
*E-mail: lxu@cse.cuhk.edu.hk

Neurocomputing 22 (1998) 81—111

Bayesian Kullback Ying—Yang dependence reduction theory

Lei Xu*
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin,

NT, Hong Kong

Accepted 3 July 1998

Abstract

Bayesian Kullback Ying—Yang dependence reduction system and theory is presented. Via
stochastic approximation, implementable algorithms and criteria are given for parameter learn-
ing and model selection, respectively. Three typical architectures are further studied on several
special cases. The forward one is a general information theoretic dependence reduction model
that maps an observation x into a representation y of k independent components, with k detect-
able by criteria. For the special cases of invertible map xPy, a general adaptive algorithm is
obtained, which not only is applicable to nonlinear or post-nonlinear mixtures, but also provides
an adaptive EM algorithm that implements the previously proposed learned parametric mixture
method for independent component analysis (ICA) on linear mixtures. The backward architecture
provides a maximum likelihood independent factor model for modeling observations from
unknown number of independent factors via a linear or nonlinear system under noisy situations.
For the special cases of linear or post-nonlinear mixture under Gaussian noise, the simplified
adaptive algorithm and the criterion for detecting k are given, with an approximately optimal
linear mapping xPy suggested. Moreover, if the independent factors are assumed to be standard
Gaussians, we are further led to the conventional factor analysis, but with a new adaptive
algorithm for its estimation and a criterion for deciding the number of factors. The bi-directional
architecture combines the advantages of backward and forward ones. A mean field approxima-
tion is presented, with a simplified adaptive parameter learning algorithm and an approximate
k-selection criterion. Moreover, its special cases lead to the existing least mean square error
reconstruction learning and the one hidden layer deterministic Helmholtz machine, with new
findings. Also, a specific degenerate case of bi-directional architecture results in a non-invertible
but adaptively implementable forward on to mapping for ICA. Experiments on binary sources
are demonstrated with successes. (1998 Elsevier Science B.V. All rights reserved.

Keywords: Dependence reduction; Bayesian Kullback Ying—Yang learning; Model selection;
Independent component analysis; Stochastic approximation; Information theoretic; Maximum

0925-2312/98/$ — see front matter (1998 Elsevier Science B.V. All rights reserved.
PII S 0 9 2 5 - 2 3 1 2 (9 8) 0 0 0 5 1 - 4

likelihood; Independent factor model; Linear and post-nonlinear mixture; Blind separation;
Source number detection; Least mean square error reconstruction; Deterministic Helmholtz
machine

1. Introduction

The aim of mapping x into y"[y(1) ,2, y(k)]T with the dependence among its
components reduced as much as possible is a basic principle in a brain perception
system [2]. It has been studied in literature under different names such as dependence
reduction, factorial learning, independent component analysis (ICA), factorial encoding.
Here, we adopt the first one because it actually covers the meanings of the other three
and is more appropriate to include those efforts that attempt to get independence but
finally may not really reach independence but a reduced dependence (e.g., falling into
a local minimum in a cost minimization). We omit a large volume publications
relating to these topics and refer to many other papers in this special issue.

The Bayesian Kullback Ying—Yang dependence reduction (BKYY-DR) theory is
preliminarily proposed in Ref. [20] under the name of BKYY factorial encoding
theory for the cases of y being a binary code. Its development to a general form is
briefly summarized in Ref. [21, 22] under the current name, with particular focus on
the backward architectures. In this paper, new advances will be reported. First,
improvements are made on the architecture design of a BKYY-DR system. Second,
a unified BKYY-DR framework has been set up, a generic stochastic implementing
procedure and a generic model selection criterion are developed. Third, three typical
architectures and their relations to several existing ICA or factorial learning methods
have been further studied.

As a test bed, we also consider the instantaneous mixture models that the d dimen-
sional observation x comes from k independent sources y"[y(1) ,2, y(k)]T via

x"G
g(y,/)#e, general,

g(Ay,/)#e, post-nonlinear, Ey"0, e is noise, Ee"0, EyeT"0,

g(Ay)"[g
1
(xL 1, /),2,g

d
(xL d, /)], Ay"xL "[xL (1),2,xL (d)]T. (1)

with x being wide stationary and ergodic. In the case of e"0, d"k and g(u,/)"u
linear, it reduces to the linear invertible instantaneous mixture and yL "¼x becomes
independent in its components. This is usually called independent component analysis
(ICA). In this case, this yL "¼x can recover y up to constant unknown scales and any
permutation of indices, and thus sources can be blindly separated from this linear
invertible instantaneous mixture. This ICA has been studied widely in the literature.
We omit to mention one by one all the existing references and refer to many other
papers in this special issue. More generally, in the case of e"0, d"k but g(u,/)
nonlinear, the problem of Eq. (1) becomes the post-nonlinear instantaneous mixture
studied recently by Taleb and Jutten [14] and others.

82 Lei Xu/Neurocomputing 22 (1998) 81–111

1 It is a unsupervised learning rule proposed with both the batch and adaptive gradient algorithms
provided firstly in Refs. [15,16], and three years later it has been directly adopted to implement ICA by
Karhunen and Joutsensalo [8] under the name of nonlinear PCA, see Section 4.3 for details.

2 It should be “Yin” in the Mainland Chinese spelling system. However, I prefer to use “Ying” for the
beauty of symmetry.

Section 2 introduces the BKYY-DR theory. Via stochastic approximation, imple-
mentable algorithms and criteria are given for parameter learning and model selection
in Section 3. In Section 4, three typical architectures are further studied on special
cases. The first two are shown to lead to a generalized information theoretic DR
model and a generalized maximum likelihood (ML) independent factor model, respec-
tively, with the existing ICA methods and factor analyses models as special cases and
with a number of new results. The bi-directional architecture is shown to combine the
advantage of the first two and a mean field approximation is presented for fast
implementation of its parameter learning and k-selection. It is also shown to include
the existing LMSER learning1 and the one hidden layer deterministic Helmholtz
machine [5] as special cases with new findings. Moreover, a forward non-invertible
onto mapping for ICA is got from a specific degenerate case of bi-directional
architecture. Experimental results on binary sources are shown in Section 5. Then, we
conclude in Section 6.

2. BKYY-DR system and theory

2.1. Basic idea of Bayesian Ying—½ang learning

The details of Bayesian Ying—Yang (BYY) learning system and theory and its
applications can be found in Refs. [20,21]. Here, we only introduce its basic idea.

As shown in Fig. 1, the perception tasks can be summarized as the problem of
estimating the joint distribution p(x, y) of the observable pattern x in the observable
space X and its representation pattern y in the representation space ½. In the Bayesian
framework, we have two complementary representations p(x, y)"p(yDx)p(x) and
p(x, y)"p(xDy)p(y). We use two sets of models M

1
"MM

y@x
,M

x
N and M

2
"MM

x@y
,M

y
N

to implement each of the two representations:

p
M1

(x, y)"p
My@x

(yDx)p
Mx

(x), p
M2

(x, y)"p
Mx@y

(xDy)p
My

(y). (2)

We call M
x
a Yang/(visible) model, which describes p(x) in the visible domain X, and

M
y
a Ying2/(invisible) model which describes p(y) in the invisible domain ½. Also, we

call the passage M
y@x

for the flow xPy a ½ang/(male) passage since it performs the
task of transferring a pattern/(a real body) into a code/(a seed). We call a passage
M

x@y
for the flow yPx a ½ing/(female) passage since it performs the task of generating

a pattern/(a real body) from a code/(a seed). Together, we have a YANG machine
M

1
to implement p

M1
(x, y) and a ½ING machine M

2
to implement p

M2
(x, y). A pair of

YING—YANG machines is called a YING—YANG pair or a Bayesian YING—YANG

Lei Xu/Neurocomputing 22 (1998) 81–111 83

Fig. 1. The joint input-representation spaces X,½ and the Bayesian YING—YANG system.

system. Such a formalization compliments to a famous Chinese ancient philo-
sophy that every entity in the universe involves the interaction between ½ING and
½ANG.

The task of specifying a Ying—Yang system consists of specifying all the aspects (e.g.,
the forms of variable and distributions, the architectures and scales, parameters, etc.)
of the four components p

My@x
(yDx),p

Mx
(x), p

Mx@y
(xDy), p

My
(y) under a given situation, which

is called learning in a broad sense. Our learning theory consists of two key principles.
First, the values of real parameters in a given system design are specified by maximally
enhancing the matching or Harmony between the ½ing—½ang pair, because both the
Ying and Yang attempt to describe the same joint distribution. Second, those positive
integers, that represent the scales or sizes of structures in the given system design, are
selected for not only best enhancing the ½ing—½ang matching but also keeping the
entire Ying—Yang system in a minimum complexity. This theory is called Bayesian
YING—YANG (BYY) learning theory. As shown in Ref. [20], the BYY theory
provides a theoretical guide for a number of existing major learning models in
parameter learning, regularization, structural scale or complexity selection, architecture
design and data smoothing.

In implementation, the Ying—Yang harmony is made by minimizing a harmony
measure called separation functional. Three categories of separation functionals have
been suggested in Ref. [20]. A widely used one is the well-known Kullback divergence
between the two representations in Eq. (2). In this special case, the BYY learning is
called Bayesian—Kullback YING—YANG (BKYY) learning.

2.2. BKYY dependence reduction system and architecture design

This paper only concentrates on one special case of the BKYY learning that maps
input x into a binary or real code y"[y(1) ,2, y(k)]T such that k is appropriately
decided and the dependence among the components of y(j) are reduced as possible.
This aim is imposed by letting

p
My

(y)"
k
<
j/1

p
My

(y(j)). (3)

84 Lei Xu/Neurocomputing 22 (1998) 81–111

3A density is said Free implies that it is a totally unspecified in the density form p(a) without any
constraint. Thus, it is free to change to be indirectly specified by other components.

