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Abstract—First, the relationship between factor analysis (FA)
and the well-known arbitrage pricing theory (APT) for financial
market has been discussed comparatively, with a number of
to-be-improved problems listed. An overview has been made from
a unified perspective on the related studies in the literatures of
statistics, control theory, signal processing, and neural networks.
Second, we introduce the fundamentals of the Bayesian Ying
Yang (BYY) system and the harmony learning principle which
has been systematically developed in past several years as a
unified statistical framework for parameter learning, regular-
ization and model selection, in both nontemporal and temporal
stochastic environments. We further show that a specific case of
the framework, called BYY independent state space (ISS) system,
provides a general guide for systematically tackling various FA
related learning tasks and the above to-be-improved problems
for the APT analyses. Third, on various specific cases of the BYY
ISS system in three typical architectures, adaptive algorithms,
regularization methods and model selection criteria are provided
for either or both of parameter learning with automated model
selection and parameter learning followed by model selection.
In the B-architectures, new results are provided for Gaussian
and non-Gaussian FA, binary FA, independent Hidden Markov
Model (HMM) and Temporal FA, as well as other extensions,
which are then applied to statistical APT analyses for solving the
above to-be-improved problems. In the F-architectures, adap-
tive algorithms are given for several extensions of independent
component analysis (ICA), including competitive ICA, Gaussian
and non-Gaussian temporal ICA. Moreover, the advantages of
the B-architectures and the F-architectures are traded off in the
BI-architectures, not only with new strength to the existing least
mean square error reconstruction (LMSER) learning, but also
with various LMSER extensions, including the so-called principal
ICA and its temporal extension. The final part of this paper
introduces some other financial applications that base on the
underlying independent factors via the APT analyses, including
prediction of macroeconomic indexes, portfolio management by
adaptively maximizing an adjusted Shape ratio, and a macroeco-
nomics modulated independent state-space model for financial
market modeling.

Index Terms—Arbitrage pricing, BYY system, data-smoothing,
factor analysis, financial modeling, finite sample size, harmony
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learning, normalization, portfolio, regularization, source separa-
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I. FACTOR ANALYSIS, APT THEORY, AND RELATED

LITERATURES

I T has been a well-known philosophy that a complicated ob-
servation is regarded as generated from a number of hidden

and simpler factors via certain transformation or mixing system
such that the observation can be understood by recovering the
factors via an inverse transformation or demixing system. Many
efforts have also been made on developing mathematical theo-
ries that implements this philosophy to solve various practical
problems in a number of scientific and engineering fields.

The earliest effort can be traced back to the beginning of the
20th century by Spearman [54], and had been followed by var-
ious studies in the literature of statistics, which use the following
linear model:

is independent from (1)

where and throughout this paper, the notations
denotes the expectation of random variable. The model

(1) has been applied to various explanatory modeling tasks
in sciences, especially behavioral and social sciences. In this
simple model, a random sample of
observation is generated via a linear mapping matrixfrom

hidden factors in the form , disturbed
by a noise as given in (1). Usually, samples of are
independently and identically distributed (i.i.d.) from a same
probability density function (pdf) . The general ambition
is to determine and the statistics of and from a series
of samples . Obviously, the problem is not well
defined because there are an infinite number of solutions. To
reduce the indeterminacy, we consider that samples ofare
i.i.d. and correspondingly samples of are also i.i.d. from a
pdf . Hence, can also be modeled by

(2)

Usually, the above treatment is still not enough to make the
problem sensible, and extra constraints must be adequately im-
posed. Specifically, different types of constraints will lead to
different statistical approaches that implement (1), which are
briefly summarized as follows:

• Linear Regression:When it is also possible to know the
corresponding series , the task becomes the
typical linear regression problem. When the pdf form of
is known, can be determined by using the classical max-
imum likelihood (ML) method on , which
can be further simplified into the conventional least square
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method or the weighted least square method whenis
Gaussian.

• Inverse Problem: When both and are known, the
task becomes the typical inverse problem that maps each

into a corresponding estimate. One typical technique
is again the ML method

arg e.g.,

for

(3)

where and throughout this paper, denotes a
Gaussian density with meanand covariance , and
arg denotes the value of that makes be
maximum. Particularly, we have when

, which is usually called the least square inverse.
When , , can be estimated iteratively via the
so called reweighted least square inverse.

• Factor Analysis: Instead of imposing that eitheror is
known, an alternative way is to impose certain structures
on and such that the indeterminacy of (1) could be
reduced to a level that (1) becomes meaningful to certain
applications. One typical example is well known as factor
analysis [40], [50]. Formulated by Anderson and Rubin in
1956 [4], both , come from Gaussian with ,

. Specifically, is uncorrelated among its com-
ponents with a diagonal covariance matrix. Moreover,

is uncorrelated to that is itself uncorrelated among
its components. Furthermore, it is usually assumed that

since the uncorrelated components remain
uncorrelated after any scaling transform

is diagonal

(4)

In such a formulation, the pdf-based equation (2) becomes

are covariance matrices

of respectively (5)

This matrix equation may still have many solutions due to the
following two types of indeterminacy:

1) Rotation indeterminacyFor any rotation matrix
, , obviously we have

or (6)

2) Additive indeterminacyThe additive symmetry of the
two items in the left side of (5) makes the indetermi-
nacy of decomposing the diagonals of into the di-
agonals of and of . It is also called the com-
munality estimation problem [40].

Two heuristic ways are usually used to remove these types
of indeterminacy. One is simply set . That is, in help
of the singular value decomposition , ,

with a diagonal , it follows from (6) that

is a solution with . Also, the additive in-
determinacy is removed when the ML learning is made on

. Furthermore, in the case
, we even get an analytical solution thatconsists of

the first component eigen-vectors of the sample covariance
, a diagonal consists of the corresponding eigen-values,

and is an average of the last eigen-values [67]. The
other heuristic way is to select a specific rotation instead of
imposing . Typical examples include Quartimax and
Varimax, which have been used in the literature of statistics
[40].

• Principle Component Analysis: Instead of getting
based on knowing and the covariance matrices of,

, an alternative is to get under the orthogonal
constraint such that becomes uncorrelated
in components and the variance of each component is
maximized. The solution is analytically given by ,
where again consists of the first components of

. This is well known as principle component analysis
(PCA), which can be backtracked to as early as in 1936
by Hotelling [31], and has been also widely studied
in the literatures of statistics, pattern recognition and
neural networks [43]. Putting the above solution
at into (3), we have = =

. That is, the least square inverse of this specific
factor analysis is actually equivalent to PCA up to a scale
difference by .

