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Abstract. For Gaussian mixture, a comparative analysis has been made on the convergence rate by
the Expectation-Maximization (EM) algorithm and its two types of modifications. One is a variant of
the EM algorithm (denoted by VEM) which uses the old value of mean vectors instead of the latest
updated one in the current updating of the covariance matrices. The other is obtained by adding a
momentum term in the EM updating equation, called the Momentum EM algorithm (MEM). Their
up-bound convergence rates have been obtained, including an extension and a modification of those
given in Xu & Jordan (1996). It has been shown that the EM algorithm and VEM are equivalent
in their local convergence and rates, and that the MEM can speed up the convergence of the EM
algorithm if a suitable amount of momentum is added. Moreover, a theoretical guide on how to add
momentum is proposed, and a possible approach for further speeding up the convergence is suggested.

1. Introduction

The ‘Expectation-Maximization’ (EM) algorithm is a general methodology for
maximum likelihood (ML) or maximum a posteriori (MAP) estimation [2]. It
has been substantially investigated in the literature of both neural computing and
statistics, e.g., see the reference list in [7]. The starting point for many of these
studies is the fact that EM is generally a first order or linearly convergent algorithm,
as can readily be seen by considering EM as a mapping �(k+1) = M(�(k)), with
fixed point �� = M(��). Results on the convergence rate of EM are obtained by
calculation of the information matrices for the missing data and the observed data
[1,3].

In Xu and Jordan [7], the mathematical connection between the EM algorithm
and gradient-based approach has been set up. That is, the EM step in parame-
ter space is obtained from the gradient via a projection matrix P in an explicit
expression. Based on it, a comparative study has been made on the advantages and
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disadvantages of that EM and other algorithms for Gaussian mixtures. It has also
been shown that the condition number associated with EM is smaller than the con-
dition number associated with gradient ascent, providing a general guarantee of the
dominance of the EM algorithm over the gradient algorithm. Moreover, in cases in
which the mixture components are well separated, they showed that the condition
number for EM approximately converges to one, corresponding to a local superlin-
ear convergence rate. Furthermore, in a latest result by Ma, Xu and Jordan [2], it
has been further shown that the asymptotic convergence rate of the EM algorithm
for Gaussian mixtures around its true solution �� is o(e0:5�"(��)), where " > 0
is an arbitrarily small number, o(x) means that it is a higher order infinitesimal as
x! 0, and e(��) is a measure of the average overlap of Gaussians in the mixture.
In other words, the large sample convergence rate for the EM algorithm tends to
be asymptotically superlinear when e(��) tends to zero.

In fact, a slightly modified variant of the EM algorithm (denoted by VEM)
has been studied in Xu and Jordan [7]. It differs from the standard EM algorithm
(denoted by EM) in using the old value of mean vectors instead of the latest updated
one in the current updating of the covariance matrices. This immediately rises a
serious concern – whether EM shares the convergence properties of VEM. In this
paper, it has been shown that the EM algorithm and VEM are actually equivalent in
local convergence rate. Moreover, a quite number of publications [4, 5, 6] suggested
to modifying the EM algorithm by adding a momentum term in the EM updating
equation, called the Momentum EM algorithm (MEM). This paper has justified that
the MEM can speed up the convergence of the EM algorithm if a suitable amount
of momentum is added. Moreover, a theoretical guide on how to add momentum
is proposed, and a possible approach for further speeding up the convergence is
suggested.

2. Equivalence of EM and VEM on Convergence and Its Rate

For a Gaussian mixture given by :

P (xj�) =
KX
j=1

�jP (xjmj ;�j); (1)

and

P (xjmj ;�j) =
e
� 1

2 (x�mj)T�
�1
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(x�mj)

p
(2�)nj�jj

1
2

;

where �j � 0,
PK

j=1 �j = 1 and n is the dimension of x.

Given K and given n i.i.d. samples fx(t)gN1 , an estimate �̂ that maximizes the
log likelihood

l(�) = log
NY
t=1

P (x(t)j�) =
NX
t=1

logP (x(t)j�) (2)
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can be obtained via the standard EM algorithm ( Dempster, Laird and Rubin, 1977)
which is an iterative algorithm for maximum likelihood learning as follows:
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where the posterior probabilities h(k)j are defined as follows:
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The VEM algorithm studied in [7] is quite similar to the above standard EM
algorithm, except that in Equation (3) we use the old value of mean vector

m̂ = m
(k)
j

to replace the latest updated one

m̂ = m
(k+1)
j :

To get some deep insight on the standard EM and VEM, we re-examine the origin
of the M step in the standard EM algorithm. It follows from Dempster, Laird &
Rubin [1] that Equation (3) comes from max mj ;�j Q(fmj ;�jgK1 ) sequentially in

the order of firstly max mj
Q(fmj ;�

(k)
j gK1 ) and then max �j Q(fm(k+1)

j ;�jgK1 ),
where Q(fmj ;�jgK1 ) is a re-weighted criterion given by

Q(fmj ;�jgK1 ) =
�1

2

PN
t=1
PK

j=1 h
(k)
j (t)[log j�j j+ (x(t) �mj)

T��1
j (x(t) �mj)]

We also have another choice for max mj ;�j Q(fmj ;�jgK1 ). We can first get�(k+1)
j

by max �j Q(fm(k)
j ;�jgK1 ) and then get m(k+1)

j by max mj
Q(fmj ;�

(k+1)
j gK1 ),

which outcomes exactly the above VEM. It is obvious that this way of maximization
ofQ still increasesQ. Thus, both the standard EM and VEM guarantee to converge
to a maximum likelihood solution. Also, both share the properties of general
convergence and automatic satisfaction of constraints discussed in [7].

