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Temporal BYY Encoding, Markovian State Spaces,
and Space Dimension Determination
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Abstract—As a complementary to those temporal coding ap-
proaches of the current major stream, this paper aims at the
Markovian state space temporal models from the perspective of
the temporal Bayesian Ying-Yang (BYY) learning with both new
insights and new results on not only the discrete state featured
Hidden Markov model and extensions but also the continuous state
featured linear state spaces and extensions, especially with a new
learning mechanism that makes selection of the state number or
the dimension of state space either automatically during adaptive
learning or subsequently after learning via model selection criteria
obtained from this mechanism. Experiments are demonstrated to
show how the proposed approach works.

Index Terms—Gated multitemporal models, harmony learning,
hidden Markov model, linear state spaces, space dimension, state
selection, temporal Bayesian Ying-Yang (BYY) system, temporal
factor analysis.

I. INTRODUCTION

S IMULTANEOUSLY building up a bottom-up pathway for
encoding an observed pattern into a representation space

and a top-down pathway for reconstructing a pattern from an
inner representation has been widely adopted as a fundamental
idea in various studies of brain theory and neural networks.
Typical examples include Carpenter and Grossberg’s adaptive
resonance theory (ART) [8], Kawato’s theory on cerebellum
and motor control [15], and Hinton and colleagues’ Helmholtz
machines and wake-sleep learning [9], [11]. Moreover, the
LMSER self-organizing rule proposed in 1991 [42] is also
an effort that uses a bidirectional architecture for statistical
unsupervised learning.

The basic sprit of the least mean-square-error reconstruction
(LMSER) self-organizing has been further developed into the
Bayesian Ying Yang (BYY) harmony learning [40], which is
firstly proposed in 1995 and then systematically developed in
past years. Readers are referred to [30] and [31] for a recent
systematical introduction. The BYY harmony learning formu-
lates the two pathway sprit in a general statistical framework.
First, a so-called BYY system is proposed for coordinately mod-
eling the two pathways via two complement Bayesian represen-
tations of the joint distribution on an observation space and rep-
resentation space such that a number of existing major learning
problems and learning methods are revisited as special cases
from a unified perspective. Second, a harmony learning theory
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is developed with a new learning mechanism that makes model
selection implemented either automatically during parameter
learning or subsequently after parameter learning via a new class
of model selection criteria obtained from this mechanism. Third,
this BYY harmony learning has motivated three types of regu-
larization, namely a data smoothing technique that provides a
new solution on the hyper-parameter in a Tikinov-like regular-
ization [23], a normalization with a new conscience de-learning
mechanism that has a nature similar to the rival penalized com-
petitive learning (RPCL) [30], [33], [41], and a structural reg-
ularization by imposing certain structural constraints via de-
signing a specific forward structure in a BYY system. Specif-
ically, the harmony learning on various specific BYY systems
with typical structures lead to various specific learning algo-
rithms as well as the detailed forms for implementing regular-
ization and model selection. The details are referred to [30],
[31], [33].

In recent years, a large volume of physiological and behav-
ioral data has emerged in supporting a key role for temporal
coding in the brain. Using time as an extra degree of freedom
in neural representation, temporal coding takes a very impor-
tant role in various information processing tasks, including
scene segmentation, figure-ground separation, classification,
learning, associative memory, inference, motor control, and
communication. Though ever increasing emphases in the liter-
ature of neural network have been put on the topics of nonlinear
dynamics, oscillatory and chaotic networks, spiking neurons,
and pulse-coupled networks, the studies on temporal coding
via Markovian state spaces can be traced back to 60s in the
literature of control theory and 70s in the literature of signal
processing and speech recognition. One typical example is the
well known Kalman filter [14] that bases on a linear state
space, which has been extensively studied and applied in the
fields of control systems and signal processing over decades.
Another typical example is the well known hidden Markov
model (HMM) that bases a discrete state space, which has
been also widely studied and used not only in the field of
speech processing and recognition but also recently in many
tasks of learning, data mining, and bio-informatics [5]. As a
complementary to those temporal coding approaches of the
current major stream, this paper aims at providing not only
a unified framework for these Markovian state space based
temporal models in help of temporal BYY learning [32], [34],
but also several new advances on both the HMM and the linear
state spaces.

The task of learning on the Markovian state spaces is usually
made via maximum likelihood (ML) learning. The ML learning
works well when the number of states or the dimension of
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Fig. 1. BYY harmony learning.

the state space is known, which is however unknown in many
practical problems. Efforts have been made toward this critical
challenge, with a number of model selection criteria developed
to evaluate a family of structures with different scales such
that a best one is selected. Typical examples include the AIC
criterion [3] as well as its extensions [4], the VC dimension
based learning theory [24], Cross validation [22], Bayesian
theory [16], [21], the minimum message length (MML) theory
[25], and the minimum description length (MDL) theory [11],
[18], [19]. However, only a rough solution is available from
these existing model selection criteria in the cases of a small
size of samples. Moreover, the criteria can only be used in a
computational very expensive two-stage procedure that selects
models after making ML learning on all the candidate models,
but not applicable to making model selection during parameter
learning. In contrast, the temporal BYY harmony learning pro-
vides a new learning mechanism that can make model selection
and parameter learning under a same best harmony principle,
and model selection is implemented either automatically during
parameter learning under this harmony principle or via a new
class of model selection criteria obtained from this mechanism
after making parameter learning under the maximum likelihood
principle.

In Section II, after introducing the fundamentals of BYY
system and harmony learning, two types of temporal BYY sys-
tems are presented under a general framework for Markovian
state space based temporal models. One is called the temporal
BYY process system [32], [34], with its key points re-elabo-
rated here. The other is called temporal BYY instantaneous
system that is newly presented in this paper. Detailed algo-
rithms and criteria have been provided not only on the discrete
state featured HMM and extensions in Section III but also on
the continuous state featured TFA, TNFA, and extensions in
Section IV. Several experimental results are demonstrated in
Section V before giving the concluding remarks in Section VI.

