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An Extended ASLD Trading System to
Enhance Portfolio Management

Kei-keung Hung, Yiu-ming Cheund/ember, IEEEand Lei Xy Fellow, IEEE

Abstract—An adaptive supervised learning decision (ASLD) the system is built to learn the desired past investment deci-
trading system has been presented by Xu and Cheung to optimize sjons via a supervised learning neural network such as extended
the expected returns of investment without considering risks. In normalized radial basis function (ENRBF) neural network [15].

this paper, we propose an extension of the ASLD system (EASLD), . . . . . .
which combines the ASLD with a portfolio optimization scheme The desired past investment decision for a day is obtained just

to take a balance between the expected returns and risks. This after that day is past and used as a teaching signal for the net-
new system not only keeps the learning adaptability of the ASLD, work to adaptively learn what decision should be made upon
but also dynamically controls the risk in pursuit of great profits  the corresponding inputs. The possibility of using this idea has
by diversifying the capital to a time-varying portfolio of IV assets. also been discussed but weeded out by Magtdy’s two major

Consequently, it is shown that 1) the EASLD system gives the . . ; .
investn?ent riék much smaller tha)n the ASLD on{a and %) more comments in their papers [10]. One comment is that the forming

returns are gained through the EASLD system in comparison with  Of teaching signals and the training of network by supervised
the two individual portfolio optimization schemes that statically learning is a two-step process still, which encounters difficulties
determine the portfolio weights without adaptive learning. We in solving the structural and temporal credit assignment prob-
have justified these two issues by the experiments. lems. The second comment is that most of the existing labeling

Index Terms—Extended adaptive supervised learning decision procedures by a human expert or an automatic labeling algo-
system (EASLD), expected returns, risk, portfolio optimization rithm ignore the input variables and do not consider the condi-
schemes. tional distributions of price changes given the input variables,

especially in the cases that actual transaction costs should be
|. INTRODUCTION considered.

However, although the decision-based approach in [16] needs
fdlobtain the past desired trading signals followed by learning it
With a supervised learning network, it can actually be regarded
uges single-step process that a network outputs a decision signal
directly on the basis of the current input as opposed to make a

ision based on the prediction of prices as in a two-step pre-
Pcﬁion-based system. Also, there is no difficulty in the so-called
ructural and temporal credit assignment problems because the

: X 7 o o est past investment decision for a day can be easily and surely
trading system is optimized to some prediction criterion (e.gJ

g ; ! tained after that day is past. Moreover, although the deci-
mean square error), which is not the ultimate goal of aﬁnancg n-based ASLD system has not directly considered the con-

!n\;ﬁstme?_:. Thhgrefo(;e, It Oftef:_ Ieacljs t(:hs_,ubopglmal perform;”&ﬁional distributions of price changes given the input variables,
'r? egro ! -acdlevel seg_sf?. otsg_ve i IS pr(z) em, fomee Oftt%onsiders the conditional distributions of decisions given the
ave been made along diiterent directions. ne IS 1o use a F%?ep'ut variables. Thus, it has actually not ignored the inputs as

diction criterion more correlated with common trading Strat‘?/\'/ell as the previous-mentioned return-based systems. In addi-

gies such as that proposed in [2]. Another direction is the rf?c')n,the ASLD system has also considered the actual transaction

tum—basgd' systems as proposed ‘P the papers [1], [10], W.h%%ts indeed. Therefore, we argue that the decision-based sys-
the prediction module and the trading module are merged i s and the return-based ones are both the interesting direc-

8.”?. singl_ei system that optimizes the returns instead of the Kibins for trading and portfolio management. The performance
iclon criterion. . : . of the ASLD system has been shown in the foreign exchange
_ An alternative choice is the adaptive supervised learning deﬁ\érket [16] and stock market [6], respectively, with consider-

sion (ASLD) network suggested by Xu and Cheung [16], Whe%\eole profits acquired. Essentially, the ASLD trading system opti-

mizes the returns without considering the investment risk, which
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N THE literature, various theories and methods have be

developed to help investors to pursue great profits in the i
vestment. One is a computer-based trading system that prod
appropriate investment decision signals (also catading sig-
nalshereafter) on the basis of the available information to ass
an investor make a sensible investment. In the past, one kin
widely used trading systems consists of two modules: pred
tion module followed by trading module. However, this type
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risk. Later, Sharpe [12] defined the Sharpe ratio as the ration IV, we will conduct some experiments to compare the per-
of expected returns to the risk of one asset, which basicaftyrmance of this new system with the individual SMPO and
evaluates an individual asset but not a portfolio as a whol®SRM-D, respectively, as well as the ASLD system. Last, we
Consequently, an investor may empirically decide the portfoldraw a conclusion in Section V.
weights of NV assets on the basis of their Sharpe ratios. To our
best knowledge, such a weight assignment has not been wéll OverviEws oNSMPQO, IPSRM-D BRTFOLIO SCHEMES,
studied yet. In both the SMPO and Sharpe ratio, a risk is de- AND ASLD TRADING SYSTEM
e s oo s () = (1) = (0 )/~ be te rewm
the positive fluctuation above the expected returns (also call ass_eti (the term "asset” means bonds, stock shares
upside volatility as the part of a risk. Hence, Markowitz [8] and‘g ) at timet, wherez(), i = 1,2,..., N denotes the
F?shburn [4] later defin%d thdownsi.de risk\;vhich counts the market-value (also callegrice) of asseti at time !, Given