Interestingly, the same model (1) has also been approached
from the perspective of finance theory. In the literature of finan-
cial market modeling, the well-known arbitrage pricing theory
(APT) is proposed by Ross in 1976 [47], [49]. According to
APT, the return on security can be broken down into an expected
return and an unexpected or surprise component, usually called
news. This news can be further classified into two types. One
is general news that affects all stocks, e.g., an unexpected an-
nouncement of an interest rate change by the government. The
other is specific news that affects particular stocks. The APT
theory believes that these general news will affect the rate of re-
turns on all stocks by different degrees of sensitivity.

To be more specific, the APT infers that an individual asset
is associated with multiple risky factors as follows:

(7)

where
expected return on a risky asset;
risk-free return;
is the sensitivity of assetto the risky factor .

Considering the instantaneous form, (7) is rewritten into the fol-
lowing form with a residual return , to each
asset :

or

(8)
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Obviously, its matrix form is exactly (1).
Since its inception in the mid-1970s, the APT has attracted a

considerable interest as a tool for interpreting investment results
and controlling portfolio risk [25], [1], [18]–[20], [52]. To im-
plement the APT, the key is to determine what are used as the
factors. Three approaches are usually applied for the purpose:

• Time series approachthat directly uses a historic time
series of a set of macroeconomic or fundamental indexes
as the series of factors . These factors are
usually known asfundamental factors, including GDP, in-
flation, interest rate, oil price, etc. In this case, a typical
time series regression is made to estimate, which it is a
typical linear regression problem.

• Cross-sectional approachthat begins with estimates of
elements of which are usually called the attributes or the
securities’ sensitivities to , known as empirical factors.
The attributes are obtained via observing the correlation
between , . The task is to estimate upon , which
can be made again by a linear regression on (1) at the
current time . Actually, it is equivalent to set up an inverse
mapping (3).

• Factor-analytic approach that uses the factor analysis
approach to get both the unknown and the unknown
factors estimated from the observed time series

.
Despite its attractive features, the APT has not been widely

applied by the investment community. The reason lies largely
with the APTs most significant drawback: the lack of specificity
regarding the factors that systematically affect security returns.
In the uses of the above first two approaches, either fundamental
factors or attributes are chosen heuristically and even quite arbi-
trarily, based on preknowledge or beliefs. In the use of factor-an-
alytic approaches, there is no need on external heuristics. Thus,
they become more appealing in the general cases where we have
only the observed price movements[25], [1], [18]–[20]. Un-
fortunately, certain empirical tests [25], [1] showed that factor
analysis does not specify what economic variables that the fac-
tors represent.

There remains a plenty room for improving the implementa-
tion of APT. The failures of the factor-analytic approach may be
due to both inappropriate tools for handling the intrinsic inde-
terminacy in (1) and the inadequacy of (1) for modeling a time
series , which are summarized as follows:

• Problem (a) Three types of indeterminacyThough the
scaling indeterminacy (4) can be acceptably removed by
considering uncorrelated factors with unit variance, both
the rotation indeterminacy and additive indeterminacy
make the factor-analytic approaches not able to specify
an appropriate solution. The above discussed ways of
imposing or Quartimax and Varimax are too
arbitrary to provide a good solution.

• Problem (b) How to determine the numberof factors
The selection of a correct number of factors are essential
to the performances of using the APT model [20]. But it
is usually set heuristically.

• Problem (c) Ignorance of temporal relationThe above dis-
cussed implementation of (1) implies assuming that each

for different is i.i.d. and correspondingly each for
different is also i.i.d. However, in practice there is a tem-
poral or serial relation among the samples of ,
which should not be ignored.

• Problem (d) Non-Gaussian noiseThe existing studies
on (1) consider the cases that the unknownin (1) is
Gaussian, which is not suitable for the cases thatis
non-Gaussian.

• Problem (e) Nonadditive modelEquation (1) considers
two independent terms additively, which is not applicable
to the case that it is impossible to decomposeinto two
independent additive terms.

• Problem (f) Nonlinear modelThe linear model (1) is not
adequate for the cases that, have a nonlinear regres-
sion relation.

It should be noticed that the above problems are essential not
only specifically to the performance of the APT implemented
by statistical factor analysis but also generally to the success
of the factor model (1) on various practical applications. In ad-
dition, appropriate solutions of the above problems (a)–(f) also
provide improvements and extensions on the performance of the
APT implemented by the cross-sectional approach. The paper
is motivated to tackle these problems systematically. Actually,
some problems have been partially touched already, scattered in
different literatures. To provide a background for a better un-
derstanding on the work of this paper, we make a comparative
overview on the existing major advances.

• Independent Component Analysis (ICA) and Blind
Source Separation (BSS):Started from Jutten and Her-
ault in 1988 [35], a simplified model of (1) is considered
by setting and , i.e., with
being a unknown invertible matrix. They assume that
the components of are independent and non-Gaussian
or with at most only one of them being Gaussian. This
assumption removes out the rotation indeterminacy (6)
because components can not keep independent after a
rotation transform. Thus, can recover up to
the scaling indeterminacy (4) if makes nonGaussian

become component-wise independent [59], [17]. For
this nature, it is called ICA, named in contrast to PCA.
The rotation indeterminacy is removed by extracting the
higher order information from data, instead of imposing
extra heuristics while still based on the statistics up to
second order only in the above mentioned Quartimax or
Varimax [40]. Moreover, when each component ofis
interpreted as a sample of a time series at the moment,
the fact that the ICA solution recovers up
to the scaling indeterminacy (4) means that the waveform
of each component series can be recovered. Thus, this
recovery is also said to perform BSS that
blindly separates the mixed signal .

Advances on ICA can be roughly summarized into several
stages. First, several learning algorithms for estimatinghave
been proposed from different perspectives [35], [28], [17], [8],
[3], [27]. Usually, these algorithms work well on the cases that
the components of are either all sub-Gaussians or all super-
Gaussians because a prefixed pdf form is used as each ,
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either heuristically (e.g., the sigmoid used in [8]) or based on
kurtosis estimation or density expansion [17], [3]. At the second
stage, it is realized [72] that the pdf form for each should
also be learned simultaneously during learning onsuch that
whether a component is super-Gaussian or sub-Gaussian can
be automatically detected in order to work on any combination
of super-Gaussian or sub-Gaussian components of. This idea
has been implemented by learning , during learning on

, via estimating the parametersof the following parametric
model:

(9)

An early effort of this type is called the learning parametric
mixture based ICA [69], [72], [79], where a finite mixture is
used as , with updated by an EM-like algorithm
during updating . Alternatively, efforts [44], [16] have also
been made on estimating the kurtosis of . At the third
stage, extensions have been made toward various general cases,
e.g., (a) the dimension of is larger than instead of that
is invertible [70], [69], [68], (b) some specific nonlinear system

instead of the linear model (1) [57], [68]. A more
detailed review on the advances of ICA is referred to [63], [69],
[76], and [77]. Some interesting studies have also been made on
using an ICA algorithm for exacting structures from stock re-
turns by [5].