II. TEMPORAL BAYESIAN YING-YANG SYSTEMS AND

HARMONY LEARNING

A. BYY System and Harmony Learning

As shown in Fig. 1, we consider the joint distribution of an ob-
servation and its inner representation in a learning system

from two complement aspects. On one hand, each is inter-
preted as generated via a backward path from an inner
distribution in a structure subject to certain learning tasks,
i.e.,

(1)

where is a given measure. On the other hand, each is
interpreted as being mapped into an inner representation via
a forward path

(2)

to match the target density . The two aspects reflect the
two types of Bayesian decomposition of the joint density

. Without
any constraint, the two should be conceptually identical. How-
ever, in a practical consideration, is obtained from a set

of observed samples and other three components
, , and are also subject to certain structural

constraints. Thus, we usually have two different but comple-
mentary Bayesian representations

(3)

which compliments to the famous Chinese ancient Ying-Yang
philosophy with called Yang machine that consists of
the observation space (or called Yang space) by and the
forward pathway (or called Yang pathway) by , and
with called Ying machine that consists of the invisible
domain (or Ying space) by and the Ying (or backward)
pathway by . Such a pair of Ying-Yang models is called
BYY system.

Typically, is obtained either from directly or after a
smoothing preprocessing featured by a smoothing parameter .
Thus, it can be denoted as or . Our learning
task is to specify all the aspects of , , and as
well as (if any). Specifically, the task further consists of design
of structures and learning of unknowns.

The structure of describes the nature of the inner
representation. A specific structure of is specified in
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three aspects. One is the representation format or the function
form of , which features the key nature of the learning
task that a specific BYY system performs. The other is a set

of integers called scale parameters. A collection of specific
BYY systems with different specific values of corresponds
to a family of specific BYY systems (thus, specific learning
models they perform) that share a same system configuration
but in different scales. Another is a set of all unknown
parameters in real numbers.

The implementing architecture of a BYY system is featured
by a combination of the specific structures of , .
There are three typical combinations as follows:

• A B-architecture that directly implements (1), with a struc-
ture-free ,

• A F-architecture that directly implements (2), with a struc-
ture-free ,

• A BI-architecture that bidirectionally implements both (1)
and (2).

Each of three architectures can implement a learning task of the
same nature, but from a different perspective and with a different
performance. We say is structural free if
with consisting of all of functions in the format of
that satisfies , . One of ,

is designed as being structure-free means that there is
no any priori constraint to impose on it and it will be specified
during learning via other components in a BYY system. In con-
trast, a parametric means that it comes from a
family with a prespecified structure based on certain priori
requirements or knowledge and then a particular density is spec-
ified by a set of unknown parameters. Without losing generality,
we use to denote not only this set of unknown parameters
but also even a free that can be regraded as a real set of
infinite many of unknowns.

Specifically, the function forms and scale parameters of
, are selected according to the structure of

. In other words, of actually represents the
scales of a whole BYY system with the entire parameter set

. Therefore, the learning task consists
of determining both and . The former is usually called
parameter learning that searches a specific value of within a
real domain . The latter is usually called model selection that
selects a specific value of among a discrete domain that
corresponds a collection of all the candidate models.

The basic principle to implement both the two tasks is
making the Ying machine and Yang machine be best harmony
in a twofold sense as follows:

• difference between the two Bayesian representations in (3)
should be minimized;

• resulting BYY system should be of the least complexity.

Mathematically, this principle can be implemented by
[30]–[33], [40]

(4)

As discussed in [30] and [33], taking a regularization role
for learning on a small size of samples, comes from
the fact that the above harmony measure is derived from
its original definition on discrete
probability distributions. Specifically, and
can be estimated in several specific choices. For examples,
from

we may get

(5)

where consists of a set of samples of that is usually obtained
in a correspondence to . Alternatively, we can even directly
let to be replaced by that is either given by (1) or
obtained from the sample [26].

One salient feature of is that both parameter learning
and model selection are implemented via maximizing this same
criterion.

This feature is not shared by the conventional two-stage im-
plementation of typical approaches in the existing literature of
statistical learning. That is, parameter learning is made under
maximum likelihood principle at Stage I on getting a best pa-
rameter set for each candidate model that corresponds

, where consists of a given set of possible candidates. At
Stage II, a best is selected by and the value
at every candidate has to be calculated basing on that
is resulted from parameter learning. Typical model selection cri-
teria include MML/MDL [18], [19], [25], AIC [3] as well as ex-
tensions [4]. One serious problem of this two-stage implemen-
tation is that the computing cost is very expensive since param-
eter learning has to be made on every candidate that should
be enumerated among .

Instead of implementing the two stages with different crite-
rion for each stage, model selection is not only made via the
same criterion that parameter learning is based on, but
also implemented automatically during parameter learning. On
the other hand, in (4) can also be used in the con-
ventional two stage way. At Stage I, we can make parameter
learning by

(6)

with each enumerated from small scales incrementally
to large scales. With the obtained , model selection is imple-
mented at Stage II via

(7)

Moreover, when is very small, this new model selection cri-
terion can be further improved by the following generalized ver-
sion

(8)

which will be further discussed at the end of Section VI.
Furthermore, as an alternative of (6), Stage I can also be made

with parameter learning via

(9)
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which has been systematically investigated in the early study
of the BYY learning and actually shown being equivalent to
the ML learning on by (1) when the BYY system has a
B-architecture [40].

B. Inner Representation Structures and Model Selection
Mechanism

The structure of for inner representation takes a crucial
role in BYY harmony learning. Not only it should match the
nature of a learning task to be perform (e.g., classification, clus-
tering, feature extraction, temporal encoding, etc), but also ,
designed in an appropriate format with a scale large enough,
is essential to enable the new model selection mechanism of

in (4). This mechanism will make the implementation
of (6) result in a specific value of by which is effectively
reduced to an appropriate one. In other words, model selection
is made automatically during making parameter learning. This
is a unique advantage of that is not shared by typical
model selection approaches in the existing literature.

Before describing the inner representations for temporal
encoding in Section II-C, it is helpful to make a systematic
view on inner representations for typical learning tasks without
considering temporal relation. For this purpose, we consider the
special cases of on a three-part representation
in which is a random variable that takes one of discrete values

, consists of with each being a
random variable that takes one of discrete values ,
and consists of with each being a random
variable that takes real numbers from some distribution. The
three parts , , jointly have the following structure:

(10)

In this paper, we use to denote that comes from a
Gaussian distribution with the mean and the variance matrix

. Also, in the above and to be encountered later are
defined as follows:

if
otherwise

with

if
otherwise.

