 843 809.76 0.7894 2538 2733.42 0.0036
19 801 750.14 0.9001 2466 2624.71 0.0131
20 760 691.98 0.9627 2395 2518.23 0.0392
21 720 636.04 0.9889 2325 2410.92 0.1048
22 681 585.90 0.9964 2256 2315.51 0.1872
23 643 541.86 0.9985 2188 2225.68 0.2822
24 606 497.72 0.9995 2121 2127.34 0.4572
25 570 412.22 1.0000 2055 2027.89 0.6607
26 1990 1932.17 0.8199
27 1926 1839.30 0.9204
28 1863 1758.81 0.9581
29 1801 1674.56 0.9841
30 1740 1589.23 0.9956
31 1680 1515.69 0.9983
32 1621 1424.41 0.9998

the covariance matrix of returns grow without limit as the number of securities, q,

increases, while the remaining q − k stay constant. However, for limited number of

securities, we can only determine the factor number heuristically via counting the

number of relatively large eigenvalues.

5. Determination of Factor Number Using Hypothetical Data

In this experiment, we assume returns of 30, 60 and 90 securities being generated

randomly via a fixed number of factors 5 by the NFA model in Eqs. (3.1) and

(3.2). The parameters used to generate N = 1000 data points are predetermined

as follows:
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A: A p × 5 matrix where q = 30, 60 or 90.

εt: Randomly generated by five componentwise independent non-

gaussian densities
∏5

i=1 p(y
(i)
t ).

et: Randomly generated with pdf G(et|0, Σ) where Σ is a q × q

matrix with diagonal elements σii and off-diagonal elements σij ,

with σii ∼ U(0.1,0.25), σij ∼ U(0,0.01), where U(r, s) denotes

uniform distribution in the interval [r, s].

Experimental results showing the number of factors identified by LR statistics

are shown in Table 1 and that by eigenvalues analysis and J(k) of NFA are shown

in Table 2. As shown in Table 1, the minimum number of factors identified by

MLFA and LR statistics is very sensitive to the number of securities under test

and increases progressively with the number of securities. The acceptable number

of factors at 5% level of significance is 8, 14 and 21 for 30, 60 and 90 securities

respectively. On the other hand, evidence in Table 2 based on eigenvalues of sample

covariance matrices seems to support the one-factor structure. Clearly, decision

based on LR statistics tends to overestimate the number of factors while that based

on eigenvalues tends to understate the same. The cost function J(k) is not only

insensitive to the number of securities, but also estimates the number of factors

correctly in all three cases. Figure 1 plots the values of J(k) against the number of

factors for different number of securities.

6. Determination of Factor Number Using Real Financial Data

In this section, similar methodology discussed in the last section will be applied on

historical stock data for the analysis of APT.

Table 2. Sensitivities of eigenvalues
and J(k) to the number of securities
for factor number determination.

Eigenvalues

k 30 Sec. 60 Sec. 90 Sec.
1 36.4533 65.2531 141.2334
2 4.2125 12.5418 15.8765
3 3.5930 7.8534 9.0989
4 2.8207 6.2982 7.6715
5 1.9409 4.7302 6.2121
6 0.7865 1.7834 2.6785
7 0.2417 0.3184 0.3026
8 0.2242 0.3061 0.2920
9 0.2129 0.2938 0.2831

10 0.2035 0.2866 0.2702
11 0.1936 0.2733 0.2606
12 0.1871 0.2589 0.2582
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Figure 1: J(k) for different number of securities using hypothetical data.

A: a p × 5 matrix where q = 30, 60 or 90,

εt: randomly generated by five componentwise independent non-

gaussian densities
∏5

i=1 p(y
(i)
t ).

et: randomly generated with pdf G(et|0, Σ) where Σ is a q × q
matrix with diagonal elements σii and off-diagonal elements σij ,
with σii ∼ U(0.1,0.25), σij ∼ U(0,0.01), where U(r, s) denotes
uniform distribution in the interval [r, s].

Experimental results showing the number of factors identified by LR

statistics are shown in Table 1 and that by eigenvalues analysis and

J(k) of NFA are shown in Table 2. As shown in Table 1, the minimum

number of factors identified by MLFA and LR statistics is very sensitive

to the number of securities under test and increases progressively with

the number of securities. The acceptable number of factors at 5% level

of significance is 8, 14 and 21 for 30, 60 and 90 securities respectively.