• Non-Gaussian Factor Analysis:It is not realistic to as-
sume zero noise . Thus, it is more reasonable to con-
sider (1) with the independence assumption (9) in place of
the previous assumption that components are decorrelated.
For clarity, we refer this type of factor analysis (FA) as
Non-Gaussian FAor independent FAto avoid being con-
fused with the above discussed FA, which should now be
more precisely referred asGaussian FA or de-correlating
FA. Similar to ICA, when each is non-Gaussian
or at most only one of them is Gaussian [68], the rota-
tion indeterminacy (6) can be removed. However, not as
in Gaussian FA, it is not an easy task to estimateas
well as the parameters of and by using the ML
method on in (2) because a computational difficulty
will be encountered for implementing the integral (2), es-
pecially when is a real vector. In [68], the integral is han-
dled by a Monte-Carlo sampling method, based on which
a general adaptive algorithm is proposed to make the ML
learning. Also, as a solution of theproblem (b), a crite-
rion is obtained from the so called Bayesian Ying-Yang
(BYY) learning for detecting . On the data with binary
signals , experiments have shown that the algorithm and
criterion work well. Also in [68], an alternative way to
get rid of the integral (2) is made via a mean-field type
approximation. While in the literature of ICA studies, ef-
forts have also been made on gettingthat makes

become component-wise independent by taking
from (1) with in consideration, in help of some
heuristics or certain structures [16], [27]. These studies
are usually called noisy ICA, which are closely related to
non-Gaussian factor analysis.

Even further, as an effort toward to theproblem (d), the case
that in (1) is not Gaussian has been considered in [68] by
using Gaussian mixture to model the pdf . In [68],
the linear model (1) has been also extended to a general non-
linear factor model

is independent from (10)

as an effort toward to the aboveproblem (f). Furthermore, in
the literature of neural networks, efforts have also been made
on modeling binary (e.g., representing a binary image) by
interpreting it as generated from binary hidden factorwith
mutually independent bits. Typical examples include multiple
cause models [51], [21] and Helmholtz machine [22], [30].
These studies can actually be regarded as efforts toward to
the problem (e). In this case, the regression between binary

and is nonlinear and thus acts as in (10), but
becomes not independent from. That

is, it can not be decomposed into two independent additive
terms and described by (2). Actually, it is a specific case of the
following general factor model:

(11)

By regarding = and
, we observe that (11) includes not only (10) but also

those cases that is not independent from , such as the above
one.

• Hidden Markov Model (HMM): As a popular topic in
the literature of speech processing since the early 1970s
[45], HMM is a classical example of the early efforts to-
ward solutions to both theproblem (c)andproblem (e),
and has been proved to be one of most effective tools
for modeling temporal relation with wide applications. In
a classical HMM, is discrete and described by (11)
with being a transfer probability matrix,
which is equivalent to a nonlinear regression and

is not independent from each discrete
value of . The temporal relation is modeled by intro-
ducing the first-order Markov transfer probability

that turns into , which is a spe-
cial case of the following general form of the order one
Markov model:

(12)

In the HMM studies, and are unknown
and can be solved from observations by the Baum algo-
rithm for the ML learning [45].

• State-Space Model and Kalman Filter:Another early
effort toward solutions to theproblem (c)is the classic
state-space model:

is independent from both and (13)

which is studied in the literatures of control theory since
the early 1960s [36]. The model (13) can be regarded as an
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extension of (1), with the first equation added in for mod-
eling temporal relation. The added equation represents the
factor series in a multichannel autoregressive
process, driven by an i.i.d. noise series that are
independent of both and . Generally, the indeter-
minacy of (13) is more serious than the original model (1)
because of the new unknowns ofand the statistical prop-
erty of . Thus, further constraints are obviously needed.

The most well-known successful use of (13) is the Kalman
filter that adaptively estimates upon observing under the
condition that both , are known and both , are Gaussian
with known covariance matrices. The Kalman filter extends the
task of the optimal linear mapping by taking temporal
relation in consideration. In the past three decades, Kalman filter
has been widely used in the literatures of control theory and
signal processing [13]. In recent years, efforts have been made
on using Kalman filter for discovering the true pricing in fi-
nancial series [10], [41], [42]. However, inherited from Kalman
filter, these studies either fix the matrices, by some simple
constants (e.g., , in [41], [42]) or model them by a
specific structure such that the unknowns are estimated also via
Kalman filter [10], [34].

In [63], [76], and [77], as a new effort to theproblem (c), we
implant the basic assumption (9) into the state-space model (13)
and impose the independence assumption on the components of

, i.e.,

(14)

where , denotes theth row of , , respectively,
and is an empty set. On (13), it becomes the following
condition:

is diagonal and is mutually independent

in components (15)

which is called temporal factor analysis (TFA) model. Specif-
ically, it is called either Gaussian TFA when is Gaussian or
non-Gaussian TFA when is non-Gaussian. It has been shown
in [63] that the use of temporal relation in (13) can also remove
out the previous rotation indeterminacy. Moreover, for Gaussian
TFA, an adaptive algorithm is proposed to learn, as well
as the covariance of via the ML estimation on by (2)
under the constraint of (12). Also, a criterion is obtained from
temporal BYY learning for deciding as an effort toward to the
problem (b). Particularly, in the special case , we also
get an extension of ICA, named temporal ICA, that takes tem-
poral relation in modeling, with an adaptive algorithm provided.
Furthermore, when is a binary vector, variants of HMM have
been obtained to consider higher order temporal relation in im-
plementation of binary non-Gaussian TFA and binary BSS with
noise. Experiments have demonstrated that these temporal algo-
rithms outperform their nontemporal counterparts significantly.

The rest of paper consists of two parts. The first part is given
in Section II in which we describe the fundamentals of the
BYY harmony learning that is proposed as a unified statistical

learning theory first in 1995 [73], [80] and then systematically
developed in the past years [62]–[64], [66], [68], [76], [77].
Specifically, the best harmony learning principle is presented
in Section II-A for both parameter learning and model selec-
tion, with discussions on its relation to the ML learning and
regularization. In Sections II-B–II-D, the BYY system and
three typical architectures are introduced. Also, the key issues
of the harmony learning on the BYY system are described in
two types of implementations, namely, parameter learning with
automated model selection and parameter learning followed by
model selection. In Section II-E, the BYY harmony learning is
further extended to stochastic environment, especially to the
temporal BYY learning. In Section II-F we present a general
adaptive learning procedure that applies to all the three typical
BYY system architectures in typical specific structures.

