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Abstract

In help of the Kohonen’s self-organizing maps we present a topological local principal compo-
nent analysis model which is capable of exploiting both the global topological structure and each
local cluster structure. A newly proposed self-organizing strategy that can enhance the learning
speed is introduced to train the model.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Principal component analysis (PCA) [6] is frequently adopted for dimensionality
reduction as the mean square error (MSE) upon reconstruction is minimized. However,
when the data is from multi-modes, performing PCA can be far from satisfactory and
thus its local extension, local PCA, has been suggested [2,3,7–9]. Local PCA can be
implemented in several ways. The approach studied in [4] estimates a gaussian mixture

p(x|�) =
k∑

i=1

�iG(x|�i; 
i); (1)

where �i ¿ 0,
∑k

i=1 �i=1, and G(x|�i; 
i) denotes a gaussian probability density func-
tion (PDF) with mean vector �i and covariance matrix 
i, in the Brst step and then
performs PCA on each cluster or gaussian in the second step. A better way is to
perform the two steps coordinately such that the Brst step and the second step are
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performed alternatively [2,7–9]. Moreover, instead of using the full covariance matrix,
each covariance matrix is represented either in a constrained form in terms of the
principal component and the noise variance [2,7] or an equivalent way that directly
considers each principal component and the noise variance in a reconstruction cost
[8]. They are more preferred especially in the case of small sample size, since the
free parameters to be estimated are considerably reduced. Typically, we consider the
following orthonormal decomposition for the covariance matrix 
 [9],


= &I +W�W T (2)

where 
∈Rd×d;W = [�1; : : : ; �m]∈Rd×m;� = diag(�1; : : : ; �m)∈Rm×m; m6d, and d
denotes the data dimensionality with the constraints: W TW = I; &¿ 0; �j ¿ 0; (j =
1; 2; : : : ; m). It follows that �1; : : : ; �m are the Brst m principal components of 
. Thus,
we can study the local PCA by estimating the gaussian mixture model with the covari-
ance matrix given by Eq. (2). All the local PCA models studied so far, however, only
consider each local cluster structure, with little emphasis being placed on the global
topological structure of data. In this paper, in help of the Kohonen’s SOM we present
a topological local PCA to make up for the deBciency. Moreover, we adopt a newly
proposed self-organizing strategy [9] to accelerate the self-organizing process. In the
rest of this paper Section 2 is devoted to the topological local PCA and a comparison
between two self-organizing strategies and Section 3 presents an experiment, followed
by the conclusions in Section 4.

2. Topological local PCA

In this section we introduce the topological local PCA model based on the Kohonen’s
SOM. The SOM, as an unique data analysis tool that can explore the underlying data
topological structure [4], usually consists of two layers with the lower one as the input
associated with the samples, and the upper one being an array of nodes (neurons) that
are usually laid out in a two-dimensional rectangular or hexagonal lattice. The SOM is
usually trained by the competitive learning, with the neighbors of the winner node also
learned in a certain extent. When viewed as a clustering approach, the conventional
SOM actually makes an assumption that all clusters possess spherical shape.
As shown in Fig. 1, we generalize the conventional SOM to the topological lo-

cal PCA model, with each neuron on the top layer associated with a weight vector
{�i; �i; &i; Wi;�i} which parameterizes a local subspace structure. Compared with the
local PCA model, the topological local PCA model further considers the global topo-
logical relationship among the clusters, via the linkages between the neurons. On the
other hand, compared with the conventional SOM which assumes all clusters are with
spherical shape, the topological local PCA further considers the cluster structure, via
each neuron’s weight vector.
Based on the following general distance metric between the sample x(t) and cluster

i [9–11],

dit =−ln[�iG(x(t)|�i; 
i)]; (3)
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Fig. 1. Sketch of the topological local PCA model

where each covariance matrix Ni is given by Eq. (2), in help of the conventional
self-organizing strategy the topological local PCA model can be learned via the fol-
lowing iterative algorithm,

Step 1: For sample x(t), determine the winner cluster c:

c = argmin
i
{−ln[G(x(t)|�i; 
i)�i]} (4)

