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Abstract— After summarizing typical approaches for solving independent component analysis (ICA)
problems, advances on the ICA studies that consider hybrid sources of both subGaussians and super-
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1. Introduction

Independent component analysis (ICA) becomes popular in the recent literature of neural networks and signal
processing, which aims at blindly solving a linear system from its observation. Such a linear system can be either
simply an instantaneous system

z=Ay,z = [95(1), .. .,x(d)]T,y — [y(l),...,y(m)]T, (1)
or a convolution system
+oo
Ty = Z Aryr—t, 2

where {z:}, {y:} are both time series. However, both the system A and source y are unknown, and thus solution
on both types of the linear systems can not be determined.

One early effort on the problem eq.(2) can be backtracked, under the name of blind deconvolution, to the
period from 60’s to the 80’s in the literature of geophysical exploration on oil and gas, where y; is called seismic
wavelet, A; describes the reflection nature of underground layers, and z; represents seismic waves received by a
sensor array laid on the ground [69, 42, 49, 86]. To tackle the indeterminacy problem, efforts have been made by
regarding eg.(2) as a system that is either deterministic or stochastic. Regarding it as a deterministic system, a
typical strategy is to assume that y; is of the minimum phase or that the phase spectrum of y; is obtainable from a
priori knowledge. Alternatively, when z;, A; are assumed to be finite length, the problem can be solved in certain
cases by only knowing the endpoint or partly samples of y; [125, 126, 127, 128]. While regarding eq.(2) as a
stochastic system, the problem was found to be solvable when y; is assumed to be a Bernoulli white noise series
[49].

Backtracked to the 70°s [75], another typical early effort on the problem eq.(2) has been made widely in
the field of communication under the name of blind channel equalization/ identification/estimation. Readers are
referred to the survey paper [84].

One typical early effort on the problem eq.(1) is made in 1986 by [29] for solving the blind source separation
by assuming that the components of i are mutually independent, i.e., the density of of y takes the following form:

a() =1 a@), y =Y, ,y™]". )
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This effort is supported by the result of (Tong, Inouye, & Liu, 1993). As long as W makes §; = Wx; become
component-wise independent, they showed that §; = Wx; recovers y; up to constant scales and a permutation
of components when the components of y; are mutually independent and at most one of them is Gaussian. The
problem is further formularized by Comon [22] under the name independent component analysis (ICA). Moreover,
the mapping §; = Wx; can recover from z; = Ay, the waveform of each {yt(’)} series subject to unknown scales,
which is also said to blindly separate sources [83].

Studies on the ICA problem have become quite popularized in the literature of neural networks, with many
extensions. One direction is extending the ICA problem to noisy environments. One typical example is adding
noise to the observation:

x=Ay+e, (@)
subject to satisfying eq.(3), where e usually consists of i.i.d. samples that is independent of y. Particularly, when
€~ G(eloa E)a /e G(le,I), (5)

with z ~ p(z) denoting that 2z comes from p(z), eq.(4) becomes to the classic factor analysis (FA) model [7] that
has been widely applied to various data analyses.

The other direction is to further extend the ICA problem as well as its noisy extensions by considering tem-
poral relation among data. Another direction is going beyond a linear system by considering certain nonlinear
systems under the name nonlinear ICA.

There have been several survey papers on the ICA studies [4, 15, 34]. Instead of including all the studies,
the present paper will focus on the first two directions, with a systematic sketch from a unified perspective called
Bayesian Ying-Yang (BYY) harmony learning. The BYY harmony learning was firstly proposed in [119] and
then developed in past several years as a statistical learning framework, featured by not only new regularization
techniques for parameter learning but also a new mechanism that implements model selection either automatically
during parameter learning or via a new class of model selection criteria after parameter learning [87, 89, 90, 92, 93,
94]. Main focus of this paper will be put on the problem of eq.(1) and its extensions that consider noise observation
and temporal dependence. The main contents of this paper are listed as follows:

¢ Typical Solving Approaches

Solving equations: Higher-order-statistics vs Hebbian learning

Cost function approaches vs equation based approaches
Cost functions for PCA and nonlinear extensions
From PCA vs MCA to P-ICA vs M-ICA

¢ BYY Independence Learning

Bayesian Ying-Yang system

BYY harmony learning

Regularization vs model selection: (I) ML, HL, and z-regularization

Regularization vs. model selection: (1) KL-A- HL Spectrum

Ying-Yang alternative procedure for parameter learning

Regularization vs Model Selection: (111) From ln(r) to Convex Function
e L(W) based ICA studies

— Marginal densities: prefixed vs learned
— Loosely matching, 1-bit-conjecture, and open issues
— Natural gradient, non-invertible matrix, and other extensions

e Extensions of ICA to Noisy Environment

— Non-Gaussian factor analysis, algebraic equation, and ML learning
— BYY harmony learning based nonGaussian FA
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Model selection vs automatic model selection

Special cases: LMSER and auto-association

Approximate ML, exact ML, and EM algorithm

Non-negative data analyses and supervised learning on three layer net

Minimizing fitting error vs enforcing factor independence

¢ Extensions of ICA with temporal dependence

Typical approaches for ICA with temporal dependence

Two types of temporal BY'Y systems

TFA, temporal NFA, and space dimension selection

Temporal ICA, Kalman filter, and identifiable state spaces

Temporal BFA, temporal LMSER, and supervised recurrent net

Not only new insights are provided on existing results in a systematic manner, but also a number of new results
are presented, which are introduced in appropriate places of the above context, and them summarized in the con-
cluding remark section. Moreover, due to a close relation between the two linear systems eq.(1) and eq.(2), further
discussions on the problem of eq.(2) may also be made similarly but are omitted in this paper.

2. Typical Solving Approaches

Different approaches have been attempted on solving the ICA problems. These approaches can be classified
into two families, namely solving equations and optimizing costs.

2.1. Solving Equations: Higher-Order-Statistics vs Hebbian Learning

Higher-order-statistics based algebraic equations  Taking the higher order statistics (e.g., moments) of
x,y subject to the constraints by eq.(1) or equivalently y = Wz as well as eq.(3), algebraic equations can be
obtained with the matrix W and these higher order statistics in consideration [18, 16]. Though being nonlinear,
these equations are algebraic equations and the problems become solving the roots of these equation. Generally
speaking, those algorithms developed in the literature of numerical analysis for solving the roots of algebraic
equations can be adopted for this purpose.

The approaches of this type have the following features:

(1) Equations must be obtained from a batch of samples because statistics need to be computed collectively.
That is, this type is difficult to work adaptively per each sample comes.

(2) Intuitively, we can obtain an enough number of equations by increasing the order of statistics, such that
W can be finally solved with eq.(3) satisfied. Usually the statistics up to 4th order are considered [53]. However,
there lack theoretical guides on up to which order to be considered, since statistics of different orders usually have
certain dependence and thus the obtained joint equations may involve a complicated dependent relations that are
difficult to be described and understood explicitly.

(3) Nonlinear joint equations usually have many roots. Of course, we desire that any one of the roots corre-
sponds a W with eq.(3) satisfied. However, we are not clearly under what conditions such a situation occurs. If
we encounter a case that some roots corresponds a W with eq.(3) satisfied, while other roots are not. How can we
find an algorithm to tackle this problem ?

(4) The number of statistics to be considered increases exponentially as the order increases. As a result, we
have to consider a large set of joint nonlinear equations and thus suffer a high expense on computation, even when
the above problems solved.

Hebbian learning based stochastic equations  Inspired by the fact that implementing an anti-Hebbian
learning on the recurrent weights will remove second order correlations among the outputs of a linear recurrent
neural network, higher order dependences among the outputs are expected to be removed by two modifications.
One is implementing an anti-Hebbian learning on the recurrent weights with each linear neuron is replaced by a
sigmoid neuron (i.e., a linear neuron followed by a sigmoid scalar function). The other is implementing a nonlinear
anti-Hebbian learning on the recurrent weights of a linear recurrent neural network. The two modifications are
equivalent, which have been shown, both via many experiments and also partially via theoretical analyses that
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higher order dependences between the outputs can indeed be removed. It is this type of results that originally
motivated the early studies on ICA [29, 35].

Similarly, inspired by the fact that implementing a Hebbian learning on the forward weights will make a
linear forward net perform PCA with second order correlations among the outputs removed, studies have been also
made on removing higher order dependences among the outputs of a linear forward net via either implementing
a Hebbian learning with each linear neuron replaced by a sigmoid neuron or implementing a nonlinear Hebbian
learning on the weights of a linear forward neural network [57, 59].

Both the two types of Hebbian learning extensions are closely related. E.g., the former type on a linear
recurrent net can be equivalently turned into the latter type on a linear forward net, when the dimension of the
inputs and outputs are the same. Let W to denote the matrix of either recurrent weights or forward weights to
be learned, the processes of both types of Hebbian learning extensions can be summarized into the following
stochastic equation:

% = f(WtaxtaytaHt)aHt - ¢(yt).’1»';11, (6)
where z = [z, ... z(®]T is an input random vector and y = [yV,---,y(™]7 is an output vector. Moreover,
o(y) denotes ¢(y) = [p(y™),---, oy ™)]T and ¢(r) is a nonlinear scalar function that closely relates to the
sigmoid non-linearity after a linear neuron.

In eq.(6), the key term is H; = ¢(y;)z! that implements a nonlinear Hebbian learning, which is expected
to make W; tend to let eq.(3) satisfied. However, a dynamic stochastic equations contains only H; may not work
stably. To avoid this problem, an appropriate function f(W;, z:,y:, H;) must be designed to make the dynamic
system stabilized.

This type of approaches is usually referred as being heuristic, with the following features:

(1) Though the motivation of using nonlinear Hebbian learning to make W satisfy eq.(3) is intuitively sound,
whether the learning by eq.(6) works is not guaranteed for a given function f(W;, z;,y:, Hy), it should be tested
either experimentally or via a convergence analysis, which is usually not a quite easy task [79]. Moreover, even
when it is conducted, a convergence analysis is usually able to be made in the simple mean convergence sense:

E[f(We,zt,ys, Hi)] =0, as t — oo. @)

(2) Except some hints, there lacks a systematic way to guide selecting an appropriate f (Wi, z¢, y:, Hy). Also,
there lacks a general guideline on how to control the convergence performance.

(3) Learning equation eq.(6) is usually concise and regular. Thus, it is easy to be implemented. Especially,
the learning may be made in parallel at the level of each weight coefficient, which is favorable for hardware
implementation.

2.2. Cost Function Approaches vs Equation Based Approaches

The cost function approaches are featured by optimizing a cost (or called contrast) function. That is, to
maximize or minimize a cost function with respect to W such that an optimal point is searched at the point that
eq.(3) is satisfied. A cost function can be obtained from four typical aspects, discussed as follows.

(1) Solving a joint equations g(W) = 0 can be directly turned into a cost ||g(W)]||2 or C(g(W)) > 0 that is
minimized when g(#) = 0. One advantage of considering the problem in such a way is providing a control on
errors of a solution that can not ensure g(W) = 0 exactly.

(2) A dynamic stochastic equations by eq.(6) that converges to a stable solution actually corresponds to a
descent process of a stochastic cost function. Getting such a cost function will facilitate convergence analysis on
€q.(6) in help of the optimization theory. Though a task of finding such a cost is usually not straight forward,
we may still have some hints, as to be discussed in the next subsection. In the literature of PCA/MCA learning,
we have already known a number of cost functions by which their optimizations lead to performing PCA/MCA
[120, 121]. We may extend these costs to implement ICA simply by replacing a linear neuron with a sigmoid
neuron.

(3) The independence eq.(3) implies that no cross dependence exists among statistics of the components of
y up to any order. This motivates to build a cost that bases on higher order statistics of y = Wz (e.g., the higher
order cumulants) [77, 32, 17, 39, 78].

(4) A cost function also comes from typical statistical learning principles that can be used to estimate the prod-
uct of independent densities by eq.(3). Typical examples include maximizing likelihood (ML) [26], minimizing
mutual information (MMI) [6, 22], maximum information transfer (INFOMAX) [10], max-negentropy [34], etc.
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Though formularized from different statistical learning principles, the resulted cost functions may relate closely
and even are equivalent. E.g., in the case that W is invertible, MMI and INFOMAX are both equivalent to ML that
maximizes the following cost

L=|W|+ % X, 37 gy =wa., 8)

with ¢(y9)) being an estimate on the density of 3.

Any positive cost function }_, C(y;) with C'(y;) > 0 can be equivalently turned into a likelihood 3, In p(y:)
via the so called Gibbs distribution p(y) = Z'ezp(—C(y)) as longas Z = [ _exp(—C(y))dy < 0.

The cost L can be maximized via a gradient ascent related algorithm either on a batch of samples or adap-
tively as each sample comes. Actually, these algorithms relate closely to these nonlinear Hebbian learning based
approaches. This point can be clearly observed from the fact that

_ dlnp(y)

gw(t) = Vwng(y) = ¢lys)z{ = Hy, o) dy

; 9)
i.e., H; is exactly the nonlinear Hebbian term in eq.(6).

A more clear link can be observed in the case that a pre-whitening processing is made such Ez = 0, ExzzT =
I. In this case, the ICA mapping y = Wz is subject to the orthogonal constraint WW 7T = I. Thus, the stochastic
gradient ascent algorithm for max L(W) is given as follows

aw,

ke gw(t) = o(ye)zi , ye = Wy, s.t. WeW, = I (10)

That is, it is exactly a nonlinear Hebbian learning on the Stiefel manifold W;W,I' = I. Specifically, it can be
implemented by either of two approaches in Tab.1. E.qg., It follows from the choice (a) of the approach I that we
can get one Stiefel manifold based Hebbian learning rule as follows:

dw;
5 = ow(t) = Wagyy, ()W, (11)

which reduces to the known formula in [15] when we neglect B (i.e., simply setting B = 0) and to Eq.(4.13) in
[3] when we neglect A (i.e., simply setting A = 0), respectively.
Furthermore, a pre-whitening process can also be implemented adaptively on a general input &;, e.g., by

U,
dt

which can be implemented jointly with eq.(11).

= (I - $t$g1)Ut, Ty = Uft, (12)

2.3. Cost Functions for PCA and Nonlinear Extensions

In [120, 121], typical cost functions for PCA and nonlinear extensions are systematically discussed. Here
we make a brief summary from an ICA perspective. Without losing generality, we focus on the following three
families of cost functions:

Maximum Output’s Variation of Bounded Linear System  This family is featured by a principle that
consists of two key points. One is choosing W that maximizes the variation of the output y = Wz for a maximum
information transfer. Without any constraint, this maximization however will tend to infinite and thus become
undefined. Thus, the other key point is to avoid this by imposing that this system is bounded, i.e., ||[W|| < ¢, where
|| A]| denotes the matrix norm of A, and ¢ > 0 is a given constant. Mathematically, the family of cost functions
share the following general form:

max Vy(W), subject to |W]| < c. (13)

This V,,(W) denotes a measure that describes the variation of y. Since the 2nd order statistics usually describes a
major part of variation, several measures in the literature are based on the 2nd order statistics. They are summarized
into the following general form

Vy(W) = f(X5219i(A)), (14)
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Tab.l1 Two Approaches for maxy L(W) within Stiefelf Manifold WW7T = I

Approach 1
As shown in (Xu, 2002a), we differentiate W, W[ = I and get SW, W[ + W:dW,] = 0.
The solution §W; has a form éW; = 0.5(A — AT)Wt + B(I - WtTWt)
(A- AT)Wt is orthogonal to B(I — WtTWt) since Tr[((A — AT)Wt)TB(I - WtTWt)] =0.
Further denoting the gradient of L(W) with respect to W by gw (t) = VwL(W),

we consider its maximum projection on WtWtT =1 via
Trlgw (8)(0.5(A — ATYW)T], Trlgw (&)(B(I - WIW,))T], which are maximized by
A=gwtOWT - Wigh(t), B=gw()(I — WIW,), and then we update
gw (t) — Wegly )W, choice (a),
Wip1 = Wi + néW, with §W, = { gw () (I — WIW3), choice (b),
gw (t) — Wegle Wi + gw () (1 = WIW,), choice (c).

Approach 11

Learning is made within Stiefelf Manifold WW7T = I along its geodesic
Wi = MIW,+ NTR
with @, M;, N; obtained in help of the QR decomposition of
(gw(t) — th‘q,;, W) - WtTWt) The details are referred to (Edelman, 1998).

where )\g,j =1,---,mare the eigenvalues of the covariance matrix £, = E(yy”), and f(r), g;(r),j = 1,---,m
are monotonically increasing as a scalar r increases. E.g., two special examples are

Vy(W) = TT[E?J] = Z;n:l)‘.?;7 f(T') = 7', g](f') = 7',
Vy(W) = |Zy| = [T21 MY, f(r) =€, gj(r) =1nr (15)

Beyond the 2nd order statistics, a more accurate way to describe the variation of i should also include higher order
statistics. A general measure is the entropy [10]

Vy(W) = = [p(y) Inp(y)dy, subject to|[W] < c. (16)

that bases on the entire density p(y) and thus covers statistics of all the orders.

It can be further observed, e.g., from eq.(14), that the maximization of V,, (1) subject to ||W|| < ¢ is reached
at the boundary ||W|| = ¢. One widely considered case is WTW = I, i.e., an orthogonal matrix W . Equivalently
we can also get its unconstrained version W = (UUT)~0-5U with a nonsingular U. Subject to such systems,
maxyy V, (W), either by eq.(14) or by eq.(16) with y being Gaussian, results in a W that spans a principal subspace
that is spanned by the m eigenvectors of ¥, = E[(z — Exz)(z — Ez)”] and these eigenvectors correspond
to the m largest eigen-values of ¥,. The maximization can be implemented adaptively per sample, either by
updating W within WTW = I (e.g., by Oja subspace rule [56]) or by updating U along the gradient direction
VuVy(W)lw=wur)-osu-

More generally, we can consider

WTW = D? or W = D(UUT)7%3Y, 17)

where D = diag[dy,- - -, dy,] is a diagonal matrix. When d; # da # - -- # dyy, it can be shown, similar to the
analysis in [120] and [121], that the maximum of V,, (W) is reached only when the m row vectors of W become
the m eigenvectors of X, that correspond to the m largest eigen-values, respectively. That is, y = Wz performs
exactly the m-PCA. When D = cI, it degenerates to being equivalent to the case of WTW = I that performs a
Principal Subspace Analysis (PSA) made by the Oja subspace rule [56].

Best Reconstruction of z by # = WTWz  This family is featured by a principle that a reconstruction
& = WTy from y = Wz should be in a best fit to z. Again, the fitting is usually measured in the second order.
That is, we have

min B> (W), Ex(W) = Ellz - 2| = Elle - W'y|[* = Elle - W Wal*, y = Wz, (18)
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which has been widely studied in the field of signal and image processing. Here, an explicit constraintof WW 7T =
I is not needed. As shown in [123], miny, Eo (W) results in a W that performs PSA. In help of miny Eo(W),
the global convergence of the Oja subspace rule [56] was firstly proved mathematically in [123]. With W given via
U in eq.(17), we can further know that the minimum of Eo(W) is reached at a W that y = Wz performs exactly
the m-PCA.

Similarly, we can go beyond the 2nd order by considering a maximum likelihood fitting as follows:

N
1
LW) = -5 > np(a:[W'y,6), y = Wa. (19)
t=1

Maximum Relative Variation  This family can be regarded as an extension of the first family. Still,
the variation of the output y = Wz is maximized for a maximum information transfer. However, to avoid W
becoming unbounded, a reference output of the same system ¢ = W ¢ is considered, where & denotes a given input
with zero mean and uncorrelated elements, i.e., E¢ = 0 and E(£¢€T) = A¢ being a known diagonal matrix. Instead
of imposing constraint on W directly, we minimize the variation of the reference { = WE. In other words, we
maximize the variation that is purely contributed from z by excluding out the contribution from W via a standard
reference &. A measure for such a relative variation can be obtained by combing the variation V(W) for y and the
variation V(W) for ¢. A general form is given as follows

JW) = £(gy,(Vy(W)) — gc(Ve (W), (20)
where f(r), g,(r), g¢(r) are monotonically increasing as the scalar increases. E.g., two special examples are
JW) =V,(W) = AVe (W), with f(r) =7, gy(r) =7, gc(r) = Ar,

J(W) = “//}‘((?}[//)), with f(r) = €7, g,(r) =Inr, g;(r) = Alnr. (21)

Particularly, we simply have £, = WAWT in the case of eq.(15).

As firstly proposed in [119], there are two general directions to extend a PCA cost function to its nonlinear
cases and thus to implement a sort of ICA.