" an N-asset portfolio with a past data sék(t)}, with
volatility below the expected returns only. Recently, the down-,,," T .
side risk has been further studied, and a new Sharpe ratiozg) = [a1(t), 22(%), ..., 2n(B)]", we calculate the portfolio

; Lo ' . ) {&turns at timet and its expected value, denotedrd@st) and

lated portfolio optimization scheme called improved portfoh% respectively, by
Sharpe ratio maximization with diversification (IPSRM-D) has ' N N
been proposed [5]. By maximizing the expected returns and — _ T—
the upside volatiity while minimizing the downside risk, this " (1) = D_wiri(t), =3 wim=w'T (1)
IPSRM-D takes a balance between the expected returns and risk =t =t
to obtain the portfolio weights in batch way and then staticaII\Q/Ith
diversifies the capital t&V assets based on the weights during
the whole investment period.

To combine the ASLD and a portfolio optimization schem rew = [wy, w wy]” with w; being the weight for
to get the advantages of both, this paper proposes an extended .- portfglio Qandf _N[ﬁ > ! |7, 7 is the ex-
ASLD (EASLD) system that is associated with a portfolio opti- e UL T2y e TN

o . ected returns of assetwhich can be empirically calculated
mization scheme such as SMPO or IPSRM-D to provide a betgy & P y
tradeoff between the expected returns and risk. Compared to the
ASLD system [16], this new one has two attractive features: 1

M
me LS. ©)
t=1

1) Diversification of Investmentn pursuit of great profits, "M
the EASLD system allows more than one asset to be in-
vested simultaneously instead of investing one asset onAy, SMPO
whereby the risk is considerably reduced. :

2) Time-varying Portfolio ManagementThe EASLD For a single asseéf Markowitz [7] suggested to use its return
trading system selects a time-varying portfolio, in whickariance

N
> wi=1,  w; >0, i=1,...,N 2)
=1

not only the portfolio weights are changed over the M
time, but also the number of assets in the portfolio is var(r;) = 1 Z [ri(t) — 7] (4)
time-varied. The time-varying portfolio management M—-1 ~

adaptively adjusts the balance point between the expected
returns and risk such that the portfolio can follow thif
change of the assets’ prices on line with more profi
obtained.

a measure of the investment risk. Also, the portfolio risk of
assets is measured by
N N
var(r?) = Z Z wiwja,?_j =wlZw (5)
As a result, the EASLD system not only remains the learning i=1 j=1 i
adaptability of the ASLD but also dynamically adjusts thgare the(i, j)th element of matrixs
portfolio weights such that the risk is considerably reduced

M
while great profits are gained. In the experiments, we use 2 1 __ __
. . . N C = (T il i (t) — 75 6
the SMPO and improved portfolio Sharpe ratio maximization %0 T M1 ; [ri(8) = 7] [rs (1) = 73] ©)

with diversification (IPSRM-D) as two examples to buil
the EASLD system, respectively. Compared with the ASL
trading system, the EASLD system can considerably redug
the risk, while providing reasonable long-term returns
well. Furthermore, the empirical results show that the EASLD
trading system brings more profits than a human investment Maximize
using individual SMPO or IPSRM-D portfolio scheme. S(w)=uw’'r —w'Ew  with respect tow

This paper is organized as follows. Section Il gives a brief rQubject to
view on SMPO and IPSRM-D portfolio schemes as well as the N
ASLD system. Section Il presents the extended ASLD system Z“’L =1, and w; >0, i=1,...,N )
in detail including its training and operation procedures. In Sec- =

s the covariance of those returns from agsatd;.

To find out an appropriatev, Markowitz [7] proposed an
Bjective function in terms of the expected returns and risk as
llows:
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wherew > 0 indicates the acceptable level of risk that an inabove the target return by introducing a new term called “up-
vestor prefers. The larger the valueudt, the greater the impor- side volatility.” Similar to the calculation of downside risk, the
tance of the expected returns is in the objective function. Thipside volatility for anV-asset portfolio is defined as

is well-known SMPO. The optimum solution for (7) has been N N

given by Ostermark [11]. upV,(G) zzzwiwj upVa(G, i, j) =wTUw
i=1 j=1

B. IPSRM-D where

1) Sharpe Ratio:For ranking the goodness of an asset P ‘ oo o ‘ )
Sharpe proposed the idea of Sharpe ratio [12], [13] based o upVa(G, i j) = o Ja (ri=G)*(rj = G)dF (r; F (1))
Markowitz’s mean-variance paradigm. The definition of Sharpe upVa(G, 1,1) -+ upVa(G, 1, N)
ratio S; for asset is as follows: U= R T

7 = : :
S; = 7,\% (8) UpVa(G, N, 1) ce upVa(G; N, N)

11)
Sharpe suggested calculating the Sharpe ratio for each asset an . . , . .
then select the asset with the greatest value to invest. Althou ﬁ’ IPSRM-D: Smpe the .Sharpe rat|o.def|ned in (8) is ex-
both of SMPO and Sharpe ratio consider the balance betwé%%s'vely for evaluating a single asset without a scheme to de-

expected return and risk, the latter measures the goodness o?'%ﬁ the portfolio walghts, |th|s actually5 nrc])t sunablz f(()jr_port—h
asset generally better than the former. olio management. Hence, the paper [5] has extended it to the

2) Downside Risk and Upside VolatilityAccording to portfolio case, named improved portfolio sharpe ratio (IPSR),
Markowitz [7], the risk is taken as the variance of the returi®S follows:

However, more and more academics and practitioners claim B wit+wlUw
that the variance is not an appropriate measure of risks in many IPSR= wTDw (12)
practical investments. Thus, Fishburn [4] proposed a MO%hich not only includes the individual Sharpe ratio value of

sophisticated measure of risk associated with below-tar%et

. . o ch asset, but also counts both of the downside risk and up-
return, through which the idea of downside risk was propose . :
. . . o Side volatility. Based on IPSR, the paper [5] presents a portfolio
by Sortino and Meer [14]. Basically, the downside risk is the " "~ " . i
o o optimization scheme called IPSRM-D as follows:
volatility of return below the minimal acceptable return (also

calledtarget returr) G. Maximize

For an single asset, the definition of downside risk, ~ w!T+ Hw'Uw T

2 ] S(w) = = + Bw" ([1] —w)
downV, (G), is given as follows: wIDw
el
downV,,(G) = / (G —7r)*dF(r) witha >0 (9) with respect tov subject to
— 00 N

whereF (r) is the probability distribution function of an asset’s Z w;=1, and w;>0  forVi=1,....N (13)
returnr. The « is supposed to reflect a decision maker’ feel- &=l

ings about the relative consequences (personal, corporate, awtigre[1] is the constant vector of 1, the paramei&mrepre-

of falling short of the minimal acceptable retughby various sents the degree of importance of maximizing upside volatility

amounts. The detailed selection rules focan be referred in in the optimization, and is the degree of importance of regu-

Fishburn [4]. larization in the optimization. The optimization of (13) can be
Since the downside risk in (9) is for a single asset only, oimplemented by an augmented Lagrangian algorithm as listed

recent paper [5] has extended it to the caséVfeasset portfolio in Appendix-I. It has been shown [5] that the IPSRM-D can ef-

as follows: fectively reduce the risk while obtaining great returns.

N N
downV,(G) = 3 5" wyw; downV, (G, i, j) = w'Dw  C. ASLD System
i=1j=1 Suppose the nonlinear relationship between trading signals

where and the assets’ prices can be described by a nonlinear function
( o G (G . . f- The ASLD system [16] trains a supervised learning neural
downV,, (G, 4, j) = / / (G =r)*(G—rj) network to approximate thig before its operation. The training

and operation of the ASLD system are summarized as follows:
AP (r:) dF(rj),  Training Stage of the ASLD Systemthis stage, we use a
downV, (G, 1,1) --- downV,(G, 1, N) set of past datéz(t) } £, to train the system. At each time
D= . . t e {0,1,2, ..., M — 1}, the desired trading signal is
\ doana('G, R — ('G7 N, N) Lirst extracted“based,?nqreturn-optimized trading strategy
(10) ecause the “future prlce,,-,(_t + 1)_, 1= 1, 2 N
can be look-ahead. Then, this available trading signal as a
Apart from considering the variance below the target return, teaching signalis used to train a supervised learning neural
the paper [5] also considers to measure the variance of return network, e.g., extended normalized radial basis function
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Fig. 1. Structure of the extended ASLD (EASLD) system in the training stage.

(ENRBF) network [15], such that it is learned what decinet’s parameters are tuned appropriately before operation. In the
sion should be made upon the corresponding inputs. following, we will elaborate the system’s training and operation
» Operation Stage of the ASLD Systénthis stage, the as- stages, respectively.
sets’ daily prices are not available until that day. That is,
z(t) is available at time or after. At current time, the A. Training of the EASLD System

ASLD system not only outputs an estimate of the corre- As shown in Fig. 1, the EASLD system consists of four

sponding desired trading signal but also adaptively adju?wrtiéjor components: Investment asset selector (IAS), portfolio

the parameters of the supervised learning neural network: . " . . i
. . ) : . optimization scheme (POS), trading signal generator (TSG),
after the desired trading signal at time- 1 is extracted b ( ) g sigha g ( )

and supervised learning neural network (SNN). Its training

pres.ently. ] procedure is as follows: At each time stgpthe IAS compo-
The details of the ASLD system can be found in [16]. nent selects a subset, written $&), from N assets. We call

It should be noted that the trading strategy used in [1fjese selected assétsestment assetsvhich are not held at
determines the desired trading signals by optimizing the retus}$e + — 1 and should be invested at tinteon the basis of
one time step ahead only. Reference [6] has provided an igipre-specified trading strategy. Also, the IAS will give the
proved trading strategy that considgrsme step ahead whenransaction instructiorf(¢) for asseti to decide whether to
extracting a desired trading signal. Since the ASLD systemyigake a transaction or not. Upon determining the investment
proposed to optimize the returns only without considering th@sets, the POS component uses a portfolio optimization
risks, it may often result in large volatility of the returns. INscheme, such as existing SMPO or IPSRM-D, to assign each
the next section, an extended ASLD system will be introducegkses g portfolio weight, written as; (t), which is determined
therefore, to take a balance between the expected retusased on the available past assets’ prices upSnibsequently,
and risks. a trading signal;(t) on asset,i = 1, 2, ..., N, is generated
by the TSG on the basis of the transaction instructioft)
and the portfolio weightu; from the POS. We then use the
trading signal, as a desired teaching signal at thite adjust