The second part is given in Section III in which we intro-
duce the detailed forms of the harmony learning on three typical
architectures of the BYY independent state space system, and
then apply them to statistical APT financial analyses with exten-
sions. The backward architecture is introduced in Section III-A,
with adaptive algorithms, regularization techniques and model
selection criteria on various cases of the independent state space
model (13) and their extensions, which include non-Gaussian
FA, Gaussian and non-Gaussian TFA, binary FA, and indepen-
dent HMM as well as their extensions to non-Gaussian obser-
vation noise and nonlinear models. All of them can not only
be used for corresponding unsupervised learning tasks, but also
be used as tools for implementing generalized APT financial
analyses, with the previously listedproblems (a)–(f)in consid-
eration. In Section III-B, we first introduce the forward archi-
tecture, with adaptive algorithms on Gaussian and nonGaussian
temporal ICA, as well as a competitive ICA for data of mul-
tiple modes. Then, we introduce the bidirectional architecture
that trades off the advantages of a backward architecture and
a forward architecture, with not only new strength to the ex-
isting LMSER learning [75], [82] but also to various LMSER
extensions, including a type of principal ICA and its temporal
extensions. Moreover, in Section III-C, the APT analyses is
used for return prediction, macroeconomic modeling and partic-
ularly portfolio management by adaptively maximizing a modi-
fied Shape ratio in help of hidden factors. In Section III-D, as an
alternative to APT, a macroeconomics modulated independent
state-space model is proposed to for capital market modeling
by taking macro-economy indices in consideration. Finally, we
conclude in Section IV after providing demonstrative experi-
ments in Section III-E.

II. BAYESIAN YING YANG SYSTEM AND HARMONY LEARNING

A. Best Harmony Learning Principle

In general, specifying a density involves three issues.
The first issue is a given structure. A typical example is given in
Table I with as , which is a product structure that consists of
components. Each component is either (a) a basic component,
in a sense that its pdf form is given and there remains only a
set of unknown parameters, or (b) a summation structure that
itself consists of a number of components which are organized
in a weighted sum. The task ofstructure designis to specify
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the pdf forms of basic components and the structure that these
basic components are organized. The second issue is the set

that describes the scale of a given structure. The task
of specifying the scale is calledmodel selectionin a sense that a
collection of different scales corresponds a collection of specific
models that share a same configuration but in different scales,
and thus selecting a specific scale is equivalent to selecting a
model. Thethird issueis a collection of unknown parameters.
The task of specifying is calledparameter learning.

In a conventional sense, learning is a process that specifies a
density from a given data set , via specifying
, under a given structure design. Without extraa priori con-

straints, learning from is equivalent to learn from its empirical
density [24]:

.
(16)

Instead of , from we can also use a kernel density es-
timate, where each sample is smoothed under the control of an
extraa priori smoothing parameter , as will later to be in-
troduced in (25) and (33).

In a broad sense, we consider learning not only in this case
but also in the cases that there are two , in known
structures but each of them having some unknown parts, e.g.,
in either or both of the scale and the parameters.1 The task of
learning is to specify all the unknowns from the known parts of
both the densities.

Our fundamental learning principleis to make , be
best harmony in a two-fold sense:

• The difference between the resulting , should be
minimized.

• The resulting , should be of the least complexity.
Mathematically, we use a functional to measure the

degree of harmony between and . When both ,
are discrete densities in the form

(17)

we can simply use the following cross entropy:

(18)

as a typical example of such a measure. The maximization of
has two interesting natures:

• Matching natureWith fixed, pushes to-
ward

for all (19)

• Least complexity natureWith fixed,
pushes toward

or

1It can be observed more clearly in Section II-B, wherep(u); q(u) denote
two different structures of a same joint density.

TABLE I
INDEPENDENT DENSITY AND INDEPENDENT

CONDITIONAL DENSITY

for
otherwise,

arg (20)

Thus, the maximization of the measure indeed imple-
ments the above harmony purpose mathematically. It can also
be understood from the fact that leads to
when is free without other constraint. Clearly, is the
entropy of , which is a typical complexity measure for a sto-
chastic model . The further maximization of or equiva-
lently minimization of pushes toward (20) when

is also free. The density form of (20) is the simplest from prob-
abilistic view since it simply says that in probability one,
and the entropy becomes its smallest value 0.

To extend (18) to cover the cases that is a continuous
density, we consider a set of samples that comes
independently and identically from and we form a discrete
density as in (17) via the following normalization:

(21)

When is a discrete density in (17), we have

thus (22)

Putting (21) into (18), we have
. Similarly, we can also approximate a continuous

and get . When comes
independently and identically from in a large enough
size , we can further smooth each point by a hyper-cubic
bin with a small volume for a small and regard

as the probability that falls in this bin. Then,
holds approximately for an appropriate
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volume . We further have
as and get the

following general form of the harmony measure:

(23)

which consists of the continuous cross entropy as the first term
that accounts for learning with the large size of samples and
the second term that accounts for the effect of a finite size of
samples.

Furthermore, we can get two typical forms for the implemen-
tation of (23).

First, with given by (16), (23) becomes

(24)

which applies to both the case that is a discrete density and
that is a continuous density.

Second, for a continuous density , another choice of
is the Parzen window estimate

(25)

which returns to as . That is, is a smoothed
modification of by using a Gaussian kernel
with mean zero and covariance to blur out each impulse at

.
Since we desire that the difference between and is

smallest, it is justified to impose a weak constraint

(26)

With this constraint, we can approximately get

(27)

From (25) and (27), (23) becomes

(28)
The first term encourages the best fitting of to . The
smaller is the , this fitting is more loyal to empirical samples.
However, the second term discourages thatbecomes too small
for avoiding over-fitting on a finite number of samples, espe-
cially when the data dimension is high. The third term bal-
ances the second term for avoiding an over-action. Finally, the
term says that a large number is preferred. In this paper,
we only consider the case that is given and thus the constant

can be neglected. However, (28) can also be used to those
extended studies on how many samples are needed to achieve a
desired harmony performance.

Based on (24) or (28), we describe a mathematical implemen-
tation of harmony learning as follows:

(29)

where consists of all the unknown parameters, andconsists
of unknown parts of scales in , . In the case of (28),
the smoothing parameteris also included in , which is thus
denoted as .