In this case, the learning is realized by the minimization of the Kullback divergence:

K¸
M1,M2

"PpMy@x
(yDx)p

Mx
(x) ln

p
My@x

(yDx)p
Mx

(x)

p
Mx@y

(xDy) <k
j/1

p
My

(y(j))
dxdy, (4)

and thus called BK½½ dependence reduction (BK½½-DR) system and learning.
In this learning, the specification of p

Mx
(x) is usually straightforward. Given a train-

ing set D
x
"Mx

i
NN
i/1

, we simply let p
Mx

(x) fixed to a kernel estimate:

p
h
(x)"

1

N

N
+
i/1

K
h
(x!x

i
), K

h
(r)"

1

hd
KA

r

hB, (5)

with a prefixed kernel function K(.) and a smoothing parameter h. A special case that
we often consider is that NPR, hP0.

The specifications of p
My

(y(j)) has two choices. One is to let p
My

(y(j))"p(y(j)) free.3
Thus, min K¸

M1,M2
results in

p(y(j))"p
M1

(y(j)), p
M1

(y)"PpMy@x
(yDx)p

Mx
(x) dx. (6)

The other choice is that p
My

(y) is an independent parametric model with each
component density being either Bernoulli for a binary y(j) or a finite mixture for real
y(j), that is

p
My

(y)"p(yDh
k
)"

k
<
j/1

p(y(j)Dm
j
), h

k
"Mm

j
Nk
j/1

,

p(y(j)Dm
j
)

"G
py(j)
j

(1!p
j
)1~y(j),p

j
"1/(1#e~mj) for binary y(j),

+ny,j
r/1

a
r,j

p(y(j)Dm
r,j

), a
r,j
'0, +ny,j

r/1
a
r,j
"1, m

j
"Mm

r,j
, a

r,j
Nny,j
1

for real y(j).

(7)

The specifications of p
Mx@y

(xDy) and p
My@x

(yDx) are made jointly with three types of
combinations, given as follows:

(a) ¹he Forward architecture, in which p
Mx@y

(xDy)"p(xDy) is free to be indirectly
specified through other components and p

My@x
(yDx)"p(yDx,h

y@x
) is a parametric model.

From min K¸
M1,M2

, the free p
Mx@y

(xDy)"p(xDy) is specified by

p
Mx@y

(xDy)"p(xDy)"
p(yDx, h

y@x
)p

Mx
(x)

p
M1

(y)
, (8)

where p
M1

(y) is given by Eq. (6). In this case, Eq. (4) becomes

K¸
M1,M2

"PpMy@x
(yDx)p

Mx
(x) ln

p
M1

(y)

<k
j/1

p
My

(y(j))
dx dy. (9)

Lei Xu/Neurocomputing 22 (1998) 81–111 85

The parametric p
My@x

(yDx)"p(yDx, h
y@x

) is implemented by a network or a group of
networks in forward architecture with f (x,t) or f

r
(x,t

r
) being its output.

When y is real, a typical example is the following Gaussian mixture:

p(yDx, h
y@x

)"
ny@x
+
r/1

b
r
G(y, f

r
(x, t

r
),R

y@x,r
), b

r
'0,

ny@x
+
r/1

b
r
"1,

h
y@x

"Mb
r
,t

r
,R

y@x,r
Nny@x
1

, (10)

where G(r,m, R) denotes a Gaussian density about r with mean m and covariance R.
When y is binary, we can consider the following specific design:

p
G
(yDx, h

y@x
)"Z~1

V
e~(1@b)E(y,V), Z

V
"Pe~(1@b)E(y,V)dy,

E(y,»)"
k
+

i,jEi

v
ij
y(i)y(j)#

k
+
j/1

y(j)[f
j
(x,t)#c

j
], h

y@x
"Mt,»,Mc

j
NN, (11)

which is a Gibbs distribution defined by E(y,») on a fully connected recurrent net with
weights v

ij
and external inputs f

j
(x, t), j"1 ,2, k and bias c

j
, j"1,2, k, such that

the second-order dependence among y(j), j"1,2, k is taken into consideration. The
simplest case of » is v

ij
"0 for all i, j. In general cases, » is required to satisfy

conditions that Z
V

exists.
For convenience, alternatively, we can also approximate p

G
(yDx, h

y@x
) by an indepen-

dent distribution:

p(yDx, h
y@x

)"
k
<
j/1

p
j
(x)y(j)(1!p

j
(x))(1~y(j)), (12)

with p
j
(x), j"1,2,k decided such that the divergence :p(yDx, h

y@x
) ln[p(yDx, h

y@x
)/

p
G
(yDx, h

y@x
)] dy is minimized.

As shown in Appendix A, we have p
j
(x), j"1,2, k, are solution of

p
j
(x)"s(Mp

r
(x)Nk

r/1,rEj
)"

1

1#exp[1b(+k
r/1,rEj

v
jr
p
r
(x)#f

j
(x, t)#c

j
)]

,

j"1,2, k. (13)

The dynamic process of getting the solution is simple, either sequentially or in
parallel by

Choice (a): for j"1,2, k sequentially, p/%8
j

(x)"s(Mp0-$
r

(x)Nk
r/1,rEj

) and
p0-$
j

(x)"p/%8
j

(x).
Choice (b): for j"1 ,2, k in parallel, p/%8

j
(x)"p0-$

j
(x)#g[s(Mp0-$

r
(x)Nk

r/1,rEj
)!

p0-$
j

(x)] and p0-$
j

(x)"p/%8
j

(x), where g'0 is a small enough learning stepsize.
As shown in Appendix A, both the two processes converge to the solution of

Eq. (13).
(b) ¹he Backward architecture, also called Generative Model, which is complement

to the forward architecture. In this case, p(yDx) is free to be indirectly specified through
other components, and p

Mx@y
(xDy)"p(xDy, h

x@y
) is parametric.

86 Lei Xu/Neurocomputing 22 (1998) 81–111

From min K¸
M1,M2

, the free p
My@x

(yDx)"p(yDx) is specified by

p
My@x

(yDx)"p(yDx)"
p(xDy, h

x@y
)<k

j/1
p
My

(y(j))

p
M2

(x)
,

p
M2

(x)"Pp(xDy, h
x@y

)
k
<
j/1

p
My

(y(j)) dy. (14)

The parametric p
Mx@y

(xDy)"p(xDy, h
x@y

) is implemented by a network or a group of
networks in backward architecture with g(x,/) or g

r
(x,/

r
) being its output.

When x is real, similarly we have the following Gaussian mixture as a typical
example:

p(xDy, h
x@y

)"
nx@y
+
r/1

c
r
G(x, g

r
(y,/

r
), R

x@y,r
), c

r
'0,

nx@y
+
r/1

c
r
"1,

h
x@y

"Mc
r
, /

r
, R

x@y,r
Nnx@y
1

. (15)

When x"[x(1),2,x(d)]T is binary, similar to Eq. (12) we have

p
G
(xDy,h

x@y
)"Z~1

U
e~(1@b)E(x,U), Z

U
"Pe~(1@b)E(x,U)dx,

E(x,º)"
d
+

i,jEi

u
i,j

x(i)x(j)#
k
+
j/1

x(j)[g
j
(y, /)#d

j
], h

x@y
"M/, º, Md

j
NN. (16)

The simplest case of º is u
ij
"0 for all i, j. In general cases, º is required to satisfy

conditions that Z
U

exists.
Alternatively, similar to Eq. (13) we have

p(xDy, h
x@y

)"
k
<
j/1

q
j
(y)x(j)(1!q

j
(y))(1~x(j)), (17)

with q
j
(y), j"1,2,k decided such that the divergence :p(xDy,h

x@y
) ln [p(xDy, h

x@y
)/

p
G
(xDy, h

x@y
)] dx minimizes.

Similarly, such a set of q
j
(y), j"1,2, k is the solution of

q
j
(y)"s(Mq

r
(y)Nk

r/1,rEj
)"

1

1#exp[1b (+k
r/1,rEj

v
jr
q
r
(y)#g

j
(y, /)#d

j
)]

,

j"1,2, k. (18)

and we can also use the previous two iteration choices for the dynamic process of
getting the solution.

(c) ¹he Bi-directional architecture, in which both p
My@x

(yDx)"p(yDx, h
y@x

) is given by
Eqs. (10) and (12) and p

Mx@y
(xDy)"p(xDy, h

x@y
) by Eqs. (5) and (16).

Lei Xu/Neurocomputing 22 (1998) 81–111 87

4Each of Mn
y,j

Nk
1
,n

y@x
,n

x@y
, and also of h

k
,h

x@y
,h

x@y
can be an empty set when its corresponding density is free

to be determined by other components.

2.3. BKYY dependence reduction theory

Putting the above-described four components p
My@x

(yDx), p
Mx

(x), p
Mx@y

(xDy), and p
My

(y)
into Eq. (4), we can get a so called BKYY-DR theory, which consists of four parts,
given as follows:

(1) First, with k,N"MMn
y,j

Nk
1
, n

y@x
, n

x@y
N fixed, we determine4 #

k
"Mh

k
, h

y@x
, h

x@y
N by

#H
k
"arg min

#k

K¸(#
k
, N), K¸ given by Eq. (4), (19)

which is called parameter learning and can be implemented by an iterative Alternative
Minimization:

Step 1: Fix M
2
"M0-$

2
, get M/%8

1
"arg min

M1
K¸

M1,M2
,

Particularly, p
My@x

(yDx)"p(yDx) given by Eq. (14) for a backward architecture.

(20)

Step 2: Fix M
1
"M0-$

1
, get M/%8

2
"arg min

M2
K¸

M1,M2
,

which guarantees to reduce K¸
M1,M2

until it converges to a local minimum at #H
k
.

(2) Second, with N"Mn
x@y

, n
y@x

, n
y
N fixed, we decide the dimension k by

kH"min
k|K

k, K"M j : J
1
(j)"min

k

J
1
(k)N, J

1
(k)"K¸(#H

k
, N). (21)

It has been shown in Ref. [21] that J
1
(k)'J

1
(k0) for k(k0 and J0

1
(k)"J0

1
(k0) for

k5k0, k0 is the correct value for k. That is, among several k values with a same
or similar ½ing—½ang matching value, we select the smallest k — the simplest in
complexity.