The EASLD trading system is a combination of the ASLDhe SNN system parameters with a little small step. With the
system and a portfolio optimization scheme. At each tintbe adaptive training, the SNN can gradually model the nonlinear
system input is the observed pricesdfassets and the output isrelationship between the desired trading signals and the assets’
a trading signal that not only shows the portfolio investment grices. In the following, we will show the detailed implemen-
a subset ofV assets, but also indicates the transaction instruetions of IAS, TSG, and SNN, respectively. As for the POS, it
tions on the assets in hand. Since the EASLD uses a supervisad be generally accomplished by using any existing portfolio
learning neural network to describe the nonlinear relationshgptimization scheme. In this paper, we just concentrate on the
between the inputs and outputs, we need to train it such that 8/ddPO and IPSRM-D, whose details as well as the relevant

I1l. EASLD TRADING SYSTEM
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literatures have been introduced in Section |. We therefore omitSince an investment asset is the one that is not held at time

its details hereafter. t — 1 should be invested at timeaccording to the above trading
1) Investment Asset Selectorhe EASLD system defines strategy, the IAS, therefore, chooses the investment assets at
the transaction instruction sign@j(¢) in the form time ¢ by
Ti(t) = I%(t) - IF (t) (14) Asseti is an investment assetif (t) = 1
with andI”(t —1) =0, i=1,2,..., N.
1, means to buy assét It should be noted that the above trading strategy is actually

(15) made without considering the activities of “sell short.” If it is
allowed in the portfolio investment, the situation then becomes
somewhat complex. One possible way is to replace the symbol

wherel“,(t) and I/ (t) are calledallocating signalandposi- *>" in (19) by “<” when considering “sell short” transaction

tional signal respectively, with on asset. Consequently, the signal definition &f (¢) in (16)

and the signal assignment in (18) both need to be modified cor-

respondingly. In our paper [16], a trading strategy that allows

T;(t) = < —1, means to sell assét
0, otherwise

1, means to hold assét

If'(t) = { —1, means to sell asset (16)  the “sell short” activities has been suggested. See [16] for more
0, otherwise details. For simplicity, we will no longer consider “sell short”
and hereafter.
1, means to perform a transaction on agset 2) Trading Signal Generator (TSG)Given the transaction
I%(t) = at timet (17) instructionT;(t), the TSG generates the trading sighdt) in
0, otherwise. the form

The trading strategy used in the EASLD system needs to Iooin (t)
ahead the “future” prices such that an appropriate trading deci-
sion is made. Its rules can be stated as follows: with
1) Suppose assétis held at timet — 1. If asseti keeps (1)
decreasing in the next time steps with the amount of
decrement larger thahtimes of the transaction costs, we w;(t), means to buy asseétn proportion tow; (t)
determine to sell it out at timeto get cash back. =< -1, means to sell asset
2) Suppose assets not held at time — 1. If its prices keep
increasing in the next time steps and the amount of the
increment is larger thagd times of the transaction costs,
we will invest on this asset at time and} ;. wi(t) = 1, wi(t) > 0, ¢ = {ilTi(t) = 1}. _
Specifically, 1¢;(t) and I (t) are determined by the following 3) SNN Learning: Suppose there exists a nonlinear Euqctlon
procedure: famongl(t),I(t—1),and the pastassets’ pricegt—m)}: _

m=0
Step ALet E = {k|IP(t—1) =1andl < k < N}. with
Step BFori, 1 <i < N,ifi € E, let Li(t) = fill(t = 1), 2(t), 2(t = 1), ..., z(t —d + 1)]
17 (t) = 1<i<N (23)
-1, ifzi(t+q) < zi(t+q=1) <--- < zi(t+1) < zi(t)  whereI(t) = [I1(t),I2(t),.. . .In(D]T, f = [f1.fos- - fN]T,
and[z;(t) —zi(t+q)] > zi(t) * Bx andd is the time lag. In principle, the EASLD system can use

any trained supervised learning neural network to approximate
this function f. Here, we prefer to use ENRBF networks be-

i=1,2,....,N (21)

{wi(t), if 73(t) = 1

T;(t), otherwise,

otherwise
(22)

1, otherwise

(18) cause of its simple architecture and learning procedures. Fur-
wherey denotes a transaction cost, a#és a constant.  ther, the experiments in [6] and [16] have shown their successful
Step CIf i is notinE, let performance in modeling foreign exchange and stock markets.

[Z,P(t) - In this paper, we use an array &f ENRBF networks trained

by the CCL learning algorithm [15] as the SNN component

Lozt +a)>zt+g=1)>->z(+1)>z(t) approximate the nonlinear functighin (23). As shown in

andfzq(t +q) = z(1)] > 2i(8) Sy Fig. 2, the output of network is I;(t) whenx(t) = [I(t —

0, otherwise. 1), z(t), z(t—1), ..., z(t—d+1)]7 is the input at time. The
| (19) Parameter set of networkis

Step DFor1 < r < N, let 0= {Wi ci.m ®j=1.. K} (24)

Ir(t) = whereK is the number of hidden units in the hidden layéf;,

o _ . » ¢’ are the hidden parameters in the output layer ands’; are
{ L, if(risnotinE), and ¢, (t) = 1or I’(¢) = —1) the centers and covariance matrices of the RBF hidden units. In
0, otherwise. the literature, such a network is expected to be trained by using
(20) aleast-square learning technique. However, due to the difficulty
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o with
Oi(t) = flI(t—1), z(t), z(t — 1), ..., z(t —d +1)] (26)
whereQ = {i|O%(t) > 6§}, andé is a small positive threshold
value, which can be generally determined via a cross-valida-
Ouputlayer — tjon technique. In particular, when the SNN is implemented

by the ENRBF network described in Section 111-A3), (26) then
e becomes

Trained Parameter Set K

z S 0w =X (Wi x0 +]

Il &
. . s j=1
time goes J

1) des?ed
trading

signal

K = 0-50x(t)—mi |7 (25) " [x(t) ~m!]

