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Abstract

It is well-known that constrained Hebbian self-organization on multiple linear neural units leads to the same k-dimensional subspace

spanned by the first k principal components. Not only the batch PCA algorithm has been widely applied in various fields since 1930s, but also

a variety of adaptive algorithms have been proposed in the past two decades. However, most studies assume a known dimension k or

determine it heuristically, though there exist a number of model selection criteria in the literature of statistics. Recently, criteria have also

been obtained under the framework of Bayesian Ying–Yang (BYY) harmony learning. This paper further investigates the BYY criteria in

comparison with existing typical criteria, including Akaike’s information criterion (AIC), the consistent Akaike’s information criterion

(CAIC), the Bayesian inference criterion (BIC), and the cross-validation (CV) criterion. This comparative study is made via experiments not

only on simulated data sets of different sample sizes, noise variances, data space dimensions, and subspace dimensions, but also on two real

data sets from air pollution problem and sport track records, respectively. Experiments have shown that BIC outperforms AIC, CAIC, and CV

while the BYY criteria are either comparable with or better than BIC. Therefore, BYY harmony learning is a more preferred tool for subspace

dimension determination by further considering that the appropriate subspace dimension k can be automatically determined during

implementing BYY harmony learning for the principal subspace while the selection of subspace dimension k by BIC, AIC, CAIC, and CV

has to be made at the second stage based on a set of candidate subspaces with different dimensions which have to be obtained at the first stage

of learning.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Since 1930s, principal component analysis (PCA) has

been used as a popular technique for processing, compres-

sing and visualizing data, with wide applications in

psychology, economics, education, management of per-

sonnel matters (Diamantaras & Kung, 1996; Jolliffe, 1986).

In 1982, Oja (1982) showed that a constrained Hebbian

rule based self-organization actually performs PCA

adaptively. In 1989, Oja (1989) further showed that

constrained Hebbian self-organization on multiple linear

neural units leads to the same k-dimensional subspace

spanned by the first k principal components. A variety of

adaptive algorithms have been proposed to obtain the first k
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principal components or the subspace spanned by the first k

principal components in the past two decades (Baldi &

Hornik, 1995; Rubner & Tavan, 1989; Xu, 1994a,b; Xu &

Yuille, 1995).

Most studies assume a known dimension k or determine k

heuristically (Cattell, 1966; Kaiser, 1970). Actually, the

selection of k can be addressed via statistical model

selection by noticing that PCA is equivalent to a special

case of the conventional factor analysis under the maximum

likelihood principle (Anderson & Rubin, 1956) which is

recently revisited under the name of the probabilistic PCA

model (Roweis, 1998; Tipping & Bishop, 1999). Con-

ventionally, statistical model selection was conducted via a

two-phase style implementation that first obtain a set of

candidate models under the maximum likelihood (ML)

principle and then select the ‘optimal’ model according to a

given model selection criterion. Popular examples of such

criteria include the Akaike’s (1974, 1987) information
Neural Networks 17 (2004) 1051–1059
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1 G(xjm,S) denotes a multivariate normal (Gaussian) distribution with

mean m and covariance matrix S.

X. Hu, L. Xu / Neural Networks 17 (2004) 1051–10591052
criterion (AIC), Bozdogan’s (1987) consistent Akaike’s

information criterion (CAIC), Schwarz (1978) Bayesian

inference criterion (BIC) which coincides with Rissanen’s

minimum description length (MDL) criterion (Barron &

Rissanen, 1998; Rissanen, 1978), and cross-validation (CV)

criterion (Stone, 1974).

The Bayesian Ying–Yang (BYY) learning was pro-

posed as a unified statistical learning framework firstly in

1995 (Xu, 1995) and systematically developed in past

years. Providing with a general learning framework, the

BYY harmony learning consists of a general BYY system

and a fundamental harmony learning principle as a unified

guide for developing new regularization techniques, a new

class of criteria for model selection, and a new family of

algorithms that perform parameter learning with auto-

mated model selection (Xu, 2000, 2001a,b, 2002, 2003a,

b). By applying BYY learning to the factor analysis, not

only criteria have been obtained for selecting the PCA

subspace dimension but also an adaptive algorithm has

been developed that performs PCA with an appropriate

subspace dimension k automatically determined during

this adaptive learning (Xu, 2001b, 2003b). This paper

further investigates the BYY criteria in comparison with

the criteria of AIC, CAIC, BIC, and CV in the cases of

small sample size.