It can be observed that the first term of is actually the
likelihood:

(30)

Thus, if we roughly regard that is approximately irrelevant
to , becomes equivalent to the conventional ML
learning on . This implementation of harmony learning
(29) is made directly based on a sample set and
thus is also referred asempirical learning.

Generally, (24) and (28) provide us two types of the regular-
ized ML learning as follows:

(a) Considering in (23), consists of the
ML learning plus a regularization that prevents to
over-fit the data set of a finite size. This point can be
better observed by comparing the gradients:

(31)

That is, a delearning is added to learning on each sample
and the delearning step size is proportional to the degree
of fitting on the sample by the current model. The im-
plementation (24) of the harmony learning (29) is made
with a normalization term in effect to avoid over-fitting
on a data set of finite size. Thus, the implementation
(24) of the harmony learning (29) is callednormalization
learning.

(b) Considering (28), in help of the Taylor expansion of
around up to the second order, we have

Tr

(32)

Then, becomes equivalent to

Tr (33)

which regularizes the ML learning via smoothing
in the near-neighbor of and thus is called
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data smoothingregularization. So, the implementa-
tion (28) of the harmony learning (29) is calleddata
smoothing learning. Furthermore, it follows from the ap-
proximation in that this data smoothing is closely
related to Tikhonov-type regularization [58], [29], [9].

We can implement (33) by alternatively repeating the fol-
lowing two steps.

Step 1)

fix get

Step 2)

fix get

or

(34)

where is a step size, and is an ascend direction of
or . The alternative solution is given

by solving the critical equation with approximately

The fact that the maximization of the continuous cross en-
tropy leads to the ML learning (30)
are well known in the literature. However, the above two imple-
mentations of the matching nature (19) have been rarely studied.
More interestingly, the least complexity nature (20) has been re-
garded as being useless in the conventional sense of learning,
but in the sequel we will show that it is this least complexity na-
ture (20) that takes an essential role in learning on the following
BYY system.

B. BYY System and Harmony Learning

We consider with observable and
invisible as shown in Fig. 1.

On one hand, we can interpret that eachis generated from
an invisible inner representation via a backward density2

. The mapping from to by can be under-
stood from two perspectives. One is sample-to-sample mapping

in three choices as given in Fig. 1. The other is a gen-
erative model

(35)

that maps from an inner density in a structure that is de-
signed according to the learning tasks.

On the other hand, we can interpret that eachis represented
as being mapped into an invisible inner representationvia
a forward path . Again, the mapping from to by

can be understood similarly from either the sample-to-

2The notation� in Fig. 1 will be explained in Section II-E. At this moment,
we can simply ignore the existence of�.

Fig. 1. BYY learning system.

sample mapping in three choices as shown in Fig. 1 or
a representative model

(36)

that matches the inner density in a specific structure.
The above two perspectives reflect the two types of Bayesian

decomposition of the joint density
on . Without any constraints, the

two decompositions should be theoretically identical. However,
in our above consideration, the four components ,

, are subject to certain structural constraints. Thus,
we usually have two different but complementary Bayesian rep-
resentations:

(37)

which, as discussed in the original paper [73], [80] compli-
ments to the famous Chinese ancient Ying-Yang philosophy
with called Yang model that represents the observation
space (or called Yang space) by and the forward pathway
(or called Yang pathway) by , and with called
Ying model that represents the invisible state space (or Ying
space) by and the Ying (or backward) pathway by .
Thus, such a pair of Ying-Yang models is called BYY system.

With given by the observed data set , the
learning task on a BYY system consists of specifying all the
aspects of , , . First, we need to design a com-
bination of structures for , , and such a com-
bination is referred as a system architecture. Specifically,
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is always in a parametric structure, with the format ofindi-
cating the inner representation form and the structure ofde-
scribing the detailed inner representation. Moreover, the system
architecture is featured by the structures of , , as
will be further described in Section II-C.

Second, we need to specifythat consists of all the unknown
parameters and that consists of unknown parts of scales in the
system architecture. The task is made by the harmony learning
(29) which becomes

(38)

where is obtained by putting = =
, = = into (23). That is, we

have

(39)

which also have two specific forms corresponding to (24) and
(28), respectively.

Corresponding to (24), based on a set of i.i.d.
samples, we can get the empirical density by (16)
and put it into (39), resulting in

(40)

Moreover, as will be shown in Section II-C, due to the least
complexity nature (20) in the harmony learning (38), of
two typical structures will be pushed into

at each and

is a function of (41)

Thus, the above further becomes

(42)

Similar to (31), this implementation of the harmony learning
(38) is callednormalization learning. If we only consider the
first part by regarding to be irrelevant to learning, it be-
comesempirical learningthat directly bases on the samples

. This empirical learning on the BYY system is
the counterpart of the ML learning (30).

Corresponding to (28), for the cases that both and
are continuous densities, we use the Parzen estimate

by (25) and consider the following soften version of
(41):

at each

and is a function of (43)

Putting them into (39), we get

(44)

Moreover, we consider the constraint (26), with and

(45)

we have

is the dimension of

(46)

Furthermore, similar to (32), we let , to be ap-
proximated by its Taylor expansion around, up
to the second order and notice that

it follows from (44) and (46) that

Tr Tr

(47)

A discussion similar to that after (28) can be made on each item
of , as well as on the role of the size. Moreover, sim-
ilar to (33), this implementation of the harmony learning (38) is
calleddata smoothing learning. It degenerates back toempirical
learning if we only consider the part
with , .

C. Three Typical Architectures

A BYY system architecture, consisting of , ,
, is featured by the specific structures of and
. Each of and can be either parametric

or structure free. We say is structural free in the sense
that can be any function that satisfies ,
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. In learning, a structure-free density is actu-
ally specified in terms of other parametric structures. An
architecture with both , being structure-free is
meaningless since they are no longer able to be specified via
learning. Therefore, there remain the following three choices
for a meaningful BYY architecture:

• Backward architecture (B-architecture): is struc-
ture-free and is parametric.

• Forward architecture (F-architecture): is struc-
ture-free and is parametric.

• Bi-directional architecture (BI-architecture): both ,
are parametric.

In a B-architecture, due to the least complexity nature (20),
the harmony learning (38) pushes a free into the least
complexity form (41) with

arg (48)

Thus, we get (42). Moreover, due to the matching nature (19),
the least complexity form (41) will further push and

to the least complexity. This nature can also be under-
stood by observing that maximizing in (42) consists of
both maximizing and maximizing that push

, to be as close as possible to their least complexity
forms and .