From Xu and Jordan [7], each iteration step of VEM can be obtained by pre-
multiplying the gradient of the log likelihood by a positive definite matrix PA as
follows:

A(k+1) �A(k) = P
(k)
A

@l

@Aj�=�(k) ;
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are positive definite matrices with probability one under the constraints
PK

j=1 �
(k)
j =

1, where ‘
’ denotes the Kronecker product. Letting P (�) = diag[Pm1 ; � � � ;
PmK

; P�1 , � � � ; P�K ; PA], we can have a single equation:

�(k+1) = �(k) + P (�(k))
@l

@�
j�=�(k) ; (5)

That is, the direction�(k+1)��(k) of each VEM iteration has a positive projection
on the gradient of the likelihood function l.

We can link Equation (2) to VEM by letting
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Following a similar procedure in getting Equation (4) by Xu and Jordan [7], from
the above equation we can have the following Equation (6) in the place of Equation
(4) for the standard EM algorithm
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(6)

Strictly speaking, the search direction �(k+1) ��(k) of each iteration by the EM
algorithm is no longer satisfies Equation (5) but is modified by an extra term
resulted from [m

(k)
j �m

(k+1)
j ]
 [m

(k)
j �m

(k+1)
j ]. From Equation (4) it is actually

an 2nd order force by gradient @l
@mj

j�=�(k) .
Given a local area around a converged point ��, for both the VEM and the

EM we have k�(k) � ��k2 ! 0 is an infinitesimal as k ! 1. While the square
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norm k[m(k)
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jk4=k�(k) ���k4 � 1. Therefore, the role of the 2nd term in Equation

(6) can be neglected, and Equation (6) and Equation (4) can be regarded the same
in a local area around a converged point ��. Moreover, an iterative algorithm is
said to have a convergence rate of order q � 1 if k�(k+1) ���k=k�(k) ���kq �
r+ o(k�(k)���k) for k sufficiently large. The effect of the 2nd term in Equation
(6) will be in o(k�(k) � ��k) which is independent of q. Therefore, we have
Theorem 1 For Gaussian mixture, the EM and the VEM share the same local
convergence rate r, which is up-bounded by

r � k ET (I + P (��)H(��)) k�
q

1 + �2
M � 2�m = ru; (7)

�M = kETP (��)H(��)k =
q
�M [ETP (��)H2(��)P (��)E];

�m =
q
�m[�ET (P (��)H(��) +H(��)P (��))E]; (8)

where H(��) is the Hessian of the likelihood function l at ��. kAk, �M [A]
and �m[A] is the norm, the largest and smallest eigenvalues of the matrix A

respectively, and E = [e1; � � � ; em�1] consists of unit orthogonal basis vectors
that span the subspace D = f� :

PK
j=1 �j = 0g for the case that vec[�j]

T =

[�
(j)
11 ; � � � ; �

(j)
nn ]with�j = diag[�

(j)
11 ; � � � ; �

(j)
nn ] orD = f� :

PK
j=1 �j = 0; �(j)pq =

�
(j)
qp ; for all q; p; jg for a general covariance matrix �j .

Equation (7) is the last inequality on p137 of Xu and Jordan [7], and Equation
(8) is modification of Equation (5.5) there, which is approximately correct only but
not strictly true. The detail proof of Theorem 1 will be given in Section 4.

3. The Momentum EM Algorithm (MEM) and Convergence Rate

For an iterative algorithm with a current incremental�� = �(k+1)��(k), we can
always modify the obtained �(k+1) into (1� �)�(k) + ��(k+1) or

�(k+1) = �(k) + ���; � > 0 (9)

Usually, this is called the momentum approach. We can easily get the Momentum
EM and the Momentum VEM by using Equation (9) to modify the incremental
�� = �(k+1) � �(k) given by Equation (3). The Momentum EM has been
considered to be able to speed up the convergence [4,5,6] with an appropriate �
that is usually chosen heuristically. Here, we analyze why the MEM can speed up
the convergence and how to chose �.

From Equation (5), the Momentum VEM can be actually represented as

�(k+1) = �(k) + �P (�(k))
@l

@�
j�=�(k) (10)
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Moreover, similar to the previous section we can show that the Momentum EM
and the Momentum VEM are equivalent in their local convergence and rate. So,
our following results should hold for both of them.