(11)

First, we consider the case that , which is encoun-
tered in those learning tasks where the inner representation is

that is usually interpreted as hidden fac-
tors, feature vectors, etc. In this special case, it follows from
(10) that

(12)

As systematically reviewed in [27], a BYY system with

(13)

and by (12) leads to the classical factor analysis [2] when
comes from a standard Gaussian with every . More-

over, if and is real but non-Gaussian, we have

(14)

which leads to not only the so-called learned mixture based
ICA [27], [38] when , but also the non-Gaussian factor
analysis (NFA) that extends the classical factor analysis to the
cases with non-Gaussian factors [27], [33]. Moreover, based on

in (4), the number of factors can be decided during
the implementation of learning. Furthermore, it has been shown
recently in [26] that a BYY system with by (12)
in a general case leads to a new NFA version with the scales

becoming selectable.
Second, we consider the case that , every

and every does not exist (i.e.,
). In this case, the inner representation

is a binary vector . Together with (13), we
are lead to a binary factor analysis (BFA) [33], [36] and the
LMSER learning [30], [42]. Again, the number of factors
can be decided during the maximization of in (4).

Third, we consider the case of and
, which is encountered in a learning task

for classification or cluster analysis that classifies every obser-
vation to one of labels. In this case, it follows
from (1) that:

(15)

When , BYY learning by in
(4) can perform Gaussian mixture estimation, elliptic clustering,
MSE clustering with the number selected either automatically
during learning [30], [33] or via criteria obtained from
[30], [33], [40]. With extended beyond Gaussian in help
of the so-called multiset mixture, BYY learning by can
detect multiple objects with various shapes [29].
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With in a general case by (10), the above
tasks can be combined. For example, we have a local FA when
every is Gaussian [30] or a local NFA [30] when
is given by (14), which performs a combined task with for
classification and with as extracted fea-
ture vector of the class . We can also get a local BFA and local
LMSER [28], [30] with a binary vector in
place of .

Beyond unifying the results, in (4) with
in a general case by (10) will also bring us new re-

sults. One example is that a local NFA can be performed with
not only and but also all selectable. One other ex-
ample is that a BFA and local BFA can be extended from
taking binary values to discrete values.

Why the BYY harmony learning by has a new model
selection mechanism has been explained from the perspectives
of a least complexity in [30], [33], a best information transfer
in [26], [31], and a generalized projection geometry in [26], re-
spectively. In the following, we provide further intuitive insights
on this mechanism, especially on which situations are suitable
for deriving model selection criteria from
and on which situations are suitable for making learning by (6)
with automatic model selection.

Observing in (4), the mechanism that selects can
be intuitively observed from maximizing

which results in if falls in the parametric
family of . That is, the BYY harmony learning by (4) con-
tains a force that minimizes the entropy of the inner representa-
tion structure, i.e.,

(16)

where is infinite large constant that cancels out another in-
finite large constant that comes from those ’s
and ’s in given by (10). Specifically, we have

(17)

This comes from the term . Specifically, it follows from
(5) that consists of two parts

(18)

where collects all the -terms that
comes from each function in a density of a discrete

variable , including by (17), while is a bounded
term contributed from not only those densities of continuous
variables and but also the densities of discrete variables after
turning each function into its counter part .
Corresponding to by (10), we have (19), shown at the
bottom of the page. It further follows from (16) that we have

(a) real

(b) no .

(20)

Thus, it can be observed that the minimization of leads to

where , can be selected arbitrarily. It is equivalent to that ,
are actually all pushed to the minimum 1. Moreover,

for all means that is deterministic at the component
and, thus, can be discarded. Furthermore, for all , ,
means that is pushed to 0.

Of course, the above extreme situation will not really happen
since in (4) also contains

which will increase as the scales , , increase. After the
scales go beyond certain values, this increasing will stop and
then remain unchanged when is the true distribution. How-
ever, will still increase slowly even after the scales go
beyond these threshold values when is actually obtained
from a set of a finite size. Finally, will
suddenly tend to infinite when the scales go too large.

The coordination of the above two tendencies makes
vary as illustrated in Fig. 2 where only one scale

is demonstrated. As shown in Fig. 2(a), will decrease
as increases until a . When , making learning by (6)
includes minimizing , during which those extra ,

are pushed toward 0 and, thus, have no contribution to
. So, will roughly remain flat for a certain period until

reaching a breaking limit . In such a learning process, we
do not need to check explicitly. Instead, given a ,
model selection on is automatically implied in the parameter
learning by (6) via driving those extra ,
to 0. Similarly, we can understand the situations with not just

but also the other scales , , as well as their nontrivial
degenerated cases.

(a) real

(b) no .

(19)
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Fig. 2. (a) Automatic model selection during parameter learning with an initial
k in a large enough value. (b) Model selection made after parameter learning on
every k in a given interval [k ; k ].

Carefully examining (20), we can observe that selectable
scales via minimizing are respectively the scales of
random variables , , that are directly considered via

. A similar observation may be expected even
either is in a structure different from (10) or

consists of other types of random variables jointly. However,
what happens on those scales that their corresponding random
variables are not directly considered in ? For an example,
we only make a direct consideration on a random label and
random variables of via

with . For (16),
we have

Now, there is no a clear indication that minimizing will
driving extra toward 0. Thus, we cannot guarantee that

can be selected automatically during learning.
Instead of automatical model selection, we may also simply

fix

(21)

and then in (20) becomes (22), shown at the bottom of the
page, which will increase as the scales , , increase. This
can be clearly observed from its simplified case

(a) real
(b) no

by letting , and . So,
with by (22) will have a shape as illustrated in

Fig. 2(b) where only one scale is demonstrated. That is, the
model selection should be made by (7) via a two-stage imple-
mentation. A similar situation will happen when the parameters

, , are learned by (9) or the ML learning on by
(1), during which extra parameters will no longer driven to 0
since there is no a clear force to minimize .

C. Temporal Inner Representations and Two Temporal
BYY Systems

Conceptually, the BYY system in (3) can be used to learn tem-
poral dependence via (4) or (9) by inserting a pair of a temporal
process and its inner temporal process

, which, thus, can be called a temporal Bayesian
Ying-Yang (TBYY) process system (shortly TBYY -system). In
implementation, this situation is usually too complicated to be
handled directly. Further simplification can be made by consid-
ering types of inner representation for temporal encoding.