This comparative study is carried out via experiments not

only on simulated data sets of different sample sizes, noise

variances, data space dimensions and subspace dimensions,

etc. but also on two real data sets from air pollution data and

sport track records, respectively. Experiments have shown

that the performance of BIC is superior to AIC, CAIC, and

CV. The BYY criterion that corresponds to BYY harmony

empirical learning (BYY-HEC) (Xu, 2000, 2002) and the

BYY criterion that corresponds to BYY harmony data

smoothing learning (BYY-HDS) criterion (Xu, 2001b,

2002, 2003a) are comparable with that of BIC or even

superior to BIC in some cases. From another perspective,

selection of subspace dimension k by BIC, AIC, CAIC, and

CV has to be made at the second stage on a set of candidate

subspaces with different dimensions and these candidate

subspaces have to be obtained via learning at the first stage.

However, an appropriate subspace dimension k can be

automatically determined during implementing BYY har-

mony learning. Therefore, BYY harmony learning is a more

preferred tool for principal subspace dimension

determination.

The rest of this paper is organized as follows. In Section

2, we introduce the PCA special case of factor analysis

under the maximum likelihood learning. In Section 3, we

further introduce not only the criteria BIC, AIC, CAIC, and

CV, but also the criteria BYY-HEC and BYY-HDS.

Moreover, a technique for effectively implementing

data smoothing learning is proposed. Comparative exper-

iments are given in Section 4 and a conclusion is made in

Section 5.
2. Factor analysis, PCA and ML learning

Provided that x is a d-dimensional random vector of

observable variables, e is a d-dimensional random vector of

unobservable noise variables, and y is a k-dimensional

random vector of unobservable latent variables. The

following is the widely used factor analysis model in the

literature of statistics (Anderson & Rubin, 1956; Xu, 1998)

x Z Ay Ce; (1)

where A is a d!k loading matrix, y is from G(yj0,I),1 e is

also from Gaussian, and y and e are mutually independent.

Particularly, when e comes from G(ej0, s2I), the maximum

likelihood estimation on p(x) leads to A consisting of the

first k principal component vectors as columns. This case is

equivalent to PCA (Anderson & Rubin, 1956; Xu, 1998).

This factor analysis model is also recently re-iterated under

the name of PCA probabilistic model (Roweis, 1998;

Tipping & Bishop, 1999).

Given k and a set of observations fxtg
n
tZ1, one widely used

method for estimating qZ{A, s2} is maximum likelihood

learning. That is

q̂ Z arg max
q

LðqÞ; (2)

where L(q) is the following log likelihood function (Lawley,

1940; Rubin & Thayer, 1982)

LðqÞ ZK
n

2
lnjAAT Cs2IjK

n

2
trðSðAAT Cs2IÞK1Þ; (3)

where

S Z
1

n

Xn

tZ1

xtx
T
t ; (4)

is the sample covariance matrix, supposing that the

observed variables have been centered at the sample means.

It has been shown that A estimated from Eq. (2) spans the

principal subspace of the data (Anderson & Rubin, 1956;

Xu, 1998). Let l1Ol2O/OldR0 be the eigenvalues of S,

and let l1, l2,.,ld be the corresponding eigenvectors

normalized by lj
0ljZ1. Let UkZ(l1,.,lk). The solution of

A and s2 are given by

ŝ2 Z
1

d Kk

Xd

iZkC1

li; (5)

Â Z UkDR; (6)

where D is the k!k diagonal matrix with the ith diagonal

element being
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
li K ŝ2

p
and R is an arbitrary k!k

orthogonal rotation matrix.