On the other hand, evidence in Table 2 based on eigenvalues of sample

covariance matrices seems to support the one-factor structure. Clearly,

decision based on LR statistics tends to overestimate the number of fac-

tors while that based on eigenvalues tends to understate the same. The

cost function J(k) is not only insensitive to the number of securities, but

also estimates the number of factors correctly in all three cases. Figure

1 plots the values of J(k) against the number of factors for different

number of securities.

Fig. 1. J(k) for different number of securities using hypothetical data.

6.1. Data considerations

We have carried out our analysis using past stock price and return data of Hong

Kong. Daily closing prices of 86 actively trading stocks covering the period from Jan-

uary 1, 1998 to December 31, 1999 are used. The number of trading days throughout

this period is 522. These stocks can be subdivided into three main categories ac-

cording to different indices they constitute. Of the 86 equities, 30 of them belong to

the Hang Seng Index (HSI) constituents, 32 are Hang Seng China-Affiliated Cor-

porations Index (HSCCI) constituents and the remaining 24 are Hang Seng China

Enterprises Index (HSCEI) constituents. In Hong Kong, stocks constituting HSI are

known as “blue chips” and they consist of conglomerates with large market capital-

izations. Most of them are domestic companies with a large proportion of business

in Hong Kong. HSCCI constituents are composed of large companies with China

affiliation but incorporated in Hong Kong. They are commonly referred to as “red

chips” and they put approximately equal emphasis on business in both Hong Kong

and China. HSCEI companies, also called “H-Shares” companies in Hong Kong,

are mainly China incorporated and later become listed in Hong Kong. Their main

business lines are located in China and they become listed in Hong Kong largely

for the purpose of raising capital. Since companies constituting different indices

have vastly dissimilar backgrounds, our intuition is that their stock prices may be

affected by different number of factors. As a result, our analysis will be index-based

as well as on all securities.
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We do not adopt random sampling in the stock selection process so as to avoid

the small-firm effect. This is because there are lots of small-sized listed companies

in Hong Kong, many even very inactive. Obviously this kind of stocks is not repre-

sentative of the whole market and including them will adversely affect the validity

of any conclusions drawn from our analysis.

Regarding the observation frequency, we has considered using either daily or

monthly equity returns. The potential benefit associated with the use of daily data

in the estimation of variances and covariances is enormous. This is because the more

frequent the observation, the more precise the parameter estimates. Moreover, for

equal number of daily and monthly data points, the period spanned by daily data

will be much shorter. As a result, our analysis will be just focused on a small period

and is therefore less susceptible to large fluctuations such as structural break.

6.2. Data preprocessing

Before carrying out the analysis, the stock prices must be converted to stationary

stock returns. The transformation applied can be described in four steps as shown

below.

Step 1 Transform the raw prices to returns by Rt = pt−pt−1

pt−1

.

Step 2 Calculate the mean return R̄ by 1
N

∑N

t=1 Rt.

Step 3 Subtract R̄ from Rt to get the zero-mean return.

Step 4 Let the result of above transformation be the adjusted return R̃t.

Table 3. Empirical results of factor number de-
termination using real stock data: 30 HSI con-
stituents.

k D.f. LR Statistics p-Value Eigenvalue

1 405 1753.21 0.0000 0.0180
2 376 1372.65 0.0000 0.0020
3 348 1051.90 0.0000 0.0014
4 321 746.88 0.0000 0.0013
5 295 575.57 0.0000 0.0012
6 270 463.34 0.0000 0.0011
7 246 396.55 0.0000 0.0009
8 223 320.69 0.0000 0.0008
9 201 265.05 0.0016 0.0008

10 180 212.93 0.0470 0.0008
11 160 175.97 0.1836 0.0007
12 141 146.20 0.3649 0.0006
13 123 112.61 0.7387 0.0006
14 106 91.02 0.8497 0.0006
15 90 66.69 0.9689 0.0005
16 75 50.61 0.9863 0.0005
17 61 34.31 0.9977 0.0004
18 48 23.10 0.9991 0.0004
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6.3. Empirical test results

The aim of our experiments are to examine the relationship between the number

of factors affecting stocks of various indices as well as the whole market. Table 7

gives an overview of the final results based on the details shown in Tables 3–6.