(27)

i": o~ 0-8x(t) —mi T (Z)) L [x(t) —m]
=1

Hidden Layer "
With the help ofl;(¢)s in (25), an investor can, therefore, know

how to deal with the assets in hand, and to diversify the capital to
a portfolio investment such that the risk is considerably reduced
meanwhile acquiring great profits.

When the desired teaching signal of tithes determined at
timet + ¢, we continually tune the SNN in the same way as the
training stage to maintain the EASLD system adaptive-learning
capability.

Time Delay

Kt-1) oty | | z(tde1) Input Layer

IV. EXPERIMENTAL DEMONSTRATION
Fig. 2. Structure of ENRBF-network A. EASLD in the Stock Market

of determining the parametem§ and2§ in practice, learning if\flg f;ﬁgg&iiégi:;_penmems by investing a portfolio of six

is usually made by an approximation method with two separate ) ,

steps. First, we use some kind of clustering analysis (e.g., the® S&P 500 Composite Price Index (USA);

k-means algorithm) to group the net’s input set idtoclus- * Hang Seng Index (Hong Kong); _

ters with their centers characterizedma$, j = 1,2, ..., K. * Shanghai SE Composite - Price Ind.ex (P.R. Chinay);

Second, the parameté¥¥’, ¢; are determined by a least-square * NIKKEI 255 Stock Average (Ja.pan),

learning technique. Using this two-step training approach, the * CAC 40 - Price Index (France); ,

centers are obtained directly from the input data without the * Australia SE All Ordinary Price Index (Australia).

need to make an improvement to the regression relation betweefe experimental data consisted of 1365 data points from

I;(t) andx,. May 11, 1992 to August 1, 1997. The first 1000 points were
By combining the ENRBF network with an alternative to th&/Sed as the past data set, whereas the remaining 365 ones were

mixture-of-experts model [17], Xu [15] has proposed an expetSed in the operation stage of the EASLD trading system for

tation-maximization (EM) algorithm to learn the ENRBF'’s paPerformance test. Furthermore, in all of the following experi-

rameters with a better estimate. In Appendix-I1l, we give out 4ReNts, we let the rate of transaction ceste 3% of the amount

adaptive algorithm as well as a batch one to train the paramet&r§ach transaction. Also, we chose SMPO and IPSRM-D as
in each network. For other details, the interesting readers cdi/0 examples to build the EASLD system, respectively, by set-

refer to [15] and [16]. tngH = B = a = 1 andG = 0 in the IPSRM-D, and
settingu = 1 in SMPO. In making IAS trading strategy, we
B. Operation of the EASLD Trading System simply fixedq = 3 and3 = 2.5 heuristically determined

aku the paper [6] in the same experimental data set, although a
rgoss-validation technique is helpful to improve the parameter
galue selection.

1) Experiment 1: Comparison Between EASLD System and
é]SLD One: To show that EASLD system has smaller invest-
ment risk in comparison with the ASLD one, we let SMPO be
the POS component of the EASLD system as an example. Here-

At each time step, determining the desired teaching sign
needs to look aheagstep the “future” assets’ prices. Hence, i
the operation stage, the desired trading signal of current#im
is not available until timeé + ¢. As shown in Fig. 3, at each time
t, the EASLD trading system uses the trained SNN to give
estimate of the corresponding desired teaching signal by

_OY) if 0i(t) > 6 after, we denote it as EASLD-SMPO. Fig. 4 shows that the profit
R > Oon(t)’ gain obtained by the EASLD system is more stable than the
Li(t) = ¢ "€? , (25) ASLD. The major reason is that the target of the ASLD system
0, if |O*(¢)] <& is to maximize the expected returns without considering the risk.

—1, otherwise As indicated in Table I, the ASLD system invested on at most
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Trading Signal Generator .

T Time-delayed

Teaching Signal

Output of Portfolio |
Weights

Dynamic
Portfolio
(Trading
Signals)

Sell
Asset
Hold
Asset

Fig. 3. Structure of the EASLD system in the operation stage.

ASLD System Versus EASLD-SMPO wherew (¢) is the vector of portfolio at time and¢ is the length
of the operation time period. Table | shows that the EASLD

. AS%D system invested on at most three indexes in the operation period
— EASLD-SMPO i with dod = 0.27 in comparison with dod= 0 in the ASLD.
i Hence, the EASLD system can considerably reduce risk in con-
trast to the ASLD, while bringing reasonable long-term profits
as well. We also compared the EASLD-IPSRM-D (i.e., we build
the EASLD system with the POS component being IPSRM-D)
with the ASLD, resulting in the same conclusion as shown in
Table 1.

2) Experiment 2: Comparison Between EASLD and Indi-
vidual Portfolio SchemesThis experiment is to show that the
EASLD system can bring more profits than an individual port-
folio scheme. When individually using SMPO and IPSRM-D,
we calculated the portfolio weights on the past data set as
shown in Section Il. We then fixed the and diversified the
capital to six assets in proportion t0 and held them during
the whole operation period.