We adopt the well known Markovian assumption that the cur-
rent inner coding depends on only a finite number of past
codings and the current observa-
tion . On the other hand, the current can also be regarded
as generated from the current coding that covers the past in-
formation already. Moreover, “knowing that the event
happens already” means that the event is irrelevant to any envi-
ronment. As a result, we have the following temporal relations:

(23)

(a) real

(b) no

(22)
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Moreover, the inner representation can still own a structure
similar to (10). We can let all the appearances of in (10) to be
replaced with for encoding temporal relations. However,
it will be too tedious and also unnecessary to consider all the
temporal relations between and . Usually, we only need to
consider several typical relations. In this paper, we focus on the
following relations:

(24)

The detailed and simplified forms of the above will be further
discussed in the rest sections. In the sequel we first derive the
implementable forms of the BYY harmony learning from (4).

Putting (23) into (4), we have

(25)

We can further simplify the above integral in a format
by a Taylor expansion of around

the mean , resulting in [32], [34]

the first order expansion only
up to the second order expansion

(26)

where is the covariance matrix of , is the Hessian
of , and is the trace of matrix . Thus, from (25) in
the first-order expansion, we approximately have

(27)

Following the derivation made in [30, 32] it further follows that
maximizing results in

a B-architecture,

(28)

a BI-architecture.

Putting it into (27), we further have

(29)

Then considering (26) again in its second-order expansion case
with taking the position of , we can further
get

is discrete and regarded as

irrelevant to a real ,
with respect to a

real is in consideration,
is discrete.

(30)

Another type of temporal BYY system can be obtained by
considering an instantaneous Ying-Yang pair

(31)
subject to the satisfaction of the following temporal dependence:

(32)

We call such a case the temporal BYY instantaneous system
(shortly TBYY -system).

Similar to (25) and (27), we have with

subject to (32) (33)

Also, similar to (28) and (30) we further have

subject to (32) (34)

The temporal BYY harmony learning by (33) is conceptu-
ally different from that by (25). Strictly speaking, the temporal
BYY harmony learning by (25) considers a best harmony of two
representations of the joint distribution of two entire temporal
processes, including all the temporal dependence in consider-
ation. Thus, a TBYY -system should be conceptually better
than a TBYY -system by (33) that bases only on an instanta-
neous Ying-Yang pair by (31). However, after the first-order ap-
proximation by (26), a TBYY -system by (27) actually already
degraded into an instantaneous implementation that is actually
inferior to that by (33) since the information carried from
to is merely via a point estimate in (27) but via an integral

lxu

lxu

lxu


lxu

lxu
Pencil

lxu
Pencil

lxu
Pencil

lxu
Pencil

lxu
Pencil

lxu
Pencil

lxu
Pencil
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of (32) in (33). This can also be observed by approximating the
integral of (32) using the first-order approximation by (26), re-
sulting in

(35)

In implementation, the maximization of can be made
recursively at each time to increase in a certain
extent by updating all the parameters to learn, which is imple-
mentable since the past information carried by either or the
integral of (32) is already available. Instead of directly maxi-
mizing , alternatively we can conduct learning in two
stages similar to what discussed around (7). That is, at Stage
I, parameter learning is made by the ML learning or equiva-
lently by (9) when the BYY system has a B-architecture. Then,
at Stage II model selection is implemented by (7) with the cri-
teria derived from .

Specifically, by considering special cases of the inner repre-
sentation in (24), the maximization of will lead us to not
only the well known Hidden Markov model (HMM) and various
extensions in Section III but also variants and extensions of the
well known Kalman filter related linear state space models in
Section IV, with adaptive algorithms developed in help of typ-
ical updating rules in Table I and with model selection made
either during the implementation of the algorithms or via spe-
cific criteria derived from .

As discussed in [30] and [33], two specific settings of will
result in two types of regularization. One is called normalization
that causes a new conscience de-learning mechanism similar to
that of the rival penalized competitive learning (RPCL) [41].
The other is called data smoothing that causes a Tikinov-like
regularization [23] with acting a role similar to the hyper-
parameter but being estimated in an easy implementing way. For
simplicity and clarify, the roles of and are ignored in the
subsequent two sections by simply letting in (18) while
keeping for cancelling out its counterpart infinite term that
comes from the 1st part of . Without the role of , the
maximization of will lead automatically. Thus,
we can also simply setting in Sections III and IV.

III. HMM AND STATE SELECTION

A. Hidden Markov Models and State Selection Criteria

We start at the simplest special case of (24) as follows:

(36)

that is, the inner representation is simply discrete value
that indicates states and represents the

transfer probability from the state to the state . The
process is simply a 1st Markov chain that is hidded
behind the process and, thus, is called hidden Markov
model (HMM).

TABLE I
TYPICAL ADAPTIVE UPDATING RULES

In the classic form of HMM, is a discrete variable from

(37)

which is called the emitting matrix that describes the probability
of emitting the label at the state . This classic HMM model
has been widely studied and extensively applied in the literature
of speech processing and recognition for over 30 years [17] and
also in the literature of bio-informatics in the recent years [5].
The learning is usually made on under the max-
imum likelihood principle, and implemented by the well known
Baum-Welch or EM algorithm [17].

The classic HMM model has also been extended into the fol-
lowing variants:

a) Gaussian HMM Instead of a label, emitted from the
state is a real variable or a real vector from a Gaussian
density

(38)

At time , we have
is a temporal Gaussian mixture with its mixing

proportions varying as .
b) Gaussian Mixture HMM emitted from the state is

a non-Gaussian real random variable via an inner repre-
sentation with not only a temporal label but also a non-
temporal label as follows:

is given by (36)

(39)
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In this case, we have that
is a Gaussian mixture for emitted

from the state . Thus,
is a temporal non-Gaussian mixture.

c) Independent HMM The inner representation consists of
independent channels with each taking discrete

values at each , and is emitted from
in a linear model as follows:

(40)

where can be initialized equally taking one of
. This is an extension of the so-called binary inde-

pendent factor analysis [28], [32], [36] with not only the
first-order Markovian temporal relation among
taken in consideration but also every extended to
any other values.

d) Multi-independent HMM The above independent HMM
can be further extended to multiple ones of a same pa-
rameterization structure with each located at a different

and in a different specification of parameters:

is given by (36)

(41)

where is initialized equally taking one of
.