The process in (48) can also be understood as implementing
a competition coordinately based on both and ,
with representing the regression between the observa-
tion and its inner representation, and with representing
the preference of this inner representation. Thus, such a type
of competition is calledcoordinate competition[66]. It is also
calleda posterioricompetition because the resulted is
actually winner-take-all (WTA) based on the posteriori proba-
bility and thus is also called a
maximuma posterioriprobability (MAP) estimate.

However, it is well known that a greedy WTA competition
will create local optimal solutions or even a bad solution, which
is usually referred as the “dead unit” problem in the classical
competitive learning [23]. Such a local optimal problem is
solved from several aspects in the harmony learning. As
shown in (31), one aspect is that the term introduces
a delearning effect to the postcompetition learning on
and . Other aspects can be observed in a BI-architecture.

In a BI-architecture, is not free but in a parametric
structure. In this case, due to the least complexity nature (20),
the harmony learning (38) in implementation via (40) will push

again toward to (48) subject to certain structural con-
straint. This motivates us to design

(49)

which is a piecewise-structure that stochastically selects among
one of deterministic functions with probabilities ,

. In this case, maximizing with respect
to leads to (42) again but with

otherwise
(50)

where is the winner of the following constrained competition:

arg (51)

which not only makes the greedy WTA competition (48) be
more “conscience” but also saves computing cost considerably.
However, when the structure of is too simple to describe
the relation in (48), the resulted BYY system may result
in a poor performance on modeling .

The implementation of harmony learning via data smoothing
(47) is also an example that regularizes the WTA competition
(48) via the parametric structure (43) that adds “conscience”
to both the WTA competition (48) by introducing noise and
the postcompetition learning on and via
given in (47). For simplicity, we can also let given by
(50). Actually, (43) with given by (50) provides a
that has a piecewise-structure which stochastically selects
according to in (50), among functions of
under a Gaussian noise with variance .

Another strategy is to regard the learning problem as a typ-
ical optimization for finding the global optimal solution in the
case there are many local optimal solutions. We can use one of
existing classical global optimization techniques for this pur-
pose, e.g., during the implementation of harmony learning via
data smoothing (47) we can use the popular simulated annealing
technique [38] via letting , to start at some given values
and then gradually to reduce to zero during the learning (47).

In a F-architecture, is free and we simply set
by (16). It follows from (42) that

still remains meaningful
because the infinite term is cancelled out by the one
from . However, in this case, it
is nonsense to consider whether the inner representation
can reconstruct well. Instead, we only have the constraint
that is independent in components. Therefore, the scale
indeterminacy similar to (4) cannot avoided, which has two
consequences. One is that we need to prefix the value of
because it becomes nonsense to consider model selection in
a F-architecture. The other consequence is that we need to
prefix the covariance matrix associated with each regression

to a given diagonal matrix , otherwise
the learning process may not converge because of the scale
indeterminacy of . As a result, from (40) we have

subject to

for

is given by (50) with arg

(52)
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D. Parameter Learning and Model Selection: Parallel versus
Sequential

From the above discussions, we observe that the parameter set
or always contains the unknown parameters of plus

the unknown parameters in one or both of and ,
with no parameter from either for a B-architecture or

for a F-architecture. The scale setis featured by .
For a given by Table I, the dimensionof indicates the
scale of the representation space and further describes
the complexity of the detailed inner representations. If,
are too small, we could not get good inner representations due
to the limited representing capacity. On the other hand, if they
are too large, it is difficult to form compact representations and
thus the modeling performance of the BYY system is also poor.
With appropriate , , the roles of and are
setting up a bi-directional mapping that best preserves informa-
tion. For this purpose, the structures of and are
designed with a mapping capacity large enough, nevertheless
the extra capacity is further minimized by the least complexity
nature (20).

Moreover, parameter learning for or may imply making
model selection for . As discussed before, due to the least com-
plexity nature (20), the implementation of (38) via normaliza-
tion learning (42) will push toward the least complexity
form . Specifically, if the component is redun-
dant in representing the observed data, will be forced
toward to that can be reached by setting all of

except one to zero and forcing the variance of to
zero, when the structure of is given in Table I with fixed

, . For example, we get =
when . In fact, = means

that the th dimension is removed effectively since becomes
a constant. Thus, the dimensionis effectively reduced by one.
It can be observed from (42) that will remain bounded
even when = . As an infinite
from , we will simultaneously get from

, and thus the effects of two infinite terms are cancelled.
While for the harmony learning (38) implemented via

smoothing (47), the least complexity nature (20) will not lead
to (41), since the parameter is bounded from 0, and thus

will not become the least complexity form .
As a result, the above automated model selection will not
occur. Even so, the least complexity nature (20) will still push

as well as the variance of each to be as small as
possible. That is, and will still be pushed toward
their minimum complexity subject to the structure (43).

With the above understanding, we can get two typical proce-
dures for implementing the harmony learning (38) on a B-archi-
tecture or a BI-architecture with given by either (42) or
(47).

1) Parameter Learning with Automated Model Selec-
tion: We set the scales in large enough and implement the
harmony learning (38) by

(53)

The least complexity nature (20) as well as its specific forms
(48) and (51) will push each toward the form

and even reach it when there is no constraint to block it.
This nature can also be more directly observed from (42) and
(52), where maximizing pushes
each toward the form . If one of them
is reached, it is effectively equivalent to reducingto . In
other words, model selection is made automatically in parallel to
parameter learning. Also, the least complexity nature (50) will
force to be used in a way of being effectively the least
complexity. In turn, the matching nature (19) will also force

to be effectively of the least complexity.
2) Parameter Learning Followed by Model Selection:In the

cases that, are not large enough or in the data smoothing
learning (47), where the parameter is bounded from 0 and
thus is not able to reach . The least
complexity nature (20) will still push and toward the
structures of the minimum complexity, but not necessarily lead
to the consequence that the scales, are automatically
reduced. Thus, as an alternative to making the learning (53) at
the scales of , large enough, we can also make param-
eter learning and model selection sequentially in two steps. With

prefixed, we enumerate from a small value incremen-
tally, and at each specific we perform parameter learning by
(53) to get the best parameter value. Then, we select a best

by

(54)

If there are more than one values ofsuch that gets the
same minimum, we take the smallest.

Remarks:

1) As discussed at the end of Section II-C, model selection
is not applicable to a F-architecture, where we only
implement parameter learning (53) with (52) under a
prefixed and a given .

2) If has only an unique solution, the
above two implementations would be equivalent and
also both are equivalent to (38). However, in prac-
tice, may have many local maximums and
thus the two implementations may lead to different
local optimal solutions. Similar to the features of the
conventional parallel computing and sequential com-
puting, the parallel implementation considers a model
in a large scale with model selection made in parallel to
parameter learning, and thus it is implemented fast in
time. While the sequential implementation considers
many models incrementally from a small scale to a
large one with a lot of computing cost consumed, but
there is a minimum waste on using model structure.