Alternatively, especially in the case of finite samples in D
x

where J
1
(k) may still

slowly decrease even after k5k0, as shown in Refs. [23,24] with 0(c
r
we can also use

kH"min
k

J
2
(k), J

2
(k)"J

1
(k)!c

r
H

y@x
(k),

H
y@x

(k)"P
x,y

p
M*

y@x
(yDx)p

h
(x) ln p

M*
y@x
(yDx) dxdy (22)

for detecting k0 as the minimum point of J
2
(k), which reduces as k increases and

reaches its minimum at k0 and then increases as k continues to increase, where the
superscript “*” means that this component is obtained after inserting the value
#H

k
obtained by Eq. (19). Here, we select the best k* that minimizes both the

mismatching of the Ying—Yang pair and its complexity H
y@x

(k) represented by the
entropy of the Yang passage, with the trade-off controlled by c

r
. Usually, we can set

c
r
"1.

88 Lei Xu/Neurocomputing 22 (1998) 81–111

(3) ¹hird, after learning by Eq. (19) and dimension selection by Eqs. (21) and (22),
we do structural scale selection by

NH"min
N

J(N), J(N)"G
K¸(h*

k*
, N) for J

1
,

K¸(h*
k*
, N)!c

r
H

y@x
(kH) for J

2
.

(23)

(4) Finally, after learning, the mapping xPy can actually be realized via p
My@x

(yDx) in
the three ways:

(a) Random sampling yL by the resulted p
My@x

(yDx).
(b) Maximum posterior yL "arg max

y
p
My@x

(yDx).
(c) Taking the regression E(yDx) by

E(yDx)"G
[p

1
(x) ,2, p

k
(x)]T for binary y,

+ny@x
r/1

b
r
f
r
(x, t

r
) for real y.

(24)

3. Stochastic implementation

3.1. Approximating integral by summation

To tackle the difficulty or high expenses on dealing with the integral operations in
K¸ given in Eq. (4), this paper also uses a variant of the general stochastic sampling
implementation technique proposed in Ref. [24].

Given the current x
i
, suppose that we can get a set of random samples

D
y@xi

"My
l
NNi
l/1

. Similar to Eq. (5), we consider the nonparametric estimate

p
h{
(yDx

i
)"

1

N
i

Ni

+
l/1

K
h{
(y!y

l
). (25)

Then, we adopt the following replacements:

dx+
p
h/0

(x)

p
h
(x)

dx, dy+
p
h{/0

(yDx
i
)

p
h{
(yDx

i
)

dy (26)

in the integral operations over x, y in Eqs. (4) and (22). After ignoring :p
h
(x) ln p

h
(x) dx,

we get

K¸
M1,M2

"AvgC
h
y@x

(i, l)!c
x
(i, l)!c

y
(i, l)

p
h{
(y

l
Dx

i
) D, H

y@x
(k)"AvgC

h
y@x

(i, l)

p
h{
(y

l
Dx

i
)D,

Avg[a(i, l)]"
1

N

N
+
i/1

1

N
i

Ni

+
l/1

a(i, l), h
y@x

(i, l)"p
My@x

(y
l
Dx

i
) ln p

My@x
(y

l
Dx

i
), (27)

c
x
(i, l)"p

My@x
(y

l
Dx

i
) ln p

Mx@y
(x

i
Dy

l
), c

y
(i, l)"p

My@x
(y

l
Dx

i
)

k
+
j/1

ln p
My

(y(j)
l

).

Particularly, from Eq. (9) we get

K¸
M1,M2

"AvgC
l
y
(i, l)!c

y
(i, l)

p
h{
(y

l
Dx

i
) D, l

y
(i, l)"p

My@x
(y

l
Dx

i
) ln p

M1
(y

l
),

p
M1

(y)"
1

N

N
+
i/1

p
My@x

(y
l
Dx

i
). (28)

Lei Xu/Neurocomputing 22 (1998) 81–111 89

5Where p
M1

(y) must be computed by Eq. (28) in a batch way.

In general, the set of random samples D
y@xi

"My
l
NNi
l/1

can be obtained in one of the
following ways:

1. When y is binary, we can simply get each bit y
j

independently by taking 0 or
1 either with equal probability or according to p

j
(x

i
) given in Eqs. (12) and (13), and

at the same time we set p
h{
(y

l
Dx

i
)"1 or p

h{
(y

l
Dx

i
)"p

My@x
(y

l
Dx

i
), respectively.

2. When y is real, we can have two choices:
(a) With probability b

r
, get y

l
"f

r
(x, t

r
)#e, with e being either a Gaussian noise

of a zero mean and a given variance matrix (which can be a simplification or
approximation of R

y@x,r
) or a uniform distributed noise on a finite domain (e.g.,

a sphere or hyper-cubic) centered at f
r
(x, t

r
).

(b) Get y
l
"+ny@x

r/1
b
r
f
r
(x, t

r
)#e, with e being either a Gaussian noise of a zero

mean and a given variance matrix or a uniform distributed noise on a finite
domain (e.g., a sphere or hyper-cubic) centered at +ny@x

r/1
b
r
f
r
(x, t

r
).

3.2. Parameter learning and model selection

By using K¸
M1,M2

in Eqs. (27) and (28) to replace K¸
M1,M2

in the parameter learning
Equations (19) and (20), we get a general batch way stochastic implementation
algorithm. If one of min

M1
K¸

M1,M2
and min

M2
K¸

M1,M2
is not analytically solvable,

we can let each minimization replaced by a descent search, e.g, a step of movement
along gradient descent direction.

Except for the forward architecture5, we can also get an adaptive algorithm via
descending the instantaneous cost [h

y@x
(i, l)!c

x
(i, l)!c

y
(i, l)]/p

h{
(y

l
Dx

i
) along the

gradient direction.
As examples, we give two detailed algorithms below:

Batch algorithm for forward BKYY-DR
Step 1: Fix M

y
"M0-$

y
, update M

y@x
to get M/%8

y@x
by

h/%8
y@x

"h0-$
y@x

!gAvgC
1

p
h{
(y

l
Dx

i
)

L[l
y
(i, l)!c

y
(i, l)]

Lh
y@x

Kh 0-$
y@x
D ,

Step 2: Fix M
y@x

"M/%8
y@x

, to get M/%8
y

by p
My

(y(j)
l

)"(1/N)+N
i/1

p(y(j)
l

Dx
i
, h

y@x
) when it is

free, otherwise by

m/%8
j

"m0-$
j

#g
1

p
h{
(y

l
Dx

i
)

Lc
y
(i, l)

Lm
j
Km 0-$

j

.

Adaptive algorithm for backward and bi-directional BKYY-DR
¸oop: For an input x

i
, get a set of random samples D

y@xi
"My

l
NNi
l/1

, as described in
Section 3.1.

90 Lei Xu/Neurocomputing 22 (1998) 81–111

Step 1: For each y
l
, update p

My@x
(yDx) by

(a) either

h/%8
y@x

"h0-$
y@x

!g
1

p
h{
(y

l
Dx

i
)

L[h
y@x

(i, l)!c
y
(i,l)]

Lh
y@x

Kh 0-$
y@x

for bi-directional architecture;
(b) or Eq. (14) for backward architecture, with p

M2
(x

i
) given by one of the three choices

below:
(i) p

M2
(x

i
)"+

y
p(x

i
Dy, h

x@y
)<k

j/1
p
My

(y(j)).

(ii) p
M2

(x
i
)+

1

N
i

+Ni
l/1

p(x
i
Dy

l
, h

x@y
)<k

j/1
p
My

(y(j)
l

)

p
h{
(y

l
Dx

i
)

.

(iii) ºse a mean field approximation p
M2

(x
i
)+p(x

i
DE(yDx

i
), h

x@y
) with E(yDx

i
) given

by Eq. (24).
Step 2: (c) Fix M

y@x
, update

h/%8
x@y

"h0-$
x@y

#g
1

p
h{
(y

l
Dx

i
)

Lc
x
(i, l)

Lh
x@y
Kh 0-$

x@y

,

(d) ¹hen, to get M/%8
y

by

(i) mnew
j

"m0-$
j

#g
1

p
h{
(y

l
Dx

i
)

Lc
y
(i, l)

Lm
j
Km 0-$

j

,

(ii) Or otherwise by p(y)"p
M1

(y) when p
My

(y) is free, where p
M1

(y) is given
by Eq. (28).

The detailed equations for gradients used in the above algorithms are given in
Appendix B.

After parameter learning, with the obtained parameters we do model selection by
using K¸

M1,M2
and H

y@x
(k) in Eqs. (7) and (28) to replace K¸

M1,M2
in Eqs. (21)—(23)

such that we get the stochastic approximations of the criteria J
1
(k) and J

2
(k) for

selecting an appropriate k and J(N) for selecting structural scale.

4. Three BKYY-DR architectures

Our attentions will focus on several special cases that not only lead to several
existing models but also provide new insights and new models for solving the BSS
problem Eq. (1).

4.1. General information theoretic DR model

4.1.1. General model
For the forward architecture, from Eq. (9) we have

K¸
M1,M2

"PpM1
(y) ln

p
M1

(y)

<k
j/1

p
My

(y(j))
dy. (29)

Lei Xu/Neurocomputing 22 (1998) 81–111 91

That is, x is mapped into y via p(yDx, h
y@x

) which results in p
M1

(y) such that a best match
is obtained between this p

M1
(y) and the independent model <k

j/1
p
My

(y(j)).
This general model can be classified into two types:

1. For a free p
My

(y(j))"p(y(j))"p
M1

(y(j)) given by Eq. (6), Eq. (29) is an extension of the
MMI ICA model [1] to the non-invertible mappings xPy.

2. For a parametric p
My

(y(j)) given by Eq. (7), Eq. (29) is an extension of the informa-
tion theoretic ICA model given in Ref. [25] to the non-invertible mappings xPy.

For both the two types, by using Eq. (28) the parameter learning can be made by the
batch algorithm given in Section 3 and the selection of k can be made by Eqs. (1)—(23).