In implementation, the above ŝ2, Â can be obtained via

making an eigen-decomposition of the sample covariance
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matrix S in help of numerical methods such as the QR

method. However, the estimated S becomes poor for a small

size of samples. Another method is the expectation–

maximization (EM) algorithm for PCA (Roweis, 1998;

Rubin & Thayer, 1982; Tipping & Bishop, 1999). It is still

calculated in a batch way based on all samples. Several

adaptive algorithms for PCA were developed in the

literature of neural networks. In this paper, we simply use

the QR eigen-decomposition method for a large sample size,

while for a small sample size of high dimension we use the

adaptive algorithm given by Eq. (82) in Section 3.3 of Xu

(2002). The details are referred in Section 4.
3. Subspace dimension determination

3.1. Typical model selection criteria

Most studies assume a known dimension k or determine

it heuristically (Cattell, 1966; Kaiser, 1970), especially in

engineering fields such as signal and image processing,

though the task can be performed via several existing

statistical model selection criteria. One main reason is that

these criteria have to be implemented via a two-stage style

that is usually very computationally intensive. First, we

need to assume a range of values of k from kmin to kmax

which is assumed to contain the optimal k. At each specific

k, we estimate the parameters q under the ML learning

principle. Second, we make the following selection

k̂ Z arg min
k
fJðq̂; kÞ; k Z kmin;.; kmaxg; (7)

where Jðq̂; kÞ is a given model selection criterion.

Three typical model selection criteria are the Akaike’s

information criterion (AIC) (Akaike, 1974, 1987), its

extension called Bozdogan’s consistent Akaike’s infor-

mation criterion (CAIC) (Bozdogan, 1987), Schwarz’s

Bayesian inference criterion (BIC) (Schwarz, 1978) which

coincides with Rissanen’s minimum description length

(MDL) criterion (Barron & Rissanen, 1998; Rissanen,

1978). These three model selection criteria can be

summarized into the following general form (Sclove,

1994)

Jðq̂; kÞ ZK2Lðq̂ÞCCðnÞDðkÞ; (8)

where Lðq̂Þ is the log likelihood of Eq. (3) based on the

ML estimate q̂ under a given k, and D(k) is the number of

independent parameters in that k-components model

(Akaike, 1987; Anderson & Rubin, 1956)

DðkÞ Z dk C1 Kkðk K1Þ=2: (9)

Moreover, C(n) is a function with respect to the

number of observations as follows:
†
 C(n)Z2 for Akaike’s information criterion (AIC)

(Akaike, 1974, 1987),
†
 C(n)Zln(n)C1 for Bozdogan’s consistent Akaike’s

information criterion (CAIC) (Bozdogan, 1987),
†
 C(n)Zln(n) for Schwarz’s Bayesian inference criterion

(BIC) (Schwarz, 1978).

Another well-known model selection technique is cross-

validation (CV), by which data are repeatedly partitioned

into two sets, one is used to build the model and the other is

used to evaluate the statistic of interest (Stone, 1974). For

the ith partition, let Di be the data subset used for testing and

DKi be the remainder of the data used for training, the cross-

validated log-likelihood for a k-components model is

Jðq̂; kÞ ZK
1

m

Xm

iZ1

Lðq̂ðDKiÞjDiÞ; (10)

where m is the number of partitions, q̂ðDKiÞ denotes the ML

parameter estimates of k-components model from the ith

training subset, and Lðq̂ðDKiÞjDiÞ is the log-likelihood

evaluated on the data set Di. Featured by m, it is usually

referred as making a m-fold cross-validation or shortly m-

fold CV.
3.2. BYY harmony learning

Bayesian Ying–Yang (BYY) learning was proposed as a

unified statistical learning framework firstly in Xu (1995)

and systematically developed in past years. From the

perspective of general learning framework, the BYY

harmony learning consists of a general BYY system and a

fundamental harmony learning principle as a unified guide

for developing new regularization techniques, a new class of

criteria for model selection, and a new family of algorithms

that perform parameter learning with automated model

selection. From the perspective of specific learning

paradigms, the BYY learning with specific structures

applies to unsupervised learning, supervised learning, and

state space approach for temporal modeling, with a number

of new results. The details are referred to Xu (2000, 2001a,

b, 2002, 2003a,b).

Applying BYY harmony learning to the factor analysis at

its PCA special case, the following criterion is obtained for

selecting the subspace dimension k (Xu, 2002)

BYY-HECðq̂; kÞ Z
d

2
ln ŝ2 C

k

2
ð1 C lnð2pÞÞ; (11)

where q̂ can be either a ML estimate or obtained from BYY

harmony learning by an adaptive algorithm. This criterion is

obtained from implementing BYY harmony learning in a

situation without considering any regularization, i.e. learn-

ing from samples directly or called empirical learning.