Similar to the classic HMM, Gaussian HMM and Gaussian
mixture HMM have also been widely studied with parameters
estimated under the maximum likelihood principle by the well
known Baum-Welch algorithm or the temporal EM algorithm
[17]. Moreover, similar implementation algorithms can also be
developed on the independent HMM and multi-independent
HMM.

One key problem is how to decide the scales of the state
spaces (i.e., the numbers , , ). Different values of these
numbers correspond to a family of different specific HMM
models that share a same system configuration but in different
scales of representation ability. The task of deciding them is,
thus, called model selection. It is well known that maximum
likelihood principle is usually weak on making model selection,
especially on a small size of training samples. As introduced in
Section II, the BYY harmony learning provides a new learning

mechanism that makes model selection implemented either
automatically during an adaptive learning or subsequently after
learning via a new class of model selection criteria derived
from this mechanism.

In sequel, we further derive the model selection criteria
on the above discussed HMM and variants from (7) with

. Similar to the derivation process in [30],
[31], we can get the following criteria for the classic HMM and
the Gaussian HMM:

(a)

(b) from Gaussian at each

(a) TBYY -system

(b) TBYY -systemm
(42)

where is the probability that the state has been visited, and
is the transfer probability from the state to the state . Both

types of the parameters as well as or are obtained via
a parameter learning process. The part has two choices
that correspond to a TBYY -system and a TBYY -system,
respectively.

Being further extended to a Gaussian mixture HMM, we can
select both and by

as in (42)

(43)

Moreover, for an independent HMM we can decide the number
of independent channels in help of

(a) TBYY -system

(b) TBYY -system.

(44)

In each channel , is the probability that the state has
been visited, and is the transfer probability from the state

to the state . Being further extended to a multi-independent
HMM, we have (45), shown at the bottom of the next page.

Historically, the use of (7) for selecting on the classic
HMM was firstly suggested in [37] and then in [34] but in a cum-
bersome form. Also, selecting on the independent HMM was
firstly suggested in [35] via a direct use of (7) without any sim-
plification. Then, a simplified form
was obtained in [32] but still with a tedious second term .
In contrast, the criteria proposed above are not only compact
in their representation but also much simple to be computed
accurately.



XU: TEMPORAL BYY ENCODING, MARKOVIAN STATE SPACES, AND SPACE DIMENSION DETERMINATION 1285

B. Recursive Harmony Learning and Automatic State Selection

Instead of the above two stage implementation, state selec-
tion can also be made automatically during implementing the
parameter learning by (6) with given ei-
ther by (34) on a TBYY -system or by (30) and (28) on a TBYY

-system.

Recursively from to , parameters are updated to increase
with extra states discarded due to the mechanism discussed

in Section II-B. In the following, the detailed algorithms are de-
veloped for the HMM models discussed in Section III-A. By

these algorithms, parameters are updated in an iterative format
, where is either a gradient direction

or a direction that has a positive projection on ,
and is a learning step size. For convenience, the same
notation is used everywhere. However, it should be under-
stood that it may take different values for updating different
parameters.

a) Classic HMM and Gaussian HMM: shown in (46), at
the bottom of the page.

b) Gaussian Mixture HMM: shown in (47), at the bottom
of the page.

as in (42)

(a) TBYY -system

(b) TBYY -system.

(45)

(a) with
(a) TBYY -system

(b) TBYY -system

(b)
if

update by Tab.1(a) with and if from .

(c)

(a) TBYY -system

(b) TBYY -system

(d) if keeps to be small such that it can be regarded as zero, we discard the state

as well as all the relevant parameters, and let (46)

(a) as in (a) of (46)

(b) update by Tab.1(a) with and

(c) update as in (c) of (46)

(d) same as (d) in (46)

(e) if keeps to be small such that it can be regarded as zero, we discard the sub-state

under the state as well as all the relevant parameters, let (47)
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c) Independent HMM and Multi-Independent HMM:
shown in (48), at the bottom of the page. In the particular
case that and, thus, , we can drop and
all the subscripts of . In this case, the above algorithm
with every becomes an extension of the adaptive
harmony learning algorithm for the independent HMM
given by Table III and [32, p. 839].

For the reason discussed in Section II-B, those extra states
will be driven out of the TBYY system in a sense that they
act their roles with probability zero. In other words, appropriate
states are selected automatically with the extra states becoming
out of functions. In a view of computational efficiency, keeping
the extra states in the system will waste many computing costs.
We can further remove the extra states by detecting and, thus,
discarding them during learning by step (d) and step (e) in these
algorithms.

IV. TFA, IDENTIFIABLE STATE SPACES, AND SPACE DIMENSION

A. From Kalman Filter to TFA

We further consider the cases of real variables included in the
inner representation. One special case is

or

with and

(49)

That is, the inner representation is a multi-channel autoregres-
sive (AR) model that is guaranteed to be stable when

(50)

where is the positive root of the largest eigen-value of
.

From this inner representation, an observation is generated
via the following linear state space:

or

with and

(51)

In the literature of control theory, the model by (49) and (51)
has actually been widely studied for decades since the early six-
ties [14], by which the parametric matrices , as well as the
variances of Gaussian , have to be known, the task is to es-
timate upon observing and then get as the result
after filtering out the noise in . The optimal solution is given
by the well know Kalman filter. As shown in [6], the estimate

given by the Kalman filter is equivalent to

(52)

Alternatively, it can be observed in [32] that by
(9) also results in the above . Moreover, we have the
following equivalence:

(53)

That is, in this case both the learning by maximizing
and the learning by minimizing is equivalent to the
well known Kalman filter on estimating . Moreover, a criterion
has been derived from for determining an appropriate

as the dimension of the state space [27].

(a) with as in (a) of (46)

(a) TBYY -system

(b) TBYY -system

(b) update by Tab.1(a) with and as

(c) update as in (c) of (46)

(a)TBYY -system

(b) TBYY -system

at

(d) same as (d) in (46)

(e) if keeps to to be small such that it can be regarded as zero, we discard the state

at as well as all the related parameters, and let Moreover, if both

and we delete as well as all the related parameters, let (48)
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The above equivalence occurs under the assumption that the
matrices , , , are known, as requested in the literature
of the Kalman filter studies. However, this is too restrictive in
many temporal modeling problems where it is difficult to know

, in advance. In the rest of this section, we will show how
this restrictive assumption can be considerably relaxed. Maxi-
mizing not only goes beyond the Kalman filter but also
provides a new model selection mechanism that is not possessed
by minimizing .