4.1.2. Invertible forward model
In spite of its advantage of being applicable to non-invertible mappings xPy,

Eq. (29) can only be implemented in batch because p
M1

(y) must be computed by
Eq. (28) in batch. In the special cases of invertible mappings xPy, when
p
My

(y(j))"p(y(j)Dm
j
) is parametric, we have k"d and p(yDx, h

y@x
)"d(y!z),

z"f (x,W)"[f
1
(x,W) ,2, f

k
(x,W)]T with f (x,W) invertible. From Eqs. (6) and (5)

we get

p
M1

(y)"Pd(z!y)p
h
(f ~1(z))K

Lf~1(z)

LxT Kdz"p
h
(f~1(y))K

Lf~1(y)

LxT K. (30)

Putting it into Eq. (29) and discarding irrelevant terms, minK¸
M1,M2

becomes
maxW,hkJ(W, h

k
), h

k
"Mm

j
N with

J(W, h
k
)"

1

N

N
+
i/1
Cln K

Lf (x,W)

LxT K
x/xi

#

k
+
j/1

ln p(f
j
(x

i
,W) Dm

j
)D, (31)

which can be implemented adaptively by

Adaptive algorithm for forward BKYY-DR.

Step 1: W/%8"W0-$#gdWDW0-$, dW"

L[ln D©f (x,W)
©xT D#+k

j/1
ln p(f

j
(x,W)Dm

j
)]

L(
,

Step 2: y(j)"f
j
(x,W/%8), m/%8

j
"m0-$

j
#g © -/ p(y(j)@mj)

©mj
,

When p(y(j)Dm
j
)"+ny,j

r/1
a
r,j

p(y(j)Dm
r,j

), it becomes

(a) h
r,j

(y(j))"
a
r,j

p(y(j)Dm
r,j

)

p(y(j)Dm
j
)

, a
r,j
"(1!g)a0-$

r,j
#

gh
r,j

(y(j))

a
r,j

,

(b) m/%8
r,j

"m0-$
r,j

#gh
r,j

(y(j))
L ln p(y(j)Dm

r,j
)

Lm
r,j

.

92 Lei Xu/Neurocomputing 22 (1998) 81–111

For p(y(j)Dm
r,j

)"G(y(j),m
r,j

,p2
r,j

), it becomes

m/%8
r,j

"(1!g)m0-$
r,j

#gy(j), p2 /%8
r,j

"(1!g)p2 0-$
r,j

#g(y(j)!m/%8
r,j

)2.

We further consider three specific cases:
(1) When f (x,W) is an invertible nonlinear function given by a forward network (e.g.,

a three-layer perceptron), the above algorithm provides a tool for de-mixing a nonlin-
ear source mixture, and the gradient dW can be computed in a way similar to back
propagation technique.

(2) When f (x,W)"¼g(x,U) and g(x,U) is an invertible nonlinear function given by
a forward network, the above algorithm provides a tool for de-mixing the so called
post-nonlinear mixture studied in Ref. [14], by using g(x,U) to remove the nonlinear
distortion first and then making the linear de-mixing by ¼.

(3) When f (x,W)"¼x, Eq. (31) reduces into the popular invertible linear mixture,
as will be further addressed in detail subsequently.

4.1.3. Invertible linear mixture
When f (x,W)"¼x, Eq. (31) reduces to

J(¼)"ln D¼D#
1

N

N
+
i/1

k
+
j/1

ln p(wT
j
x
i
Dm

j
), (32)

with ¼"[w
1
,2, w

k
]T. As shown in Ref. [26], several existing ICA models for

de-mixing an invertible linear mixture will lead to a cost in the general form of
Eq. (32), although they are different in the specific forms for p() Dm

j
):

(i) When p() Dm
j
) is a prefixed estimate of the marginal density of y(j), it leads to the

MMI ICA [1].
(ii) When p() Dm

j
)"ds

j
(r)/dr with s

j
(r) being a prefixed sigmoid nonlinearity, it

leads to the INFORMAX ICA model [10,3].
(iii) When p() Dm

j
) is a general parametric model, it leads to the information theoretic

ICA model [25].
(iv) When p() Dm

j
) is a finite mixture given in Eq. (7), it leads to the learned

parametric ICA model [26,27]. In this case, by using the following equations:

¼/%8"¼0-$#g(I#/(y)yT)¼,

/(y)"[/
1
(y(1)) ,2, /

k
(y(k))]T,

/
j
(y(j))"

L ln p(y(j)Dm
j
)

Ly(j)
"

+ky,j
r/1

a
r,j

Lp(y(j)Dm
r,j

)/Ly(j)

+ky,j
r/1

a
r,j

p(y(j)Dm0-$
r,j

)
. (33)

to replace Step 1 of the adaptive algorithm for Forward BK½½-DR previously given,
we actually get an EM-like new adaptive algorithm for the learned parametric ICA
model [26,27]. The updating on ¼ in Eq. (33) is the so called natural gradient
technique [1]. As shown first in Ref. [19] and also will be further discussed in
Section 4.3, Eq. (33) is also directly applicable to the full row rank non-invertible k]d
matrix ¼ for the non-invertible linear mixture.

Lei Xu/Neurocomputing 22 (1998) 81–111 93

For those, existing Eq. (33) based approaches for ICA [12,10,3,1,7], either p(y(j)) is
a prefixed estimate of the marginal density of y(j)[1], or p(y(j)) is given by ds

j
(r)/dr with

s
j
(r) being a prefixed sigmoid nonlinearity or equivalently /

j
(y(j)) is prefixed at a given

nonlinearity [12,10,3,4]. These approaches work well only when all the sources are
either sub-Gaussian only or super-Gaussian only. In contrast, the use of Eq. (33) to
replace Step 1 of the previous adaptive algorithm for Forward BK½½-DR will adapt
both ¼ and p(y(j)) or equivalently /

j
(y(j)) during learning. As a result, it works well on

the sources that can be either sub-Gaussian or super-Gaussian as well as any
combination of the both types. Actually, the idea of, using a mixture of logistic
densities as a flexibly adjustable density p(y(j)) function to loosely learn a source
density, was firstly proposed in 1995 by the present author and implemented in a joint
paper with his colleague under the name of entropy maximization [9]. In April 1996,
the direct application of this idea to ICA is made first in Ref. [29] under the name of
mixture of accumulative distribution functions or learned parametric ICA model, and
then later formally published in Refs. [27,28]. Also, the use of a mixture of logistic
densities for modeling the marginal density has been made in 1996 by Pearlmutter and
Parra [11] under the name of maximum likelihood density estimation.

4.2. Maximum likelihood independent factor model

4.2.1. General multi-channel model

For the backward architecture, from Eqs. (13) and (14) and ignoring the irrelevant
term, Eq. (4) will become

K¸
M1,M2

"!Pph(x) ln p
M2

(x) dx, p
M2

(x)"Pp(xDy,h
x@y

)
k
<
j/1

p
My

(y(j)) dy. (34)

Thus, minK¸
M1,M2

is equivalent to the ML modeling on the observation x from
k independent factors <k

j/1
p
My

(y(j)) via the generative model p(xDy, h
x@y

).
Instead of directly modeling by Eq. (34), it can be equivalently implemented via

Eq. (27) such that the parameter learning is made by the adaptive algorithm given in
Section 3 and the selection of k is made by Eqs. (21)—(23).

Both x and y can be binary or real, with p
My

(y(j)) given by Eq. (7) and p(xDy, h
x@y

) by
Eqs. (5) and (17). Particularly, when p(xDy, h

x@y
) is given by Eq. (15), we regard that the

observation x is generated from the independent factors y(j), j"1 ,2, k with prob-
ability c

r
via the channel G(x, g

r
(y,/

r
) out of n

x@y
possible channels.

4.2.2. Single channel model under Gaussian noise
We further consider the BSS problem Eq. (1) with Gaussian noise G(e, 0,R

x@y
). In

this case, we have only a single channel p(xDy, h
x@y

)"G(x, g(y,/),R
x@y

) through which
x is generated from the independent factors y(j), j"1 ,2, k. By inserting it into the
adaptive algorithm in Section 3, the updating on h

x@y
will have the following detailed

94 Lei Xu/Neurocomputing 22 (1998) 81–111

equations:

m
x@y

"g(y,/0-$), c
il
"

p(y
l
Dx

i
)

p
h{
(y

l
Dx

i
)
,

//%8"/0-$#gc
il

LgT(y
l
, /)

L/
D
(0-$R0-$ ~1

x@y
(x

i
!m0-$

x@y
),

R/%8
x@y

"(1!g)R0-$
x@y

#gc
il
(x

i
!m/%8

x@y
)(x

i
!m/%8

x@y
)T.

or

m
x@y

"g(Ay,/), //%8"/0-$#gc
il

LgT(A0-$y
l
, t0-$)

L/0-$
R0-$ ~1
x@y

(x
i
!m0-$

x@y
),

A/%8"A0-$#gc
il
dA,

dA"g@(A0-$y
l
, /0-$)R0-$ ~1

x@y
(x

i
!m0-$

x@y
)yT

l
, or (35)

dA"g@(A0-$y
l
, t0-$)(x

i
!m0-$

x@y
)yT

l
,

where p
My@x

(y
l
Dx

i
)"p(y

l
Dx

i
) is given by Eq. (14).

Particularly, for a linear mixture g(Ay,/)"Ay, we only need the two updating
equations for R

x@y
, A with simply g@(Ay, t)"1.

Furthermore, when y(j) is binary, the updating on m
j
is simply

m/%8
j

"m0-$
j

#gc
ilA

y(j)
l
p
j

!

1!y(j)
l

1!p
j
B

e~mj
(1#e~mj)2

. (36)

4.2.3. Approximate linear forward mapping
Though the mapping xPy can be realized by the three ways given at the end of

Section 2, the computation of p(yDx) is quite time consuming. Hence, we suggest to
approximately use a linear mapping yL "¼x, with ¼ decided such that
min

W
EEy!yL E2, resulting in

¼H"RT
xy

R~1
x

, R
x
"

1

N

N
+
i/1

x
i
xT
i
, R

xy
"AvgC

x
i
yT
l

ph@(y
l
Dx

i
)D. (37)

Particularly, when g(Ay, /)"Ay, the learning of the inverse mapping yL "¼x can be
inserted into the algorithm Eq. (35) by adding in

¼/%8"¼0-$#g(y
l
!¼0-$x

i
)xT

i
. (38)

Moreover, with this linear mapping we can get directly the set of random samples
D

y@xi
"My

l
NNi

l/1
by y

l
"¼0-$x

i
#e, where e is a Gaussian noise of zero mean and

a large enough variance.