Step 2: Update the parameters �i ∈{�i; �i; Wi;�i; &i}:
�i(t + 1) = �i(t) + hci(t)�(t)∇�i ln[�iG(x(t)|�i; &iI +Wi�iW T

i )]; (5)

where hci denotes the neighborhood kernel around the winner neuron c, for which a
typical choice is as hci(t)=exp(−d2ci=2�2(t)) [4] with dci denoting the distance between
neuron i and c, and �(t) monotonically decreasing with time t. The detailed updating
forms are referred to [5].
The conventional self-organizing strategy has been the major approach for the self-

organizing process since its inception. However, it is rather slow as it is time consuming
to regularly organize the neurons starting from a random initialization.
A new self-organizing strategy described as “stronger persons gain and then form a

team” was proposed in [10] (Section 5). By this strategy, a group of winning neurons
are all updated and are relocated to become topologically close, in help of a learning
process [10] in which the second, third ... winner neurons are forced to exchange
with the neighboring neurons around the winner one. As discussed in [1], the two
self-organizing are analogous in some sense to the way human live. In the conventional
strategy, every neuron should adapt itself to his surrounding environment in order to get
along with their neighbors; On the other hand, in the new strategy the neurons migrate
and team up directly with the those who possess similar characteristic. Therefore, they
need not go through the process of adapting themselves slowly. SpeciBcally, for the
purpose of implementing the topological local PCA model the three steps in [10] are
adopted as follows:

Step 1: For a sample x(t), Bnd the Brst n winner neurons, denoted by Nc, according
to (4).

Step 2: Update the weights of all of the neurons in Nc according to (5) with hci(t)
being removed.
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Step 3: The second to the last one in Nc are exchanged with the topologically
neighboring neurons of the Brst winner one.
As suggested in [10], we use it to replace the conventional strategy in the early

phase of learning to accelerate the self-organizing process.

3. Experimental illustration

We present an experiment to illustrate the topological local PCA model which can ex-
plore both each local structure and the global topological structure, as well as compare
the convergence speed of the two self-organizing strategies. The 900 20-dimensional
data samples used in this experiment are equally generated via 30 gaussian’s, whose
covariance matrices are all with “line” shapes, i.e., the largest eigenvalue is much big-
ger than the remainder 19 ones. The 30 gaussian’s roughly belong to 5 super clusters,
as shown in Fig. 2, where the data is projected on the plane spanned by the Brst two
dimensions.
We adopt a 5 × 6 rectangular grid for the topological local PCA to map the 30

clusters, and adopt the diQerence d of the average distance between two iterations as
the convergence criteria, i.e., d(t) = (1=n)

∑n
i=1 |di(t) − di(t − 1)|; where di denotes

the distance between two neighboring neurons, and n is the total number of linkages,
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Fig. 2. The original 20-dimensional data samples, for viewable, projected on the plane spanned by the Brst
two dimensions, where the 30 clusters are all with line shape.
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Fig. 3. Experiment results projected on the plane spanned by the Brst two dimensions, where each “◦”
represents one cluster, and the line represents its Brst principal component.

which is 49 for the 5 × 6 rectangle lattice. The algorithm is regarded as converged
when d becomes smaller than a preset threshold.
The experimental results are shown in Figs. 3 and 4 and the convergence comparison

is shown in Fig. 5. Fig. 3 shows the learned local cluster structure which, for viewable,
is projected onto the plane spanned by the Brst two dimensions. The topological rela-
tionships among the clusters are illustrated by Fig. 4, where the gray value, normalized
by the largest one, of each neuron represents the average distance between itself and
its neighboring neurons. We can notice that Fig. 4 can be roughly partitioned into Bve
“regions” that reRect the topological relationship among the Bve super clusters of the
original data samples.
From Fig. 5 we can notice that the new strategy is much faster than the conventional

one, especially at the beginning dozens of steps. SpeciBcally, while the new strategy
takes about 350 steps (∼ 27:3 s) to converge, the conventional one takes about 500
steps (∼ 42:4 s).

4. Conclusions

In this paper we studied the topological local PCA model with the help of Kohonen’s
SOM. We also adopted a newly proposed self-organizing strategy that can accelerate
the conventional self-organizing speed to train the model.
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Fig. 4. The obtained global topological relationships.
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Fig. 5. The comparative convergence curves.
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