From Table 7, we can see that the number of factors k determined based on the

Table 4. Empirical results of factor number de-
termination using real stock data: 32 HSCCI con-
stituents.

k D.f. LR Statistics p-Value Eigenvalue

1 464 2132.32 0.0000 0.0427
2 433 1597.10 0.0000 0.0048
3 403 1257.86 0.0000 0.0043
4 374 991.13 0.0000 0.0026
5 346 748.25 0.0000 0.0023
6 319 624.20 0.0000 0.0019
7 293 495.61 0.0000 0.0019
8 268 406.72 0.0000 0.0018
9 244 339.17 0.0001 0.0017

10 221 286.07 0.0021 0.0016
11 199 237.61 0.0318 0.0015
12 178 201.73 0.1074 0.0014
13 158 168.74 0.2649 0.0012
14 139 141.90 0.4158 0.0012
15 121 113.73 0.6678 0.0011
16 104 88.18 0.8668 0.0010
17 88 75.11 0.8346 0.0009
18 73 48.25 0.9888 0.0009
19 59 33.05 0.9975 0.0008
20 46 22.80 0.9984 0.0008
21 34 14.20 0.9989 0.0007

Table 5. Empirical results of factor number de-
termination using real stock data: 24 HSCEI con-
stituents.

k D.f. LR Statistics p-Value Eigenvalue

1 252 1155.54 0.0000 0.0294
2 229 707.41 0.0000 0.0034
3 207 519.18 0.0000 0.0027
4 186 402.98 0.0000 0.0022
5 166 335.53 0.0000 0.0020
6 147 273.94 0.0000 0.0018
7 129 223.13 0.0000 0.0015
8 112 171.50 0.0003 0.0015
9 96 135.15 0.0052 0.0014

10 81 105.64 0.0344 0.0012
11 67 77.31 0.1826 0.0012
12 54 47.45 0.7234 0.0011
13 42 29.45 0.9280 0.0011
14 31 16.74 0.9826 0.0010
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Table 6. Empirical results of factor number deter-
mination using real stock data: All 86 securities.

k D.f. LR Statistics p-Value Eigenvalue

1 3569 13836.27 0.0000 0.0794
2 3484 8974.26 0.0000 0.0090
3 3400 8013.02 0.0000 0.0055
4 3317 7322.74 0.0000 0.0049
5 3235 6748.97 0.0000 0.0042
6 3154 6206.89 0.0000 0.0033
7 3074 5734.00 0.0000 0.0030
8 2995 5386.65 0.0000 0.0028
9 2917 5013.30 0.0000 0.0024

10 2840 4715.36 0.0000 0.0022
11 2764 4477.92 0.0000 0.0021
12 2689 4246.48 0.0000 0.0021
13 2615 4027.50 0.0000 0.0020
14 2542 3817.85 0.0000 0.0019
15 2470 3637.25 0.0000 0.0018
16 2399 3461.50 0.0000 0.0018
17 2329 3294.01 0.0000 0.0017
18 2260 3149.45 0.0000 0.0016
19 2192 3001.69 0.0000 0.0016
20 2125 2848.76 0.0000 0.0015
21 2059 2708.99 0.0000 0.0014
22 1994 2557.03 0.0000 0.0014
23 1930 2425.27 0.0000 0.0013
24 1867 2299.82 0.0000 0.0013
25 1805 2184.25 0.0000 0.0013
26 1744 2072.12 0.0000 0.0012
27 1684 1973.43 0.0000 0.0012
28 1625 1869.59 0.0000 0.0012
29 1567 1774.60 0.0002 0.0011
30 1510 1681.16 0.0013 0.0011
31 1454 1586.46 0.0082 0.0011
32 1399 1502.31 0.0275 0.0010
33 1345 1418.03 0.0813 0.0010
34 1292 1342.88 0.1584 0.0010
35 1240 1270.46 0.2676 0.0009
36 1189 1199.01 0.4136 0.0009
37 1139 1138.35 0.4999 0.0009
38 1090 1068.94 0.6699 0.0009
39 1042 999.59 0.8231 0.0008
40 995 919.63 0.9572 0.0008

Table 7. Results summary of factor number k determined
based on real financial data.

Total number
Stock index of securities MLFA Eigenvalue J(k)

HSI 30 11 1 4
HSCCI 32 12 1 4
HSCEI 24 9 1 5
All Securities 86 33 1 5
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methodology of MLFA increases progressively with the number of securities in-

cluded in a particular group. According to MLFA, there are 11 factors for HSI

constituents, 12 for HSCCI constituents, 9 for HSCEI constituents and 33 for all

market securities as a whole. On the other hand, the number of factors as revealed

through the analysis of eigenvalues of sample covariance matrix is 1 irrespective

of indices. The findings by the previous two methods can be contrasted with that

discovered by the model selection criterion of NFA. Since the unique k associated

with the minimum value of the cost function J(k) corresponds to the appropriate

factor number in APT, the factor numbers are 4 for both HSI and HSCCI and 5

for both HSCEI and all 86 securities. Figure 2 shows the plots of J(k).