4.2.4. Factor analysis as a special case
In the simplest case of the linear mixture with

p(xDy, h
x@y

)"G(x, Ay, R
x@y

), p
My

(y)"G(y, 0, I
k
), (39)

Lei Xu/Neurocomputing 22 (1998) 81–111 95

the problem of min K¸
M1,M2

by Eq. (34) becomes the problem of finding A, R
x@y

as the
solution of

S
x
"R

x@y
#AAT, S

x
"Pph

(x)xxTdx. (40)

That is, we are led to the general form of the conventional factor analysis problem in
the literature of statistics [13]. For the special case of R

x@y
"p2

x@y
I
d
, it can be simply

solved with A obtained from the first k principal components of S
x
[23]. However, for

the cases of either R
x@y

"diag[p2
x@y,1

,2, p2
x@y,d

] or R
x@y

in its general form, the problem
of solving Eq. (40) is not easy and usually made by some heuristics.

The new perspective of understanding factor analysis from BKYY-DR can bring us
at least several new gifts.

From Eq. (14), we have that p
My@x

(yDx)"p(yDx) is specified by

p
My@x

(yDx)"p(yDx)"
G(x,Ay,R

x@y
)G(y, 0, I

k
)

:G(x, Ay, R
x@y

)G(y, 0, I
k
) dy

"G(y, ¼Tx,R
y@x

),

¼"(R
x@y

#AAT)~1A, &
y@x

"I
k
!¼T(&

x@y
#AAT)¼. (41)

That is, the previous approximate linear forward mapping y
l
"¼0-$x

i
#e is equiva-

lent to the accurate optimal linear mapping by p(yDx), with ¼ given by Eq. (41) and
e being a Gaussian noise of zero mean and covariance R

x@y
by Eq. (41).

Therefore, from Eq. (35) we can get a simple adaptive algorithm for solving A, R
x@y

as follows:

Adaptive algorithm for factor analysis.
Step 1: For each x

i
get y

l
"¼0-$x

i
#e with e being a Gaussian noise of zero mean

and covariance I
k
!¼0-$ T(R0-$

x@y
#A0-$A0-$ T)¼0-$;

Step 2: Update A/%8"A0-$#gcdA, by either dA"R0-$ ~1
x@y

(x
i
!A0-$y

l
)yT

l
or

dA"(x
i
!A0-$y

l
)yT

l
. Then update R/%8

x@y
"(1!g)R0-$

x@y
#gc(x

i
!A/%8y

l
)(x

i
!A/%8y

l
)T,

¼/%8"(R/%8
x@y

#A/%8A/%8 T)~1A/%8.
Also, we can use y

l
"¼0-$x

i
to map x back to the independent factors. Moreover,

as will be shown subsequently, we can have a simple criterion for deciding the number
of factors. The two issues are usually not considered in the conventional factor
analysis.

4.2.5. Number of independent factors
After parameter learning, generally the selection of k is made by using K¸

M1,M2
and

H
y@x

(k) in Eq. (27) to replace K¸
M1,M2

in Eqs. (21) and (22).
For the case of single channel model with p(xDy, h

x@y
)"G(x, g(y, /),R

x@y
), from

Eq. (27) we have !Avg[cx(i,l)
ph{(yl@xi)

]+ 0.5 lnDR
x@y

D# const and thus we can simply use

K¸
M1,M2

"0.5 lnDR
x@y

D#AvgC
h
y@x

(i, l)!c
y
(i, l)

p
h{
(y

l
Dx

i
) D (42)

in Eqs. (21) and (22) for selecting k.

96 Lei Xu/Neurocomputing 22 (1998) 81–111

Particularly, in the case Eq. (39), from Eq. (41) and after ignoring irrelevant terms,
we can even get

2K¸
M1,M2

"lnDR
x
D#Tr[R~1

x
S
x
], R

x
"R

x@y
#AAT,S

x
"

1

N

N
+
i/1

x
i
xT
i
,

!2H
y@x

(k)"lnDR
y@x

D#Tr[R~1
y@x

R
y@x

]"ln DI
k
!¼T(R

x@y
#AAT)¼D#k. (43)

Thus, we can directly put them into Eqs. (21) and (22) for selecting k, without using
stochastic sampling.

4.2.6. No noise special case.
Finally, it should be noticed that all the above discussions apply to the no noise case

e"0. Actually, the situation is even simpler. When k and other parameters are not
correct, R

x@y
will not be zero during the learning, thus similar to the cases with noise.

When k is equal or larger than its correct value, R
x@y

will become singular as other
parameters converge to the correct values. Hence, this fact can actually be used as
a signal for indicating the correct convergence. That is, we can start the learning at
a small value for k and then gradually increase it. ¼e can regard that the learning is
completed once R

x@y
becomes singular.

Also when e"0, g(Ay, /)"Ay, A~1"¼ and p() Dm
j
) is an estimate of source

density, Eq. (34) will again lead to Eq. (32), which is studied by Gaeta and Lacounme;
Pham et al.[6,12] under the name of ML ICA model. The above discussions actually
provides a new algorithm for solving this special case.

4.3. Combined features, mean field technique, and two related methods

4.3.1. Combined features
The advantage of the backward BKYY-DR is that the noise in x is considered and

thus its effect is also reduced during the mapping xPy by p(yDx), according to either
of the three ways given at the end of Section 2, or approximately by the direct inverse
mapping yL "¼x learned via Eq. (38). The forward BKYY-DR has no consideration
on noise. However, it implements the mapping xPy directly by a parametric model,
which is easy and fast. In contrast, the backward BKYY-DR must compute p(yDx)
every time with expensive computing cost, except for the case of using the approxim-
ate linear mapping yL "¼x learned via Eq. (38) or for the linear factor analysis case
Eq. (39). The bi-directional architecture combines the advantages of both the back-
ward and forward ones. Its parameter learning and model selection on k, N keep the
same as discussed in Section 3.

4.3.2. Mean field approximation
We consider the special case that y is binary, p

My@x
(yDx)"p(yDx, h

y@x
) is given by

Eq. (12) and p
My

(y) is given by Eq. (7). In this case, from Eq. (12) we use

Lei Xu/Neurocomputing 22 (1998) 81–111 97

E(yDx)"[p
1
(x) ,2, p

k
(x)]T to replace y in p(xDy, h

x@y
), resulting in a mean field

approximation:

K¸
M1,2

"

1

N

N
+
i/1

(Jf
i
#Jb

i
),

Jb
i
"!ln p(x

i
DE(yDx), h

x@y
),

Jf
i
"

k
+
j/1
Cpj

(x
i
) ln

p
j
(x

i
)

p
j

#(1!p
j
(x

i
)) ln

1!p
j
(x

i
)

1!p
j
D , (44)

from which we see its minimization with respect to M
x@y

is only related to Jb
i
, and its

minimization with respect to M
y
results in p

j
"1/N +N

i/1
p
j
(x

i
). Though its minimiz-

ation with respect to M
y@x

involves Jf
i
#Jb

i
as a whole, it can also be made adaptively

by gradient descent search. Thus, the parameter learning can be implemented adap-
tively by

Adaptive algorithm for bi-directional BKYY-DR in mean field approximation.
Step 1: For an input, let x

i
,

h/%8
x@y

"h0-$
x@y

#g
L ln p(x

i
DE(yDx),h

x@y
)

Lh
x@y

Dh0-$x@y, p/%8
j

"(1!g)p0-$
j

#gp0-$
j

(x
i
).

Step 2: ºpdate v/%8
ij

"v0-$
ij

!gdv
ij
, c/%8

j
"c0-$

j
!gdc

j
, b/%8"b0-$!gdb,

t/%8"t0-$!gdt, where dv
ij
, dc

j
, db, dt are gradient directions of Jf

i
#Jb

i
. In gen-

eral cases that »O0, the learning of v
ij

should be constrained by the conditions that
Z

V
in Eq. (11) exists.

To observe the details of this algorithm, we further consider the special case of

p(xDy, h
x@y

)"G(x, Ay, R
x@y

), and v
ij
"0, i, j"1 ,2, k,

f
j
(x, t)"tT

j
x, t"[t

1
,2, t

k
], (45)

that is, the backward architecture describes a linear mixture BSS problem Eq. (1) and
there is no direct interaction between y(j), j"1 ,2, k in the forward architecture.

In this case, Eq. (13) will become

p
j
(x)"s(tT

j
x#c

j
), s(r)"1/(1#e

r
b), j"1 ,2, k. (46)

After ignoring irrelevant terms, we have

2
N
+
i/1

Jb
i
"N ln DR

x@y
D#E2,

E2"
N
+
i/1

(x
i
!AS(tTx#c))T&~1

x@y
(x

i
!AS(tTx#c)),

S(tTx#c)"[s(tT
1
x#c

1
) ,2, s(tT

k
x#c

k
)]T, c"[c

1
,2, c

k
]T, (47)

98 Lei Xu/Neurocomputing 22 (1998) 81–111

from which we have the following detailed updating equations for h
x@y

in Step 1 of the
above algorithm:

Either A/%8"A0-$#g&0-$ ~1
x@y

dA, or A/%8"A0-$#gdA,

dA"[x
i
!A0-$S(t0-$ Tx

i
#c)]S(t0-$ Tx

i
#c)T, (48)

&/%8
x@y

"(1!g)&0-$
x@y

#g[x
i
!A/%8S(t0-$ Tx

i
#c)][x

i
!A/%8S(t0-$ Tx

i
#c)]T.

Moreover, from Eqs. (44), (46) and (47), we also have

dp(x
i
)"CAln

p
1
(x

i
)

p
1

!ln
1!p

1
(x

i
)

1!p
1
B ,2,Aln

p
k
(x

i
)

p
k

!ln
1!p

k
(x

i
)

1!p
k
BD

T
,

s@(r)"!e
r
b/b(1#e

r
b)2"

s2(r)!s(r)

b
,

S@(tTx
i
#c)"diag[s@(tT

1
x
i
#c

1
) ,2, s@(tT

k
x
i
#c

k
)],

dE(x
i
)"!(x

i
!AS(tTx

i
#c))T&~1

x@y
A, (49)

dc"
L(Jf

i
#Jb

i
)

Lc
"S@(tTx

i
#c)[dp(x

i
)#dET(x

i
)],

db"
L(Jf

i
#Jb

i
)

Lb
"!

tTx
i
#c

b
dE(x

i
)S@(tTx

i
#c)[1,1,2,1]T,

dt"

L(Jf
i
#Jb

i
)

Lt
"x

i
[dpT(x

i
)#dE

j
(x

i
)]S@(tTx

i
#c).