The first is simply replace the linear system y = Wx by a semi-linear system

Y= S(g), y= W.’L’,’LUith S(U) = [s(u(l))a T s(u(m))]T, (22)

where —b < s(r) < a is a sigmoid function that monotonically increases as r increases.
A typical example is the LMSER learning, which is obtained by using eq.(22) to replace y = Wz in eq.(18),
resulting in

o2 = LN |z — WTs(Way)| 1%, (23)

which was firstly studied in [123], with not only both a batch algorithm and an adaptive gradient algorithm pro-
vided, but also an experimental finding that the replacement of a linear neuron by a sigmoid neuron leads to an
automatic breaking on the symmetry of the components in the subspace. Three years later, the LMSER learning
and the adaptive algorithm given in [123] have been directly adopted to implement ICA with promising results
under the name of nonlinear PCA [38]. Moreover, the relations of this LMSER learning to several other ICA
approaches have been further explored by [38].

Similarly, corresponding to eq.(15) we have ¥, = E[s(Wz)s™ (W z)] which considers higher order statistics
indirectly via s(.) for implementing ICA. Also, the constraints on & can be removed since s(.) is already bounded.

The second general direction is to replace the second order error by other error measures. E.g., both in Eo (W)
and V(W) = Tr[X,] = E||y||?, the Ly norm ||u||* can be replaced either by a general L,,,0 < p < oo horm or
by a robust piecewise error measure as discussed in [121]. Alternatively, we can also consider the entire density as
in eq.(16) and eq.(19).

Various extensions can also be obtained by combining the above two directions in different ways.

2.4. From PCA vs MCA to P-ICA vs M-ICA

In the literature, ICA is regarded as the extension of PCA [22]. Strictly speaking, this is inexact. ICA is the
extension of a whitening process such as the above eq.(12) or called de-correlated component analyses (DCA).
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De-correlated components require independence among the components of y = Wz only in the second order of
statistics, which is a special case of independent components that require independence among components y =
Wz in all the orders of statistics. PCA is one extreme case of DCA that chooses those de-correlated components
with the first k largest variances [7, 55, 56, 123]. In contrast, we have the so called Minor component analysis
(MCA) [124, 122, 58] that chooses those de-correlated components with the first k smallest variances. That is,
MCA is another extreme case of DCA. Actually, there are a lots of combinations for various types of DCA.

PCA has a wide application in pattern recognition, signal processing, neural networks and various data anal-
yses. PCA can be implemented adaptively per sample via a constrained Hebbian learning [55, 56, 123]. The
components resulted from MCA spans a complement subspace that is orthogonal to the subspace spanned by the
components resulted from PCA. In the area of signal processing, it has also been used for spectrum estimation
under the name of SVD (singular value decomposition). It got the current name in [124] as being used together
with PCA for representing pattern class in a so called dual pattern recognition approach. It has been further studied
in [122] via an anti-Hebbian learning for adaptive implementation with application for the total least square fitting
and extension to higher order Hebbian learning. Hereafter, MCA has been widely studied in the literature of neural
networks.

PCA and MCA are a pair of dual representations. The adapting direction is either Hebbian zy™ for PCA
or anti-Hebbian —zy T, subject to WWT = I. Though it looks only a sign difference in the learning direction.
An appropriate implementation, that ensures W eventually satisfying WW 7 = I and the whole learning process
converged, is different for PCA and MCA. Thus, in the level of updating rules, several existing rules for PCA can
not be turned into ones for MCA simply via changing the sign of adapting direction. Recently, efforts have been
made on searching such a rule that can implement PCA and MCA by simply changing the sign of learning [19].

We would like to argue that this apparent difficulty is actually not difficult to solve. E.g., miny Eo(W) in
eq.(18) results in a principal subspace with WW T = I satisfied automatically. In contrast, we can not get a minor
subspace directly by maxy E2(W) since Eo will tend to infinity. However, the apparent difficulty comes from a
simplification that discards a type of constraints by eq.(17). Restoring this constraint, maxy E+ (W) will become
bounded and W does stably reach a solution that spans the minor subspace. Similarly, it follows from eq.(13) that
minyy, |w<c Vy(W) will lead to the minor subspace. In other words, the dual representation does apply under
the constraint by eq.(17), though this constraint may sometimes be ignored for PCA but not ignorable for MCA.

Without losing generality, we take the following general form as an example:

min J(W),W = D(OUUT)=%5U (24)

that leads to PCA via a unconstrained minimization. In this case, WW ™ = D? is always satisfied for any matrix U/
and the learning process on W will be stabilized though the learning process on D remains not converged. Given
the gradient Gw = Vw J(W), it further follows from dJ(W) = Gy dW and dW = GC’V;,d(D(UUT)—MU) that
we get the gradient direction

VuJ(W) = 0UN 3 [(0UT)SDGw — 0.5(UGY D + DGw U (UUT) =03, (25)
Then we have the updating

—VuJ(W), forPCA,
VuJ(W),  for MCA;

That is, there is only a difference in a sign for PCA versus MCA. Though U™¢* may not stabilize, we can terminate
the learning process once W becomes stabilized or J(W') becomes maximized or minimized.

Furthermore, extending the de-correlation among the components of y to the independence among compo-
nents y in all the orders of statistics, we correspondingly have

() For PCA to principal ICA (P-ICA) that chooses those independent components with the first k largest
variances. For an example, the LMSER learning by eq.(23) actually implements a P-ICA.

(b) For MCA to minor ICA (M-ICA) that chooses those independent components with the first k smallest
variances. For an example, when WW7 = I and ¢(y) = G(y|0, I), it follows from eq.(9) that gw (t) = —y:z] .
That is, it is an anti-Hebbian learning for MCA. Thus, eq.(8) actually implements a M-ICA.

Urew =y 4y { 7 is a learning stepsize. (26)

3. BYY Independence L earning

3.1. Bayesian Ying-Yang System

Another type of cost function comes from the so called BYY independence learning, a special case of
Bayesian Ying-Yang (BYY) harmony learning that was firstly proposed in [119] and then developed in past several
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Figure 1. Bayesian Ying-Yang System

years.

As shown in Fig.1, we consider the joint distribution of an observation z and its inner representation in a
learning system y from two complement aspects. On one hand, each z is interpreted as generated via a backward
path ¢(z|y) from an inner distribution g(y) in a structure subject to certain learning tasks, i.e.,

q(z) = [q(z]y)q(y)dy. (27)

On the other hand, each z is interpreted as being mapped into an inner representation y via a forward path
p(ylz)

p(y) = [p(y|2)p(z)dz (28)

to match the target density ¢(y). The two aspects reflect the two types of Bayesian decomposition of the joint
density ¢(z|y)q(y) = ¢(z,y) = p(z,y) = p(z)p(y|z). Without any constraint, the two should be theoretically
identical. However, the two types of Bayesian decomposition may not necessarily equal in a practical consid-
eration and we denote them by two different notations p,q. The differences may come from different biologi-
cal/physical/structural constraints on the four components p(y|z), p(z), ¢(z|y), and ¢(y). Thus, we usually have
two different but complementary Bayesian representations:

p(z,y) = pylx)p(®), q¢(z,y) = q(z|y)a(y), (29)

which compliments to the famous Chinese ancient Ying-Yang philosophy with p(x,y) called Yang machine that
consists of the observation space (or called Yang space) by p(z) and the forward pathway (or called Yang pathway)
by p(y|z), and with g(z,y) called Ying machine that consists of the invisible domain (or Ying space) by ¢(y) and
the Ying (or backward) pathway by g(z|y). Such a pair of Ying-Yang models is called Bayesian Ying-Yang (BYY)
system.

Usually, p(z) is given by a Parzen window estimate:

Ph.(z) = & SN | G(z|ae, h2D), (30)

where G(z|m, ¥) denotes a Gaussian density with mean vector m and covariance matrix . Particularly, when
hy = 0 it becomes the empirical density:

po(x) = & S°N  8(x — 1), where §(x) is a d-function. (31)

The task of learning on a BY'Y system consists of specifying the rest three components of the system.

As shown in Fig.2, the architecture of a BY'Y system is featured by a combination of specific structures
of p(y|z), g(z|y). Depending on which one or both of p(y|z), ¢(z|y) are parametric, there are three typical ar-
chitectures, namely, Backward architecture, Forward architecture, and Bl-directional architecture, or shortly B-
architecture, F-architecture, and Bl-architecture, respectively. Each of three can implement a learning task of the
same nature, but from a different perspective and with a different performance.
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Figure 2. Three Typical Architectures

The structure of ¢(y) describes the nature of the inner representation of z, and thus features the nature of
learning tasks that a specific BY'Y system performs. Considering ¢(y) given by eq.(3) as shown in Fig.2, we get
an independence BY'Y system that performs learning tasks of ICA and various extensions. Moreover, considering
g(y) given by other structures, we will lead other typical learning tasks [94, 92, 93, 89, 90, 87].

Given a specific BYY architecture with g(y) in a specific structure, we have two further tasks. One is pa-
rameter learning for determining the value of € that consists of all the unknown parameters in p(y|z), ¢(z|y), a(y)
as well as h;, (if any). The other is selecting the dimension m of the vector y = [y, ---,y(™]T. We call the
second task as model selection since a collection of specific BY'Y systems with different values of m corresponds
to a family of specific models that share a same system configuration but in different scales.

3.2. BYY Harmony Learning

The basic learning principle is to make the Ying machine and Yang machine be best harmony in a twofold
sense: Mathematically, this principle can be implemented by [119, 92, 93, 89].

max H(#,m), H(#, m) = H(p||q), with p, g being the Ying-Yang pair by eq.(29), (32)

6,m
where H (p||g) is a harmony measure as follows:
H(pllg) = [p(u) Ingq(u)du — In z,. (33)
This measure comes from the following cross entropy
H(pllg) = ©Lipelng, (34)

where both p(u), ¢(u) are discrete densities in the form

— N _ N — — hméu—)O 5L7 U= 0,
) = S b=, Tpe =1, 80) = { proe-o s 40 (@)

where du is the infinitesimal volume at w. It can be observed that maximizing H (p||q) by eq.(34) has the following
two interesting natures:
¢ Matching nature with p fixed, max, H (p||g) pushes ¢ towards

q: = p;, forall ¢ (36)
e Least complexity nature max, H (p||q) with ¢ fixed pushes p towards its simplest form

L, i=y,

0, otherwise. (37)

p(u) = 8(u — ur),0r pr = &y, with 7 = argmax g, & ; = {

10
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As discussed in [92, 89], eq.(37) is a kind of the least complexity form from a statistical perspective. In other
words, the maximization of the functional H (p||¢) indeed implements the above harmony learning (shortly HL)
principle mathematically.

Given a set {u:}¥; of samples, either a discrete or continuous density p(u), g(u) can be represented in the
form of eq.(35) via the following normalization:

P = D(us)/2p, 2p = Sope 10(us), @ = q(us)/2qs 24 = Doy q(ug). (38)

Considering an infinitesimal volume éu, we approximately have z,0u = Zfilp(ut)du ~ [p(u)du =1when N
is large enough. Thus Zf;l (p(ug)/2p) Inglug) = Zfilp(ut)du Ing(ut) = [ p(u)lng(u)du. It further follows
from eq.(34) that we are lead to eq.(33). Clearly, it returns to eq.(34) when p(u) and g(u) are discrete.

In a simplest special case that We know p(u) in eq.(35) with p, = 1/N, the least complexity nature by eq.(37)
becomes no use. Moreover, as discussed in [92, 93, 89], the matching nature by eq.(36) becomes equivalent to
implementing the maximum likelihood (ML) learning principle on a parametric model g(u) if the role of —In z,
is ignored by simply setting z, = 1. In general cases, however, the HL learning differs from the ML learning with
two extra features.

First, the term —In 2, takes a role that regularizes learning on a finite size of samples. As will be further
discussed in Sec.3.3, this type of regularization is shortly called z-regularization which further consists of two
regularization techniques, namely data-smoothing and normalization.

Second, with p, ¢ being the Ying-Yang pair by eq.(29) where only p(z) is known directly from a given set
of samples by eq.(30), the least complexity nature by eq.(37) does bring in another big different role that makes
model selection on m become possible. A detailed discussion can be found in [89]. In implementation, the model
selection on m can be made either during parameter learning on @ or after parameter learning in a conventional
two stage style. Specifically, we have the following two implementation strategies for eq.(32).

Parallel Implementation  As discussed in [92, 93, 89], letting the variance of ¢(y) to be zero is equiva-
lent to removing the j-th dimension (i.e., reducing the dimension m by one), while the least complexity nature by
eq.(37) does push ¢(y9)) towards a é-density for any extra dimension. Thus, we can set m large enough and then
implement:

max H(0), H(®)=H(6,m), (39)

which makes 8 take a specific value such that m is effectively reduced to an appropriate one, i.e., model selection
is made automatically in parallel to parameter learning. As demonstrated in Fig.3(b), the learning by eq.(39) will
push a set of extra parameters #; = 63 such that a large m becomes effectively m*, that is, a smallest value of m
at which the maximum of H (8) is reached.

This feature is not shared by the existing approaches in literature. By the conventional approaches, parameter
learning and model selection are made in a two-phase style. First, parameter learning is made usually under the
maximum likelihood principle. Then, model selection is made by a different criterion, e.g., AIC, BIC, and MDL,
etc [1, 13, 67, 68]. These model selection criteria are usually not good for parameter learning, while the maximum
likelihood criterion is not good for model selection, especially on a small size of training samples.

Two Stage Implementation  If we want, the problem eg.(32) can also be implemented in two stages as
follows:

Stage I  enumerate m from a small value incrementally, and at each value we perform parameter learning
eg.(39) to get the best parameter value 8*. A direct implementation of eq.(39) will lead to the above discussed case
of Fig.3(b) again, which can be avoided by simply assuming that ¢(y) comes from a family with equal variances
among components. That is, the covariance matrix is bol. E.g., b = 1 for a real y'¥) and by = 0.25 for a binary
v [89].

Stage Il select a best m* by

i J(m), J = —H(6*,m). 40

p o J(m), J(m) = —H(8",m) (40)

where m® is an upper bound. As demonstrated in Fig.3(a), the learning by eq.(32) should be made at every m as

it is enumerated from in a possible range of m. With ¢(y) constrained to a fixed covariance matrix by, J(m) will
takes a shape as shown in Fig.3(a). The maximum of H(8) will be reached at one value m* as m increases.

To get an insight, we consider the classic factor analysis by eq.(4) and eq.(5) with £ = ¢*I with z, = 1. In
this case, we have [89]:

J(m) = 0.5[dIn |o?| + m(ln 27 + 1)]. (41)

11
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Tab.2 Typical Techniques for Implementing Learning

(A) Find y; = argmax, [G (24| Ay + 1, ) T} ¢(yV))]

running step (a) & step (b) iteratively, (i) for NFA,
Yt is obtained by
running step (a) & step (b) only once, (ii) all the other cases.

1, (a) for FA with ¢(¥) = G(¥))0,1)
and TFA-T with ¢(y) = G(yD by}, 1),
t A= . .
Step (a): A] 22, (b) for Orthogonal FA & TFA-II with ¢(y) = G(y?|0, A,
.82, (o) for NFA with ¢(y)) = 3, ;G (y D) |mji, A%).
2.7 . .
0, (a) for FA with ¢(y¥)) = G(»D|0,1)
and for Orthogonal FA & TTFA-II with ¢(y\)) = G(y\)]0, A?),
fi= by, (b) for TFA-T with ¢(y) = G(yD|b;y), 1),
¥, B (c) for NFA with ¢(y9)) = 3, 8;:G(y9)|myi, A%);
n
8, Gy O N2
where we get p;r = 5 ﬁ,ig(y(a) °1d|fn,,i,’i§)i> for NFA.
Step (b): v = (ATS YA 4+ diag[A}, -+, A2 ] D" HATS Yoy — ) + [frs o5 ] T)-

(B) Updating Constrained Parameters

(a) One-Direction Updating with 7; > 0
Update 3% = (1 — 9)Z°4  on; (h21 + esel ) for increasing 7; In G(e:|0, ) subject to = > 0.

Update ¢ = (1 — n)q;?ld + 77077tyt(j) for increasing 7: In [q;,(a) (1- qj)l_ym] subject 0 < ¢; < 1.
oS0 nev,5

new __
Update o7 = Trome

for increasing #; Zle 7¢,In B; subject 0 < a5 < 1, Zle a; = 1.
(b) Two-Direction Updating with 7; being negative or positive
Update §™% = S | ponp G489 Gy = T~V (h2T 4 ee] )21 — X1
for increasing 7; In G(e4|0,3) such that T = §7*wgnew T remains to be positive definite.
Update ¢} = (1— n)es? + noms(yi”) — eg')
for increasing 7 In [qgm (1- qj)l_ym] such that ¢; = 1/(1+ ¢ always satisfies 0 < ¢; < 1.
Update a7 = a5' + nom (71 — aj i 71,r)

for increasing 7 Zle v¢,; 1n a; such that o; = e“J/Zle e satisfles 0 < o; < 1, Z?:l a; = 1.

(C) An Approximation of [ p(u)T(u)du (Xu, 1999a; Xu, 2000a)

32T (u)
AuduT

T(u) = T(a) + Vo T (@) (u —a) + 0.5(u— w)TH (%) (v — %), w= [ up(v)du, H(u)=
[p(w)T(w)du = T(&) + 0.5T7r[Z; H(w)] with &, = [(u — @) (v — @) Tp(u)du.

6 =16, ,492}, 6, under constraint 6= 491,492}, 6, =6,

~H(0,m) ~H(@,m)
E.g., set the variance of

q(y(i’ to beOisequivalent
toreducem to m-1

I
m m
— oo

() (b)

*

Sv

* U

m m

L. Xu

Figure 3. (a) Model selection made after parameter learning on every m in a given interval [mg, my], (b)
Automatic model selection with parameter learning on a value m of large enough.
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Given a finite set of samples, o decreases with m and the 1st term of J(m) decreases with m, while the second
term trades off this decreasing such that J(m) first decreases with m and reaches a minimum, and then increases.
Moreover, as m further increases, o2 will finally become zero which brings .J (m) drops rapidly towards —oo. That
is, J(m) generally has an inverse N shape as shown in Fig.3(a). We use m* to denote the smallest value of m
that makes J(m) rapidly tend to —oo. The best dimension m* is selected by eq.(40) within 1 < m < m*, when
the model by eq.(4) is generally considered with noise (i.e., 2 # 0). Particularly, the best dimension should be
selected at m® in a case of eq.(4) without noise (i.e., a2 = 0).
Alternatively, we can make parameter learning in Stage | with eq.(39) replaced by

p(y|z)p(z)
q(z|y)q(y)

which has been systematically investigated in the early study of the BY'Y learning [119], which is shortly called
KL learning hereafter.
Particularly, on a B-architecture, the minimization of the above K L(6) with respect to a free p(y|z) results in
plule) = LX) 00y — fofaly)atw)dy, KLE) = o) 10 B s, 3)
q(z) q(z)
which becomes equivalent to ML learning on ¢(z) when p(x) = po(z) is given by eq.(31) [113, 119]. In this case,
we actually implement the ML learning in the first phase and then model selection by eq.(40) in the second phase.
Without the least complexity nature by eq.(37), the implementation of eq.(42) will not lead to a case of
Fig.3(b), and thus there is no need to impose the assumption that g(y) comes from a family with equal variances
among components.

min KL(6) = [p(y|z)p(z) In dzdy, (42)

3.3. Regularization vs Model Selection: (I) ML, HL, and z-Regularization

Regularization and model selection are two different strategies for tackling the problem of a finite size of
samples. Model selection prefers a model of least complexity for which a compact inner representation y is aimed
at such that extra representation space can be released. In contrast, regularization is imposed on a model with a
fixed scale of representation space (e.g., the dimension of y) that is larger than needed such that inner representation
can spread as uniformly as possible over all the representation space with a distribution that is as simple as possible,
which thus becomes equivalent to a model with a reduced complexity.

The harmony learning by eq.(39) attempts to compress the representation space via the least complexity by
eq.(37). On a B-architecture, it is demonstrated during the maximization of H (8) with respect to a free p(y|z). It
results in

p(ylz) = é(y — y(z)), y(z) = arg mg»X[q(ﬂcly)q(y)], (44)

which concentrates to the peak point of p(y|z), that is, we get a winner-take-all (WTA) competition variant of
eq.(43). As discussed in [94, 92, 93, 89, 90, 87], it is this least complexity nature that makes the BY'Y learning by
eg.(32) aim at a compact inner representation with an automatic model selection by discarding extra representation
space during parameter learning. However, there is no free lunch. The WTA operation by eq.(44) locally per
sample will make the learning become sensitive to the initialization of parameters and the way that samples are
presented, resulting in that samples are over-aggregated in a small representation space. It usually leads to a local
maximum solution for eq.(39). Pre-specifying a uniform inner representation (e.g., imposing that g(y) has a unity
covariance matrix I) can regularizes the WTA operation. However, the feature of automatic model selection is also
lost since the representation space scale is already fixed. Thus, model selection should be made by eq.(40) in the
second phase.