Fig. 5(a) shows the performance of the SMPO and the

EASLD-SMPO. It can be seen that the return curve of the latter
207 5‘0 160 150 2(')0 250 3(‘)0 o 4(')0 is alway§ above the fqrmer’s one. That is, the latter can con_sis-
Number of days tently bring more profit. The major reason is that the adaptive
trading signal provided by the EASLD system can keep track
Fig. 4. Profit gain obtained by the EASLD-SMPO system and the ASLD ongf the dynamic financial market indexes but the individual
respectively. SMPO cannot. To justify the significance of the EASLD in

profit gains, we further conducted the statistical hypothesis

one index each day, which made the volatility of the profit gaifsy ‘\we calculated the individual average monthly returns of
large. On the other hand, instead of only maximizing the E¥ASLD-SMPO and SMPO. written ag™

L ; EAsLD-svpo and
pected retu_rns,the EASLD system diversified the capital to ta oo, Tespectively, wheren = 1,2, ..., is the monthly
an appropriate balance between the expected returns and;

. . A= xes. We then further calculated their mean, denoted as
risk. We measured the degree of diversification (dod) by Reastpsupo and Rsypo, respectively. We set the null hy-

e - B . .

1 T pOtheSISHO beREéSLl}SMPO = RSMli)a while the alternative
dod= E z;w<t) [[1] — w(t)] (28) hypothesisH; is Reasup-smpo > Rsumpo. We performed
t=

1201

Profit gain (%)
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PERFORMANCE COMPARISONAMONG THE AS-[AI;LEEASILD-SMPO,AND EASLD-IPSRM-D SSTEMS
The ASLD | EASLD-SMPO | EASLD-IPSRM-D
Maximum Number of Indices Invested at a Time 1 3 3
Degree of Diversification 0 0.27 0.35
Mean Daily Returns 0.137 0.130 0.192
IPSR 1.424 1.882 2.122
Risk 5.393 0.905 1.356
Upside Volatility 0.786 0.424 0.535
Downside Risk 0.648 0.295 0.343
eor individual portfolio scheme. We further performed theest
I |_ SNEQ) smpo in the same way as the previous one. We obtained tthe

50

value to be 6.1004, which is still larger than the critical value
4.14. The experimental results, therefore, support again that
EASLD-IPSRM-D outperforms IPSRM-D in the sense of profit
gains.

Furthermore, from Fig. 5(a) and (b), we also found that the
return volatility of EASLD-SMPO and EASLD-IPSRM-D
systems were larger a little than the individual SMPO and
IPSRM-D, respectively. Even so, we found that the returns from
EASLD-SMPO are always much more than SMPO during the
whole operation period. Similarly, EASLD-IPSRM-D gave far
greater returns than IPSRM-D in the most time. This implies

Profit gain (%)

% 50 00 150 Numbgégf - 5250 30 a0 a0 that the EASLD has made an appropriate balance between the
g returns and the investment risk.
@ 3) Cautious InvestmentFrom the practical viewpoint, we
eor noticed that some conservative investors are more concerned
about risk than return. Therefore, a strategy that may satisfy

[ = B Rsamo them is to minimize the risk while controlling the expected re-
turn. In the IPSRM-D, we fixed the expected return to be 0.06
and 0.12, respectively, while minimizing the downside risk and
maximizing the upside risk. The algorithm of IPSRM-D with
control of expected returns is listed in Appendix-1l. Fig. 6(a) is
the experimental results of EASLD-IPSRM-D with controlling
expected return at different levels. The result statistics are shown
in Table I, through which we can see the following.

1) The higher the expected return that is specified, the higher
the resulting return is obtained and vice versa.
2) The smaller the expected return that is specified, the

Profit gain (%)

[ 50 100 150 200 250 300 350 400

Number of days smaller the resulting risk is met, as expected.
(b) Under the different return control level, we again compared the
Fig. 5. Performance comparison. (a) Between EASLD-SMPO and SMPBroflt g_al_n performance Of_the EASLD-IPSRM-D system with
(b) Between EASLD-IPSRM-D and IPSRM-D. the individual IPSRM-D. Fig. 6(b) and (c) showed the compar-

ison results, where we can see that the EASLD-IPSRM-D can
the t-test at the 0.05% level of significance. We obtained tHgring much more profit gain than the IPSRM-D, which is also
t value to be 10.0542, which is much larger than the criticabnsistent with the previous findings.
valuetg goos = 4.14. It is, therefore, the experimental results In contrast, we also noticed that some aggressive investors
reject Hy at the 0.05% level of significance. That is, we havare more concerned about return than risk. Therefore, a strategy
the strong confidence that the EASLD-SMPO brings the profthat may satisfy them is to maximize the expected return while
more than the SMPO. In Fig. 5(b), we also compared tl®ntrolling the expected downside risk. Consequently, we fixed
IPSRM-D and EASLD-IPSRM-D. We found again that thehe expected downside risk, which is specified by the investor,
EASLD can obtain more profit gain than the correspondingnd the optimization essentially becomes a maximization of re-
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Fixed expected return (EASLD-IPSRM-D) Fixed expected downside risk (EASLD-IPSRM-D)
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Fig. 6. (a) Profit gains by EASLD-IPSRM-D under different controlledrig. 7. (a) Profit gain by EASLD-IPSRM-D under different controlled

expected returns. (b) Comparison of EASLD-IPSRM-D with controllingxpected downside risk. (b) Comparison of EASLD-IPSRM-D with controlling
expected returns at 0.06 and individual IPSRM-D. (c) Comparison ekpected downside risk at 0.36 and individual IPSRM-D. (c) Comparison
EASLD-IPSRM-D with controlling expected returns at 0.12 and individuabf EASLD-IPSRM-D with controlling expected downside risk at 0.83 and