After parameter learning, by inserting K¸
M1,2

of Eq. (44) with Jf
i

of Eq. (44) and
Jb
i
of either Eq. (44) or Eq. (47) and inserting the following:

H
y@x

(k)"
1

N

N
+
i/1

k
+
j/1

[p
j
(x

i
) ln p

j
(x

i
)#(1!p

j
(x

i
)) ln (1!p

j
(x

i
))], (50)

into Eqs. (21) and (22) we get the approximate criteria J
1
(k) and J

2
(k) for selecting k,

where p
j
(x

i
) is given by either Eq. (13) in a general case or Eq. (46) in the special case

discussed above.

4.3.3. Least-mean square error reconstruction
In Eq. (47), if we further assume that A"t, c

j
"0 and R

x@y
"p2

x@y
I
d
, then

p2
x@y

E2"+N
i/1

Ex
i
!AS(ATx

i
)E2 is exactly the cost function for the nonlinear one layer

special case of the ¸east mean square error reconstruction (¸MSER) learning first
proposed in Refs. [15,16], in which both batch and adaptive gradient algorithms are
given, and also in which it was firstly discovered that the sigmoid non-linearity can
automatically break the symmetry of the components in the subspace, although it was

Lei Xu/Neurocomputing 22 (1998) 81–111 99

not tested directly on the ICA problem. Three years later, the LMSER learning and its
adaptive algorithm given in Refs. [15,16] has been directly adopted to implement ICA
by the authors of Ref. [8] under the name of Nonlinear PCA.

Thus, we see that the LMSER learning is actually a rough approximation to
a special case of the bi-directional BKYY-DR learning in a mean field approximation,
after ignoring +N

i/1
Jf
i

and forcing A"t, c
j
"0. This connection not only provides

an interpretation on why the LMSER learning works well for those BSS problems in
Ref. [8], but also tells that the above bi-directional BKYY-DR learning in a mean
field approximation may bring even better performance for ICA.

First, the minimization of +N
i/1

Jf
i

alone functions like the forward architecture
studied in Section 4.1, and the minimization of +N

i/1
Jb
i

alone functions like the
backward architecture studied in Section 4.2. The minimization of +N

i/1
(Jf

i
#Jb

i
)

combines the advantages of both. Second, we are no longer limited to the constraints
A"t, c

j
"0 and R

x@y
"p2

x@y
I
d
made in the LMSER learning. Third, we can decide

the dimension k as discussed above, which cannot be made in the LMSER learning
too. Moreover, we can also consider various general cases with either or both of
f (x,t), g(y,A) being not linear, which provides some general guides for understanding
the previous proposed nonlinear extensions on the LMSER and PCA learning
[17,18].

4.3.4. Helmholtz machine
We still consider that case with Eqs. (45) and (46), but we let p(xDy, h

x@y
) to be

replaced by Eq. (16) with

u
ij
"0, d

j
"0, j"1,2d, g(j)(y, /)"/T

j
y. (51)

Thus, after we add in Jb
i
of Eq. (44) by a term +d

j/1
[x(j)

i
lnx(j)

i
#(1!x(j)

i
) ln (1!x(j)

i
)],

which is irrelevant to the parameters to be learned, we get

Jb
i
"

dx
+
j/1
Cx(j)

i
ln

x(j)
i

s(/T
j
S(tTx

i
))
#(1!x(j)

i
) ln

1!x(j)
i

1!s(/T
j
S(tTx

i
))D. (52)

If we further let x(j)
i

be approximated by its mean Ex(j)
i

, we find that in this special case
of K¸

M1,2
of Eq. (44) becomes exactly the same as the !F(h, /) given by Eq. (3.11) in

Ref. [5] for the deterministic Helmholtz machine under the special case of one hidden
layer. This connection provides not only a new understanding on the deterministic
Helmholtz machine, but also a guideline for extending it into various generalized
cases with u

ij
O0, d

j
O0, g(j)(y, /)O/T

j
y.

4.3.5. Non-invertible linear mixture
Finally, we consider a specific degenerate case of bi-directional architecture with

p(xDy, h
x@y

)"G(x, Ay, p2
x
I
d
), p(yDx, h

y@x
)"G(y, ¼x, p2

y
I
k
), A"¼T(¼¼T)~1.

(53)

100 Lei Xu/Neurocomputing 22 (1998) 81–111

Thus, we have ¼A"I, x!Ay"e
x

is a Gaussian of zero mean and covariance
p2
x
I
d
, y!¼x"y!¼(Ay#e

x
)"!¼e

x
is a Gaussian of zero mean and

covariance p2
y
I
k
"¼¼Tp2

x
I
k
.

Moreover, we consider the parametric p
My

(y)"p(yDh
k
) given by Eq. (7) and

p
Mx

(x)"p
h
(x) by Eq. (5). When p2

x
P0, p(xDy, h

x@y
)Pd(x!Ay) and

p(yDx, h
y@x

)Pd(y!¼x). As shown in Appendix C, from Eq. (4) and after ignoring
irrelevant terms, we have that min

W
K¸

M1,M2
with h"0 is equivalent to the maximi-

zation of the following cost function:

J(¼)"0.5 ln D¼¼TD#
1

N

N
+
i/1

k
+
j/1

ln p(wT
j
x
i
Dm

j
) dx, ¼"[w

1
,2, w

k
], (54)

which is different from J(¼) in Eq. (32) only in that ln D¼D is replaced by 0.5 ln D¼¼TD.
When ¼ is invertible, the two become the same. In other words, Eq. (54) is an
extension of Eq. (32) that is applicable to the full row rank non-invertible ¼.

The maximization of J(¼) in Eq. (54) can be implemented by either the gradient
descent or the natural gradient descent updating

¼/%8"¼0-$#gd¼,

d¼"G
(¼¼T)~1¼#/(y)xT gradient,

(I#/(y)yT)¼ natural gradient,
(55)

where /(y) is the same as in Eq. (33). Interestingly, the equation by the natural
gradient actually remains unchanged as that in Eq. (33). Therefore, all the discussions
made on J(¼) of Eq. (32) apply to the cases of the full row rank non-invertible ¼ in
the same way as invertible ¼, without any particular care.

It should also be noted that !J(¼) in Eq. (54) is exactly Eq. (19) first given in
Section 5 of Ref. [19], and the gradient equation in Eq. (55) is exactly Eq. (20) also
first given in Section 5 of Ref. [19].

5. Experiments

Due to space limit, we only give some examples of using the backward BKYY-DR
on the BSS problem Eq. (1) with eO0 and g(Ay, /)"Ay from kH independent source
channels of 0-1 binary Bernoulli signals, randomly sampled according to the ideal
probablity q

j
"0.5 with a length N"200 for each channel. Experimental results by

using the forward BKYY-DR and bi-directional BKYY-DR are given in a separate
paper elsewhere.

Here, we use the adaptive algorithm given in Section 4.2, with p
r
(yDx)"p(yDx) and

thus p(y
l
Dx

i
)/ph@(y

l
Dx

i
)"1 in all the relevant equations.

Shown in Fig. 2 are the results with the number d"4 of sensors and the number
kH"4 of sources. Given in Fig. 2a, s(1) ,2, s(kH) are the kH sources which are mixed
by A given in Fig. 3 with a Gaussian noise of covariance matrix 0.02I added to form
the observations x(1), x(2) ,2, x(d) by the sensors, as shown in Fig. 2b. It should be
noted the noise is already quite large because the magnitudes of signals are finite but

Lei Xu/Neurocomputing 22 (1998) 81–111 101

Fig. 2. Results on noisy linear mixture with 4-4-4 for k*-d-k, where k* is the correct number of sources, d is
the number of sensors, and k is the guessed number of sources.

102 Lei Xu/Neurocomputing 22 (1998) 81–111

Fig. 3. The detailed data obtained by the adaptive backward BKYY-DR algorithm on the noisy linear
mixture with 4-4-4 for k*-d-k.

the noise can be very large although in small probablity. In Fig. 2c, the error curves
show how the normalized Hamming distance errors between the recovered signals
and the original sources reduce as the learning goes with epoch t. In one epoch, each of
200 samples comes in sequentially.

The curves error 1, error 2, error 3 correspond to

1. the random sampling of yL according to p(yDx),
2. the maximum posterior decision yL "arg max

y
p(yDx),

3. the direct inverse mapping yL "¼x learned by Eq. (38),

which shortly denotes as Types (1) (2) and (3).
After t"20 epochs, the error 1 converges and after about t"30, the other error

types converges too, with very small error, which can be further observed in Fig. 2a,
where segments of the recovered signals y

j
(1), y

j
(2) ,2, y

j
(k) are listed below each

corresponding source, with j"1, 2, 3 for the recovery types corresponding to error 1,
error 2, error 3, respectively. On these segments, the recovery Type (2) totally
recovered the sources on each channel, the other two recovery types can totally
recover the sources on channels 2, 3, although there are a little error on channels 1, 4,
from which we can see that the maximum posterior recovery type performs the best.
Moreover, in Fig. 3, the estimated matrix A at the last stopping point is listed together
with its corresponding value of ¼A, the estimated noise variances R

x@y
and its

determinant.
Furthermore, we add in one sensor with d"5 but the other settings are kept the

same. Interestingly, we can observe from the recovery errors given in Fig. 4a that the
errors of the recovery Types (1) and (2) have been reduced. It indicates that the
increasing of the sensor number d may help the separation and reduce the affect of
noise. Next, we reduce the number of sensors to 2 only, from the recovery errors given

Lei Xu/Neurocomputing 22 (1998) 81–111 103

Fig. 4. The Hamming distance error curves. (a) On noisy linear mixture 4-5-4 for k*-d-k.; (b) on noisy linear
mixture 4-2-2 for k*-d-k.

104 Lei Xu/Neurocomputing 22 (1998) 81–111

Fig. 5. The curves J
2
(k), J

1
(k) for source number detection, with the correct source number k*"3.

in Fig. 4b we still find that two channels of sources have been recovered reasonably
good, although there are certain errors. This result indicates that the proposed
algorithm can still reasonably work for the cases that the number d of sensors is
smaller than the number k of sources.