With a soft competition by eq.(43) to replace the WTA competition by eq.(44), the ML learning or equivalently
the KL learning by eq.(42) with a B-architecture and p(z) = po(x) by eq.(31) is regularized with a more spread
inner representation that improves the local maximum problem. Again, there is no free lunch. The model selection
ability becomes considerably weaken, especially on a small size of samples. Thus, a model selection by eq.(40) is
needed in the second phase too.

Instead of the two phase style, regularization to the WTA by eq.(44) may also be imposed to the harmony
learning by eq.(39) such that automatic model selection still occurs via either some external help or certain internal
mechanism.

Externally, we can combine the KL learning by eq.(42) with the harmony learning by eq.(39), in the following
three ways:

13
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e The simplest way is to make the KL learning by eq.(42) with the resulted parameters as the initialization of
the harmony learning by eq.(39).

e The other way suggested in [93] is to let H(#) in eq.(39) replaced with (1 — A\)H (#) — AK L(#) with an
appropriate .

e Moreover, with A > 0 gradually reducing towards zero from a given value such that the regularization role
by eq.(42) takes effect at the beginning and then gradually decades as learning goes. That is, we combine
KL and HL in a simulated annealing way such that KL is implemented in an early period of learning and is
gradually switched to HL as learning goes [93, 88]. The disadvantage is that the computing cost is very high
since parameter learning has to be repeatedly conducted.

Internally, regularization to the WTA by eq.(44) may also be imposed during the harmony learning by eq.(39)
via either a Bl-architecture or the role of z,.

Instead of letting p(y|z) free to be decided by eq.(44), we consider a Bl-architecture with p(y|z) designed in a
structure such that it is not able to become the WTA by eq.(44). Specifically, p(y|z) can be a structure that is either
bundled with the Ying machine g(z|y)q(y) (e.g., via the posteriori estimation by eq.(43) [93, 46]) or decoupled
from the Ying machine to facilitate computation. For the latter case, as suggested in [99, 96, 94], when y is a
binary vector we have

p(ylz) = H 1= m@) Y, w(2) = (@), (@) = s(Wa + ), (45)

where s(y) is same as in eq.(22). When y is a real vector, we may have

n

p(ylz) = Zﬂ; G(ylf;(xl6;), Z ) =1, B(z) > (46)

In the case of eq.(46), the harmony learning by eq.(39) will push it towards the following form of least
complexity [94, 92, 89]

n

plyle) = Z 5y — fi(z,6;)) Z )=1, Bj(x) =0or1, (47)

unless extra constraints are imposed to prevent ¥; — €I and e? — 0.
Moreover, eq.(44) is simplified into

p(ylz) = 6(y — y(@)), y(&) = fi=(o)(@|0j+(z)), 3" () = arg m?X[q(xly)q(y)]Ffj (z16;) (48)

where the maximum is searched by simply enumerating n possibilities. Thus, regularization can also be observed
from the perspective that the number of local maximums considerably reduces in comparison with eq.(44). How-
ever, there is no free lunch too. The problem is transferred to the difficulty of per-specifying the function form of
each y = f;(|6;). If it is too simple, the representation ability of p(y|z) is limited and is far from the optimal
one. If it is too complicated with too much free parameters, it creates certain problems that needs regularization to
be imposed too.

Regularization to the WTA by eq.(44) may also be internally imposed by the z-regularization. This type of
regularization can be implemented by either data smoothing or normalization via 2.

For data smoothing regularization, one simple way is considering smoothing on z via p(z) = ps,(z) by
eq.(30) with 2z, = Zfilphm (z¢). As discussed in [89, 93], the regularization is made via h2 > 0 while h
is determined in help of —Inz,. Moreover, a smoothing can be imposed on y via replacing p(y|z) = d(y —
y(z)) in eq.(44). E.g., in the case of only one object (i.e., k = 1), we let p(y|z) = G(ylys,hoI) and 2z, =
(2mhy ) =055 D ().

For normalization regularization, we have also different choices for implementing z,. Strictly speaking, we
should consider

f =N g, ale) = / a(@elv)a(y)dy. (49)
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This ¢g(z¢) can be accurately computed when y takes either a discrete value 1,---, % or is a binary vector y =
[y, ---,4™]. In this case, the integral over y becomes a summation. The integral can also be analytically
solved when ¢(z|y) and g(y) are both Gaussian. In other cases, this integral is difficult to compute. Even when
it becomes a computable summation for a binary vector y = [y, ---,4{™)], the computing cost will increase
exponentially with m.

One solution is to let the integral over the entire domain of i to be approximated by a summation on a set Y;
that consists of a few number of samples y.- as follows:

1, (a),
a(zt) =md2, cv,a(zlyr)aly-), v = { m (b). (50)

Specifically, ¢ in the choice (b) makes q(y-)/>_, cvy,q(y-) represent discrete probabilities that weight g(z|y.)
such that g(z;) is closer to a marginal density, while the ~; in the choice (a) provides a crude simplification that
we no longer have [ g(z)dz = 1.

As will be further discussed later on the Yang step in Sec.3.5, the set Y; can be obtained according to p(y|z).
One way is randomly picking a set of samples of y according to p(y|z). The other two ways are getting only one
yt = y(=z;) for each z; via either the peak point (e.g., by eq.(44)) or the mean point (e.g., y(z) by eq.(48)) of
p(y|z). In these cases, there is only one sample y; in Y; and thus

_ [ a(@ely)a(ye),  choice (a), o1
“ {Zfilq(xtlyt), choice (b). (51)

Further with p(z) = ps_ (z) given by eq.(30), H(p||¢) by eq.(33) either on a B-architecture with eq.(44) or on a
Bl-architecture with eq.(48)) can be unified into the following representation

1
H(pllg) = NZfilﬁ(y —y(=+)) In[a(zely)a(y)ldy — Inzq + 0.5k, my,
1 02 In q(z|ys)
g = NZf;T’"[WxTh]w:m (52)
where V.H (p||q) denotes the gradient of H with respect to 8, which takes the following form

VeH®llg) = & Si, [1:(v) Ve In[q(x:]y)a(y)]dy + 0.5k, >V,
3y — y(=¢)), forz, =1,

() = 4 0 —y(@e)) = 8(ha) X, oy, LW 5y —y.), for z, given by eq.(49),
8y —y(@s) = 8(ha) X, ey, o LWLy — g, For 2, given by eq.(50),

sy |1, forh=0,
o(h) = { 0, forh#0. ®3)

For the case h; > 0, we have n;(y) = 6(y — y(=)) for all the cases since §(h;) = 0. The data smoothing regu-
larization is imposed via 0.5hw2V97rq and an appropriate regularization strength h2 is determined via maximizing

N
J(hs) = —Inzy + 0.5k, mg, with 2 = » _ p, (o). (54)
t=1

The details are referred to [92, 93, 89, 87].

For h, = 0, we have 0.5hw2V97Tq = 0 and 5(hw) = 1. In this case, the normalization regularization
is imposed via — In z4, which can be observed via the difference of n.(y) in eq.(53). It introduces a degree of
conscience de-learning on each updating direction Vy In [¢(z:|y)q(y)] to avoid over-fitting on each sample pair
z¢,y-. With and without —In z, in its role, V4H (p||q) takes the same format and also adaptive updating can be
made in the form of 5 (y) Vg In [g(z+|y)q(y)] per sample z;.

3.4. Regularization vs model selection: (I1) KL-A- HL Spectrum

The KL learning by eg.(42) on a BY'Y system is not limited to just the ML learning only. Even on a B-
architecture with p(y|z) determined by eq.(43) but p(z) = pn(z) by eq.(30), the KL learning by eq.(42) still
performs a regularized ML learning.
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Moreover, the KL learning by eq.(42) on a Bl-architecture was suggested in [119] with p(y|z) in a given
parametric family Pysw. If the posteriori estimation by eq.(43) is contained in this family Pysw, the situation will be
equivalent to the KL learning by eq.(42) with a B-architecture; if not, the posteriori estimation by eq.(43) will be
approximated by the closest one within the family Pys|w- This architecture leads to an advantage that the computing
difficulty on the integral in p(y|z) by eq.(43) is avoided by an easy implementing parametric model. In its sprit,
this is equivalent to those approaches called variational approximation to the ML learning on ¢(z) [73].

Beyond the approximation purpose, studies on the KL learning by eq.(42) on a Bl-architecture were also
made along two directions since [119]. One is to design a parametric model that makes the inner representation
more spreading than that of p(y|z) by eq.(43) such that ML learning is further regularized. The other is to design
a parametric model that makes the inner representation more concentrated such that it tends to facilitate automatic
model selection. One family of of such designs is as follows:

baely), qw)
PUIZ) = T aaly), aw))dy’

which returns to p(y|z) by eq.(43) for the ML learning when % (€, ) = &n. It makes the inner representation either
more spreading for a regularized ML learning (e.g., when ©¥(£,7) = A1 1Iné& + Ao lnn, Ay > 0, A2 > 0), or more
concentrated to facilitate model selection (e.g., when 4(€, 1) = e*1é +e*27 A > 0, A2 > 0 that will make p(y|z)
tend to eq.(44) as A; = Ay — 00). A simply form can even be v (£,1) = (én)* which varies from spreading cases
to concentrated cases as A increases from 0 to oc.

As discussed in the previous subsection, the harmony learning with the WTA by eq.(44) on a B-architecture
will also be regularized by a Bl-architecture with p(y|z) in a more spreading representation. Except those extreme
cases that become equivalent to the WTA by eq.(44) (e.g., when (&, n) = (én)* with A — 00), p(y|z) by eq.(55)
generally leads to a regularized harmony learning. Even when (€, ) = &5, we will not be lead to the ML learning
but to a harmony learning regularized from a B-architecture with a free p(y|x) replaced by a posteriori estimation
by eq.(43).

From the above discussion, we observe that the KL learning by eq.(42) and the harmony learning by eq.(39)
become closely related via appropriately designing p(y|z). The difference lays in the following term E,:

E, = — [p(y|z)p(z) In [p(y|2)p(z)]dzdy + In 2,. (56)

When p(y|z) = d(y — y(z)) is deterministic and p(z) = po(z) given by eq.(31), we have E, = 0. That is,
the KL learning by eq.(42) and the harmony learning by eq.(39) becomes equivalent on this special Bl-directional
architecture. Moreover, the harmony learning by eq.(39) on a B-architecture results in p(y|x) by eq.(44). With
this particular p(y|x), the harmony learning by eq.(39) and the KL learning by eq.(42) become equivalent.

Furthermore, the KL learning by eq.(42) and the harmony learning by eq.(39) are also related for those p(y|z)
such that E, = ¢ # 0 becomes a constant irrelevant to any unknown parameters in 6, e.g., with p(z) = po(z)
given by eq.(31) we have

(55)

E, =0.5mIn(2rh.) —In N, for p(ylz) = G(yly(z), h.1). (57)

Thus, the KL learning by eq.(42) and the harmony learning by eq.(39) are no longer equivalent when h,, m are
unknown to be determined. In the special case that h,, m are prefixed in advance, the KL learning by eq.(42)
further becomes equivalent to

8, s.tI.nEa:ic;éO H(Q) (58)

The above discussions also apply to BY'Y systems with a F-architecture, with a free p(z|y) decided by

p(zly) = p(ylz)p(x)/p(y), p(y) = [p(y|z)p(z)dz, (59)
such that we have
n _y> __ _

with E, given in eq.(56). When ¢(y) is a uniform distribution, minimizing this K L(#) becomes equivalent to
maximizing the entropy by eq.(16), which maximizes the information transfer from input data to its inner rep-
resentation via the forward path. Generally, — K L(#) describes the incremental of information contained in the
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representation of y after this information transfer. Thus, minimizing this K L(8) is equivalent to making this in-
cremental maximized via maximizing this information transfer against upon the information already in the inner
representation. Particularly, when p(y|z) = é(y — Wz), ¢(y) by q.(3), and p(z) = po(z) by eq.(31), both the KL
learning by eq.(42) and the harmony learning by eq.(39) become equivalent to the minimum mutual information
approach for ICA that was previously discussed after eg.(3). All these cases are featured by maximum information
transfer and thus shortly called as the Max-Inform approach.

Generally, the KL learning by eq.(42) and the harmony learning by eq.(39) are different for those p(y|x) that
do not satisfy E, = c. This difference can also be observed from the learning results in those cases that the KL
learning by eq.(42) results in only p(x,y) = ¢(x,y), which has not the least complexity nature, while the harmony
learning by eq.(39) results in not only p(x,y) = ¢(x,y) but also a minimized entropy

—/q(x, v) In g(x,y)dxdy or equivalently —/p(x, v) ln p(x,y)dxdy, (61)

which makes model towards a least complexity.

In a summary, the family of KL learning by eq.(42) and the family of harmony learning by eq.(39) do share
an intersection that consists of interesting models. However, two families are different with each containing useful
models outside this intersection. The union of the two families consists of a spectrum of learning models, ranging
from regularized ML or Max-Inform versions to the original ML or Max-Inform versions, and then reaching
regularized versions of harmony learning and finally to the harmony learning. In addition, as discussed previously
in Sec.3.3, certain regularized versions of ML or Max-Inform and the harmony learning are also obtainable by the
role of 2, and z4 via either data smoothing or normalization [88, 93, 94, 102].

This spectrum can be extended via a convex combination A\K L(8) + (1 — A)H (6), 0 < A < 1. Its minimiza-
tion is equivalent to the KL learning when A = 1 and then tends to the harmony learning as A decreases from 1 to
0. As X varies from 0 to 1, the harmony learning is regularized towards to the KL learning.

The combination may go beyond the above spectrum, which can be observed by considering a B-architecture
with p(y|z) free. It follows from H(6) = —K L(6) — E, that

1

AKL(6) - (1 = NH(6) = AIKL(®) - ( — DH(6)] = NB, + %H(Q)]. (62)

Ignoring the regularization role of 2z, and z4 by setting z, = 1,24 = 1, we can further get

By + SH(6) = [pylo)p(z)n ZYDPE) g,

A i) la(z|y)a(y)] %( )
_ ply|z oz
pQ(ylz) = [a(z|y)e(v)]> /4(=), 4(z) = [le(=|y)q(y)]>dy. (63)

which was firstly proposed in [108]. Its minimization with respect to a free p(y|z) will lead to

_ _ [a(=ly)a@)]> 1 p(z)
pylz) = polylz) = W’ E, + XH(G) = [p(z)In i@ dz, (64)

where p(y|z) here is a special case of eq.(55) with ¥(&,n) = (fn)% that makes the inner representation more
concentrated than p(y|z) by eq.(43). Minimizing [p(z)In %dx is different from both the KL learning by eq.(42)
with p(y|z) = pg(y|z) and from the ML learning on §(z) since [ §(z)dz # 1.

The spectrum can be further extended by considering a linear combination AKL(6) — (1 — X\)H (6) with
A > 1, which is no longer a convex combination since 1 — A < 0. However, it is still meaningful by observing
E, + $H(8#), and eq.(64) still applies. The difference is that 1/A < 1 makes the inner representation more
spreading than that of the ML learning, with the regularization strength increasing as A increases. However, as A
becomes too large, a too strong regularization will make the system finally loose the ability of adapting input data.

3.5. Ying-Yang Alternative Procedure for Parameter Learning

As discussed in (Xu, 1995), learning on the Yang machine p(x,y) and the Ying machine g(z,y) can be
implemented alternatively by

Ying-step: fixing p(z, y), update unknowns in g(z,y),
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Yang-step: fixing ¢(x, y), update unknowns in p(z, v), (65)

such that —H (8) by eq.(39) or K'L(f) by eq.(42) decreases gradually until becomes converged. The details are
discussed as follows.

Ying-step  With p(y|z) fixed and the regularization term z, ignored, both eq.(39) and eq.(42) share a same
updating format as follows:

max L(0)y), max L(6y), L(bs)y) = Sp(yl2)p(z) Ing(z|y)dedy, L(8,) = [p(yle)p(z)Inq(y)dzdy, (66)

z|y

where 8,8, consist of unknown parameters in g(z|y), ¢(y), respectively. We make the updates 66, 66, such
that L(8y + d6,), L(0,), + 66,,) either reach a local maximum or increase for certain extent. Typically, an
updating 66 that increases an index J(8) is a stepsize along a gradient based direction gg = Vo J(8), i.e.,

60 = nT gy, (67)

where i > 0 is a small positive number that defines a stepsize. This 66 is along either the gradient direction when
T = I is a unit matrix or a direction that has a positive projection on the gradient direction when 7" is a positive
definite matrix. Particularly, 66 is the well known natural gradient direction when 7" is the inverse of the metric
tensor of J(8).
When p(z) is given by eq.(31), the integral over z in both eq.(32) and eq.(42) will disappear. When p(x) is
given by eq.(30), this integral over z can also be removed in help of the approximation by Tab.2(C) [92, 89].
Similar to the previous cases around eq.(50), the integrals over y is either analytically solved when g(z|y) and

g(y) are both Gaussian or becomes a computable summation when y takes one of discrete values 1,---, k or is a
binary vectory = [y(1), ..., 4(™)]. Otherwise, these integrals are difficult to compute. Still, even when it becomes
a computable summation for a binary vector y = [y, - - -,y(™)], the computing cost will increase exponentially
with m.

The problem is tackled via letting the integral over the entire domain of y to be approximated by a summation
on a set Y; of a finite number of samples of y, which are obtained according to p(y|z) in the Yang step. One typical
case is that Y; consists of only one sample y; = y(z:). In this case, we can further make

updating 66,,, 486, in the form of eq.(67) with In g(=:|y;) and In (y;) in the place of J(8), respectively. (68)

Considering eq.(53) with the z4-regularization, we have that both the harmony learning by eq.(32) and the KL
learning by eq.(42) share a same format in the following gradients:

6., = & S [ W)V, Ing(ze|y)dy + 050>V, 7, g8, = & S, [ne(y) Vs, Inq(y)dy,

(y) = p(y|z:) byeq.(43), forthe KL learning by eq.(42), (69)
Y= asin eq.(53), for the harmony learning by eq.(32),

which can be further put in eq.(67) for updating.

Yang-step It could be implemented in one of four typical choices, according to not only whether eq.(39) or
€q.(42) is used for learning but also whether a B-architecture or a Bl-architecture is in consideration. The details
are given as follows:

(1) In implementing the KL learning on a B-architecture with eq.(42) for parameter learning or equivalently
the ML learning on g(z), the Yang-step is to get the posteriori estimation by eq.(43). This is exactly the E-
step by the well known EM algorithm [24, 65], with the Ying-step being a generalized M-step. In other words,
the EM algorithm is a specific case of the Ying-Yang alternative procedure by eq.(65). An integral over y has
to be encountered for getting g(z), which is either analytically solvable when p(y|z), p(z|y) and p(y) are all
Gaussian densities or becomes a computable summation when y takes one of discrete values 1, - - -, k or is a binary
vector y = [y, ---,y(™)]. Moreover, even when it is computable for a binary vector y = [y, --- y(™)], the
computing cost will increase exponentially with m. In other cases, the integral is difficult to compute. It was
as previously suggested in 1997 to be implemented approximately via a computational expensive Monte Carlo
simulation. That is, Y; is obtained via randomly picking a set of samples of y according to p(y|z:), (see the choice
(1) of Tab.2(C) in [109] and the choice (a) in Eqn.(24) and Sec. 3.1 in [99]) or even in a rough approximation
according to g(y) (see Step 1 in Tab.11(B) in [109]).

(2) In implementing the KL learning on a Bl-architecture with eq.(42) for parameter learning, the Yang-step
is to update 8y, that consists of all the parameters in p(y|z) by either eq.(46) or eq.(45). The update 68, is made
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such that K L(8,, + 06,,) either reaches a local minimum or reduces for a certain extent. Here, the integral over
y for getting ¢(z) by eq.(43) is avoided. However, we have to encounter not only the integrals in eq.(66) but also
the following one

H(8y2) = [p(ylz)p(z) Inp(y|z)dzdy. (70)

It was also firstly suggested in 1997 under the name of the mean field approximation (see the choice (3) of Tah.2(C)
in [109] and the choice (c) in Eqn.(24) of [99]) that we get Y; consisting of only one mean point

= [yp(ylz:)dy (71)

which is computable for a p(y|z) given by either one of eq.(45), eq.(46), eq.(47), and eq.(48), but not applicable to
a B-architetcure with p(y|z) given by eq.(43) since another intergral has to be encountered to get g(z).