200
Number of days

IPSRM-D. individual IPSRM-D.
TABLE 1l
PROFIT GAIN OF THE EASLD-IPSRM-D &STEM TABLE 1l

WITH DIFFERENT EXPECTED RETURNS PROFIT GAIN OF EASLD-ITSRM-D WITH DIFFERENT EXPECTED DOWNSIDE
Expected return | Expected return Expected downside risk | Expected downside risk

= 0.06 =0.12 =0.36 =0.83

Mean return 0.164 0.192 Mean return 0.140 0.183

Risk 1.098 1.356 Risk 1.089 2.026

IPSR 2.043 2.122 IPSR 1.864 1.883

Upside Volatility 0.480 0.535 Upside Volatility 0.464 0.597

Downside Risk 0.315 0.343 Downside Risk 0.324 0.414

turn and upside risk. We give the algorithm of IPSRM-D with 1) The smaller the expected downside risk that is specified,

control of the expected downside risk in Appendix-Il as well. the smaller the resulting downside risk is met and vice
Fig. 7(a) is the experimental result of EASLD-IPSRM-D with versa.

the different expected downside risks. The statistics are shown2) The larger expected downside risk is that specified, the

in Table IlI, through which we can see the following. larger the resulting return is obtained, as expected.
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Profit Gain by the EASLD System in Foreign Exchange Market
160 T T T T T

140 -

120 1

100 A

80 —

60 b

Profit gain (%)

20 —

0 20 40 60 80 100 120
Number of days

Fig. 8. Profit gains from the investment in foreign exchange market by the EASLD system.

Again, under the different controls of expected downside riskje learning adaptability of the ASLD but also controls the risk
we compared the performance of EASLD-IPSRM-D with tha pursuit of considerable profits by diversifying the capital to
IPSRM-D, as shown in Fig. 7(b) and (c). We found that tha time-varying portfolio ofN assets. The experimental results
return volatility of the former is similar with the latter becauséave shown that the EASLD system can considerably reduce
of the risk control, but the former gives much more profits.  the risk in comparison with the ASLD one while keeping the
reasonable long-term returns. Furthermore, the EASLD brings
B. EASLD in Foreign Exchange Market far more profits than the two individual portfolio optimization

In the previous experiments, we have shown the outstand %pemes with a little sacrifice of the risk, which can actually

performance of EASLD in the stock market in compariso further improved by controlling o_f the downside risk. The
with the ASLD and the two individual portfolio managemenPrOpOSeOI system has therefore provided a new way to enhance

schemes. This section will further demonstrate the performant & portfohodmanagemegt Ey _makmg a be_ttir balance between
of EASLD in foreign exchange market. We considered e expected returns and the investment risk.
portfolio of the following six foreign exchange rates:

1) Australian Dollar (AUD); APPENDIX |

2) Canadian Dollar (CAD); AUGMENTED LAGRANGIAN ALGORITHM FOR

3) German Deutschmark (DEM); IPSRM-D IMPLEMENTATION

4) French Franc (FRN); We show the derivation of the optimization algorithms for
5) Japanese Yen (JAP); IPSRM-D as follows.

6) Swiss Franc (CHF). Let g~ (wj,u;,¢) = minfw;,~(p;/c)} andg—(w,p,c) be a

The experimental data were from November 26, 1991 twlumn vector containing=(wj,u;,c), j = 1,2,...,N. Then,
August 30, 1995 with 1112 samples in total. In our experimente have
the first 1000 data were used in the training stage, while the _ 1
other 112 ones were used in the operation stage. 99~ (wj, pj, ) )1, ifw; < —?j
Fig. 8 shows the curve of profit gains from the EASLD ow; N 0. otherwise
system. It can be seen that the investment returns ne '
158% profit gain following the trading signal generated by the

. . . . ag_(wj7 s C)
EASLD system but with a small downside risk. It further again e —

-0, ifk#j (29)

Owy,
demonstrates the capability of the EASLD in making a tradeoff Wk S
between high returns and the investment risk. The augmented Lagrangian is given by
T+ T
+Hw'U
V. CONCLUSION L=""T2 N W BwT([1] - w) — A(wT[1] - 1)

wIDw
C(WT[]'] - 1)2 - [J,Tg_(W, ©, C)

clg™(w, w, ¢)]"g™ (w, p, c) (30)

In this paper, we have extended the ASLD trading systemby 1
combining it with a portfolio optimization scheme. Since this 2
new system has the advantages of both of them, it not only keeps  — %
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and its derivative with respect to; is toupdate{w, A1, A2, p, ¢} atevery iteration by the following
oL 1 equations untiw converges
ow; (wIDw)? Ly
wi ) wj(t+1):wj(t)+naaﬁ”, j=1,...,N
A(w'Dw)[r+2HUw]; —2(w T+ Hw? Uw)Dw]|;} Wi
I Ar(t 4 1) = A1 (8) + eft) (WTF = repee)
FB(1 - 2w~ A—e(wT1]—1)— 2 Wi a2 ) o
Ow; Ag(t+1) = Ao(t) + c(t)(w [1] - 1)
~ eg=(w;, 13, ) % (31) it 1) = (1) x g™ (w1 (8). €(t))
w0
! c(t+1) =8 x c(t). (37)