Shortly, we refer it by BYY harmony empirical learning

(BYY-HEC) criterion. In the cases of a small size of sample,

BYY harmony learning is implemented with certain

regularization measures. One is called data smoothing
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regularization. The basic idea of this smoothing regulariz-

ation is to learn a parametric model and a Parzen window

nonparametric model with a smoothing parameter h2 such

that parameters in the parametric model and the smoothing

parameter h2 are determined together. Considering this data

smoothing regularization, the above criterion is modified as

follows
BYY-HDSðq̂h;kÞ Z
d

2
ln ŝ2

h C
k

2
ð1 C lnð2pÞÞ; (12)

where q̂h Z fÂh; ŝ
2
h; ĥ

2
g is obtained from BYY harmony

learning with data smoothing regularization. That is
q̂h Z arg max
qh

Hðqh; k̂Þ: (13)
It should be noted that h2 affects the determination of

both qh and k, and both BYY-HDS ðq̂h; kÞ and Hðqh; k̂Þ are

obtained from maximizing the same BYY harmony function

H(qh,k) (Xu, 2001a, 2002).

On the factor model Eq. (1), it follows from Section 2.2.1

in Xu (2002), especially Eqs. (34), (37) and (38) in Xu

(2002), that the specific from of H(qh,k) is given as follows
Hðqh;kÞ ZK
d

2
ln s2

h K
1

2n

Xn

tZ1

kxt KAhytk
2

s2
h

K
dh2

2s2
h

K ln
Xn

tZ1

phðxtÞK
k

2
ð1 C lnð2pÞÞ; (14)
under the constrain Eðyty
T
t ÞZ I; where
yt Z ðAT
h Ah Cs2

hIÞK1AT
h xt; (15)
and ph(x) is a Parzen window density
phðxÞ Z
1

n

Xn

tZ1

Gðxjxt; h
2IÞ: (16)
With k fixed, Eq. (13) can be implemented via an adaptive

algorithm, e.g. a simplified version of either the one given

by Eq. (78) in Xu (2001b) or the one given in Table 1 of Xu

(2002). In this paper, since typical model selection criteria

are compared based on the ML estimate via the QR eigen-

decomposition method that is made in batch. We also

implement Eq. (13) in batch. Similar to the procedure given

in Table 1 of Xu (2002), we iterate following steps
Yangstep : get yt by Eq: ð15Þ;

Yingstep : ðaÞ from
vHðqh;kÞ

vs2
h

Z0;
vHðqh;kÞ

vA2
h

Z0;update

s2
h Z

1

nd

Xn

tZ1

kxt KAhytk
2Ch2;

Ah Z
1

n

Xn

tZ1

xty
T
t ;

ðbÞ updateh2 Ze
~h

2

by

h2new Ze
~h

2new

; ~h
2new

Z ~h
2old

Ch0d ~h
2
;

d ~h
2
Z

vHðqh;kÞ

v ~h
2

Z
1

2
dK

dh2

s2
h

K
gðh2Þ

h2Gðh2Þ

� �
;

gðh2ÞZ
Xn

tZ1

Xn

rZ1

exp K
kxt Kxrk

2

2h2

� �
kxt Kxrk

2;

Gðh2ÞZ
Xn

tZ1

Xn

rZ1

exp K
kxt Kxrk

2

2h2

� �
;

(17)

where h0 is a step length constant. This iterative procedure

is guaranteed to converge since it is actually the specific

form of the Ying–Ying alternative procedure, see Section

3.5 in Xu (2003b).

With k enumerated as in Eq. (7) and its corresponding

parameters obtained by the above Eq. (17), we can select a

best value of k by BYY-HDSðq̂h; kÞ in Eq. (12) that is

simplified from KH(qh,k) by Eq. (14) by noticing ŝ2
hZ 1

nd
!Pn

tZ1 kxt KAhytk
2Ch2 and ignoring the term

ln
Pn

tZ1 phðxtÞ. Shortly, we refer it by BYY harmony data

smoothing learning (BYY-HDS) criterion.