Shown in Fig. 5 are the results of the detection of k* by J
2
(k), J

1
(k) given by

Eq. (42) and Eqs. (21) and (22). To smooth out the randomness, for each k, the average
values of J

2
(k), J

1
(k) during the last 20 epochs before stopping are plotted. We see that

the correct source number can be detected from the minimum point of both J
2
(k) and

J
1
(k), which performs quite similarly.

6. Conclusions

The BKYY-DR system and theory is suggested for dependence reduction in general
and for solving the blind source separation (BSS) problem Eq. (1) with eO0 and the
unknown number of sources as a particular example. Stochastic approximation based
implementable algorithms and criteria are given for parameter learning and model
selection, on a general BKYY-DR system as well as on its three typical architectures.
Moreover, for the invertible forward architecture, an adaptive algorithm is obtained
such that it not only is applicable to nonlinear or post-nonlinear mixtures, but also
provides a new EM-type adaptive algorithm for the learned parametric mixture ICA
method on linear mixtures. For the special backward architectures used on the linear
or post-nonlinear mixtures under Gaussian noise, the simplified adaptive algorithm
and the criterion for detecting k are also given, with an approximately optimal linear
mapping xPy suggested. Also, one of its simple special case becomes the conven-
tional factor analysis, with a new adaptive algorithm for estimation and a criterion for

Lei Xu/Neurocomputing 22 (1998) 81–111 105

deciding the number of factors. The advantage of backward and forward ones are
combined in the bi-directional architecture. A mean field approximation is presented
for fast implementation of parameter learning and k-selection in the bi-directional
architecture and shown to relate to the existing LMSER learning and the one hidden
layer deterministic Helmholtz machine with new findings. Moreover, a specific degen-
erate case of bi-directional architecture is shown to lead to a forward non-invertible
onto mapping for ICA that can be implemented adaptively. Finally, experiments on
binary sources are demonstrated with successes.

Acknowledgements

This work was supported by HK RGC Earmarked Grant CUHK 339/96E. The
author would like to thank Mr. Tajun Wang for his help in preparing the experiments.

Appendix A

We have

K¸(yDx)"Pp(yDx, h
y@x

) ln
p(yDx, h

y@x
)

p
G
(yDx, h

y@x
)
dy

"

k
+
j/1

[p
j
(x) ln p

j
(x)#(1!p

j
(x)) ln (1!p

j
(x))]

#

1

b
E(p

j
(x),»)#ln Z

V
, (56)

Since

Pp(yDx, h
y@x

)E(y,») dy"

k
+

i,jEi

v
ij
p
i
(x)p

j
(x)#

k
+
j/1

p
j
(x)[f

j
(x, t)#c

j
]"E(p

j
(x),»).

Furthermore, we have

LK¸(yDx)

Lp
j
(x)

"ln
p
j
(x)

1!p
j
(x)

#

k
+
rEj

v
jr
p
r
(x)#f

j
(x, t)#c

j
,

L2 K¸(yDx)

Lp
j
(x)2

"

1

p
j
(x)

#

1

1!p
j
(x)

'0.

Thus, from LK¸(yDx)/Lp
j
(x)"0, we know that the solution that minimizes K¸(yDx)

is given by Eq. (13). Moreover, with p0-$
r

(x),r"1 ,2, k, rOj fixed, p
j
(x)"

s(Mp0-$
r

(x)Nk
r/1,rEj

) is a minimum point of K¸(yDx). Therefore, by the solving iteration of
Choice (a), we find these minimum points sequentially such that K¸(yDx) will keep
reducing until p

j
(x), j"1,2, k converge.

106 Lei Xu/Neurocomputing 22 (1998) 81–111

In addition, it is obvious that s(Mp0-$
r

(x)Nk
r/1,rEj

)!p0-$
j

(x), j"1,2, k jointly form
a descent direction of K¸(yDx). Thus, for the solving iteration of Choice (b), as long as
g'0 is a small enough, K¸(yDx) will keep reducing until p

j
(x), j"1,2, k converge.

Appendix B

We have the detailed gradient equations as follows:

Lh
y@x

(i, l)

Lh
y@x

"(1#ln p(y
l
Dx

i
, h

y@x
))p(y

l
Dx

i
, h

y@x
)
L ln p(y

l
Dx

i
, h

y@x
)

Lh
y@x

,

Lc
x
(i, l)

Lh
y@x

"p(y(j)
l

Dx
i
, h

y@x
) ln p

Mx@y
(x

i
Dy

l
)
L ln p(y(j)

l
Dx

i
, h

y@x
)

Lh
y@x

,

Lc
y
(i, l)

Lh
y@x

"

k
+
j/1

p(y(j)
l

Dx
i
, h

y@x
) ln p

My
(y(j)

l
)
L ln p(y(j)

l
Dx

i
, h

y@x
)

Lh
y@x

,

Lc
x
(i, l)

Lh
x@y

"p
My@x

(y
l
Dx

i
)
L ln p(x

i
Dy

l
,h

x@y
)

Lh
x@y

,

Lc
y
(ij)

Lm
j

"p
My@x

(y(j)
l

Dx
i
)
L ln p(y(j)

l
Dm

j
)

Lm
j

. (57)

Specifically, when y is real, from Eq. (7) we have

h
r,j

(y(j))"
a
r,j

p(y(j)Dm
r,j

)

p(y(j)Dm
j
)

,
L ln p(y(j)Dm

j
)

La
r,j

"

h
r,j

(y(j))!a
r,j

a
r,j

,

L ln p(y(j)Dm
j
)

Lm
r,j

"h
r,j

(y(j))
L ln p(y(j)Dm

r,j
)

Lm
r,j

. (58)

Particularly, when p(y(j)Dm
r,j

)"G(y(j), m
r,j

, p2
r,j

), we have

L ln p(y(j)Dm
r,j

)

Lm
r,j

"!(y(j)!m
r,j

)p~2
r,j

,

L ln p(y(j)Dm
r,j

)

Lp2
r,j

"p~2
r,j

!(y(j)!m
r,j

)2p~4
r,j

. (59)

Moreover, from Eq. (10) we have

h
r
(yDx)"

b
r
G(y, f

r
(x, t

r
),R

y@x,r
)

p(yDx, h
y@x

)
,

L ln p(yDx, h
y@x

)

Lb
r

"

1

b
r

(h
r
(yDx)!b

r
),

y
fr

(x)"y!f
r
(x,t

r
),

L ln p(yDx, h
y@x

)

Lt
r

"h
r
(yDx)

Lf
r
(x, t

r
)

LtT
r

R~1
y@x,r

y
fr

(x),

L ln p(yDx, h
y@x

)

LR
y@x,r

"!h
r
(yDx)R~1

y@x,r
(I!y

fr
(x)yT

fr
(x)R~1

y@x,r
). (60)

Lei Xu/Neurocomputing 22 (1998) 81–111 107

and from Eq. (15) we have

h
r
(xDy)"

c
r
G(x, g

r
(y, /

r
), R

x@y,r
)

p(xDy, h
x@y

)
,

L ln p(xDy, h
x@y

)

Lc
r

"

1

c
r

(h
r
(xDy)!c

r
),

x
g,r

(y)"x!g
r
(y, /

r
),

L ln p(xDy, h
x@y

)

L/
r

"h
r
(xDy)

Lg
r
(y, /

r
)

L/T
r

R~1
x@y,r

x
g,r

(y),

L ln p(xDy, h
x@y

)

LR
x@y,r

"!h
r
(xDy)&~1

x@y,r
(I!x

g,r
(y)xT

g,r
(y) R~1

x@y,r
). (61)

When y is binary, from Eq. (7) we have

L ln p(y(j)Dm
j
)

Lm
j

"A
y(j)

p
j

!

1!y(j)

1!p
j
B

e~mj
(1#e~mj)2

. (62)

From Eqs. (2) and (13), we have

T(p
j
(x), y(j))"

y(j)

p
j
(x)

!

1!y(j)

1!p
j
(x)

,

L ln p(yDx, h
y@x

)

Lt
"

k
+
j/1

T(p
j
(x), y(j))

Lp
j
(x)

Lt
,

L ln p(yDx, h
y@x

)

Lc
i

"

k
+
j/1

T(p
j
(x), y(j))

Lp
j
(x)

Lc
i

,

L ln p(yDx,h
y@x

)

Lv
il

"

k
+
j/1

T(p
j
(x), y(j))

Lp
j
(x)

Lv
il

. (63)

More specifically, from Eq. (13) we have that Lp
j
(x)/Lt, j"1,2, k are obtained by

solving the following linear equation group:

b
(1!p

j
(x))p

j
(x)

Lp
j
(x)

Lt
#

k
+

r/1,rEj

v
jr

Lp
r
(x)

Lt
#

Lf
j
(x,t)

Lt
"0, j"1,2, k; (64)

Lp
j
(x)/Lc

i
, i, j"1,2, k, are obtained by solving the following linear equation group:

b
(1!p

j
(x))p

j
(x)

Lp
j
(x)

Lc
i

#

k
+

r/1,rEj

v
jr

Lp
r
(x)

Lc
i

#1"0, i, j"1,2, k; (65)

108 Lei Xu/Neurocomputing 22 (1998) 81–111

and Lp
j
(x)/Lv

il
,i, j, l"1,2, k, iOl, are obtained by solving the following linear equa-

tion group:

b
(1!p

j
(x))p

j
(x)

Lp
j
(x)

Lv
il

#

k
+

r/1,rEj

v
jr

Lp
r
(x)

Lv
il

#p
l
(x)"0, j, l"1,2, k, i"j,

b
(1!p

j
(x))p

j
(x)

Lp
j
(x)

Lv
il

#

k
+

r/1,rEj

v
jr

Lp
r
(x)

Lv
il

"0, i, j, l"1 ,2, k, iOj. (66)

Similarly, from Eqs. (7) and (18) we can get L ln p(xDy,h
x@y

)/L/, L ln p(xDy,h
x@y

)/Ld
j
and

L ln p(xDy,h
x@y

)/Lu
ij
.