3) The idea of finding a minimum complexity structure
to implement learning for a better generalization has
been well adopted in literature from many perspectives.
Typical examples include minimum complexity den-
sity estimation [6], MDL theory [48], Bayesian theory
[39], VC dimension based generalization theory [60],
Tikhonov-type regularization [58], [29], [9], cross vali-
dation [55] and AIC [2] as well as its extensions AICB,
CAIC, SIC [12]. The harmony learning principle han-
dles the issue from a new perspective that bases on the
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least complexity nature (20), featured by its easy in im-
plementation. Its relation to Tikhonov-type regulariza-
tion has been discussed previously in Section II-A. Its
relation to other studies, especially to support vector
machine and the VC dimension based generalization
theory is referred to [62].

E. Temporal BYY System and Harmony Learning

We further consider observations with tem-
poral relations among samples. Correspondingly, the inner rep-
resentation is also a temporal series . To model
the temporal relations, we consider to put and

into (23) for implementing learning. But this sit-
uation is too complicated to handle and further simplifications
are needed.

In [63], [76], and [77], we impose the causal or rationale as-
sumption that , only depend on their values at past
but not on any future . With and

into (23), we get

(55)

where is a set that consists of all or a part of the samples,
in the past .

The above involves an integral over . To get rid
of it, we consider the Taylor expansion of around

up to the second order and approximately get

Tr

(56)

For simplicity, this paper will focus on the case , but all
the discussions can be extended by taking the term Tr
in consideration for further adjustments.

By setting and also letting
since “ ” happens already and thus is irrelevant to any
past sample, it follows from (55) that:

(57)

In the special case that samples in are i.i.d. with
no temporal relation, all the appearances ofcan be removed.
In this case, we have and (57) becomes equivalent to

(40). In other words, (57) extends (40) to temporal modeling via
taking the past samples into consideration.

Particularly, further imposing the Markovian assumption that
, depend only a finite number of their past sample values,
can be represented as a vector in a fixed dimension and thus

, and can take regular structures
with a fixed number of parameters in each of the structures.
In this case, we get a temporal Bayesian Ying-Yang (TBYY)
system as a general state space model. Furthermore, under the
independence condition on the components ofas in (14),
not only a unified point of view is obtained on hidden Markov
model (HMM), temporal factor analysis (TFA), and temporal
independent component analysis (TICA) as well as their appli-
cation in blind separation of temporal signals, but also adaptive
algorithms are developed for implementing TFA, TICA, and a
higher order independent HMM, with the corresponding criteria
provided for selecting an appropriate numberas the dimension
of . The details are referred to [63].

A key difference in (57) from (40) is that at each timewe
must already have . Due to this nature, it is difficult
to directly implement learning with on the
whole batch of all the samples. Instead, it is more convenient
to make learning recursively at time, that is, we update

with being an ascend

direction of

(58)

where is estimated as goes. In contrast, there is not such a
temporal constraint on learning with (40), where samples in
are i.i.d. and thus learning atis independent from . We can
implement learning (53) with (40) either recursively as in (58)
or in a whole batch of all the samples.

Specifically, is a set that consists of all of the past
samples , . We simply have .
What we need to get is for all

. It follows that . To
remove the integral over , we approximately let
replaced by its linear expansion around the mean, resulting
in . Thus, we get that consists of all
the past samples and for all , with obtained
recursively by

(59)

The current estimate can be directly used as next time,
thus no additional effort is needed to get.

In (58), we also need the specific form of . At time , we
have one sample pair , only and thus cannot get simply
as in (42) and (52). To find an alternative way, we observe a
special example
for a linear relation , where is
a Gaussian white noise , with i.i.d samples of
at different times. Though , are time-varying as goes,
both the regression parameters, , and the density param-
eter in are not time-varying, and
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is also not time-varying or called
stationary. Thus, considering and that are
stationary in this sense, we can use all the past samplesand

for all to get in the same way as in (42) and
(52). Moreover, we can simply take by regarding

since we can use all the samples
and for all to reestimate all the past based on the
current and .

In the rest of this paper, we focus on (57) with the three typ-
ical architectures in Section II-C. Specifically, we use
as given in Table I with replaced by and by , which
covers the cases of (12) and (14). Also, we use the following
conditional finite mixture:

(60)

which is called themixture-of-expert model[32], [33] since
it is a weighted sum of each expert , gated
by that is described by either a softmax model
or the alternative gate [66], [74], [81]. Specifically, each

can be any conditional density. Two typical
examples are

(a) Gaussian

(b) Bernoulli
(61)

The choice (a) is an additive linear model
with being independent from , and coming from

Gaussian with zero mean and covariance. The choice (b)
describes the case that both, are binary with independent
bits.

Moreover, we extend the structure of (49) into

(62)

One particular example of is the following post-
linear function:

(63)

where is a function given as follows:

is scalar function, e.g.
linear
sigmoid.

(64)

When , we have and thus in
(62) describes a stochastic piecewise linear functions.

In either a B-architecture or a BI-architecture, similar to (42),
we have

(65)

In a F-architecture, similar to (52), we get

subject to

for (66)

where each is an arbitrarily prefixed diagonal matrix, with
positive diagonal elements.

In both (65) and (66), is obtained in a way similar to (48)
and (50). That is, we have

arg
for a B-architecture

for a BI- & F-architecture
arg

for a BI-architecture
arg

for a F-architecture
(67)

With given by (65) or (66), we can recursively im-
plement parameter learning (53) via (58). Particularly, on a B-ar-
chitecture or a BI-architecture, model selection is made either
automatically during parameter learning or via selecting a best

by (54) with enumerated incrementally as (58) is imple-
mented over all of samples at each.

Furthermore, for a B-architecture or a BI-architecture, we
can also implement the harmony learning via data smoothing
learning (56) with in help of the temporal extension of
(47).

With given by (67), by considering

(68)

it follows from (55) that instead of (57) we get

(69)

For a similar reason discussed above, we can simply take
that is then approximately given by (46) under the constraint

(26).
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Following a similar process from (44) to (47), from (69) we
get

Tr

Tr

(70)

Again, a discussion similar to that after (28) can be made on
each iterm of as well as on the role of the size. With

given by (70), we can also recursively implement pa-
rameter learning (58) that pushes and toward the
structures of minimum complexity. Moreover, we can select a
best by (54).

F. A General Procedure for Parameter Learning

We further introduce a general procedure for parameter
learning (53) with all the three typical architectures. Before
doing so, we discuss some essential computational issues.