Besides the above criterion based selection, adaptive

algorithms have also been developed from BYY harmony

learning such that an appropriate subspace dimension k is

automatically determined during adaptively learning (Xu,

2001a, 2003b). The subspace dimensions obtained via either

this automatic determination or the above criterion have no

difference. The difference is that the automatic determi-

nation saves significantly computational costs of imple-

menting the conventional two stage style of statistical model

selection. Thus, if the performances by the criteria from

BYY harmony learning are comparable or even superior to

typical statistical model selection criteria of AIC, CAIC,

BIC, and CV in the cases of a small sample size, we

certainly prefer to use BYY harmony learning as a tool for

determining principal subspace.
4. Empirical comparative studies

We investigate the experimental performances of the

model selection criteria AIC, CAIC, BIC, 10-fold CV,

BYY-HEC, and BYY-HDS, on both synthetic data sets and

two real world data sets. In implementation, estimating A

and s2 is made either via the QR eigen-decomposition
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method by the Matlab function eig (Anderson, 1999) for

implementing the ML learning or via Eq. (17) for

implementing BYY harmony learning, with simply h2Z0

for BYY-HEC. In addition, to clearly illustrate the curve of

each criterion in one figure we normalize the values of each

curve to zero mean and unit variance.
4.1. Experiments on simulated data sets

We design four groups simulation experiments to

illustrate the performance of each criterion on the data

sets with different sample sizes, noise variances, data

dimensions, and numbers of components. The observations

xt, tZ1,.,n are generated from xtZAytCet with yt

randomly generated from Gðytj0; IÞ and et randomly

generated from Gðetj0;s
2IÞ: Each simulation is repeated

100 times. Experiments are repeated over 100 times to

facilitate our observing on statistical behaviors. Each

elements of A is generated from Gðaijj0; 1Þ: Usually we set

kminZ1 and kmaxZ2kK1 where k is the true number of

components.
Fig. 1. The curves obtained by the criteria AIC, CAIC, BIC, 10-fold CV,

BYY-HEC and BYY-HDS on the data sets of a 10-dimensional x (dZ10)

generated from a 3-dimensional y (kZ3) with different sample sizes. (a)

nZ20 and (b) nZ100.
4.1.1. Effects of sample size on model selection criteria

We investigate the performances of every criterion on the

data sets with different sample sizes nZ20, 40, and 100. In

this example, the dimension of x is dZ10 and the dimension

of y is kZ3. The noise variance s2 is equal to 0.2jk where

jk denotes the smallest positive eigenvalue of ATA. The

results are shown in Fig. 1. Table 1 illustrates the rates of

underestimating, success, and overestimating of each

methods in 100 experiments.

When the sample size is only 20, we see that BYY-HDS

and BIC select the right number 3. CAIC selects the number

1. AIC, 10-fold CV and BYY-HEC select 4. When the

sample size is 100, all the criteria lead to the right number.

We also observe that the value of BYY-HDS is similar with

the value of BYY-HEC when the sample size is large.

Similar observations can be observed in Table 1. For a small

size, CAIC tends to underestimate the number while AIC,

10-fold CV, and BYY-HEC tend to overestimate the

number. Again, BYY-HDS illustrates the highest successful

rate.
Table 1

Rates of underestimating (U), success (S), and overestimating (O) by each

criteria on simulation data sets with different sample sizes in 100

experiments

Criteria nZ20 nZ40 nZ100

U S O U S O U S O

AIC 2 68 30 0 81 19 0 85 15

CAIC 26 73 1 2 98 0 0 100 0

BIC 10 84 6 1 99 0 0 100 0

BYY-HEC 6 74 20 0 98 2 0 100 0

BYY-HDS 11 86 3 1 99 0 0 100 0

10-Fold CV 3 71 26 0 87 13 0 92 8
4.1.2. Effects of noise variance on model selection criteria

We further investigate the performance of each criterion

on the data sets with different scale of noise added. In this

example, the dimension of x is dZ10, the dimension of y is

kZ3, and the sample size is nZ50. The noise variance s2 is

equal to 0.5jkz1.64, 0.25jkz0.82, and 0.125jkz0.41.

The results are shown in Fig. 2. Table 2 illustrates the rates

of underestimating, success, and overestimating of each

methods in 100 experiments.