Appendix C

From Eq. (4) and after ignoring irrelevant terms, we have that minK¸
M1,M2

be-
comes the minimization of the following cost function:

J(¼,p2
x
, k)"PG(y,¼x,¼¼Tp2

x
I
k
)p

h
(x) ln

G(y,¼x,¼¼Tp2
x
I
k
)

G(x, Ay,p2
x
I
d
)<k

j/1
p(y(j)Dm

j
)
dxdy

"0.5[!lnD¼¼TD!k lnp2
x
#d lnp2

x
#p~2

x
¹

1
]#¹

2
,

¹
1
"PG(y,¼x,¼¼Tp2

x
I
k
)p

h
(x)(x!Ay)T(x!Ay) dydx,

¹
2
"!

k
+
j/1
PG(y,¼x,¼¼Tp2

x
I
k
)p

h
(x) ln p(y(j)Dm

j
) dxdy. (67)

As p2
x
P0, we have

¹
2
P!

k
+
j/1
Pph(x) ln p(wT

j
xDm

j
) dx, ¼"[w

1
,2,w

k
], (68)

which can be regarded as being irrelevant to p2
x

for a small p2
x
. From

LJ(¼,p2
x
, k)/Lp2

x
"0 and after ignoring the affect of ¹

2
, we have

(d!k)p2
x
"¹

1
, p~2

x
¹

1
"d!k,

J(¼,p2
x
,k)"0.5[!ln D¼¼TD#(d!k) lnp2

x
#d!k]#¹

2
, (69)

which is exactly the Eq. (9) first given in Section 3 of Ref. [19]. For a fixed p2
x
, ¼ is

decided by maximizing J(¼)"0.5 ln D¼¼TD#¹
2
, which becomes Eq. (54) as

p2
x
P0, hP0, by noticing Eq. (68).

References

[1] S.-I. Amari, A. Cichocki, H. Yang, A new learning algorithm for blind separation of sources, in: D.S.
Touretzky et al. (eds.), Advances in Neural Information Processing 8, MIT Press, Cambridge, MA,
1996, pp. 757—763.

Lei Xu/Neurocomputing 22 (1998) 81–111 109

[2] H.B. Barlow, Unsupervised learning, Neural Comput. 1 (1989) 295—311.
[3] A.J. Bell, T.J. Sejnowski, An information-maximatization approach to blind separation and blind

deconvolution, Neural Comput. 7 (1995) 1129—1159.
[4] P. Comon, Independent component analysis — a new concept?, Signal Processing 36 (1994)

287—314.
[5] P. Dayan, G.E. Hinton, R.N. Neal, R.S. Zemel, The Helmholtz machine, Neural Comput. 7 (5) (1995)

889—904.
[6] M. Gaeta, J.-L. Lacounme, Source separation without a priori knowledge: the maximum likelihood

solution, in: Proc. European Signal Processing Conf. EUSIPCO90, 1990, pp. 621—624.
[7] C. Jutten, From source separation to independent component analysis: an introduction to special

session, in: Proc. 1997 European Symp. on Artificial Neural Networks, Bruges, 16—18 April 1997, pp.
243—248.

[8] J. Karhunen, J.J. Joutsensalo, Representation and separation of signals using nonlinear PCA type
Learning, Neural Networks 7 (1994) 113—127.

[9] I. King, L. Xu, Adaptive contrast enchancement by entropy maximization with a 1-K-1 constrained
network, Proc. 1995 Int. Conf. on Neural Information Processing (ICONIP95), vol. II, 30 October — 3
November, 1995, Beijing, pp. 703—706.

[10] J.-P. Nadal, N. Parga, Nonlinear neurons in the low-noise limit: a factorial code maximizes informa-
tion transfer, Networks 5 (1994) 565—581.

[11] B.A. Pearlmutter, L.C. Parra, A context-sensitive generalization of ICA, in: Proc. Int. Conf. on Neural
Information Processing (ICONIP 96), Hong Kong, 24—27, September 1996, pp. 1235—1239.

[12] D.T. Pham, P. Garat, C. Jutten, Separation of a mixture of independent sources through a maximum
likelihood approach, in: J. Vandewalle et al. (Eds.), Signal Processing VI: Theories and Applications,
Elsevier, Amsterdam, 1992, pp. 771—774.

[13] S. Sharma, Applied Multivariate Techniques. Wiley, New York, 1995.
[14] A. Taleb, C. Jutten, Nonlinearity source separation: the post-nonlinear mixtures, Proc. 1997 Euro-

pean Symp. on Artificial Neural Networks, Bruges, 16—18 April 1997, pp. 279—284.
[15] L. Xu, Least MSE reconstruction for self-organization: (I), (II), Proc. 1991 International Joint

Conference on Neural Networks(IJCNN91), Singapore, 1991, pp. 2363—2373.
[16] L. Xu, Least mean square error reconstruction for self-organizing neural-nets, Neural Networks

6 (1993) 627—648.
[17] L. Xu, Beyond PCA learnings: from linear to nonlinear and from global representation to local

representation, Invited Talk, Proc. 1994 Int. Conf. on Neural Information Processing, 17—20 October,
Seuol, Korea, 1994, pp. 943—949.

[18] L. Xu, Theories for unsupervised learning: PCA and its nonlinear extensions, Invited Talk, Proc. 1994
IEEE Int. Conf. on Neural Networks, vol.II, 26 June — 2 July, Orlando, Florida, pp. 1252—1257.

[19] L. Xu, Bayesian Ying—Yang learning based ICA models, Neural Networks for Signal Processing VII:
Proc. IEEE Signal Processing Society Workshop, 24—26 September, FL, 1997, pp. 476—485.

[20] L. Xu, Bayesian Ying—Yang system and theory as a unified statistical learning approach: (I) unsuper-
vised and semi-unsupervised learning, in: invited paper, S. Amari, N. Kassabov (Eds.), Brainlike
Computing and Intelligent Information Systems, Springer, Berlin, 1997, pp. 241—274.

[21] L. Xu, Bayesian Ying —Yang system and theory as a unified stastical learning approach (II): from
unsupervised learning to supervised learning and temporal modeling and (III): models and algorithms
for dependance reduction, data dimension reduction, ICA and supervised learning, in: K.W. Wong, I.
King, D.Y. Yeung (Eds.), Theoretical Aspects of Neural Computation: A Multidisciplinary Perspect-
ive (TANC97), Springer, Berlin, 1997, pp. 25—60.

[22] L. Xu, BYY dependence reduction theory and blind source separation, Proc. Int. Joint Conf. on
Neural Networks, Anchorage, AK, 5—9 May 1998, Vol. II, pp. 2495—2500.

[23] L. Xu, Bayesian Ying —Yang learning theory for data dimension reduction and determination, J.
Comput. Intelligence Finance, Finance Technol. Pub. 6 (5) (1998) 6—18.

[24] L. Xu, Bayesian Ying —Yang system and theory as a unified stastical learning approach: (IV)
further advances, Proc. Int. Joint Conf. on Neural Networks, Anchorage, AK, 5—9 May 1998, Vol. II,
pp. 1275—1280.

110 Lei Xu/Neurocomputing 22 (1998) 81–111

Lei Xu (Ph.D., IEEE Senior member) is currently a Professor in the Department of
Computer Science and Engineering at Chinese University, Hong Kong where he
joined in 1993 as a senior lecturer first and then attained the current position in
1996. He has been a professor at Peking University since 1992, where he started as
a postdoc in the Department of Maths in 1987 and then became one of ten
exceptionally promoted young associate professors of the Peking University in
1988. During 1989—93, he worked as a postdoc or a senior research associate in
several universities in Finland, Canada and the USA, including Harvard and MIT.
He is an expresident of the Asian—Pacific Neural Networks Assembly, an associate
editor of six renowned international academic journals on neurocomputing,
including Neural Networks, IEEE Trans. on Neural Networks. He has published
over 180 academic papers; given over ten keynote/invited/ tutorial talks as well as

served as a program committee member and a session cochair in major International Neural Networks
conferences in recent years, including WCNN, IEEE-ICNN, ENNS-ICANN, ICONIP, IJCNN, NNCM.
He was also, a program committee chair of ICONIP’96 and a general chair of IDEAL’98. He has received
several prestigious Chinese national academic awards (including National Nature Science Award and State
Education Council FOK YING TUNG Award) and also some international awards, and is listed in several
major Who’s Who and the First Five Hundreds publications by CIBC, ABI and Marquis Who’s Who.

[25] L. Xu, S.-I. Amari, A general independent component analysis framework based on Bayesian—
Kullback Ying—Yang Learning, Proc. Int. Conf. on Neural Information Processing (ICONIP 96),
Hong Kong, 24—27 September, Springer, Singapore, 1996, pp. 1235—1239.

[26] L. Xu, C.C. Cheung, S. Amari, Further results on nonlinearity and separation capability of a linear
mixture ICA method and learned parametric mixture algorithm, in: C. Fyfe (Ed.), Proc. Int. ICSC
Workshop on Independence and Artificial neural networks (I&ANN’98), February 9—10, Tenerife,
Spain, ICSC Academic Press, New York, 1998, pp. 39—44.

[27] L. Xu, C.C. Cheung, J. Ruan, S.-I. Amari, Nonlinearity and separation capability: further justification
for the ICA algorithm with a learned mixture of parametric densities, Proc. European Symp. on
Artificial Neural Networks, Bruges, 16—18 April 1997, pp. 291—296.

[28] L. Xu, C.C. Cheung, H.H. Yang, S.-I. Amari, Independent component analysis by the information-
theoretic approach with mixture of density, Proc. IEEE Int. Conf. on Neural Networks (IEEE-INNS
IJCNN97), vol. III, 9—12 June, Houston, TX, USA, 1997, pp. 1821—1826.

[29] L. Xu, H.H. Yang, S.-I. Amari, Signal source separation by mixtures accumulative distribution
functions or mixture of bell-shape density distribution functions, Research Proposal, presented at
FRONTIER FORUM (speakers: D. Sherrington, S. Tanaka, L. Xu, J.F. Cardoso), organized by S.
Amari, S. Tanaka, A. Cichocki, The Institute of Physical and Chemical Research (RIKEN), Japan, 10
April, 1996.

Lei Xu/Neurocomputing 22 (1998) 81–111 111