Knowing only , the problem of estimating all the un-
knowns , , , as well as and suffer intrinsic indetermi-
nacy. The indeterminacy can be observed from the perspective
of making a linear mapping , with a general matrix

. It follows from (49) and (51) that we get the same form
, with

(54)

and remains to be a Gaussian in the form of as in (49). That
is, in model is not identifiable. Of course, we expect that
is identifiable.

For this purpose, we need to specify the meaning that is
identifiable. Using the notation for the family of all the di-
agonal matrices and for the family of all the permutation
matrices, we observe that

(55)

will keep an one-to-one correspondence between the series

, and the series ,

. That is, for each series, there must be one

and only one series such that both the series have
a same waveform with differences only in a constant scale and
a permutation (i.e., an order change ). The differences
are ignorable in many applications and, thus, is usually said
to be identifiable if we are able to specify via in a sense
of (55). Also, we say that is identifiable in a strong sense if

(i.e., there is no scale indeterminacy) or in a weak sense
if but .

Restricting or to be known and unchanged (i.e.,
or ), the only choice is and, thus, is identifiable
in a strong sense. That is, there is no identifiable problem in the
Kalman filter studies. Releasing all the restrictions, it follows
from (54) that is not identifiable. Between the two extremes,
we can require that becomes identifiable as one or more of

, and retain certain invariant nature of the counterpart
from , and .

Getting two more notations

is a

matrix and

all diagonal elements of

are different (56)

we make further discussions as follows:

• Requiring , , we are lead to ,
i.e., are not identifiable due to an arbitrary unknown
rotation . Requiring , , we are lead to

, i.e., becomes identifiable in a weak sense. However,
restricted in , has a very limited
regression ability.

• Similarly requiring , leads to
while requiring , , we are lead to

that satisfies (55).
• Requiring both and remain to be independent among

their components, i.e., and with
both and , we are lead to ,

and .
We can observe that takes an important role. For the de-

generated case , , is actually the
classical factor analysis that has been widely studied in the liter-
ature of statistics for several decades [2], for which we have to
suffer the indeterminacy of an arbitrary unknown rotation. The
rotation can be removed by requiring . It further fol-
lows from that only the diagonal part of is
actually usueful. Thus, we see the state space model by (49) and
(51) has been restricted into

together with

(57)

where it follows from (50) that we have , which is
always satisfied by letting

(58)

If is initialized to be independent among its components,
e.g., , we have mutually independent AR series

, . As firstly proposed in [32], [34] we,
thus, call (57) temporal factor analysis (TFA) since it extends
the classic factor analysis with temporal dependence encoded
by . Being different from those Kalman filter studies, ,

as well as in (57) are unknowns to be learned.
However, the indeterminacy of an arbitrary unknown rotation

cannot be completely removed for a but . E.g.,
when , we have for any .
When but having same diagonal elements, also
does not satisfy (55) but contain an arbitrary unknown rotation
in the corresponding dimensional subspace. This case is not
difficult to understand, the duplications of diagonal elements
in means that this dimensional temporal link actually can
be replaced by a one-dimensional link and, thus, this part de-
generated back to a dimensional classic factor analysis.

Though becomes identifiable in a weak sense is already
enough in many practical applications, the scale indeterminacy

, leads to the indeterminacy of the parameters
and , which makes parameter learning on and difficult to

lxu
Pencil



1288 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 5, SEPTEMBER 2004

TABLE II
A GENERAL ADAPTIVE LEARNING ALGORITHM

implement. This scale indeterminacy can be removed via fixing
the scale of . That is, in (57) we simply set

or (59)

A direct consequence of (59) is that the space dimension
is, thus, fixed and the automatic selection ability as discussed
in Section II-B is lost. To select an appropriate , we need to
enumerate a number values of and make parameter learning
by the TFA algorithm given in Table II(a) at every value of .
Then, we select by (60), shown at the bottom of the page,
where comes from and

as , with denoting the
variance of .

B. HMM Gated TFA, HMM Gated TNFA, and Coupled State
Spaces

The above TFA can be further extended along three direc-
tions. One is considering typical special cases of (10) and (24),
which leads us to the following models:

a) HMM gated TFA A number of different TFA models
work collaboratively with the engagement of each TFA
gated by a hidden Markov chain. That is, we have

is given by (36)

(61)

(a) TBYY -system

(b) TBYY -system. (60)
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We have
which can be regarded as an extension of the Gaussian
HMM by (38). The role of each TFA is gated by

that varies as . Particularly, when
degenerates to without temporal relation, we are
lead to a mixture of different TFA models at different
locations, which is, thus, called local TFA [27], [32].

b) Temporal Non-Gaussian Factor Analysis (TNFA)
For a TFA, we have mutually independent channels

, with each being an AR series.
The limitation of an AR series can be further extended
by the following inner representation space:

(62)

We have

that is a mixture of AR series. In the special case that
every is 1, (62) returns to a TFA. Also, ignoring
temporal relation by simply setting every , (62)
returned to the so-called non-Gaussian factor analysis
(NFA) that extends the classic factor analysis with
decorrelated Gaussian factors replaced by independent
non-Gaussian real factors [27], [30], [32].

c) HMM gated TNFA Similar to (61) we can let a number of
different TNFA models work collaboratively as follows:

is given by (36)

(63)

which can be regarded as an extension of the Gaussian
mixture HMM by (47) with a Gaussian mixture for
replaced by a TNFA process.

d) Other Extensions There are also several other useful
extensions. For an example, both the above TNFA and

HMM gated TNFA can be further extended by consid-
ering

(64)

Shown in Table II is a general adaptive learning algorithm that
implements parameter learning for a HMM gated TNFA directly
and for TFA, HMM gated TFA, and TNFA as special cases (see
Table II(a)–(c)), respectively, derived from maximizing
with either by (34) on a TBYY -system or by (30) and (28)
on a TBYY -system. Similar to (59) for removing the scale in-
determinacy in a TFA, we set , for a HMM gated
TFA and set in Table II(c) for a HMM gated TNFA (in-
cluding TNFA as a special case). The reason of setting
only at for a HMM gated TNFA is that the scale indetermi-
nacy of will affect the variances of ,

by only a same unknown scale and, thus, is able
to normalize only one of these variances to 1.