When the noise variance is 1.64, we see that only AIC

and 10-fold CV select the right number 3, CAIC, BIC,
BYY-HEC and BYY-HDS select two components. When

the noise variance is 0.41, all the criteria lead to the right

number. Similar observations can be observed in Table 2.

Thus, for a large noise variance, CAIC, BIC, BYY-HEC and



Fig. 2. The curves obtained by the criteria AIC, CAIC, BIC, 10-fold CV,

BYY-HEC and BYY-HDS on the data sets of a 10-dimensional x (dZ10)

generated from a 3-dimensional y (kZ3) with different noise variances. (a)

s2Z1.64 and (b) s2Z0.41.
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BYY-HDS are high likely to underestimate the number

while AIC and 10-fold CV have a slight risk of over-

estimating the number. For a small noise variance, CAIC,

BIC, BYY-HEC and BYY-HDS have high successful rates
Table 2

Rates of underestimating (U), success (S), and overestimating (O) by each

criteria on simulation data sets with different noise variances in 100

experiments

Criteria s2Z1.64 s2Z0.82 s2Z0.41

U S O U S O U S O

AIC 3 77 20 0 82 18 0 84 16

CAIC 54 46 0 1 99 0 0 100 0

BIC 49 51 0 1 98 1 0 99 1

BYY-HEC 66 34 0 7 93 0 0 100 0

BYY-HDS 79 21 0 11 89 0 0 100 0

10-Fold CV 3 78 19 0 87 13 0 88 12
while AIC and 10-fold CV still have a slight risk of

overestimating the number.
4.1.3. Effects of data dimension on model selection criteria

Next, we investigate the effect of data dimension on each

criteria. The dimension of y is kZ3, the noise variance s2 is

equal to 0.2jk, and the sample size in nZ50. The dimension

of x is dZ6, 12, and 30. The results are shown in Fig. 3.

Table 3 illustrates the rates of underestimating, success, and

overestimating of each methods in 100 experiments.

When the dimension of x is 6, we observe that CAIC,

BIC, BYY-HEC and BYY-HDS select the right number 3,

while AIC and 10-fold CV select the number 4. When the

dimension of x is 30, BYY-HEC, 10-fold CV and AIC get

the right number 3, but CAIC, BIC and BYY-HDS choose

the number 2. Similar observations can be obtained

in Table 3. For a low dimensional x, CAIC, BIC, and
Fig. 3. The curves obtained by the criteria AIC, CAIC, BIC, 10-fold CV,

BYY-HEC and BYY-HDS on the data sets of a x with different dimensions

generated from a 3-dimensional y (kZ3). (a) dZ6 and (b) dZ30.



Table 3

Rates of underestimating (U), success (S), and overestimating (O) by each

criteria on simulation data sets with different data dimensions in 100

experiments

Criteria dZ6 dZ12 dZ30

U S O U S O U S O

AIC 0 87 13 0 86 14 1 89 10

CAIC 0 100 0 2 98 0 65 35 0

BIC 0 99 1 1 99 0 30 70 0

BYY-HEC 0 100 0 0 100 0 2 96 2

BYY-HDS 2 98 0 1 99 0 28 72 0

10-Fold CV 0 80 20 0 85 15 0 93 7

Table 4

Rates of underestimating (U), success (S), and overestimating (O) by each

criteria on simulation data sets with different subspace dimensions in 100

experiments

Criteria kZ2 kZ5 kZ10

U S O U S O U S O

AIC 0 90 10 0 86 14 0 62 38

CAIC 10 90 0 15 85 0 4 96 0

BIC 2 98 0 4 96 0 1 99 0

BYY-HEC 1 99 0 1 99 0 0 83 17

BYY-HDS 3 97 0 13 87 0 31 69 0

10-Fold CV 0 92 8 0 96 4 0 95 5

Fig. 4. The curves obtained by the criteria AIC, CAIC, BIC, 10-fold CV,

BYY-HEC and BYY-HDS on the air pollution data set.
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BYY-HEC get high successful rates. For a high dimensional

x BYY-HEC still has high successful rates, but CAIC, BIC

and BYY-HDS tend to underestimating the dimension of

subspace, while AIC and 10-fold CV always get a slight risk

of overestimating.
4.1.4. Effect of subspace dimension on model selection

criteria

Finally, we consider the effect of subspace dimension,

that is, the dimension of y on each criterion. In this example,

we set nZ50, dZ20, and s2Z0.2jk. The dimension of y is

kZ2, 5, and 10. Table 4 illustrates the rates of under-

estimating, success, and overestimating of each methods in

100 experiments.