Theorem 2 For Gaussian mixture, we have
(1) The Momentum EM and the Momentum VEM share the same local conver-

gence rate r, which is up-bounded by

r �k ET (I + �P (��)H(��)) k�
q

1 + �2�2
M � 2��m = ru� : (11)

where E; �M ; �m are the same as that given in Theorem 1.

(2) ru�� = min� ru� =
q

1� (�M=�m)2 at �� = �m=�
2
M .

(3) When ru < 1 or equivalently �M <
p

2�m, we further have ru�� < ru ,
�� = �m=�

2
M > 0:5 where ru given by Equation (8)

This theorem justifies that the MEM can speed up convergence because ru�� < ru

when �M <
p

2�m, which holds usually due to the function of P matrix, as shown
in Xu and Jordan [7]. Moreover, it also provides a theoretical guide to select the
momentum amount via �, which should be at least �� > 0:5, and reaches its best
at �� = �m=�

2
M .

Since it is possible to get P matrix by Equation (4) and the Hessian H by the
formulae given in Ma, Xu and Jordan [2] (although they need quite complicated
computation), we suggest that some further speed-up of the EM can be made along
the following two directions:

(1). To find a fast way to estimate �m and �2
M adaptively, such that we can

adaptively change � to approximate ��.
(2). To find a fast way to estimate Q as an approximation of the pseudo-inverse

matrix of PH , such that we can further have an Quasi-Newton algorithm by

�(k+1) = �(k) + �Q��; (12)

where the incremental �� = �(k+1) ��(k) given by the EM algorithm.

4. The Proof of Theorems

Since the local convergence rates of the EM and VEM are the same, and also
the EM and VEM are the special case � = 1 of the Momentum EM and the
Momentum VEM respectively, in the following we only need to prove the case for
the Momentum VEM.

(1) During the iteration of the Momentum VEM algorithm, we have always� 2
RwithR = f� :

PK
j=1 �j = 1g for the case that vec[�j]

T = [�
(j)
11 ; � � � ; �(j)nn ] with

�j = diag[�
(j)
11 ; � � � ; �(j)nn ] orR = f� :

PK
j=1 �j = 1; �(j)pq = �

(j)
qp ; for all q; p; jg

for a general covariance matrix �j . R can be translated into a subspace D, with
its spanning unit orthogonal basis vectors e1; � � � ; em�1 that forms E as given in
Theorem 2, by a constant shift �0. For each �, we have �0 = �� �0 2 D, and
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we further let the coordinates of �0 under the bases e1; � � � ; em to be denoted by
�c, we have

���0 = E�c; or � = E�c +�0: (13)

Multiplying its both sides by ET , it follows from ETE = I that

ET� = ETE�c +ET�0; or �c = ET��ET�0: (14)

Putting it into Equation (13), we have

�0 = ���0 = ETE(���0) = EET�0; for �0 2 D; (15)

k�0k2 = �0T�0 = �0TETE�0 = kET�0k2; for �0 2 D; (16)

From Equation (10), by Taylor expansion of P (�(k)) @l
@� j�=�(k) around the

converged point �� and noticing that P (�(k)) @l
@� j�=�� = 0, we have

�(k+1) = �(k) + �P (��)H(��)(�(k) ���);

�(k+1) ��� = �(k) ��� + �P (��)H(��)(�(k) ���)

= (I + �P (��)H(��))(�(k) ���);

ET (�(k+1) ���) = ET (I + �P (��)H(��))(�(k) ���);

k�(k+1) ���k = kET (�(k+1) ���)k
� kET (I + �P (��)H(��))kk�(k) ���k; (17)

since �(k+1) ��� 2 D and �(k) ��� 2 D and thus Equation (15) and Equation
(16) hold. It further follows that the local convergence rate of the EM algorithm is
up-bounded by

r � kET (I + �P (��)H(��))k =q
maxkxk=1 x

T fET (I + �H(��)P (��))(I + �P (��)H(��))Egx �q
1 + �2 maxkxk=1 x

TETH(��)P (��)P (��)H(��)Ex� T3

T3 =
q
� minkxk=1 x

TET [�H(��)P (��)� P (��)H(��)]Ex

Since �H is positive definite and P is positive definite on R and thus that
ETH(��)P (��)P (��)H(��)E and�ET [H(��)P (��))+P (��)H(��)]E are
positive definite matrices. Moreover, we have

maxkxk=1 x
TETH(��)P (��)P (��)H(��)Ex = �M

minkxk=1 x
TET [�H(��)P (��)� P (��)H(��)]Egx = �m

with �M ; �m are defined in Equation (8). Therefore, we have

r � kET (I + �P (��)H(��))k �
q

1 + �2�2
M � 2��m = ru� .

(2) It is obvious to get ru�� = min� ru� =
q

1� (�M=�m)2 at �� = �m=�
2
M .

(3) It is easy to get from (2).



76 LEI XU

5. Conclusion

The EM algorithm and VEM are equivalent in its local convergence rate. The
momentum term can speed up the convergence but needs to be chosen at least with
� > 0:5, which can be further improved if we can adaptively estimate the optimal
�� given in Theorem 3.
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