Similar to step (d) an step (e) of the algorithms in Sec-
tion III-B, it follows from the model selection mechanism
explained in Section II-B that all the extra states indexed by
and , will be discarded by Table II(d) and (e) during
learning. In an extreme case, it leads to , , .
However, there is at least one dimension that is not able to be
removed due to the setting of . Similar to (60), we
need to make parameter learning via enumerating a number
values of or/and , and select them by via
(65), shown at the bottom of the next page.

The criteria can also be used on selecting , , together
with , after making parameter learning either under
the maximum likelihood principle or still via the algorithm
of Table II but simply setting , , and

.
Another direction to extend TFA is considering an alternative

parameterization for . Instead of fixing (59), the
scale indeterminacy can also be removed via fixing the scale of

via imposing . However, doing so directly on the
model by (57) will narrow down the representation ability of

. Instead of (57) that imposes strong constraints
and but no constraint on , we can impose the

constraint while relax the constraints on and as
follows:

is positive definite (66)

where is no longer diagonal and, thus, channels ,

are no longer mutually independent. So, we call
this model a coupled state space.

For a mapping , requiring means that
it is only possible for , and then requiring

to keep the format of in (66) further makes
become a permutation matrix. In other words, becomes

identifiable in a weak sense. However, the indeterminacy of an

lxu
,

lxu
Pencil

lxu
Pencil
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arbitrary unknown rotation cannot be completely removed for a
but , e.g., when , we have

, , , for any
. Also, may contain an arbitrary unknown rotation in

the corresponding dimensional subspace when but
having same diagonal elements.

In fact, the model by (57) is equivalent to a special case of
(66). We consider a general matrix in the following singular
value decomposition:

(67)

Considering a linear mapping

(68)

it follows from (54) that , and, thus,
. That is, (57) becomes

equivalent to

(69)

which is actually a special case of (66) in which and are
bundled via and .

Being different from the case of (57), maximizing
in (66) will push the variance of toward

zero if the dimension is extra. This can be observed
more clearly by considering where

we have . If is pushed to zero due

to , the autoregressive process of the

dimension will decade quickly and soon go out of function
to the whole system. In other words, model selection on will
happen automatically during parameter learning. Moreover, we
can save computing resources by simply discarding , ,

, eliminating the th column of , and also eliminating the
corresponding column and row of and .

Similar to Table II, adaptive learning algorithm can also be
directly derived from maximizing with by (34) on a
TBYY -system or by (30) and (28) on a TBYY -system. The
key difference is that we should now consider the constraints on

and , which can be made by considering (68) and

Then, learning can be implemented in help of Table II via with
the following modifications and supplements: shown in (70) at

is same as in (42)
HMM gated TFA

TNFA

HMM gated TNFA.

TFA and TNFA

HMM gated TFA and HMM gated TNFA.

(a) TBYY -system
(b) TBYY -system

where
TNFA

HMM gated TFA and HMM gated TNFA.

HMM gated TFA

TNFA

HMM gatedTNFA.

HMM gated TFA

TNFA

HMM gated TNFA.

(65)
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the bottom of the page. We can get and in help of
two approaches. One is presented by [30, Eq. (80), (81)] and
the other is given in [10]. The details are similar to that made in
the nontemporal cases in [26].

The third direction to extend TFA is considering another type
of coupled state space as follows:

is given by (36)

(71)

with both and having no constraint but requiring samples
being known in each pair , . From knowing we can
predict and by

(72)

which can be regarded as an extension of the so-called normal-
ized extended RBF net [30], [33], [39], with temporal relation
considered via a number of multi-channel AR processes gated
by a HMM process.

Learning can be implemented by a simplified version of
Table II as shown in (73), at the bottom of the page.

V. EXPERIMENTAL DEMONSTRATIONS

A. On Classical HMM and Independent HMM

We start at considering a classical HMM. Shown in Fig. 3(a)
is a snapshot of the observation series with nine observed labels,
which are generated from a HMM of four hidden states as shown
in Fig. 3(b) in a comparison with the estimated states. There are
39 error bits out of the 800 estimated bits, i.e., the error rate
is 0.049. Shown in Fig. 3(c) is a curve by (42) with the
correct state number four found as its minimum.

To illustrate how automatic model selection works, learning
is also implemented by (46). Initially, the number of states
is set at 5 and is set equally.
After a learning process with 27 iterative steps, we get

. The one of 0.04 can be
regarded as redundant and, thus, is discarded. Hereafter, the
parameters converge to the desired values after 59 iterative
steps.

Furthermore, an independent HMM is considered as shown
in Fig. 4, with a ten-dimensional observation generated from
five independent channels via under a Gaussian
noise from . Fig. 4(b) shows a comparison of
the original states with the estimated states. There are 33 error
bits out of the 800 estimated bits, i.e., the error rate is 0.041.
Shown in Fig. 4(c) is a curve by (44), with the correct
number 5 detected as its minimum.

B. On TFA -System and TFA -System

We further consider the observations generated from
, as given in Table III(a)

with and . What is used as known

(a) Modifying Tab.2(a), we get

(b) update as in Tab.2(b), then map

into its projection on the manifold update

(c) After implementing Tab.2(c3), map

into its projection on the manifold update

also get

update where

(d) After Tab.2(d)& 2(e), if is pushed to zero ,discarding

eliminating the - column of and the corresponding column and row of and (70)

(a)
(a) TBYY -system

(b) TBYY -system
(b) implement Tab.2(b) and Tab.2(c1) and discard Tab.2(c2)

(c) update by Tab.1(a) with also with in places of

(d) implement Tab.3(d). (73)
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Fig. 3. An illustration on classical HMM. (a) Snapshot of the observation x . (b) Snapshot of the original and estimated series of hidden states. (c) J(k) curve
for selecting k.

Fig. 4. Illustration on independent HMM. (a) Snapshot of the observation x . (b) Snapshot of the original and estimated series of one hidden channel. (c) J(m)
curve for selecting m.