6.4. Results interpretation

The correct determination of factor number is critical for APT analysis. However,

the issue of the appropriate number of factors has been the subject of some con-

troversy in the literature such as Roll and Ross [14, 16, 15], Dhrymes, Friend and

Gultekin [9], Trzcinka [21], Conway and Reinganum [8], and Brown [4]. Although

Roll and Ross [14] believed that the number of factors is not more than five based

on some empirical research findings, it was still far from conclusive because the tool

on which the APT analysis was based suffers from various indeterminacies discussed

in the previous sections. Interestingly, the factor number determined via the cost

function J(k) and NFA appears to agree with what suggested by Roll and Ross.

K. C. Chiu & L. Xu

Table 3: Empirical results of factor number determination using real stock data: 30
HSI constituents.
k D.f. LR Statistics p-Value Eigenvalue
1 405 1753.21 0.0000 0.0180
2 376 1372.65 0.0000 0.0020
3 348 1051.90 0.0000 0.0014
4 321 746.88 0.0000 0.0013
5 295 575.57 0.0000 0.0012
6 270 463.34 0.0000 0.0011
7 246 396.55 0.0000 0.0009
8 223 320.69 0.0000 0.0008
9 201 265.05 0.0016 0.0008

10 180 212.93 0.0470 0.0008
11 160 175.97 0.1836 0.0007
12 141 146.20 0.3649 0.0006
13 123 112.61 0.7387 0.0006
14 106 91.02 0.8497 0.0006
15 90 66.69 0.9689 0.0005
16 75 50.61 0.9863 0.0005
17 61 34.31 0.9977 0.0004
18 48 23.10 0.9991 0.0004
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Figure 2: J(k) using different index constituents.
Fig. 2. J(k) using different index constituents.
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7. Conclusion

Two major obstacles of APT analysis via MLFA exist owing to its inability to

determine the appropriate number of factors k and rotation indeterminacy. A com-

parative study on the effectiveness of different approaches towards identifying the

factor number has been conducted. We find that LR test on results of MLFA is

biased towards more factors while the identification via eigenvalues of sample co-

variance matrix tends to bias towards a smaller factor number. On the other hand,

NFA not only can overcome rotation indeterminacy, but also provide a solution

to determine the number of factors via a simple cost function J(k) and its model

selection ability.

Acknowledgments

The authors would like to express their gratitude to the anonymous reviewers for

their comments and suggestions that improve the original manuscript. The work

described in this paper was fully supported by a grant from the Research Grant

Council of the Hong Kong SAR (Project No: CUHK 4184/03E).

References

[1] A. D. Back and A. S. Weigend, A first application of independent component analysis
to extracting structure from stock returns, Int. J. Neural Syst. 8 (1997) 473–484.

[2] M. S. Bartlett, Tests of significance in factor analysis, Brit. J. Math. Stat. Psy. 3

(1950) 77–85.
[3] M. Berry, E. Burmeister and M. McElroy, Sorting out risks using known apt factors,

Financ. Anal. J. 44 (1988) 29–42.
[4] S. Brown, The number of factors in security returns, J. Financ. 44 (1989) 1247–1262.
[5] G. Chamberlain and M. Rothschild, Arbitrage and mean variance analysis on large

asset markets, Econometrica 51 (1983) 1281–1304.
[6] N. F. Chen, R. Roll and S. Ross, Economic forces and the stock market, J. Business

59 (1986) 383–403.
[7] G. Connor and R. Korajczyk, Risk and return in an equilibrium APT: application

of a new methodology, J. Financ. Econ. 21 (1988) 255–289.
[8] D. Conway and M. Reinganum, Stable factors in security returns: identification using

cross-validation, J. Bus. Econ. Stat. 6 (1988) 1–15.
[9] P. Dhrymes, I. Friend and N. Gultekin, A critical reexamination of the empirical

evidence on the arbitrag pricing theory, J. Financ. 39 (1984) 323–346.
[10] T. Estep, N. Hansen and C. Johnson, Sources of value and risk in common stocks,

J. Portfolio Manage. 9 (1983) 5–13.
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