(3) In implementing the harmony learning with eq.(39) for parameter learning, the Yang-step is simply getting
Y; that consists of only one peak point

Yy = arm mlzlmp(y|xt). (72)
which was firstly suggested again in 1997 (see the choice (2) of Tab.2(C) in [109] and the choice (b) in Eqn.(24)

of [99]) and then further encountered in eq.(44) on a B-architecture. This nonlinear optimization is implemented
in help of an iterative procedure:

y"e" (z¢) = ITER(y*" (1)) (73)

Specific algorithms of this type are proposed in [92, 89] to suit typical structures of ¢(z|y) and ¢(y). E.g., we
consider a Ying machine in the following typical structure:

q(zly) = G(z|Ay + 1, X), q(y) ineq.(3). (74)
Specifically, when y{%) is a real random number that comes from a Gaussian mixture:
q(y?) Zﬂg (D|myi, A5), > Bji =1,0 < Bjs < 1, (75)

we can solve the following nonllnear optimization

ye = argmax(G(z:|Ay + 4, %) [T D 8;:G 6" Ims, X3, (76)
j i
by an iterative algorithm called the fixed posterior approximation [92], as summarized in Tab.2(A).
When y{%) is a binary random number that comes from a Bernoulli distribution:

gDy = ¢ (1 — g7, (77)

the counterpart of eq.(76) becomes:

[€D)]
ys = arg max[G(:| Ay + p, % Hq, (1—g)'¥"] (78)

The complexity of making a nonlinear optimization is con5|derably less than that of making the integrals over
y. Moreover, we usually need only a few iterations by eq.(73) instead of waiting it to converge. This is another
salient advantage that the least complexity nature of eq.(44) provides us, in addition to making model selection
possible.

(4) In implementing the harmony learning on a Bl-architecture, the Yang-step consists of two parts. One is
simply implementing eq.(72). For a p(y|z) given by eq.(46), we can get y: = y(z:) by eq.(48) via a simple com-
parison that reduces significantly the computational complexity for making a nonlinear optimization by eq.(44).
For a p(y|z) given by eq.(45), we can get either

() — . G _ L mi(z) 205,
Y (@), o y {0, otherwise.

The second part attempts to increase In [q(x|3')q(y>]y=fj*(m)(xlej*(m)) or In [q(x|y)q(¥)]y=r(,,6)- N help of the
chain rule for gradient, it can be implemented via an update 66 ;«(z) in the form of eq.(67) as follows

(79)

ol ol
8y-(o) = )G, D) + 0], ) = TR, ) = TP,
96;%(my = V91‘*(m)fj"(:c) (xlej*(w))a or gg = Vg?T(.’L'le) (80)

19



ICA and Extensions with Noise and Time L. Xu

3.6. Regularization vs Model Selection: (I11) From In(r) to Convex Function

The function ln(r) is a typical example from the following convex function family

={f(r): d2£2(r) < 0, f(r) monotonically increases with r.} (81)

It is interesting to investigate what will happen when In(r) is replaced with any f(r) € F..
Let us return back to consider such an extension from eq.(34). That is,

Hy(pllg) = Yo pef(ar), (82)

It can be observed that the maximization of this H¢(pl|¢) with respect to p; still have the same least complexity
nature as eq.(37) while the match nature by eq.(36) is modified into

= PN, P, £ = df)/dr, (83)
D D

which returns to eq.(36) when f'(r) = 1/r. We can further classify other f(r) € F, according to whether its f'(r)
decreases with r in a rate slower than 1/r. If yes, it is said to be super-In; otherwise it is said to be sub-In.
A typical family of super-In is the so called a-function [104, 110, 113, 114] as follows:

f(r) =r*,0<a<1, andthus f'(r) = a/r' . (84)
In this case, eq.(83) can be rewritten as

/Zt 1p1 * (85)

which returns to eq.(36) with g: = p: when a = 0 and becomes ¢: = 1/N when a = 1. In other cases, p; attempts
to take ¢; with lower probabilities increased but higher probabilities decreased in a certain degree that is controlled
by a. That is, p; becomes more spreading than ¢; as « increases from 0 to 1. It becomes uniform when a = 1. In
other words, a super-In function leads to a conscience de-learning regularization.

An example family of sub-1n is the following inversed and negated a-function as follows:

f(r) = —r% a <0, and thus f'(r) = |a|/r' Tt (86)
which leads to

g =py TN prtlel, (87)

Now, p; adopts ¢; with higher probabilities increased but lower probabilities further decreased in a certain degree.
That is, p; becomes more concentrated than g; as |a| increases. In other words, a sub-In function leads to a
competition effectively similar to the least complexity nature.

The above discussions also apply to the continuous case by eq.(33), which becomes:

H(pllg) = [p(u)f(q(u)/z,)du. (88)

Now, not only the term z, provides a z-regularization as previously discussed, but also z, and a super-ln f(r)
jointly introduce the above discussed regularization.

Even without z4 (e.g., let z; = 1), a super-ln f(r) will also perform a regularization role. With p(u) given
by eq.(31), eq.(88) becomes a f-likelihood function L; = %Zf;lf(q(w)) which differs from the log-likelihood
L= %Zfil In g(u;) in that f(g(u:)) takes the position of ln g(u;). Those unlikely samples with small g(u:)
(e.g., outliers) locate within a drastic varying range of In ¢(u:) and thus contribute a big portion to affect L. That
is, the ML learning is vulnerable to the disturbance by outliers. In contrast, for a super-ln f(r) such as given hy
eq.(84), the varying range of f(g(us)) with a small g(u;) is much smaller than that of In g(u;). Thus, Ly will
be much less affected by those outliers with a small g(u;). In other words, we get a type of robust ML learning
[110, 113] .

The Kullback divergence can also be extended. There are two ways. One is simply replace lnr with f(r),
resulting in

KL(olla) = [0 £t 2 (89)
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The other is considering its equivalent form of maximizing Hx 1. (pl|¢) = [p(u) pgzgﬁi du and then replace ln r
with f(r), which results in the maximization of
q(u)/2,
Hku,(pllg) = [p(u )du. (90)
(Pl = I Gy

Being different from eq.(89), it will return to exactly eq.(88) when p(u) is given by empirical density eq.(31).
In the special case that z, = z,, we have

KL (pllg) = [p(u) ( ; du, Hkr,(pllq) = [p(u) (ug )du. (91)

Detailed studies can be further made by considering certain specific features of f(r). E.g., for those f(r) € F,
that satisfy

(a) f(ab) = f(a)F(b), (b) fla™") = f"(a), (92)
e.g., for the case of eq.(84) we can rewrite eq.(88) into
H(pllg) = £~ (2¢) fp(w) f (a(u))du, (93)
and eq.(90) into
_ f(zp) flg(u))
Hgr,(pllg) = f(zq)fp(u)f(p(u))du' (94)

All the above results can be applied to a BY'Y system, what needs to do is simply put eq.(29) into eq.(88),
e0.(89), eq.(90), eq.(93), and eq.(94). First, maximizing H (p||q) by eq.(88) with respect to a free p(y|z) will
still lead to eq.(44). Also, both minimizing K L¢(p||q) by eq.(89) and maximizing Hxr,, (pllq) by eq.(90) with
respect to a free p(y|z) will lead to eq.(43) too. Second, we are also lead to what discussed in Sec. 3.3 on trading
off the strength of regularization and the ability of model selection in help of designing a parametric model for
p(y|z). Third, a new perspective we get here is that such a trading off may also be achieved via choosing f(r) to
be super-In or sub-In, in the matching process of a Ying machine ¢(z|y)q(y) to a Yang machine p(z|y)p(y) with

= [ plyl2)p(z)de and p(zly) = p(y|z)p(z) /p(y).

Learning can still be implemented by the Ying-Yang alternative procedure in Sec.3.5. For the Ying step, we
no longer have the separated integral format as in eq.(66). However, we can still get the gradient format similar to
those in eq.(69). The only difference is that n;(y) is replaced by ntf (y)n:(y) with

£ (Yelnla@)y ‘I(“E’q“(y), for the harmony learning by eq.(88),

Zq

nf (y) = { f(BL ) Bl for the K L learning by eq.(89), (95)
f’(%)%, for the K L learning by eq.(90),

where f'(r) = df (r)/dr.

For the Yang step, the discussions on a B-architecture in Sec. 3.5 remains the same. While for a BI-
architecture, n:(y) in eq.(80) is also replaced by n{ (y)n: (y) with ntf (y) given by eq.(95).

The rest of this paper will concentrate on a special case of BYY learning with ¢(y) constrained to satisfy
€q.(3). As shown in Fig.2, this special case is called BYY independence learning, in a sense that each z is
interpreted either as generated via g(z|y) from the inner independent factors, or being mapped via p(y|z) to
match the independent factors. This BY'Y independence learning will provide a unified view on solving ICA and
extensions.

4. L(W) Based ICA Studies

4.1. Marginal Densities: Prefixed vs Learned

We return to eq.(8) to continue our overview on ICA studies. Idealistically, if we know the exact density
function form of p(y™)) and let ¢(y\9) = p(y), a solution W that satisfies eq.(3) will make L(W) reach its
global maximum. This point can be clearly observed from its equivalence to minimizing the mutual information

KLW) = [p(@)In =20y > 0 (96)
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) (i) . ) )
choice(i) s,(y?)= [ a(y® )y =3, 8,8y ~my,c;) (Xu,Yang, Amari,1996)
Choice(ii) a(y®)=3" 8,G(y" [m,,o2) (Xu,1997c&. d)

aly)= H?llq(y“)) is nongaussian

o=y T

1 N
= t =
mV?xL(W)—O.5InMV\4+ N 12:1 Ing(y,) v, =Wx
Figure 4. LPM-ICA as A Special Case of BYY Learning

which reaches 0 when ¢(y) is the true density of y¥). Due to this, early efforts have been made towards
accurately estimating p(y()). One typical example is using a nonparametric estimator [63]. However, at each
updating on W this nonparametric estimate should be made on all the samples, which is computationally very
expensive.

Alternatively, the truncated Gram-Charlier expansion is suggested by [22] and the truncated Edgeworth ex-
pansion is suggested by [6]. Even simply, in the work of [10], their use of sigmoid neurons is equivalently to
estimating p(y)) by the derivative of a simple sigmoid function. In these approaches, ¢(y‘?)) is prefixed during
learning W, for which a typical algorithm is the well known natural gradient [6]:

Wnew = W [T + ¢(ys) (W) TIWeH ¢(y) is given by eq.(80). (97)

Here g(y9) is prefixed, all these approaches work only on the cases that the components of y; are either all
sub-Gaussians (e.g., for the way by [6]) or either all super-Gaussians (e.g., for the way by [10]).

In implementing histogram equalization, a mixture of sigmoid neurons is used to estimate the cumulated
distribution function (CDF) more flexibly [41]. Such a type of CDF mixture is further suggested by [115] to model
q(y). That is, the CDF of g(y()) is represented by the following mixture

with 0 < §;; < 1and s(r, ¢) being a simple sigmoid scalar function, e.g., s(r,¢) = 1/(1+ e~°"). During learning
on W, q(y\9) = ds;(y)/dyP is also learned via maximizing In g(y¥)) with the parameters {8;;, m;i, c;i }
adapted, such that whether a source p(y) is super-Gaussian or sub-Gaussian can be automatically detected and
adapted by a model ¢(y)) during learning. As a result, we get a so called Learned Parametric Mixture based ICA
(shortly LMP-ICA) algorithm that is shown experimentally to work well on any combination of super-Gaussian
or sub-Gaussian components of y;. Moreover, an EM algorithm has been proposed for learning ¢(y)) together
with learning on W, with ¢(y¥)) modeled via either a mixture of sigmoid based CDFs [111, 112, 106] or the finite
mixture (especially Gaussian mixture) by eq.(75) in [109, 110].

The idea of modeling ¢(y)) via a mixture of CDFs in help of sigmoid functions is also suggested by [62],
but they did not clearly target at working on any combination of super-Gaussian or sub-Gaussian components of
ys. Latter, both Gaussian mixture and the EM algorithm were revisited for implementing ICA via the noiseless
case of implementing noisy ICA in [8].

As shown in Fig.4, the above discussed studies can be also viewed from a special case of BYY learning by
eq.(42) with a special Bl-architecture:

plylz) = 6(y — W), q(zly) = 0(z — Ay), (99)

and with the empirical density p(z) = po(z) given by eq.(30) at h, = 0. It has been shown in [116] that eq.(8)
can be revisited from eq.(42) with eq.(99) substituted in. With g(y()) modeled via the CDF by eq.(98), the above
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mentioned LPM-ICA is revisited, actually which was motivated from such a perspective [115]. Also shown in
Fig.4 and to be further discussed in Sec.4.3, we can get an extension of eq.(8) with In [W W] in place of In |W|
and thus becomes workable to the cases that n is less than the dimension of z, which is recently called under-
complete ICA [45, 66]. Furthermore, with ¢(y)) modeled via a finite mixture eq.(75), it follows from the Ying
step by eq.(66) that 8, can be updated by an EM algorithm as in [109, 110]. Also, the Yang step by eq.(80) leads
to eq.(97).

In addition, from BY'Y harmony learning by eq.(32) on this special Bl-architecture eq.(99), we have been also
lead to two variants of ICA [89]. Especially, by simply setting z, = 1, we can be lead to

max L, L= 4 Y10 S5 g ymwar, 5.t % Ll Waa! W' = 1. (100)

If z further goes through a pre-whitening, we will be lead to eq.(10) and its subsequent algorithm again.

4.2. Loosely Matching, 1-Bit-Conjecture, and Open Issues

Another interesting point is that the work by [10] also demonstrates that eq.(8) works even when modeling
q(y) roughly via the derivative of a single sigmoid function such as tanh(z). This result echoes the successes
of the early efforts of nonlinear Hebbian learning eq.(6) on separating sources, where it was also a simple sigmoid
non-linearity in action [29, 35]. Thus, it remaindered the community that a pursuit on accurately estimating p(y )
may not be really necessary [116] and certain simple non-linearity is already enough to yield a solution that satisfies
eg.(3). Moreover, a generalized sigmoid function has been also suggested in [10] such that the sigmoid function
may flexibly change to loosely match sources by altering two parameters during learning.

Actually, before and after the work [10], the phenomenon that a loosely matching of sources may lead a
correct ICA performance in certain experiments have been observed by many researchers. Seeking the nature of
this loose matching, it has been found experimentally that a model ¢(y(?)) of super-Gaussian usually works on a
source of super-Gaussian while a model ¢(y)) of sub-Gaussian usually works on a source of sub-Gaussian [112],
which indirectly reconfirms the success of some previous studies that separate blind sources via a contrast function
that bases on kurtosis [77, 32, 17]. This observation is further summarized in [107] into the following so called
one-bit-matching conjecture

“all the sources can be separated as long as there is an one-to-one same-sign-correspondence between the
kurtosis signs of m sources and the kurtosis signs of g(y)), j = 1,---,m. That is, there is at least one way to
pair all the sources and {g(y“)} such that for each pair the corresponding source and ¢(y)) have a positive
product in their kurtosis.”

Unfortunately, there still lack theoretical results that prove or disprove this conjecture. In a special case
that has only two sources of sub-Gaussians, it has been mathematically proved in [112, 20] that a correct ICA
performance can be guaranteed with only a simple non-linearity ¢(r) = r2 as in eq.(6) through showing that all the
correct solutions of W are stable local maximums of L(W) while no other local maximums exist. Unfortunately,
a result of this type is not available yet for the cases of more than two sources. Alternatively, theoretical analysis
has provided by [5] on the conditions for a non-linearity ¢(r) such that all the correct solutions of W are stable
local maximums of L(W'). However, under which conditions such a learning can converge to one correct solution
still remains as an open challenge.

Instead, such an one-bit-conjecture has been experimentally demonstrated repeatedly. For examples, the
experiments in [112, 106] have shown that modeling ¢(y?)) by eq.(98) with only two sigmoid functions can
already result in a good ICA performance. Moreover, eq.(8) is implemented in [27] with a success by modeling
q(y9) via directly switching between a sub-Gaussian one and a super-Gaussian one through detecting the kurtosis
of y = Wz during learning. Furthermore, such a switching technique is also implemented in [43] by modeling
q(y) via a mixture of two component densities such that g(y{?)) switches between sub-Gaussian and super-
Gaussian by only altering one parameter from one value to the other. This switching-based technique is actually
closely related to the above LMP-ICA by considerably simplifying the mixture density into simply switching
between two prefixed densities.

Here, we report a further result. We approximate p(y(9)) by its truncated Gram-Charlier expansion:

mgq — 6meo + 3

pY) ~ G+ 5(me ~ DH(D) + 2 Ha (D) + ——;

Ha(yY)], (101)
where G(y() denotes the standard Gaussian density, m,, the nth-order moment of p(y(9)), and H,, (y) the nth-

order Chebyshev-Hermite polynomials. Also, we can approximate the corresponding parametric model ¢(y )
similarly. Then we can further mathematically prove that the one-bit-conjecture as follows:
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Theorem [44]  Assume that the 3rd order moment of every parametric model ¢(y‘?)) is zero and ignore
all the moments that are higher than the 4th order, the global minimum W* of K L(W) by eq.(96) will make
y = W*z become independent among components as long as the sign of kurtosis of every g(y() is same as the
sign of kurtosis of every corresponding source 3.

This result is one step forward on the one-bit conjecture. It says that only considering the 4th order moments,
the condition that makes ICA workable is the satisfaction of the one bit conjecture. However, not only it is unclear
whether the algorithm by eq.(97) will lead to a solution W that make y = Wz become independent among com-
ponents since it may converge to a local minimum of K'L(W) by eq.(96), but also it remains unclear whether ICA
surely does not work without the satisfaction of the one bit conjecture. Several problems remain to be explored.
The first is what condition should be satisfied by ¢(r) such that all the local maximums of L(W') correspond to
the correct solutions of W that makes eq.(3) satisfied. The second is how to control the learning process to enter
those correct local maximums in the cases there are some local maximums of L (W) that correspond to the correct
solutions of W while others correspond to the wrong solutions. The third is how to get an effective algorithm that
is able to search the global maximum. Also, how the 3rd order moments can be used to help the problem solving.

According to the above theorem, we can model each ¢(y(9)) by

ay?) = By D) + (1 - B)a=(y), where (102)
a1 (y™) is subGaussian and [y g1 (y)dyD =0, [(y))%q (y)dy'D =0,
g2(y?) is superGaussian and [y gy (y)dy) =0, [(y9)?g2(y)dy'? = 0.

We have many choices to pre-specify such g; (y), ga (¥) that have no unknown parameters. It follows directly
from eq.(102) that [yWg(yD)dy) =0, [(y)3qy@)dy'? = 0. Thus, in the above theorem, the remaining
condition to be satisfied is to match the kurtosis signs. By varying the parameter 8 from 0 to 1, the kurtosis of
q(y) will vary from negative to positive smoothly. Thus, during the learning on W by eq.(97), we can learn an
appropriate value of § to adapt the kurtosis sign of the source y¥) via maximizing In ¢(y). That is, we have the
following new variant of the LPM-ICA algorithm by eq.(97) with a much simplified updating on ¢(y) together:

6 — (1 — no)ﬂ ld + nop ) pt] ﬂ"ld(h( (.7)) (;. - BOld) ( (]))
O0lnq(y) 0lnga(y)

o) = 861 (67) + (1= Be?), 1) = =5 ==, dal0) = (103)

8y

where g > 0 are a small learning step size.

4.3. Natural Gradient, Non-invertible Matrix, and Other Extensions

Another issue is how efficiently a learning process converges to a solution. A well known result on this issue
is the natural gradient algorithm by [6] that provides a considerable improvement on convergence and computing
efficiency over the classic gradient algorithm. Still, more studies can be made along this direction. E.g., it is
interesting to relate the natural gradient algorithm to the Newton algorithm, quasi-Newton algorithms, and various
super-linear gradient based algorithms in the literature of nonlinear optimization. Also, it is useful to compare a
number of existing typical ICA algorithms by mathematically analyzing their convergence rates.