As shown in Table 4, when subspace dimension is small

all criteria have good performance. When subspace

dimension is large BYY-HDS gets a risk of underestimat-

ing, while AIC gets a risk of overestimating.
4.2. Experiments on real world data

We further apply these model selection criteria on two

real world data sets. For real data sets the true subspace

dimension is unknown, and thus we just show some

differences between these model selection criteria.
Fig. 5. The curves obtained by the criteria AIC, CAIC, BIC, 10-fold CV,

BYY-HEC and BYY-HDS on the data set of track records for man.
4.2.1. Air pollution data

The air pollution date from Table 1.3 in Johnson and

Wichern (1998) consists of 42 measurements (nZ42) on

seven air-pollution variables (dZ7) such as wind, solar
radiation and so on recorded at 12:00 noon in the Los

Angeles area on different days. We want to see how many

invisible causes affect the air quality. We implement each

criterion on the original data set. The results are shown in

Fig. 4. The subspace dimension determined by BYY-HDS is

three, by CAIC is five and by other criteria is six. According

to some research on air pollution problem, it seems that five

or less components maybe more reasonable.

4.2.2. Track records data

This data consists of the national track records for man in

eight items (dZ8) from 100 m to marathon of 55 countries

(nZ55). It is come from Table 8.6 in Johnson and Wichern

(1998). The task is to find how many principal components

should be used to present the data. The variables are given in

different measures and the scales of each viable are quite

different, e.g. the time for 100 m is quiet different with the

time of Marathon. So we do the experiments after



Table 5

CPU time results on the simulation data sets with nZ20, dZ10, and kZ3

by using the algorithm Eq. (17) in 100 experiments

Method CPU time (in seconds)

The algorithm with h2Z0 0.01

The algorithm with h2O0 0.07

AIC, CAIC, BIC, and BYY-HEC 0.27

BYY-HDS 0.82

10-Fold CV 3.12
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normalizing the data. The results are shown in Fig. 5. All the

methods select two components except for AIC which

selects seven components and 10-fold CV which selects

three components.

4.3. Discussion on computational cost

All the experiments were carried out using MATLAB

R12.1 v.6.1 on a p4 1.4 GHz 512 KB RAM PC. We

illustrate the computational results in Table 5 for the first

example described in Section 4.1.1 with sample size nZ20

by using the batch algorithm Eq. (17). It should be noted that

all values given in Table 5 are the average of 100

experiments.

Subspace dimension determination by AIC, CAIC, BIC,

BYY-HEC, and BYY-HDS takes similar CPU time. BYY-

HDS has a little more computational cost for learning the

smoothing parameter h2. The m-fold cross-validation

method requires the highest computational cost because

for each candidate model the parameters have to be

estimated m times. The computational costs of all these

criteria are much more than that of using the algorithm for a

single model because all of them require to obtain a whole

set of candidate subspaces. Since experiments have shown

that the two BYY criteria are superior or comparable to

typical statistical model selection criteria, corresponding

BYY harmony learning based techniques are considered

more favorable because they have automatic model

selection ability such that they are less computationally

intensive.
5. Conclusion

We have made an experimental comparison on several

typical model selection criteria by using them to determine

the dimension of principal subspace. The considered criteria

include four typical model selection criteria AIC, CAIC,

BIC, and 10-fold CV, and two model selection criteria

obtained from BYY harmony learning, namely BYY-HEC

and BYY-HDS. We observe that BYY-HDS demonstrated

the best performance when sample size is small. BYY-HEC

is superior to other methods when data dimension is large.

Both BYY-HDS and BYY-HEC have high successful

rate in most cases. BIC also got a high successful rate

when the data dimension is not too high. CAIC has an
underestimation tendency while AIC and 10-fold CV have

an overestimation tendency. The cross-validation method

requires a highest computing cost. In addition, we provide a

batch algorithm to learn Ah, sk
2 and the smoothing parameter

h2 based on BYY harmony learning with data smoothing

regularization on PCA.
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