The first-order multiplier iteration method is used. The recur-
sive algorithm for implementing IPSRM-D by the augmentegor |IPSRM-D with control of downside risk, the augmented
Lagrangian method is to updagev, A, u, c} at every iteration | aggrangian is given by
t by the following equations untiv converges:

Gn=wenl oy
U)] + = U)j + n-— J=4 ... - T
0
w] — M + BWT([]_] — W) — /\1 (WTDW - Uspce)
At +1) =A(t) + e(t)(wi1] - 1) Uspec (38)

pi(t+1) = pji(t) x g~ (wy, pji(t), c(t)) —Aao(w T[l]_ )__ ( "DW - USPCO)Z_% C(WT[l]_1)2
c(t+1) =8 xc(t) (32) (39)

where 5 is a constant greater than ongjs a small positive Ty (w ¢)  (40)
learning rate, and(t) is a penalty parameter which should be g B

—u"g (W, m, c)—5clg (W, p, c)]

kept increasing during the optimization process. and its derivative with respect to; is
APPENDIX Il OLfixy
ALGORITHM FOR IPSRM-D WITH CONTROL OF ow;
EXPECTED RETURN OR DOWNSIDE RISK _
_ T 2OV gy 21D A
For IPSRM-D with control of expected return, the augmented ~ 4 - vopee | (1= 2w;) = 20 [DW]; = s
Lagrangian in (30) then becomes
grang (30) — ¢ (WIDW — vgpec) [DW]; — c(wT[1] — 1)
Tspce T HwTUw T T P !
Line == 7w T BV (W) =W T —reped _ 9w 1y ©) pj = cg~ (wj, pj, c) 00 (s, 13, )
(33) Owj 1 Jr aw]’
41
(W] =1) =3 e W F=reped) = L e(wT[1]—1)° (41)
(34) The recursive algorithm for implementing IPSRM-D with con-
T A T trol of downside risk by the augmented Lagrangian method is to
—B g (W ) =g clgm (W, O] g™ (W, s ) update{w, \i, A2, &, ¢} at every iteratiort by the following
(35) equations untiw converges
q g
and its derivative with respect to; is OLg
t+1 () +n——, =1,...,N
aLﬂxr ( ) ]( ) "7 aw] ’
Ow; M(t+1) =M (t) + ct) (W' DW — vpee)
1
= WTDw) Aot +1) =Xo(t) + c(t)(w[1] - 1)
-{(WTDW)[T+2HUW]]~—2(WTF+HWTUW)[DW]j} pi(t+1) = pi(t) x g~ (wy, p;(t), c(t))
ag_ Wy, Ky, €
—ewT[1]-1)- Wit )
wj APPENDIX |lI
_ 09 (w;, i, ¢ CCL LEARNING ALGORITHM FORENRBF
—cg~ (wy, pj, ) % (36) _ o _
Wy In the following, we will give out two CCL algorithms for

The recursive algorithm for implementing IPSRM-D with conENRBF learning. One is for batch-way learning, and the other
trol of expected return by the augmented Lagrangian methodssor adaptive learning.
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a) Batch CCL-ENRBF Algorithm. Give the training set b) Adaptive CCL-ENRBF Algorithm. Given each pair

{x(t), I'(t)}.,, we have the following iterative {x(t), I'(t)}, go through the following steps once:
procedure: Step 1) Fix#’, get s(j|x(t)) by (43) and letj* =
Step 1) Fixd’, gets(j|x(t)) b arg max; s(j|x(t)).
D) gets(7lx()) by Step 2) Updaté® by
. new T+
o) e = 1
_ { 1, if j=arg mrin{di,r [x(t) + 10g|Hf, + e%jr(x(t)]} P j
0, otherwise ; new ;old ; old
’ (43) m}. =m}  +7 [x(t) —mj. }
; new ; old ; old i old T
with 56 = (1-p) B +n[x(t)—mj* Hx(t)— i }
T ; 1 ; ELV new :Ei-,,c‘ld n n |:IL(t) _ E/L.»KOId:|
di,j = [x(t) —m3]" (25) " [x(t) — mj] 7 7 ’
. . 12 . i new ; new ; old T ; old
e ;= [I’L(t) — (WH x(1) - c;] /H;. @44) ¢ =i - (Wj* ) m.

where H; is the variance of the regression 7

error I'(t) —
Step 2) Updatd’ by

(W) Tx(t) — ci.

J J

o =1 S s(ix(0)

t=1

N
/L‘DBVV 1 .
w" = ey 300

z = a?olw ¥ ; s(71x(0) [x(r) — "]
[x(t) ;new}
Wy = ()
" = Ei - (w;.now>T =
H;new: : 1 ri(t) - W}ﬂﬁ x(t) - ;new 2
32 s(be(0) ro-(v) |
. (45)
with
1 N
Ei=& S s
3= slix(t)
R is(jIX(t))[F( )—Ei][x(1 ;’nowr
t;s(ﬂx(t)) t=1
_ (46)

whereE’ refers to the expectation df, and
R’ is the cross correlation of andI’.

J

—Wi My [x(t) ~(wi.") x(t)—ct. ““1 x(1)T

Hi new HZ old IZ ; ol T ; new 2
2 = (= e 1 ()~ (W) (1)~
(47)
wheren is a small positive learning rate, and
n; is the number thaf = j* in the past.
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