Eq.(8) works for an ICA problem eq.(1) in the case that A is invertible. However, all the results obtained in
this case can be extended to the cases that A is non-invertible but full rank, i.e., m < d. In [110], under the name
of BYY learning based ICA model, another special case of eq.(42) with the following special Bl-architecture

p(yle) = Gy|Wz, s> WWT),q(ely) = G(z|Ay, 1), (104)
has been studied. Moreover, it is further shown in [110] that its special case with 2 = 0 leads to
LW) =05 [WWT| + & S, 0 lng@ ) ly=wa, (105)
which replaces eq.(8) in the case of m < d. This result can also obtained by directly considering eqg.(99). Observing
that 6(z — Ay) = 6(A(y — At2)) =8(y — AtT2)/|ATA|°5 and AT = (AT A)~1 A is a pseudo inverse of A, we
insert eg.(99) into eq.(42) and get

= [p(z)Inp(z)ds + 0.51n |AT A| — [é(y p(z) In q(y)dzdy,
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KLs(W, A) = [6(y p(z)In %dmdy (106)
Moreover, its minimization will further push K Ls(W, A) = 0 at AT = (AT A)~1 A = W from which we see that
(AT A1 = WWT. Also, the 1st term can be ignored since it is irrelevant to the parameters to be learned. With
p(z) = po(z) by eq.(31), the minimization of the last two terms become equivalent to eq.(105), which has also be
recently studied under the name of under-complete ICA [45, 66].

It is interesting to observe that what needs to do is simply replacing In |W| in eq.(8) with 0.5In |[WWT|.
Both become equivalent when d = m. Interestingly, the natural gradient algorithm on eq.(105) is found [107] to
still keep its original form as in [6]. Moreover, eq.(8) and eq.(105) have been further extended with In(r) replaced
by a generalized convex function f(r) as discussed in Sec.3.6,and the resulted ICA algorithm has been shown
experimentally to be more robust to outliers [110].

Another ICA extension is to consider a probabilistic mapping p(y|z) in place of the deterministic mapping
&(y — Wx). One effort was made in [117] under the name of Maximum Balanced Mapping Certainty (Max-BMC)
principle that maximizes J, — Jp with

Je = [p(=)p(ylz) f (p(y|2))dydz, Jy = [p(y)f(p(y))dy, p(y) = [p(z)p(y|z)dz, (107)

where f(r) is strictly monotonic increasing on [0, 1] and two typical examples are f(r) = r and f(r) =Inr. E.g.,
for f(r) = Inr we have

p(y|z
p()

which represents the mutual information that is maximized with the information transferred to y maximally pre-
served.

If p(y|x) is free, the above maximization will push p(y|z) to become p(y|z) = é(y — g(z)) and J, becomes
an infinite large number that is irrelevant to g(z). Thus, the problem becomes equivalent to maximizing J, =
— [p(y) Inp(y)dy that is the information transferred via y = g(z). Particularly, when g(z) = s(Wz), it is
equivalent to the INFOMAX approach [10]. The Max-BMC principle in [117] extends this INFOMAX based ICA
in three aspects. First, the deterministic mapping p(y|z) = é(y — g(z)) is extended to a probabilistic mapping
when p(y|z) is given by eq.(43). Second, the function In r is extended to a more general function f(r). Third, it
provides an information transfer based learning for unsupervised classification with a minimum mis-classification.
Moreover, it can also be used for supervised learning. E.g., the principle by eq.(108) in the special case with
f(r) = In(r) has been also used on training the hidden units of three layer networks and self-organizing map [37].

Efforts have also been made on extending the ICA problem eq.(1) to the nonlinear cases. E.g., it has been
extended by [82] to the post-nonlinear system. Also, a nonlinear blind source separation has been attempted by
self-organizing map [60], Moreover, from a special case of BY'Y learning by eq.(42) with p(y|z) = é(y — f(z,9)),
we are lead to the following general cost for implementing nonlinear ICA [99, 89]:

= [p(z)p(y|z)1 %d@/dm, (108)

Jc_ Jb fp ylx

9f(z,9)

L= SiL 050 (W @)W @) + S5 na)), v = f@0,6), Wiz) = =5 7

(109)

Except certain specific nonlinear extension such as in [82], extensions of ICA to a nonlinear case usually no
longer retain the nature that it recovers the waveform of each {yt(j)} series subject to unknown scales. In fact, the
waveform of each {yt(j)} may undergo an arbitrary nonlinear distortion. Thus, generally speaking, nonlinear ICA
is not well defined.

Instead, a nonlinear mapping ¥y = f(x, ) to a uniform distribution is well defined when the dimensions of z
and y are same. In this case, an estimate g(z) on the density of z is given as follows [91].

@) = [W@W @5, W) = o0, y= f,0). (110

One early example is given in [41] for the case d = m = 1, withy = f(z,6) = s;(Wz) and s¢(r) given by a
mixture of CDFs as in eq.(98). Another early example is given in [70, 50] for a multi-dimensional density, with
y = f(=z,8) given roughly by a simple sigmoid function. Both examples can be regarded as a special case of the
BYY learning by eq.(42) with p(y|z) = é(y — s(Wz)), where each s(r) is either a simple sigmoid function as in
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[70] or a mixture of CDFs as in eq.(98). Denoting § = Wz and considering that s;(r) is monotonic with r, we
have

Oy 19y 9% _ 5

which is actually equivalent to the case of eq.(8) with ¢(y!)) = d’g—y)hzym.

Moreover, the above discussions can be extended to a noisy mappingy = f(z,6) + € and thus W (x) =
% + 8‘1—2. When ¢ is independent of z, we have 55+ = 0 and thus W () becomes equivalent to the noiseless
case. However, € will affect the learning in a sense of regularization.

Extensions can also be made to the cases that the dimension d of z is larger than the dimension m of y simply
via an augmented vector y' 7 = [y, 7] with z being a vector of the dimension d — m. Given y = f(z,6) and
z = g(z), if ¥’ has a uniform distribution on [0, 1]¢, it is similar to eq.(110) that
( 0.5

W(@Vi(z) V@Vi) |
ay’ of(z,0 0
U@ = 2 W) = 80 vy - 26 (112
which can be further simplified into
q(z) = W (@)W (@) |V (@)VT ()2, (113)

by choosing g(z) such that V(z)W7 (z) = 0, i.e., the subspace spanned by V (z) is orthogonal to the subspace
spanned by W (z).

The use of eq.(113) can be made in two ways. One is that the ML learning on ¢(x) can be estimated
via its maximization with respect to y = f(z,6) and z = g(z). The other is that V() is chosen such that
V(z)WT(z) = 0and V(z)VT (z) becomes irrelevant to W (z). It follows from In g(z) = 0.51n |W ()W 7T (z)| +
0.51n|V (z)VT (z)| that the maximization on In ¢(z) with respect to W (z) ory = f(z, 8) is equivalent to the max-
imization on 0.5 In |W ()W T ()| with respect to W (z) or y = f(x,8) such that the mapping y = f(z,6) makes
y become a uniform distribution on [0, 1]™ that are mutually independent among its components. Particularly, it
becomes equivalent to eq.(105) for y = f(z,8) = sy(Wz) with s¢(r) by eq.(98).

5. Extensionsof ICA to Noisy Environment

5.1. Non-gaussian Factor Analysis, Algebraic Equation, and ML Learning

We further extend the ICA problem eq.(1) to noisy environments by considering an independent noise being
added to the observation. We focus on considering eq.(4) subject to satisfying eq.(3) in the following two cases:

a general d x m matrix, @)

an orthogonal matrix, i.e., ATA =1, (b). (114)

r=Ay+e A= {
subject to the satisfying eq.(3), where e usually consists of i.i.d. samples that is independent of y.
We start at the classic factor analysis (FA) model with eq.(5). It has been widely applied to various data anal-
yses. Unfortunately, the FA suffers the so called rotation indeterminacy. Considering a rotationy’ = ¢y, p¢™ = I,
we have A’ = A¢T and Ey'y'" = ¢E[yy"|¢" = I, that is

z = A'y’ + e inasame form of eq.(114), ¥’ ~ G(¥'|0,I), e ~ G(€]0,X). (115)

As aresult, y is not able to be recovered up to unknown scales but with a rotation indeterminacy.

This rotation indeterminacy can be solved when y comes from a non-Gaussian density (e.g., a Gaussian
mixture as shown in Fig.5). In this case, we call eq.(114) non-Gaussian Factor Analysis (NFA) [92, 89], which
is also previously called independent factor model (IFM) and BKY'Y dependence reduction (BKYY-DR) [99], as
well as independent factor analysis (IFA) [8]. Here we prefer the name NFA for addressing its difference from the
classic FA that is also a type of IFM or IFA in a 2nd order sense. NFA can be further classified according to specific
types of y9) in eq.(3). E.g., we get Binary or Bernoulli NFA (shortly BFA) when 3 is a binary value with the
Bernoulli distribution by eq.(77), and get a real NFA (shortly NFA) when y(%) is a real value with Gaussian mixture

by eq.(75).
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J(m)=0.5miIn(27)+m+ In\ZH-
q(ym)zzi B;G(y"? |m;,o%) subject to

M J‘y(nz q(y“))dy(” =1 J‘ym q(y‘“)dy(“ -0

m w & aw=TT .al")  isnongassian
y

Harmony learning r _
Yo =argmax [a(x|y)a(y)] p(y|x) isfree
from max ., H (qu)

Vver sus <«
ML learnin
p(Y|X)= q le)q(y) po(x)=%z5(xfxt) X=Ay+&£
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p(yIx)

Figure 5. ML equivalent learning versus harmony learning on a BYY B-architecture for NFA

Usually, we consider the cases that e comes from Gaussian. More generally, we can also consider e from a
nonGaussian density. Furthermore, €q.(114) may also be further extended into the following nonlinear model:

z=g(y,A) +e, (116)

where e is still a white noise that is independent from y.

Examining the solving approaches in Sec.2, we can find that approaches of nonlinear Hebbian learning type,
MMI type, and INFOMAX type are not applicable to the cases of eq.(114) or eq.(116), since they are all based on
a given forward function that does not take the noise e in consideration.

However, the following two approaches are still applicable:

(1) Solving algebraic equations From eq.(114) or eq.(116), in help of eq.(3) we can also get a set of algebraic
equations in term the matrix A, the statistics of e, and higher-order-statistics of y,z. Using those techniques
developed in the literature of nonlinear algebraic equations, at least conceptually we may solve all the unknowns.
However, there are not many studies made along this line.

(2) The ML approach Both eq.(114) and eq.(116) are special cases of a generative density g(z|y). With ¢(y)
satisfying eq.(3), we have ¢(z) by eq.(27) as shown in Fig.5. Thus, the problems of estimating g(z|y) and p(y) can
be made via the ML learning on g(z) on a set of samples of z, which is also equivalent to making the parameter
learning by eq.(42) on a BY'Y backward architecture via eq.(43), by which the optimal forward mapping is made
to match ¢(y) that satisfies eq.(3).

For making BFA, the integral in eq.(27) becomes summation and eq.(43) can be made via enumeration.
The well known EM algorithm has been suggested to effectively implement the ML learning [11, 28, 99]. Also,
learning can be alternatively made via transforming the problems into a clustering problem that is solved by an
existing clustering algorithm [61]. Using RPCL learning for making this clustering [21], the dimension m of y can
be determined too.

However, for making NFA, the EM algorithm is not directly applicable since the integral in eq.(27) can not
be solved analytically. A straight forward way is solving integrals via an approximation method such as a Monte
Carlo random sampling approach [99]. However, the computation is usually very involved.

5.2. BYY Harmony Learning Based NonGaussian FA

We have a quite different scenario when the BY'Y harmony learning by eq.(32) is used for making BFA
and NFA on eq.(114). As shown in Fig.5, the difficulty on making the integral in eq.(27) is avoided by getting
yt = y(z¢) per a sample z; in help of either eq.(48) on a Bl-architecture or eq.(44) on a B-architecture via a
nonlinear optimization by an iterative procedure eq.(73).

The learning is implemented by the Ying-Yang alternative procedure eq.(65). For simplicity, we do not
consider data smoothing regularization in the rest of this paper by simply letting 2, = 0 in eq.(53). Readers are
referred to [87, 88, 89, 92] for details about implementing data smoothing regularization.

27



ICA and Extensions with Noise and Time L. Xu

It follows from eq.(53) and eq.(66) that the Ying step is equivalent to maximize H (p||q) that becomes [92, 89]

VeH(0) = NZt 1 nwlyvom lnG(xtlAyt"',U'a X))+ N Zt 1" VG L

1, (@) its role ignored,
LY = Ing(y) = X7, Ing(y?), 2, { Zt 14(zelye)a(ye), (D) by eq.(49),
1 a(@elye), (c) by eq.(50),
1, zq of case (a),
nfly —_J1- %, z4 of case (b),
1-— ﬂw—;lﬂl, z4 Of case (c),

for the case that ¥; contains only one sample g, we have
’ { 1, z4 Of case (a) & case (b),
U

1_ q(wtllgq)q(yt), z, of case (c), (117)

where 6,, consists of A, u,% and 6, consists of parameters of ¢(y). With y; obtained from the Yang step, the
Ying step has the following detailed form:

The Ying Step
updating q(zly)  er =z — A%y, — p®, Y = po + nomeey, get TV as in Tab.2(B),

grew _ [ A+ nonceryy, (a) a general A,
by either of two approaches in Tab.1 via g4, (b)an orthogonal A4,
where g4 = ValnG(z|Ay + i, ) = yrel ¥0H 1, (118)

updating q(y) For BFA with eq.(77), get ¢7¢* as in Tab.2(B),
For NFA with eq.(75), we update §;,., m; ;, A?l by eq.(119) given below,
q;“””(l ar*v), for BFA with eq.(77),
Yor1 BRew s ew - for NFA with eq.(75),
if A? tends zero constantly, discard ) and delete the j-th colum of A,

discarding y(j) get A? = {

where 79 > 0 is a small stepsize. The first two parts above was were previously presented in Tab.2(B) of [109] and
Eqns.(35)&(35) in [99]) at the special cases without the term z,.
Specifically, for NFA with eq.(75) and either z4 = 1 or 2, given by eq.(50), we update

BirGyD|mjr, A3,

jr = - , 7.””-” —(1 - new + ,
Dj,r >, 8;:iG (y(f)lm“,)\2 ) P ( 770) 0P,
P = m2& + nopj,r (¥ — mE), X2 1Y = (1 = nopjr) AL + nopjr (¥ — mPEY2. (119)

While for NFA with eq.(75) and z, given by eq.(49), we update 87'7* and 5\2;“”" in the way as in Tab.2(B).

The Yang step is different for a B-architecture and a Bl-architecture. As firstly suggested again in 1997 (see
the choice (2) of Tab.2(C) in [109] and the choice (b) in Eqn.(24) of [99]), we can get y; by eq.(72) or particulary
by eq.(44) on a B-architecture and by eqgs.(48)&(79) on a Bl-architecture. Specifically, the Yang step has the
following details:

The Yang Step
| byeq.(44), e.g., run Tab.2(A) in a few iterations,  (a) for B-architecture,
- { by egs.(48)&(79), (b) for Bl-architecture;
no action , (a) for B-architecture,

updating 6« () or & by eq.(80), (b) for Bl-architecture. (120)

p(y|z) is updated via {

For a Bl-architecture, instead of searching a best forward nonlinear mapping y(x) via an iterative procedure
eq.(73), y(z) is approximated by a forward parametric structure in the form of eq.(47) with each function form of
f;(z|6;) pre-specified. Thus, it is better to get some knowledge on what is the optimal y(z).

It follows from eq.(44) that the optimal y(z) should satisfy ®(y(z)) = 0 with

B(y) = ¢(y) + 0.54"S 7 (z — p— Ay), ¢(y) = VyInq(y). (121)

Given a specific form of ¢(y), we can approximately solve ®(y(z)) = 0 to estimate y(z). When y(z) is an exact
root of ®(y(x)) = 0, it returns to eq.(44) and thus becomes equivalent to the case of a B-architecture.
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In the case that & = 021, we have ®(y) = ¢(y) +0.50 2[AT (z — u) — AT Ay] and thus the optimal solution

Y(@) = G (o AT (o = ), Gla) = 5 AT Ay = 9(1) (122

that takes the non-linearity ¢(y) in consideration. When o2 is large enough, the 2nd term of G (y) dominates and
thus G~1(.) is given by the inverse function of ¢(y). Thus, it is intuitively justified that we can select the following
post-linear function

y(x) = S(W.’IJ + V)a s(y) = [sl(y(l))a Tt 7sm(y(m))]T7 (123)

where s;(r) is a scalar nonlinear function. Particularly, we have s;(r) =  when there is no noise; while we have
n (€]
si(r) = ¢;'(r) and ¢(y9) = M when o2 is large.

When there is no observatlon n0|se onz,ie., wehave Y = g2l and o2 = 0, it follows from either eq.(121)
or from Step (b) in Tab.2(A) that

y(e) = (ATA) AT (@ - ). (124)

When Ez = p = 0, we get the linear mapping y; = Wz, and W = (AT A)~1 AT is simply the pseudo inverse of
A. The Bl-architecture is degenerated into eq.(99). That is, we revisit the LPM-ICA as shown in Fig.4.

5.3. Model Selection vs Automatic Model Selection

With the above Ying-Yang alternative learning, both the two types of model selection on Fig.3 apply but act
differently for BFA, FA, and NFA.

(1) Model Selection for BFA  During learning by eq.(118), maximizing In () will push its variance A?
constantly towards 0, when the 5-th dimension is extra. In this case, we can discard y{¥) and delete the j-th column
of A. In other words, we get the automatic model selection as shown in Fig.3(b).

Alternatively, we may also implement BFA in a two stage style. At the first stage, parameter learning can be
made either by the ML learning [11, 28, 99] or by the above Ying-Yang alternative learning with every g; simply
fixed at 0.5. Then, at the second stage we further select a best number m of factors by eq.(40) with its detailed
form given in the last row of Tab.3. The type of criteria at the special case of h, = 0 was firstly proposed in 1997
(See Egn.(8.10) and Eqn.(8.13) in [108]).

(2) Model Selection for NFA  On eq.(114) with a real value vector y and a general A, however, we suffer
a type of scaling indeterminacy. That is, any scaling transform ¢’ = Ay with a diagonal matrix A will result in a
density p(y’) that still satisfies eq.(3). To solve the problem, the constraint Ey() = 0, E(y(9))? = 1 is imposed
on eq.(74) such that NFA is actually based on

q(zly) = G(z|4y + 1, ), q(yl6,) H y918,),
]:

In implementation, learning by eq.(119) should be followed by a normalization

my = Yo Betiet, miet = (e —my) /A, A e = K21 /3. (126)
for ensuring Ey() = 0, E(y()? = 1. Moreover, model selection has to be made as shown in Fig.3(a) with a best
m selected by eq.(40) that has a detailed form given in the 3rd row of Tab.3. The type of criteria at the special case
of h, = 0 was firstly proposed also in 1997 (See Eqn.(10.9) in [108]).

Since AATAA = A2 no longer satisfies AT A = I, this scaling indeterminacy can also be removed by
imposing a constraint that A is orthogonal, with no need of eq.(126) to ensure Ey(¥) = 0, E(y()? = 1. Moreover,
an automatic model selection will also apply in help of the last step in eq.(118).

(3) Model Selection for FA  In the special case by eq.(5), we are lead back to the classic factor analysis
[7, 48], with both eq.(119) and eq.(126) becoming unnecessary. The Yang step by eq.(120) becomes simply

=[I+ AT AT AT T (2 — ), (127)
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and the Ying step is given by the part of updating ¢(z|y) in eq.(118). Actually, this Ying-Yang procedure provides
an adaptive algorithm that equivalently implements the ML learning. Then, model selection on m can be made
by eq.(40) with its detailed form given in the 2nd row of Tab.3 [92, 89]. The type of criteria at the special case
of h, = 0 was firstly proposed in 1997 too (see Eqn.(9.13) in [108], Eqn.(56) in [100], as well as Eqgn.(13) and
Eqgn.(18b) in [105]).

Another interesting special case is

we get a density ¢(z) = G(z|u, AAAT + X) that is the same as given by eq.(114) and eq.(5) with a general A. In
the ML learning sense, both the two cases lead back to the classic factor analysis [7, 48], and can be implemented
by the EM algorithm [72] or adaptive EM algorithm [100, 101]. Still, model selection on m can be made by eq.(40)
with its detailed form given in the 2nd row of Tab.3.

However, the two cases are different in the sense of BY'Y harmony learning by eq.(32). Instead of eq.(127),
the Yang step becomes

ye = [A71 + ATS 1A ATS (2 — p). (129)

Though the Ying step includes the part of updating ¢(z|y) in eq.(118) with A updated via g4 by either of two
approaches in Tab.1, what is different is that A is updated via maximizing 7: In G (y|0, A) in the way as in Tab.2(B),
during which A will be pushed towards zero if the dimension y () is extra. In other words, model selection is made
automatically during parameter learning by eq.(39).