TABLE III
EXPERIMENTS ON TWO TYPES OF TFA

in learning is only under the independence assump-
tion among components of . The estimated , on a TFA

-system are listed in Table III(a) in comparison with the orig-
inal , , it can be observed that a quite good identification is
obtained though there is a unsolvable indeterminacy of a per-
mutation 123 231.

Shown in Table III(b) and (c) are the performances obtained
on a TFA -system (shortly p-TFA) and TFA -system (shortly
i-TFA), respectively. Shown in Table III(b) are the mean square
error between the estimated state and the original state ,
with a snapshot of and shown in Fig. 5. A comparison
of correlation coefficients between and is also shown
in Table III(c). We can see that I-TFA outperforms P-TFA in a

sense that both the dependence between source components is
reduced and the smaller mean square errors are achieved.

C. On Determining Dimension and Financial Application

We let the observations , be gen-
erated from , with

and is a full
rank 30 5 matrix, where and are distributed with

and respectively, with the diagonal and
off-diagonal elements of the symmetrical being random
variables from the uniform distributions and

, receptively.
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Fig. 5. Snapshots of one factor with the top for p-system and the bottom for i-system. “ ”-original and “o”-estimated.

Fig. 6. J(m) curve for selection m with TFA. (a) Simulated data. (b) Financial data.

We perform TFA on both -system and -system with
increased from 1 to 10. The obtained curve by

(60) is shown in Fig. 6(a), with the correct factor number
5 detected. Also, learning was made by (70). Started from

, we get
as learning

tends to converged. That is, the corrected number of 5 factors
has been automatically determined during learning.

As discussed in [32], the TFA has also been applied to finan-
cial arbitrage pricing theory (APT) on stock data that consists of
daily closing prices of 30 Hang Seng Index (HSI) constituents
covering the period from January 1, 1998 to December 31, 1999.
According to two popular approaches, namely MLFA based LR
statistic and eigenvalues analysis, either 11 factors or only one
factor is detected, both of which are far from three or four that
have been normally agreed by the finance community. In con-
trast, the minimum of as shown in Fig. 6(b) provides a
reasonable number 4.

VI. CONCLUDING REMARKS

The temporal BYY process system and temporal BYY instan-
taneous system have been rather systematically investigated for
the Markovian state space based temporal coding, with a new
mechanism that acts via inner representations such that model
selection is made either automatically during adaptive learning
or subsequently after learning via criteria obtained from this
mechanism. Detailed algorithms and criteria have been provided

not only on the discrete state featured HMM and extensions but
also on the continuous state featured TFA, TNFA, and exten-
sions, with via experimental demonstrations.

Referring the last paragraph in Section II-C, two regular-
ization techniques by has been ignored in Sections III
and IV. However, it is not difficult to add on the role of .
The so-called data smoothing regularization can be added by
considering appropriate values of in Table I for the
cases with or both in
Table I for the cases with ,
which acts via being added to the diagonal elements of covari-
ance matrix. Also, the values of , can be determined as
what made in [30]. A normalization regularization can also be
imposed by considering given by (19). In Sections II–V, the
consequence of ignoring in all the algorithms and especially
in Tables I and II is that a winner-take-all (WTA) competition is
conducted in step (a), which affects the subsequent steps via
functions such as , , , and . The consequence of

reconsidering given by (19) is that these functions will be
modified such that the WTA competition is replaced by either a
soft-competition via the posteriori probabilities or a rival
penalized competition [41].

Specially, taking the classic HMM, Gaussian HMM, and
Gaussian Mixture HMM, HMM gated TFA as examples, we
consider to replace by the following soft-competition,
shown in (74), at the bottom of the next page. With
such replacements, a WTA competition is replaced with a
soft-competition via the posteriori probabilities . As
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Fig. 7. Typical examples of m , where n, m are dimensions of x, y, and dim(�) denotes the number of free parameters in �.

explained in [30], [33], this soft-competition can remedy
the problem of a WTA competition that makes learning
trapped into a local optimal solution. However, it also loses
the automatic selection ability as discussed in Section II-B.
Instead, model selection should be made via the criteria given
in Section III-A.

Substitutions can also be made with a rival penalized com-
petition such that the RPCL learning [41] and BYY harmony
learning with normalization [30], [33] become in action. E.g.,
we can replace with the following general format, shown
in (75), at the bottom of the page, where consists of the first

labels of that correspond the first largest
values of . It becomes again equivalent to the RPCL learning
when [30], [33].

Briefly in [31] and then systematically in [26], BYY
harmony learning has been further justified from an infor-
mation theoretic perspective and a generalized projection
geometry, with comparative discussions on its relations to
and differences from the studies of not only the minimum
message length (MML) [25], Bayesian approach, AIC [3],
the minimum description length (MDL) [18], [19], and the
bit-back based MDL [11], but also the maximum likelihood,
information geometry [1], Helmholtz machines [9] and vari-
ational approximation [20]. Moreover, made in [12], [13] on
both the Gaussian mixture problem and the factor analysis

problem, experiments have shown that the criteria derived
from this BYY harmony mechanism outperforms typical
existing criteria such as AIC [3], CAIC [4], MDL [18],
[19] or equivalently BIC [21]. Though made on data without
considering temporal relation, the key issues of these studies
apply to temporal BYY harmony learning.

When the size of samples is quite small, model selection
by (7) can be further improved with replaced by
in (8), in which is an effective number of free parameters
in the BYY system. In a crude approximation, we can simply
let with being the number of free parameters
in . Moreover, is also a number that relates to and
the size of samples. The detailed discussions are refereed to
Section II-B of [26].

Specifically, we can apply the above with
given by (42) for the classic HMM and the

Gaussian HMM, by (43) for the Gaussian
mixture HMM, by (44) for the independent
HMM, and by (45) for the indepen-
dent channels. We can also apply the above with

given by (60) for TBYY -system and TBYY
-system, and given by (65) for the HMM

gated TFA, temporal non-Gaussian factor analysis (TNFA),
and HMM gated TNFA. Correspondingly, the detailed for
each case is given in Fig. 7.

for (46)
for (47)

for (61) & Tab.1(a).
(74)

is a small number
(a) same as the case by (74)
(b) RPCL learning
(c) BYY harmony learning with normalization. (75)
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