(4) Model Selection for Uncorrelated NFA  For NFA on eq.(114) with a general A4, it is also possible to
have automatic model selection via turning eq.(125) into

Q(-’L'ly) = G(.’L’lAy + u, E)a QU(y) = |A|_0.5q(£|0y)7 f = VA—0.5y7 ATA= I, VTV =TI (130)

in help of singular value decomposition of a general matrix. That is, z = (AA%®VT)¢ + e = Ay + e with
y = A%V T¢. Again, eq.(125) and eq.(130) are equivalent in the sense of the ML learning on ¢(z). Moreover, the
case of eq.(130) still falls in the paradigm of the conventional factor analysis [48] and thus we call it uncorrelated
NFA, since the covariance matrix of g, (y) is still the diagonal matrix A. Being different from the conventional
factor analysis, the matrix D and V' are also learned such that an invertible mapping ¢ = V. D1y further transfer
the uncorrelated factors of y further into the independent factors of & such that the rotation indeterminacy is
removed. Strictly speaking, it goes beyond the BY'Y independence learning since g, (y) in eq.(130) may no longer

satisfy eq.(3).
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However, it can be still learned in the sense of the BY'Y harmony learning by eq.(32). Because the mapping
¢ = VD~ ly is invertible, the joint density ¢(z|y)q(y) given by eq.(125) differs from that by eq.(130) only in
|A|, which has no effect on getting y: by eq.(44). So, the Yang step for a B-architecture is still the same as in
€q.(120). While for a Bl-architecture, the Yang step is still in the same format as in eq.(120) but the difference
is that g(z|y), ¢(y) by eq.(130) is used for ¥(y), ¢(y) in eq.(80). Moreover, the Ying step consists of the part of
updating ¢(z|y) in eq.(118) with A updated by either of two approaches in Tab.1 in help of g4 and the part of
updating ¢(y) in eq.(118) with y; replaced by &, plus the following updating

&= VD 'y, D= 0%, 9(6) = T, gy — 9y ng(6le,) = el D

update V24 into V€% by either of two approaches in Tab.1, (131)
Ilngo(VDy|6,) — In|D|] p-1

from D™'gpD™' = D!

oD
update D" = D' —no(diag[V" $(&)yi | + DY),
If A? approaches 0 constantly, discard yt(’), delete the j-th column of A and the j-th element of A.

= —diag[V"¢(&)y; | — In|D|,

During learning, maximizing In ¢, (y¢) = —0.51n|A| + In ¢(&6,) will push the variance A? towards zero if the

dimension yt(’) is extra. That is, model selection on m happens automatically.

Finally, & acts as the recovered independent factors though y; is not. That is, z; — &; performs an indepen-
dence mapping that takes in consideration of the noise e;.

(5) Model Selection for ICA In the special case that there is no observation noise on z, i.e., we have
¥ = ¢2I with ¢2 = 0. It follows from eq.(124) that the mapping z — y becomes linear and we are lead back to
the LPM-ICA as shown in Fig.4. Moreover, by Tab.3 we observe that 2 = 0 makes .J(m) becomes —oo. We can
decide m until

N
1
2 § VVT VVVVT —IVV 2

becomes zero but is not nonzero at m — 1. That is, as firstly proposed in Egn.(55) of [97] or Eqn.(54) in [95], we
can decide m by checking this ¢ in eq.(132). This is actually equivalent to choosing m., as shown in Fig.3 as well
as its subsequent discussions. In a practical problem, there is always certain noise. Thus, choosing m* in Fig.3 by
the criteria given in Tab.3 are much useful.

5.4. Special Cases: LMSER and Auto-association

The previously discussed LMSER learning by eq.(23) actually performs ICA via a sigmoid post-linear map-
ping y = s(Wz) via a constraint W = A7 that attempts to minimize the mean square error ||z — Ay||?> = ||e]|?.
Though the role of y = s(Wz) was originally interpreted as extracting features in [123], it has been further ex-
perimentally demonstrated that the LMSER learning performs ICA with a performance superior to a nonlinear
Hebbian learning that does not consider noise [38]. Also, it has been successfully used on implementing a binary
ICA with noise [130].

Relaxing the constraint A = W7, eq.(23) becomes

0* = Fv Titills — As(Way)|I?, (133)

which is referred as auto-association learning via three layer net and can be trained in the same way as training a
three layer net by the Back-propagation technique [71]. It was experimentally demonstrated that the sigmoid layer
s(Wz,) makes feature extraction, though it was not noticed that it actually performed an ICA [12].

As shown in Fig.6(a), the above LMSER and auto-association learning can be understood from a special case
of the BYYY learning with a Bl-architecture.

4(aly) = GlolAy + 1, 0°1), plyle) = 8(y — s(Wa + 1), (134)

Considering y = s(Wz + v) with each sigmoid function 0 < s(r) < 1 that can be either simply s(r,¢) =
1/(1 + e—°") or a mixture of CDFs by eq.(98), we expect that z is mapped to match g(y) in a uniform density on
[0,1]™ and that z is interpreted as generated from this uniform distribution via Ay + u plus an observation noise e.
In this case, In g(y;) becomes zero and maximizing H () along the direction V4 H (8) by eq.(117) reduces to being
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Figure 6. A BYY Bl-architecture that performs LMSER and auto-association learning

equivalent to minimizing o2 in eq.(23). In other words, LMSER and auto-association learning attempt to perform
both a specific ICA that maps z into a uniform density and a specific NFA that fits 2 via independent factors from
a uniform density.

Moreover, the heuristic use of A = W7 and y = s(Wz + v) with each sigmoid function 0 < s(r) < 1 can
also be justified by y(z) in eq.(122). That is, y(z) = G~ (AW (z — p)) with a scaling by A = 0.5/02. Moreover,
if g(y) is a uniform density on [0, 1]™, —¢(y) = —V, Ing(y) consists of an impulse toward —oo at y = 0 and an
impulse toward oo at y = 1. After superposing a linear function AA” Ay, it follows from eq.(122) that G~ (r)
is a function that is linear between [0, 1] and takes either 0 on (c0,0) or 1 on (1,00). Thus, a sigmoid function
0 < s(r) < 1 acts as a reasonable approximation to such a G=1(r).

As shown in Fig.6(b), the above LMSER and auto-association learning can also be understood from the BI-
architecture by eq.(134) but with ¢(y) by eq.(77). When the sigmoid function 0 < s(r) < 1 is stiff enough such
that s(r) for any r value becomes either near 1 with a probability ¢; or 0 with a probability 1 — ¢;. Particularly
when ¢; = 0.5, we have Ing(y) = —mIn2, which is a constant that is only relevant to m. Again, maximizing
H (#) along the direction V4 H (8) by eq.(117) reduces to being equivalent to minimizing o in eq.(23).

Beyond just providing new insights on the LMSER and auto-association learning, the perspective of BY'Y
harmony learning in Fig.6 also leads to several new results.

First, it follows from eq.(40) and eq.(117) that we get the criterion J(m) in which the above term ln g(y) =
—mIn 2 is no longer an ignorable constant but a balance force for determining an appropriate /. That is,

d
min J(m), J(m) = 0.51@02 +mlin2, (135)

m

which can be used after learning by either the algorithm in [123] or the following new algorithm by eq.(138) with
each g; = 0.5 fixed. Moreover, after a learning by the algorithm in [123], we can further estimate

6 =% Tisu?, v =s(W& +v), (136)
Then, eq.(135) can be improved as follows
d
min J(m), J(m) =05dpo” = 37" [g;1ng; + (1 - g;)In (1 — g)]. (137)

The above connection between BY'Y learning and LMSER learning, as well as the above criteria by eq.(135)
and eq.(137) were firstly developed in (See Eqn.(8.10) and Eqn.(8.13) in [108]).

Second, it follows from eq.(65) that we can get a new adaptive algorithm in place of the learning algorithm in
[123] for implementing LMSER and auto-association learning. Specifically, its Ying step is still given by eq.(118),
and its Yang step consists of simply getting y; by eq.(79) and updating W, v as follows

W =W + 9D, [(y) + ¢(y)]z”, v = v + 0D, [(y) + ¢(y)),

D, = diag[ds(y(l)), Tt adS(y(m))]a ds(r) = dfj(: ’

by) = AT(@ — Ay — ), $y) = ln 2 —, -, ln 2T, (138)
a1 dm
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Particularly, we have simply ¢(y) = 0 when ¢; = 0.5. Early studies on this learning also started in 1997 ( See
Tab. 2 in [109] and also Eqn.(49) in [99]).

Third, as shown in Fig.6(b), automation selection on m can be made during the above harmony learning via
detecting whether (1 — g;)g; tends to 0. If so, it means that the dimension y(¥) is extra.

Furthermore, extensions can also be made from the following aspects:

(a) With s(r) given by a mixture of CDFs in eq.(98), the parameters {3;, c;,m;} are also be adapted during
learning via min ¢ such that a best sigmoid mapping y = s(Wz) is sought.

(b) We consider that each s;(r) is no longer limited to be a sigmoid function and each g(y¥)) is a parametric
model that is adapted via its parameters. Correspondingly, H (§) becomes

H(9) = ~0.5dn0” + & 3,0, 37 ng(y) (22)) ~ Inz,
y(@) =s(Wz +v), 02 = & Xm0 ||z — Ay(ze) — pll?, (139)

which combines the feature of eq.(23) and the feature of eq.(105) with the role of 0.51n [WW 7| replaced by
—0.5d1no2. This can also be understood as an ICA extension to noise situation under the name of Principal ICA
(P-ICA). This type of learning started from 1997 (See Eqn.(10.9), Egn.(8.10) and Eqn.(8.13) in [108], Eqn.(40)
and Eqn.(41) in [101], Eqn.(20b) and Eqn.(20c) in [105]). Particularly, when s(Wz) = Wz, mino? becomes
equivalent to making either PCA with A = W or singular value decomposition. In this case, eq.(139) degenerates
to Eqn.(10.9) in [108].

(c) With g(z|y) = G(z|g(y, A),o?I) and thus

0* = e Tl llz — g(y(e), AP, (140)

we get that H (6) by eq.(117) becomes Eqn (10.8) in [108].

Before closing this subsection, it deserves to mention that all the above studies can be extended to not only
the case that the noise e is nonGaussian by considering g(z|y) in the form of eq.(46) with g(y, A) in the place of all
the £;(v]0u)v,;), butalso the cases of a general ¢(z|y) in the form of eq.(46). The learning can still be implemented
by the Ying-Yang alternative procedure eq.(65), with the Ying and Yang steps modified accordingly.

5.5. Approximate ML, Exact ML, and EM Algorithm

As discussed in Sec.3.3, p(y|z) given by eq.(43) performs a best ICA mapping under the noise e in the
sense of implementing the ML learning on ¢(z) by eq.(27). Its substitution by eq.(44) means a deviation from
handling noise in this ML sense. This deviation will be reduced by considering the BY'Y learning by minimizing
the Kullback divergence eq.(42) with a non-& parametric density for p(y|z), which is equivalent to making a type
of variational approximation to the ML learning on eq.(27), as discussed previously in Sec.3.3.

Specifically, with p(y|z) in the form of eq.(46) and a mean field approximation g(z|y) = ¢(z|E[y|z]) (i.e., y
is replaced with its conditional mean Efy|z], we can also get rid of the integrals in getting gg,,, and g, in eq.(66)
and H(8,,,) in eq.(70), and thus are able to implement learning in the form of eq.(67) [99].

This mean field implementation of variational approximation is useful even when y is discrete. Though
€q.(27) and eq.(43) can be implemented without approximation in this case, the computational cost is very high,
especially when m is large. A typical example is that p(y|z) by eq.(45) and ¢(z|y) = G(z|g(y, A),2I). In this
case, eq.(42) becomes [108]

L=1Ino? + % Zfilzgnzlcp(.’lit), Cp(.’l,'t) = Wj(l') In Wq—(x) + (1 — 7Tj(.’1,')) In ﬁ
J —4j
0® = gy Lilillzs — g(n(@), A, 7(@) = [m (@), -, 7m(@)]", (141)
which includes the special case g(w(z:), A) = Aw(x:). As a result, a summation over all the 2™ values of y has
been avoided. The detailed learning algorithm for implementing eq.(141) is given by Table 2 in [109].

Efforts of implementing the ML learning on eq.(27) have also been made by a number of other research
groups. In [33], a so called joint maximum likelihood is considered to be maximized with respect to A and y(x;):

L=% Y0 Y0 ngyD (zh) — ef S 'er], e = 20 — Ay, (142)

which closely relates to eq.(117) but with two key different points. First, instead of using an iterative procedure
eq.(73), a rough solution y(z) is used in [33] via expanding V, L = 0 by the first order approximation. Second, X
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Figure 7. The recovered 4 factors (denoted by ‘o’) and the original sources (denoted by ‘*'), each factor is normalized into
zero mean and unit variance. (a) by IFA with the mean square errors being 0.056, 0.057, 0.070, 0.052 per each factor and the
average being 0.059, and (b) by NFA with the mean square errors being 0.021, 0.042, 0.040, 0.026 per each factor and the
average being 0.032

given in eq.(117) is the natural result of the BY'Y learning by eq.(32). While X in eq.(142) must be pre-given, e.g.,
Y = 02 AAT is used in [33] but with the problem of how to specify the scalar ¢ remaining as an open problem.

In [52], an approach that exactly implements ML learning for the model eq.(114) with p(z|y) = G(z|Ay, X)
was firstly proposed. Similar to [109], they considered the independence product eq.(3) with each ¢(y{¥)) modeled
by a Gaussian mixture eq.(75). However, a key difference is that they dealt with the product of Gaussian mixtures
via introducing a set of random variable z(),j = 1,---,m such that each z{/) stochastically takes a number
among {1,---,n;} and each number indicates a component in the j-th mixture. Thus, it follows from ¢(y) =
Z{z(j)} q(y, =) that the product of m summations in eq.(3) is equivalently exchanged into a summation of [ [, n;
products. As a result, the integral in eq.(27) becomes a summation of the Hj n; analytically computable integrals
on Gaussians, which results in that ¢(z) becomes a mixture of [ ], n; Gaussians. For this reason, they were able to
implement an exact ML learning on the problem eq.(114) by an exact EM algorithm. The same results have been
also published in [8] under the name of independent factor analysis.

However, a summation of Hj n; terms has to be computed at each step of such an EM algorithm. The
complexity increases exponentially with the number m of factors, i.e., O(n™) with n = max; n;. In contrast, the
implementation of NFA via BY'Y harmony learning by eq.(118) and eq.(120) turns the integral over y in the whole
domain R™ into the problem of a nonlinear optimization by eq.(44). When solved by an iterative algorithm, it
searches within the domain R™ in a trace that is usually within a much lower order subspace.

E.g., shown in Fig.7 are experiments on comparing the NFA implemented with the Yang step by eq.(120) and
Ying step by eq.(118), and the EM algorithm based exact ML learning algorithm [52] (shortly denoted by IFA in
[8]). Two data sets come from a model z = Ay + e of the four factors and six factors, respectively. With each
Gaussian mixture by eq.(75) consisting of three Gaussian components, both the NFA and IFA work well. Shown
in Fig.7 are the recovered factors of the 4-factor model in comparison with the corresponding original sources.
Moreover, it can be observed from both the recovered factors in the figures and the corresponding mean square
errors that NFA outperforms IFA.

Moreover, as shown in Fig.8, with the number m of factors increasing from 4 to 6, the time used by NFA
increase from 18.16s to 28.58s (about 57.4%) while that consumed by IFA increases from 64.77s to 634.63s
(about 3(6—% times). That is, we found empirically that while the time complexity of NFA increases linearly with
the number m of factors while IFA increases exponentially with m. That is, NFA outperforms IFA significantly in
the aspect of complexity.

Also, it has been found in [85] that a major computing load can be removed by making pre-whitening on
z such that E(zz”) = I and it only needs to consider an orthogonal matrix A. As a result, the exponential
complexity with m can be reduced to be linear with m.

In [8], a product p(y|z) = [;~, p(y'?|x), with each p(y'?)|z) given by a mixture of Gaussians, is used as
an alternative for p(y|z) in the E step of the EM algorithm in [52]. The parameters of p(y|z) are updated in help
of variational approximation and mean-field approximation, such that the computing cost on estimating an exact
posteriori density can be significantly reduced. This effort is similar to the case of the BYY learning eq.(42) with
p(y|z) by eq.(46). However, p(y|z) by eq.(46) is not constrained to be in the form of p(y|z) = H;”zl p(yD|z).
In a contrary, it follows from eq.(43) that with g(y) satisfying eq.(3) the p(y|z) that performs a best ICA mapping
is usually not in the form of p(y|z) = [Tj~, p(yV|z).
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Figure 8. Time complexity comparison between NFA and IFA
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Figure 9. Independence analysis on binary and non-negative data

In [8], it is also discussed that the ML learning on a NFA with ¢(y) = G(y|0,I) and q(z|y) = G(z|Ay, o*I)
becomes equivalent to performing PCA when o2 = 0. However, requiring 2> = 0 in [8] is completely not
necessary, such an equivalence has already been previously proved in [101] for any o2 > 0.

5.6. Non-negative Data Analyses and Supervised Learning on Three Layer Net

In many applications, the observed data z = [z, - - -, z(D]7 will take non-negative value () > 0 or binary
value z(9) = 0 or 1. As shown in Fig.9, a NFA on such data can be considered via the BY'Y learning on either a
B-architecture with g, given by the choice (a) or a Bl-architecture with g, given by the choice (b), in help of letting
g(z|y) in an appropriate format.

For a case of non-negative value (/) > 0, we can consider an exponential density as shown in Fig.9(a). All
the previous results on q(z|y) = G(z|Ay + p,0?I) still apply directly with o2 replaced by X, that is updated
simply by A% = (1 — ) A% + p||e||?, when the case of z, = 1 is considered.

For the case of binary value z(¥) = 0 or 1 that is regarded as generated from an inner binary code y, many
studies have been made in the literature. One example that explores along this direction is the early work called
Multiple Cause Mixture [74]. 1t models each bit #) = 1 — J[.(1 — y;a;;) via binary a;; and then matches
the observed bit (/) with a heuristic cost function. Learning becomes a combinatorial optimization problem that
searches the values of a; ;. Also, the maximum likelihood learning is proposed on this model [23], with each
binary code z interpreted as Bernoulli via defining the probability that z() = 1 in help of a generating model
1 - L1 - yiay).

As shown in Fig.9(b), we can make model selection via modifying J(m) in Fig.7(b) with Ino? replaced
by — & Zfilzz?:l 27 Ins(@?) + (1 — 2)In (1 — 5(2))]. Also, we can get an adaptive algorithm from
€q.(65), which is given in Tab.2 of [87]. Again, automation selection on m can be made during learning via
detecting whether (1 — g¢;)g; tends to O constantly.

As shown in Fig.10, the least square learning on a conventional three layer forward networks can also be
revisited from the auto-association learning in Fig.6(b). Decomposing z = [, (] into two parts, we consider a
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Figure 10. BYY supervised learning on three layer net versus NFA on a BYY B-architecture

special Bl-architecture with p(y|z), ¢(y), and ¢(z|y) given as in Fig.6(b), where the use of g(¢|y) comes from
g(&|¢, v) under the cascade mapping & — y — (. In this case, H (#) by eq.(139) becomes

H(8) = —0. 5d<1na +H,+L(W), 0% = 5N |G — u— As(We + v)|1%,
Hy=Ly 2l ym 1[ “lnq] + 1=y (1 - ) =7 lgng + (1 - ¢)In (1 - gj)],

Y = S(Wft ) =N Zt 1y(])
LW) =430, 111(1(5t|yt) =0.5In|WTW|+ £ 3L, In|Dy(ye)|, D asin eq.(138), (143)

where d; is the dimension of {. The maximization of the first term is equivalent to minw, 4 02, i.e., the least square
Iearnmg on the widely studied three layer net ¢ — y — ¢ by p(¢|€) = [ q(¢ly)p(y|E)dy = G(¢|As(WE + v) +
21’)

The maximization of H, is equivalent to minimize the entropy of the hidden units for more compact inner
representations. A hidden unit with (1 — ¢;)g; — 0 constantly can be regarded as extra and thus can be discarded.
The third term L(W) is the likelihood of ¢(¢|y) that describes an inverse of ¢ — y. The optimal ¢(¢|y) can be
searched via maximizing H(#). As shown in [87], we can get L(W) as given in eq.(143). Regarding s(r) as a
CDF, |Ds(y:)| actually describes a product of independent densities. Having a same format as L(W) in eq.(105),
maximizing L(W) makes y = W¢ becomes independent among its components.

Jointly, the convention least square error learning of minimizing o2 is improved by not only maximizing
H, that makes automatic selection on hidden units possible but also maximizing L(W) that further regularizes
learning via pushing the hidden units of the three layer nets to become independent.

Instead of making learning by the conventional back-propagation technique, it follows from eq.(65) that we
can get a new adaptive algorithm with

Yang step updating A4, u, 02, ¢; as in eq.(118) with ¢ in the place of =, (144)
Ying step getting y; = s(W&; + v) and updating W and » by eq.(138), with &; in the place of z;,

during which each extra hidden unit is discarded via detecting (1 — ¢;)g; — 0 constantly.

The above learning can be simplified with each g; = 0.5 fixed. An appropriate m* can be selected by
eq.(135) via enumerating a number of m. Approximately we can also make miny, 4 o2 by the conventional back-
propagation technique and select m* by the criteria in eq.(137) and eq.(136), which were previously studied for
both binary stochastic hidden units [109, 102, 103] (e.g., see Eqn. (56) in [100]) and deterministic real hidden
units (see Eqn(88) and Eqn(89) in [97]). Details of recent studies are referred to [93] and [87].

5.7. Minimizing Fitting Error vs Enforcing Factor Independence

In fact, all the discussions in Sec. 5 deal with a twofold effort that targets at both minimizing the fitting error
between a sample z; and its reconstruction £; and imposing the independence eq.(3) among the components of y
for regularizing the indeterminacy of modeling.
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Instead of directly imposing independence by eq.(3) throughout learning, such an independence may also be
gradually approached during learning by optimizing a cost min @ ; with the independence eq.(3) satisfied at its
minimum. Two typical examples are

_ [ /oy lnp )dy,  (a),
Q= i, 6 (149)

For the choice (a), pushing @y to its minimum, or equivalent maximizing the entropy of p(y) as discussed in
eq.(16), makes p(y) become a uniform distribution that is one extreme case of the independence family by eq.(3).
For the choice (b), pushing @y to its minimum, or equivalently minimizing the entropy of p(y), pushes n(y) to
become an arbitrary ¢ distribution 6(y — yo) that locates at any point yo. Each 6(y — yo) satisfies eq.(3) too and
actually becomes each example of another extreme type of the independence family.

In the same time, minimizing the fitting error is also reached by optimizing another cost min @)1, with a
learning process. Typical examples that have been discussed previously include

QL = —%Zillnq(xtlyt), (@), (146)
0.5dIno?, 0% = 7 S, |l — Ayl?,  (0).

Making min @y, alone usually suffers the indeterminacy of infinite many solutions. The joint implementation of
both min @z, and min Q7 will eliminate the indeterminacy and lead to an appropriate solution. It can be observed
that an appropriate combination of min ()7, and min ()7 and the independence eq.(3) lead us to those previously
discussed typical models. E.g., we have

(1) with Q7 by the case (b) in eq.(145) and @, by the case (a) in eq.(146) plus imposing the independence
eq.(3), min(Qr, + Q) is actually equivalent to the harmony learning by eq.(52) with z, = 1.

(2) In the above case with @1, by the case (b) in eq.(146) instead of the case (), min(Q, + Q) is actually
equivalent to the extended LMSER learning by eq.(139) with z, = 1.

(3) If there is no need to consider noise, we can ignore min (0. Then, min @y with @ by the case (b) in
e0.(145) plus imposing the independence eq.(3) will lead us to eq.(8), €g.(19), eq.(100), eq.(105), and eq.(109),
etc, respectively.

Moreover, other ways of combining min @z, and min Q; may result in different variants that deserve to be
explored too. Different combinations comes from different choices of Qr and Q1. E.g., one class of variants
may be obtained from replacing @) by the case (b) in eq.(145) with that by the case (a). Instead of targeting at a
family of ¢ distribution 6(y — yo), the regularization role of min J; is enhanced by targeting at a unique uniform
distribution. However, this helps only when the number m of factors is pre-specified. In contrast, min Q) ; with Q;
by the case (b) in eq.(145) enhances the harmony learning by eq.(52) or eq.(139) by pushing an extra dimension
out of modeling such that an automatic selection of factors is implemented. Hence, we prefer @ by the case (b)
in the cases with a unknown number m to be decided. In addition to the choices on ¢y, more choices other than
those in eq.(146) can be used as Q.. E.g., either K L(8) by eq.(42) or —H () by eq.(39) as well as their specific
forms such as eq.(117) and eq.(139).

Still, differences come from the way that min @ ;, and min @ are combined. In addition to min(Q, + Qr),
we can also consider the following the three combining manners:

(@) We can first make min @ and then make min Qy,. E.g., for a ¢(y) given by eq.(3) and eq.(77), min Q
results in ¢; = 0.5 and min )7, with @z, by the case (a) becomes equivalent to the LMSER learning by one of
eq.(18), eq.(23), and eq.(140);

(b) We can first make min ()7, and then make min @;. E.g., min @z, with @1 by the case (a) results in
o? = g2 and then we make min ¢y with @ by the case (a) in eq.(145). That is, we have the following

min’

constrained learning
min Jp(y) Inp(y)dy. (147)

2
s.t. o%=0% .,

Specifically, when o2, = 0, it becomes

min

s.t. Arfcltuzlyt o Jp(y) Inp(y)dy, (148)

which is equivalent to the Lagrange Constrained Neural Network (LCNN) in [81]. Eq.(147) extends eq.(148) to
the cases with observation noises. Extensions can also be made with @, in other choices. When @ by the case
(@) is replaced with @ by the case (b), we can further get a counterpart of eq.(147) as follows:

min —fp ) 1Inp(y)dy, (149)

s.t. 02=g2
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which has a selection ability on m similar to various previously discussed types of harmony learning.
(c) More generally, we can min g(Q,, @r) with g(z,y) being monotonically increasing with both z, y. This
g(z,y) is called a combination formula. Further studies may deserve to be further conducted.

6. Extensionsof ICA with Temporal Dependence

6.1. Typical Approaches for ICA with Temporal Dependence

Instead of considering independence among higher order statistics, the indeterminacy of the linear system
eq.(1) or y; = Wz, can also be removed by considering temporal dependence among samples of z; (or equiva-
lently of y;) at different times. The key feature is that the 2nd order temporal dependence may be already enough
for removing the indeterminacy, except some degenerated cases.

A number of approaches have been studied for exploring temporal dependences on solving the ICA problems.
Roughly, we can again classify them into following three major types:

Joint diagonalization ~ We use the term ‘the j-channel’ to denote a series of the j-component {yt(’)} astime
t goes. We say that being de-correlated across channels means the correlation matrices E[y;y.] = RY fort>rT
should be diagonal. It follows from y; = Wz, that E[y;yl] = WE (2,2l )W?T = WRY W7, That is, a matrix
W should be determined to jointly diagonalize all the correlation matrices Rf . = E(xtx )fort > 7. This W
can usually be determined from two or more such correlation matrices that are not identical. A solution W may
either remain not varying with time for stationary signals or varies with time for non-stationary signals. Several
techniques have been studied to implement such joint diagonalization. Readers are referred to [51, 47, 129, 40, 54].

Solving algebraic equations  Similar to the situations discussed in Sec.2.1, by examining joint statistics
of the time series {z:} and {y:} across different time delays, the constraint of y. = Wz, and the constraint of
requiring independence across channels will lead us to a number of algebraic equations. As a result, W can be
determined by jointly solving these equations [15].

Optimizing a cost function ~ Conceptually, any cost can be used for this purpose as long as it reaches its
minimum (or equivalently maximum) when independence across channels is satisfied. There are many ways to get
such a cost. First, we can get a cost by allowing errors from either the above joint diagonalization equations or
the joint statistics based algebraic equations. Second, costs can be obtained from high order statistics (especially
fourth-order cumulants) [129, 22, 78]. Third, a cost may also be heuristically motivated [2, 80]. E.g., with a
belief that the temporal predictability of any signal mixture is less than or equal to that of any of its component
source signals, a measure of temporal predictability is suggested in [80] via a short term and a long term moving
average. Then, the measure is maximized to determine y; = Wx;. Usually, these costs consider independence
across channels only in a sense of statistics up to a finite order (e.g., the 4 th order) .

In contrast, the cost by eq.(8) considers independence among component densities and thus conceptually
covers statistics up to all the orders. Several efforts have been made to extend eq.(8) to cover temporal dependence.

Under the name of context sensitive ICA [62], ¢(y (’)) is replaced by ¢(e (’)) with y; = Wz, and an AR model
eﬁj) = yt(’) > azyt(’)l The AR coefficients a; are updated together with the parameters of ¢(e (’)) basing on

the past estimates y(’) i > 1. What is imposed here is actually H 4 q(yt’) |y(’) ), which says that components of

t—1i?

y; are independent, conditioning on the past values. This actually satisfies neither independence across channels
nor [T72, a(us”).

As a special case of the temporal BYY learning with a F-architecture, a so called temporal ICA has been
proposed [98, 96, 94], which extends eq.(8) with (i) y: = Wz, replaced by y; = Wz + Ky:—1 + d such that the
current estimate y; is directly improved via temporal dependence; and (ii) ¢(y (’)) is replaced by ¢(y. ’)|y(’) ) such

that a non-linear dependence between yt(’) and yt(’_)1 can also be covered. Moreover, a simplified algorithm that
explores the 2nd order independence only is also given [92].

Moreover, we can also extend studies on the noise case of eq.(114) or eq.(116) by considering temporal
dependence.

First, considering that e; is not correlated with y;, i.e., Eetef = X whent = 7 and Eetef = 0 when
t # 7, we have E(z;z ) = AE[y,yf AT +X when¢ = 7 and Rf . = E(z:2]) = E(Ay; + e:)(Ayr +e,)" =
AE[y;yF|AT = ARY A" whent > 7. Thus, we come to a similar situation of using the joint diagonalization
approach for solving A 3.

Second, with the constraint y; = Wx; replaced by the constraint z; = Ay, +e;, we also come to the approach
of using joint algebraic equations for solving A4, 3.
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However, being different from the noiseless case, we also need to set up the inverse mapping y = Wz to
implement ICA, for which we need a model for y;. In a special case of the temporal BY'Y learning, the first auto-
regressive (AR) is used for modeling y;. Together with eq.(114), we are lead to the well known linear state space
model:

Yt = Bys—1 + &, 71 = Ays + 4. (150)

In the literature of control theory, this model has been extensively studied together with the Kalman filter that
estimates y; from the current z;, under the following conditions

et ~ G(e1]0,%), er ~ G(e4]0,%), E(ys—167) =0, E(ye]) =0, E(ee)) = 0. (151)

In these studies, however, A, B, Y, A should be already known, and the number of states or the dimension of
y should also be given. This is not practical in many cases. In [98, 96, 94, 92], as a special case of the temporal
BYY learning with a B-architecture, an alternative state space model is suggested with the independence condition
€q.(3) extended over all the times, i.e.,

o) =TI gD, y = {we by, ¥y = (5L, (152)

such that A, B as well as X and A can remain unknowns to be specified. This alternative state space model can also
be understood as an extension of the classical factor analysis by eq.(4) that has been widely studied in the literature
of statistics for several decades [48]. With temporal dependence y; = By;_1 + £; added and the independence
constraint by eq.(152) imposed, we call this extension as temporal factor analysis (TFA) [92].

Moreover, temporal BY'Y learning also provides a general guidance for extending Binary FA, NFA, LMSER
and its supervised variant to temporal cases, as to be introduced in the rest of this section.

6.2. Two Types of Temporal BYY Systems

Conceptually, the Bayesian Ying-Yang can be used to learn temporal dependence via €q.(32) or eq.(42) by
inserting a pair of temporal processes x = {z;}._; and y = {y;}1_, in the place of the variables =, y in eq.(29),
which thus can be called a temporal Bayesian Ying-Yang (TBYY) process system. In implementation, this situation
is usually too complicated to be handled directly and further simplification is needed. First, given a sample x
we let p(z:|x,y) = d(z¢ — Z:) since ‘knowing z; = Z; definitely’ means being irrelevant to any environment.
Second, we adopt the causal assumption that z;, y: only depends on their values at past 7 < ¢ but not on any future
T > t. Under these assumptions, the form eq.(32) becomes the following summation:

H(pllg) = Y0l Hy — Inzg, (153)

where z, takes a role similar to that in eq.(52) and eq.(53).
That is, the harmony measure of the whole process is uniformly contributed from each time ¢ as follows

H; = [p(we)Hi(pllg, we)dws, He(pllg,ws) = [p(yslze, we) In [q(ze|ye, we)q(yelwe) dys, (154)

where w; is a set that consists of all of or a part of the past samples {z,y,, 7 < t}. Considering Tab. 2(C), we
further have approximately

Hy = Hy(pl|g, @), &t = [wip(wy)dwy. (155)

Further imposing the Markovian assumption that z;, y: depend on only a finite number of their past sample
values, w; can be a finite dimensional vector and thus p(y:|z+, w:), ¢(¢|ye, we), q(y:|we) can be designed in regular
structures. In the special cases of the 1st order Markovian, w; relates to y; 1, z;—1 only. Also knowing y; ;1 implies
that y, becomes independent from z;_, since y;—_1 is an inner code of z;_1. Thus, w; simply relates to y;—; only.
Similarly, knowing y; implies that z; becomes independent from y;_1. As a result, we are suffice to consider the
following 1st order BY'Y state space system:

(&t Yelye—1) = P(yel|ze, ye—1)0(xe — Zt), q(xe, ye|ye—1) = a(@t|ye)a(ye|ye—1), (156)

to be inserted into H; in eq.(154).
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Thus, if it follows from eq.(154) that we have

H(pllg) = Yi Hy — Inzg, Hy = [p(yslee, Ge—1) In [a(we]ye)a(yelFe—1)]ldye,
Gi—1 = [yr—1P(Yt—1|Tt—1,Jt—2)dys—1. (157)

When p(y¢|z:, §:—1) is free, e.g., for a B-architecture, it follows from maximizing H (p||g) that
P(ye|ze, Ge—1) = 0(ye — Ge), Ge = max{q(@elye)q(yelFe—1)]- (158)

Alternatively, we can also get a different extension of BY'Y system to temporal dependence. We consider the
pair in eq.(29) with z, y being simply z;, y; at time ¢ instantaneously, subject to the satisfaction of the following
temporal dependence:

_ | Ja(ytlws)q(we)dw:, (a) general,
W) = { J a(yelys—1)q(ys—1)dys—1, (b) the 1st order. (159)

That is, temporal dependence is considered via this constraint, instead of being imposed in the Ying-Yang matching
learning. This BYYY system can be called the TBY'Y instantaneous system. Given p(z;) = d(x; — Z:), it follows
from eq.(32) at z; = 1 that the harmony measure H; = [p(ys|z:)d(z: — &) In [q(2+|y)q(y:)]dz+dy, becomes
simply

H; = [p(y:|Z:) In [q(Z¢|y:)a(ye)]dys, subject to the constraint of eq.(159). (160)
Particularly, for a B-architecture it follows from max;,,|s,) H: that we have
p(yelze) = 0(ye — ), Ge = maxlg(welye)q(e)], He = 1n[q(:|70)q(Fe)], subject to eq.(159).  (161)

Further considering the contributions from each time ¢ uniformly, the harmony measure of the entire process is
simply the summation by eq.(153) again.

When y; is discrete or Gaussian, the integral of eq.(159) will either become a summation or be analytically
solved such that it can be directly inserted into H (p||q) for implementing learning. However, when y; is a real
nonGaussian random variable, the integral over y in eq.(159) is difficult to handle. In help of Tab. 2(C) again, it
follows from eq.(159) that we can have approximately

a(ye) = [a(yelFe—1)a(ye—1)dye—1 = q(ye|Fe—1)- (162)
Moreover, p(y:|z:) will be decided via maximizing H (p||q) by eq.(160), resulting in

p(ys|zs) = 6(ys — Tt), Yo = %?X[Q(fftlyt)qwtlgt—l)]- (163)

Putting eq.(158) into eq.(157) and eq.(163) into eq.(160), we can observe that the TBY'Y process system under the
approximation in eq.(154) and TBY'Y instantaneous system under the approximation in eq.(162) become equiva-
lent.

However, the two types of TBY'Y systems are conceptually different. The TBY'Y process system considers
a best harmony of two representations in the form of the joint distribution for two entire temporal processes of x
and y, including all the temporal dependences in consideration. In contrast, the TBY'Y instantaneous system only
emphasizes a best harmony of two representations of the joint distribution for only the pair z;, y; instantaneously
at each time ¢, not directly including temporal dependences in this harmony. Instead, the temporal dependence is
considered via the constraint eq.(159).

For implementation, we can also get Vo H (p||¢) in a way similar to eq.(53) and with z, = 1 in consideration.
For g(zly) = G(z|Ay + i, X), we can further get its specific form that is given by eq.(117) either directly on a
TBYY instantaneous system or with all the appearances of ¢(y:) replaced with g(y:|g:—1) for a TBYY process
system.

In addition to making the harmony learning as above discussed, we can also conduct learning in two stages
and make parameter learning in Stage | by eq.(42). In a similar way, we can get

KL(pllg) = 0 K Ly,

KL — [p(ye|zs, Ts—1) In %dw, TBYY process system, (16)
! [ p(yt|ze) In ﬁ%‘%dw, subject to eq.(159), TBYY instantaneous system.
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Figure 11. Two Types of Temporal NFA

Again, an estimate 7;_1 is already available from the system at time ¢ — 1 when H; or K L, is considered at time
t. Particularly, for a B-architecture, minimizing K L(p||q) leads to

(@) pytlze,Ge—1) = a(welys)a(v:1Ge-1) , fora TBYY process system,

_( f|Q(;ﬁt|(yt%Q(yt|!7t—1)dyt

q\Te|Y )4\Yt .

b)) ply:|xe) = , fora TBYY instantaneous system. 165
®) plie) S a(@:|ye)a(ye)dy: Y (165)

Moreover, putting eq.(165) into eq.(164), we observe again that K L(p||q) for both the temporal BYYY types be-
comes equivalent under the approximation in eq.(162).

Imposing the independence condition eq.(152) on both types of TBY'Y systems, we are lead to TBYY in-
dependence learning. Further recalling H (p||q) in eq.(32) and K L(p||q) in eq.(42), we can find that one key
difference here from the BY'Y independence learning introduced in Sec.3 is that an additional structure has been
imposed on ¢(y) via either directly a regression between y; and y;—; or assembly the marginal density relation
eq.(159). Correspondingly, the forward path p(y|z) should also be modified with its dependence to y:—; added in.
These changes further result in changes in parameter learning and model selection for making TBY'Y independence
learning, which will be introduced in the rest of this section.

6.3. TFA, Temporal NFA, and Space Dimension Selection

As shown in Fig.11(a), we start at extending the B-architecture given in Fig.5 into a TBY'Y B-architecture as
follows:

q(z|y) = G(z|Ay + 1, %), y+ = Bys—1 +¢&¢, B is adiagonal matrix, (166)

where a temporal structure is imposed on y; and its stability is guaranteed by || B|| < 1. ||B|| is the norm of B, i.e.,
the positive root of the largest eigen-value of BB™. For an example, we can consider
. e’ —e % .
B =diag[b1,---,bn), bj = g C = diagler, -+, em), (167)

where |b;| < 1 is always satisfied.

Moreover, g; is a white process in a strict sense that ; is independent from both y;_, and e, for any 7 # &.
Also, the components of ; = [e,gl), ‘.- ,egm)]T are independent. Two typical examples are a Gaussian and a
Gaussian mixture as follows:

G(g]0,1), (a) Gaussian,

aledlb) = { [T, ac169)), (b) a(e¥” 69) by eq.(75) with y@) replaced by e{. (168)
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With the above setting, the process {y; }_; will satisfy eq.(152) as long as the components of y, are also initialized
to be independent. Specifically, eq.(166) with the above case (a) is a temporal extension of the classic factor
analysis and thus is called temporal factor analysis (TFA). As shown in [92] and to be further elaborated in the
next subsection, one key feature of TFA is that the rotation indeterminacy by eq.(115) of the classic FA has been
removed. Similarly, eq.(166) with the above case (b) is a temporal extension of the NFA in Fig.5 and thus is called
temporal NFA.

The learning can still be implemented by the Ying-Yang alternative procedure eq.(65).

For the Ying step, ¢(z|y) is still updated in the same way as in eq.(118), while the updating on g(y) should be
modified. In the implementation of a TBY'Y process system, it is updated to increase n: In g(y¢|y:—1) as follows:

updating B: & =y, — Byy_1, C™*" = C% + nony(I — B*)¢(e¢)y;_,, and get B by eq.(167);
" (e (a) TFA,
where ole) = 4‘9"(1’3:;“—1), (b) temporal NFA;
no action, (@) TFA,

updating b - { by eq.(119) and eq.(126) with 5@ replaced by £, (b) temporal NFA. (%9

where the updating on B comes from

Gp =1V Ing(yslye—1) = ned(e)di_1, Go = mV e In G(ys|Bijs—1, ),
dB = (I — B*)dC, Tr[G%dB] = Tr[Gg(I — B®)dC] = Tr[GLdC], Gc = (I — B*)Gp. (170)

In the implementation of a TBY'Y instantaneous system, it is difficult to handle temporal NFA due to the integral
over y in eqg.(159). However, to handle TFA we simply have

q(yt) = G(y4]0,As), Ay = BAy_1B + I, Ay = Elysy/ ], Avm1 = Elye—y/_,). (171)
and thus B is updated by increasing 7; ln g(y;) as follows:

onevY — Cold + 7707775(-[ _ Bold 2)GABOldEiJ s GA — Aold —lyty;TAold -1 _ Aold —1,
A" = BA°4B 1 T, and get B by eq.(167). (172)

The updating comes from Gy = 7V In G(3:|0,A) = me[A " yyl A= — A~1], dA = dBXYBT + BY¥dBT,
and thus Gg = GA BYY.

For the Yang step, y: is obtained with a different degree of difficulty for performing TFA and temporal NFA,
respectively. For TFA, it follows from eq.(158) and eq.(161) that we directly get

v = { [I+ ATS AV (ATS Y (@ — p) + Bys_1), (@) TBYY process system, 173)
;=

(B! B+ 1)t + ATY 1AL ATYS " Y(z, — p), (b) TBYY instantaneous system.

For temporal NFA, it is difficult to get 4. on a TBY'Y instantaneous system due to the integral over y in eq.(159).
However, we can still get ¢ on a TBY'Y process system by solving the following nonlinear optimization

ye = argmax{G(z,| 4y + 1, %) [T D B:G 6 Imyi + bius™, %)), (174)
7 T
via running Tab.2(A) in a few iterations, with all the appearances of m;, replaced by m . + bjyt(’_)l.

In the special case that B = 0 (thus C = 0, b; = 0), TFA returns back to FA and temporal NFA returns back
to NFA, respectively. E.g., both the cases in eq.(173) return back to eq.(127) for FA and eq.(174) returns back to
eq.(76) for NFA.

In all the above discussions, each dimension egj) = yt(j) — Byt(’;)1 has a fixed variance of 1. To select the
best value m of the space dimension, we can enumerate m for a number of values and make parameter learning as
above.

On a TBYY process system, we make the selection by eq.(40) with J(m) in Tab.3. For simplicity, we can
approximately use J(m) in Fig.5 for both TFA and temporal NFA. While on a TBYY instantaneous system, we
make the selection by directly using eq.(40) for temporal NFA in Tab.3.

However, this enumerating based selection costs extensively. Similar to eq.(130), it follows from the singular
value decomposition of a general matrix that we consider a linear mapping A°3V™ on y; and &; with the linear
state space eq.(150) turned into the following form
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ys = DByD 'y, + €4, E(esef ) = D* = A, B, = VT BV, B is given by eq.(167),
2y = Ays + ey, ATA=1, E(etetT) =c?]. (175)

In this alternative state space, maximizing H; by eq.(157) will, via maximizing n; In G (y:| DB, D~ 'y;_1, A), push
the variance A? towards zero constantly if the j-th dimension is extra. As a result, model selection on m happens
automatically during parameter learning via simply discarding the dimension j. That is, discarding the components
i, yt(’_)l, e\ eliminating the j-th column of A, and also eliminating the j-th column and the j-th row of V and
D. Inimplementation, this discarding is made when A? approaches near 0 but before becoming zero to avoid the
computing difficulty on D—1. Since B, is no longer diagonal, eq.(175) no longer directly implements the TFA but
still equivalent to the TFA.

Specifically, an adaptive learning algorithm can be obtained. For its Yang Step, we can simply replace the
case (a) of eq.(173) with

gt = (A +0”I)T'A[AT (2 — p) + A®°B,A™0%, 4] (176)

Moreover, the Ying step consists of the part of updating ¢(z|y) in eq.(118) with A updated in help of g4 by either
of two approaches in Tab.1 and the part of updating g(y) in help of the gradients of n; In G (y;| DB, D~ 'y;_1, A):

dInG(y:|DB,D 'y _1,A)

Go=mn 30

= ne(I — B*)diag[VRVT],

R=D7"ey; D7, &1 =ys — DB,D 'y,
1 DB,D~ly,_1, A
GV :nta nG(ytl a;)/ Yt—1, ) :ntB(VTR+VRT),
1 DB,D 1y, 1, A
Gp = nta n Gyl - y1,4) _ meD " diag[B,R + RB, + D 'ere’ D' —1].  (177)

We can directly update D% = D4 4 n,G p, C™*¥ = C° + oG, and get B by eq.(167). Also, we use
Gy to update V subject to VTV = I by any of two approaches in Tab. 1.

6.4. Temporal ICA, Kalman Filter, and Identifiable State Spaces

We consider the special case that there is no observation noise on z i.e., we have ¥ = ¢%I with 6% = 0.
For both types of temporal BYY learning, it follows from eq.(173) and eq.(174) that we get y; = Wz, with
W = (AT A)~1 AT being simply the pseudo inverse of A, which is independent of time ¢ — 1. Again, we are lead
to the degenerated case by eq.(99) and get a temporal extension of ICA.

Moreover, this temporal ICA is implemented in the same format as in eq.(105) with

(1) W is updated by eq.(97) or eq.(103);

2 q(yt(’)) is updated by eq.(169) in the implementation of a TBY'Y process system. When q(y:|yz—1) is
nonGaussian, it implements a temporal ICA. Even when g¢(y:|y:—1) is Gaussian, as firstly shown in [94], the
rotation indeterminacy by eq.(115) can be removed when the elements of the diagonal matrix B are different, which
can be observed from a fact that y} = B¢ y:_1 + e after arotation y; = @y, p¢? = I, with ¢ = ¢BdTy;_1
no longer being diagonal and thus the independence condition eq.(152) broken.

3) q(yt(’)) is updated by eq.(172) in the implementation of a TBYY instantaneous system. Again, it is
difficult to handle the case of nonGaussian q(yt(’) |yt(’_)1) due to the integral over y in eq.(159). However, the case
of a Gaussian g(y:|y:—1) can be handled, with the rotation indeterminacy by eq.(115) removed too, which can be
observed from a fact that A; in eq.(171) will become Eyyi’ = ¢Ey:yl ¢* that does not remain diagonal after a
rotation y, = ¢y, o’ = 1.

Furthermore, we can select an appropriate dimension m for y; as discussed at the end of Sec. 5.3.

Another interesting special case of eq.(150) has been widely studied for decades in the literature of control
theory. Usually, e;, €; are further assumed to come from the following Gaussian processes:

G(es]0,%), Ee; =0, Eysef =0, G(&4]|0,A), Ee; =0, Ey;_1e] =0, Eesel = 0. (178)

Also, the parametric matrices A, B as well as the variances of Gaussian e;, &; have to be known. The task is to
estimate §; upon observing z; and then get Z; = Ag; as the result after filtering out the noise in z;. The optimal
solution is the well known Kalman filter [36].
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As shown in [14], the estimate y; given by the Kalman filter is equivalent to

ye = Elytlee] = [yep(yelze)dye, plyelas) = qu(itl:llzg)qq(gzt))dyt’ subject to eq.(159). (179)

Alternatively, it can be observed that minyy,|,,) K L¢ With K L; by eq.(164) also results in the above p(y:|z:).
Moreover, since e, ; (and thus g(z:|y:), ¢(y:)) are all Gaussians, we have

Elyi|ze] = g = ng»X[q(xtlyt)q(yt)]- (180)

That is, y; obtained by eq.(179) is equivalent to g; by eg.(161). On the instantaneous Bayesian Ying-Yang system
with the special settings by eq.(150) and eq.(178), both the learning by maximizing H (p||¢) and the learning by
minimizing K L(p||q) are equivalent to the well known Kalman filter on estimating y;, which is given by the cases
(b) in eq.(173).

More than providing a different insight, we can also get some new results from maximizing H (p||g). Two
examples are introduced as follows:

(1) In the literature of the Kalman filter studies, knowing the dimension m of y; is implied in requiring that
the parametric matrices A, B are known. Little studies have been made on how to determine an appropriate m. In
some applications, there may be two or more sets of models with different dimensions. We may choose one that is
the smallest in J(m) by Tab.3.

(2) When &, is nonGaussian, we get a generalized Kalman filter by approximating the density of ¢; via a
Gaussian density and then estimates y; as the cases in eq.(178). In help of eq.(174) and Tab.2(A), we can also
estimate g, with the density of £, modeled by a Gaussian mixture.

Requiring that the matrices A, B are known is too restrictive in many temporal modeling problems. However,
the problem of estimating all the unknowns y;, A, B, as well as ¥ and A only from {z;} will suffer intrinsic
indeterminacy, which can be observed from the perspective of making a linear mapping y; = ¢y:, with a general
matrix ¢. It follows from eq.(150) that we get the same form z; = A'y; + e, y; = B'y,_, + € with

A'=A¢™, B'= 9By, &, = de, (181)

and &} remains to be a Gaussian in the form of €, as in eq.(178). That is, y: is not identifiable in this state space
model by eq.(150) and eq.(178).

This type of indeterminacy can be removed by imposing certain constraints on A or B or ; such that A’ or
B’ or £} becomes no longer satisfying the constraints. In the Kalman filter, A should remain unchanged at a given
one and thus the only possibility is ¢ = I. While in TFA, the satisfaction of eq.(152) on eq.(178) actually means
that both B, A are diagonal matrices. It follows from eq.(181) that a linear mapping y; = ¢y: with B € D* and
B’ € D* means that ¢ = I1.D with D € D,II € P, where D*, D, P are the following families:

D = {D : Disdiagonal}, P = {IL : II is a permutation matrix},
D* ={D € D : all diagonal elements of D are different}. (182)

Observing that ¢ = ILD or equivalently
y; = ILDys, (183)

there is an one-to-one correspondence between the m series {y;(j)}thl,j =1,---,m and the m series {yt(i)}thl,

i=1,---,m. Thatis, for each series {g/t(")}tT:1 there must be one and only one series {y;(j) }L, such that both
the series have a same waveform with difference only in a constant scale and a permutation (i.e., an order change
i # 7). In many applications, this type of difference is ignorable, and thus we also say that y; is identifiable if we
are able to specify y; viay; in a sense of eq.(183).

Other types of indeterminacy exist also. E.g., on the additive decomposition ¥, = AA:AT + ¥ from z; =
Ay; + e; and on the additive decomposition A = BABT + I from y; = By;_1 + ;. Generally, the identifiable
problem should be studied from the perspective of uniquely estimating all the parameters of A, B, as well as X
and A subject to all the constraints in the state space model by eq.(150) and eq.(178). E.g., on a set of samples of
a large size, the constraints consist of :

Y, =AAMAT + 3 A=BABT +1,%,>0,A>0,% >0, ||B|| <1, RY = BA R® = ABAAT. (184)

The last line comes from RY = E[yyl ;] = BA and R = E[mz] ;] = ABAAT, where A = E[yyf] =
Elyi—1yil 1] as well as R = E[zizl (] = E[(Ay: + e)(Ayi—1 + e;—1)T] = ARY AT with consideration of
Eyel | =0,E[esyl 1] =0, Elesel ;] = 0.

44



Neural Information Processing - Letters and Reviews Vol.1, No.1, October, 2003

6.5. Temporal BFA, Temporal LMSER, and Supervised Recurrent Net

We further consider the cases that y; is a binary vector. We start at extensions of Bernoulli NFA (BFA) to
temporal BFA. Considering that y; is a binary vector [y; (1 ), ,y§m>]T that satisfies eq.(152) with each y(’) taking
either 1 or 0, the key point is how to extend the Bernoulll distribution by eq.(77) to encoding temporal relations.

The simplest case is considering the first order temporal relation as follows:

aw® = jly =iy =nP, i,5=0,1, (185)
which describes the probability for yt(k) to transfer from i to 5. The process {y; }1_; by the above eq.(185) consists
of m independent Markovian chains of the 1st order, respectively, which are not directly observable. As in Fig.12,
the observation process {z;}L_; are generated from {y;}L; via the Ying path g(z|y:). Thus, we encounter
a variant of the classic Hidden Markov Model (HMM) [64, 9], with one variable that takes m discrete values
being replaced by a binary vector [y, (1 ), ,y§m>]T that satisfies eq.(152). We called this type of HMM as the
independent HMM. Especially, we call it the independent binary HMM when each y(’) only takes either 1 or 0.

In literature, learning on a HMM is made under the maximum likelihood (ML) principle by the well known
Baum-Welch algorithm [64], which is a type of EM algorithm. However, in addition to a high computing cost by
the Baum-Welch algorithm, it is well known that the maximum likelihood principle is usually weak on making
model selection (i.e., deciding the number m), especially in a case of a small size of training samples. Usually, this
number m is assumed to be known in advance. In contrast, learning on independent HMM can be implemented in
help of TBYY harmony learning, with model selection made either automatically during an adaptive learning or
subsequently after learning via a new class of model selection criteria.

Specifically, the TBYY harmony learning is implemented by the Ying-Yang alternative procedure eq.(65),
with its detailed form modified as follows.

The Yang step is obtained from eq.(78) simply with g; replaced either by 7 in the implementation of
temporal BY'Y instantaneous system or by

(1 _ oD ()
= (1 -y )mo + 7 mu (186)
in the implementation of a TBY'Y process system.

For the Ying step, ¢(z|y) is still updated in the same way as in eq.(118), while the updating on g(y) should be
modified. For a case that either z, = 1 or 2, is given by eq.(50), we have n; = 1 and thus update ¢(y) to increase
Inq(y:|ys—1) as follows

) ) M+ 10,008,

o) mew =1 4,5 =0,1, VEk;

(a) mj; T, ) i,J for

b) (k) new _ 77(’{) new (k) old YS) "”"(1 ) old), for Vk;

(¢) ife® (1 —7k) approaches 0 constantly,
we discard the state 5 as well as all the related parameters, and let m = m — 1, (187)

where n&j is same as given in eq.(37).
While in the implementation of temporal BY'Y instantaneous system by eq.(160) subject to eq.(159), the step
(@) is replaced by:

(k) old (%) old
+ (5 o
k * .
@ 51) s 1+ 7r<k> o forVk, j = 0,1,
(k)
(k) old (k) old
Tjo + 77(S o(® e
%) "= — e, for Vk, j =0,1. (188)
L+ imm

With a large initial value, m will automatically reduce to an appropriate one during the above learning due to
step (c) in eq.(187). Alternatively, we can also make parameter learning and model selection sequentially in two
stages. At Stage I, parameter learning can be made by eq.(42) or equivalently by the ML learning in help of the
Baum-Welch algorithm [64, 9]. Then, the number m is decided at Stage Il in help of eq.(40) that takes a detailed
form given in Tab.3:
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Figure 12. Two Types of Temporal BFA

Historically, the use of eq.(40) for selecting m on the classic HMM was firstly suggested in [98] and then
in [94] but with a cumbersome form that directly uses J(m) = —H. Also, selecting m on the independent
HMM was firstly suggested in [96] via a direct use of eq.(40) without any simplification. Then, a simplified form
J(m) = 0.51n|X| + J,(m) was obtained in [92] but still with a tedious second term J,(m). In contrast, the
criteria in Tab.3, firstly proposed in this paper, are not only compact in their representation but also much simple
to be computed accurately.

Furthermore, we can go beyond the first order temporal relation by defining q(yt(k) = j|wt(k)) with a vector
wt(k) consisting of past samples up to the order « > 1. However, the number of free parameters will increases with
an order m2%~!, Alternatively, we can define the following transfer probability for the purpose:

g™ = jlwr) = s(BFw® +b)¥ " [1 = s(BTw® + b))t w . (189)

An adaptive learning algorithm that implements the learning by eq.(164) is given in [92] on page 839. Similar to
making temporal NFA, we can also make temporal BFA via harmony learning as described by eq.(157).

Next, we consider extensions of LMSER to temporal LMSER. Similar to the relation between BFA and
LMSER, the key point is that p(y|z) is given directly by a forward mapping instead of solving a nonlinear maxi-
mization.

In the implementation of a TBY'Y instantaneous system, this p(y|z) remains same as given in eq.(134). The
Ying step is the same as above discussed and the Yang step is still given by eq.(138) simply with g; replaced by
7). Similarly, the criteria J(m) are still those given by Tab.3.

In the implementation of a TBY'Y process system, eq.(134) is modified into

q(zly) = G(z|Ay + p,0°I), plylz) = 6(y — s(Wa + Kye—1 +v)), (190)

for being consistent to its format in eq.(163). That is, the effect of the past y;_1 needs to be taken in consideration.
Still, the Ying step is the same as above discussed and the criteria J(m) are given by Tab.3. However, eq.(138)
should be modified with not only g¢; given by eq.(186) but also the following updating on K added in:

Kmv = K 4 oDy (y) + o(y)]yi-1- (191)

Decomposing z = [€, (] into two parts, a supervised learning based three layer net by eq.(143) can also be
extended to the temporal versions, as shown Fig.13.

In the implementation of a TBY'Y instantaneous system, eq.(143) remains the same. The Ying step is the
same as above discussed but with ¢; in the place of =, and the Yang step is still given by eq.(138) simply with g;
replaced by 7(¥) and with &; replaced by z;. Similarly, the criteria J(m) are still those given by Tab.3.

In the implementation of a TBY'Y process system, eq.(143) can be implemented with

ye = (W& + Kypor +v), 0> = 3o S0 G — p— As(W& + Kye1 +v)|%. (192)
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Figure 13. Two Types of Recurrent Networks

Still, the Ying step is the same as above discussed but with {; in the place of z;, and the criteria J(m) are
given by Tab.3. However, the Yang step consists of both eq.(138) with ¢; given by eq.(186) and with eq.(191) for
updating K.

As shown in Fig.13, the above two types of temporal extensions of supervised learning based three layer nets
actually are types of recurrent networks with supervised learning. The one with the implementation of a TBYY
instantaneous system is a three layer net with its hidden units being recurrently input by its past values. While the
one with the implementation of a TBY'Y process system is a three layer net with the past values of the hidden units
recurrently input to not only the hidden units but also the input units together with &. In other words, the above
discussed Ying-Yang learning procedures also provide new tools to handle the two types of recurrent networks.

7. Conclusion

Studies on the ICA problem have become quite popularized in the literature of neural networks. Typical
approaches for solving ICA problems have been summarized. Particularly, advances on the ICA studies that
consider hybrid sources of both subGaussians and superGaussians and on the ICA extensions that consider noise
and temporal dependence have been overviewed. Instead of targeting at a complete survey on all the main existing
results, for which there are already several survey papers in the literature, the present paper has made a systematic
sketch from the perspective of Bayesian Ying-Yang independence learning. Not only new insights are provided on
existing results in the literature, but also a number of further results are presented. For clarity, these new results
are summarized as follows:

¢ A Stiefel manifold based nonlinear Hebbian learning (see Sec.2.2).
¢ A simplified LPM-ICA algorithm that works on hybrid sources (see Sec.4.2).
¢ A forward mapping model for estimating density ¢(z) (see Sec.4.3).

¢ Regularized adaptive learning on FA and NFA with criteria for selecting factors and with algorithms that
make automatic selection (see Sec. 5.2 & Sec..5.3).

e Extensions of LMSER learning with hidden factors selected either by criteria or automatically during pa-
rameter learning (see Sec. 5.4).

e Adaptive learning on a three layer net with an ICA type algorithm in place of the conventional back-
propagation algorithm, as well as with hidden units selected either by an easy implemented criterion or
automatically during parameter learning (see Sec. 5.6).

¢ A comparative understanding on two types of temporal BY'Y systems.
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¢ Modified algorithms for TFA and temporal NFA with states selected automatically during parameter learning
(see Sec.6.3).

¢ Algorithms for variants of HMM models that are extended from BFA and LMSER, with states selected either
by criteria or automatically during parameter learning (see Sec. 6.5).
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