• Computing : In a B-archi-
tecture, at each we need to get by (67)
for which we have to compute .
When and are both Gaussians with
linear regression functions, it is a typical quadratic opti-
mization that can be analytically solved from its linear
critical equation

(71)

In other cases, (71) is usually a complicated nonlinear equation
with many solutions, and thus finding
is a difficult task. Referred to Table II for details, we can solve
this problem via three types of approximations:

1) Real approximation:When is Gaussian
with a linear regression between and , , and

is Bernoulli, (71) is linear but is binary. In
this case, we can approximately solveby regarding
it as real and then turn it into binary via a threshold.

2) Gaussian approximation: When is
Gaussian with a linear regression between and
, , but is non-Gaussian, we can approximate

by a Gaussian with a linear regression between
and . Then, we solve (71).

3) Fixed posteriori approximation:When one or both of
and are described by a mixture of

Gaussians or Bernoulli densities, we consider
,

by approximately regarding that
is irrelevant to .

• Gradients and : We have

for (65)
for (66)

(72)

For an online updating, we can simply consider
and . Also, we

can incrementally get ,
and .

• Computing Gradients via Chain Rule: Given
and with ,

in help of the chain rule we get

diag

(73)

• Lagrange Approach for Ascend Directions: In
a F-architecture, we need to get the ascend direc-
tions of given in (66) subject to the con-
straints of for . When

and thus ,
it follows from (66) that with

. In this
case, the constraint only affect .
Thus, we consider the gradient of the Lagrange cost
with respect to , i.e.,
Tr , where
is a diagonal matrix consisting of Lagrange coefficients,
and Tr .
Following [3], we further consider the natural gra-
dient of with respect to , which is given by

.
Moreover,

. Furthermore, ,
and .
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TABLE II
FINDING PEAK v = argmax ln[p(ujv)p(v)] VIA SOLVING r ln[p(ujv)p(v)] = 0

As a result, the natural gradient direction of the Lagrange
cost with respect to is given by

(74)

which can be used as the ascend direction in (58) with
replaced by . From (66), can be any

fixed diagonal matrix. Thus, we can simply chooseto
be any fixed diagonal matrix at our convenience, without
worrying what value of . For simplicity, we let .

With the above preparation, we are ready to provide a
general recursive procedure for parameter learning, with
three typical architectures covered. Specifically, given

, the structure of with its
parameter set is given in Table I (where , are replaced
by and , respectively), the structure of with its
parameter set is given by (60) and (61), and the structure

of with its parameter set is given by (62) and
(63).

A General Recursive Procedure For Parameter Learning
Step 1) Get by (67).
Step 2)

Step 3) From (72) we update

Tr
Step 4) Skip this step for a F-architecture, otherwise from

(72) we update

Tr
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Step 5) Skip this step for a B-architecture, otherwise, with
by (67) and , , by (73)

(a) For a BI-architecture, with

we update

(b) For a F-architecture with and thus
, from (74) with we update

(75)

where , and are prefixed step
sizes for updating, and , are dynamic step sizes that change
as for controlling delearning in implementing by normaliza-
tion learning. is used in a BI-architecture or a B-architecture,
while is used in a F-architecture. is a prespecified indi-
cator that takes either for implementing normalization
learning or for implementing data smoothing learning.
Specifically, we have three major situations:

• When , the normalization learning is implemented
based on (65) or (66). Specifically, Step 3 and Step 4 are
featured by the updating form that
ascends , with the detailed in several typical
cases given in Table III.

• When , the data smoothing learning (47) is imple-
mented by (75) with , fixed. We have two choices for
updating , . One is simulated annealing [38] via let-
ting , to start at initial values large enough and then
gradually to reduce to zero during the implementation of
(75). The other is to alternatively make the implementation
of (75) with , fixed and make the following updating
with fixed:

Tr or

Tr

Tr or

Tr (76)

which is obtained from Step 2) in (34).
Moreover, we also have in Step 5(a) given by

Tr

Tr (77)

which becomes zero when Tr , Tr
and Tr are irrelevant to , e.g., they are the constant
covariance matrices when and are Gaus-
sians.

• Empirical learning is implemented by (75) when either
with , or with ,

.
Furthermore, the above temporal learning procedure directly

applies to the nontemporal case by simply setting and
discarding all the updating equations for parameters that corre-
spond to . In Step 4, e.g., for by (60) and (61), we
can ignore those updating rules onby simply setting .
Also, in Step 5 we can ignore those updating rules onby
simply setting .

III. BYY I NDEPENDENTSTATE SPACE AND GENERALIZED APT
ANALYSES

With given by Table I, which covers the cases of (9),
(12), and (14), the BYY independent state space system in help
of the general adaptive parameter learning procedure (75) pro-
vides a general tool for implementing a number of generalized
APT analyses. In this section, we introduce several typical ex-
amples. For simplicity, we focus on modeling the first-order se-
rial relation, i.e., . However, all the results and discus-
sions can be directly extended to the cases of modeling a higher
order serial relation, simply by using to replace .

A. B-Architecture: Temporal Factor analyses and Generalized
APT analyses

• Factor Analysis Versus Temporal Factor Analysis:We
further make a detailed consideration on the B-architec-
ture part in (75), starting at the classic state-space model
(13) with a diagonal as well as Gaussains
and . We call this special case Gaussian tem-
poral factor analysis (TFA) since it returns to Gaussian
factor analysis when . As shown in [63], one ad-
vantage of Gaussian TFA is that the temporal relation in
(13) removes out the rotation indeterminacy (6) that is suf-
fered by the Gaussian factor analysis.

In this case, (75) is simplified into the following algorithm:

Step 1)
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TABLE III
ADAPTIVE RULES FORUPDATING � = � + ��� TO ASCEND ln p(ujv; �)

Step 2)

Step 3)
diag

diag
Step 4)

(78)

Here, Steps 1–4 are the specific forms of Steps 1–4 in (75),
respectively, with Item (A) in Table II for Step 1 and Item (A)

in Table III for Step 3 and Step 4. In the sequel, we look several
typical cases:

a) When , , , , (78) is simplified
into

diag

(79)

At the special case it is actually a variant of the
adaptive algorithm for implementing Gaussian FA previ-
ously given [68, Sec. 4.2.4]. When is not forced to be
zero, (79) acts as a new variant of the adaptive algorithm
previously given by Table III in [63] for Gaussian TFA.
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b) Equation (79) is further extended by relaxingfrom to
a diagonal matrix that is determined via learning

diag (80)

As a result, for both Gaussian FA and Gaussian TFA,
automated model selection becomes possible via pushing
some of diagonal elements to zero, whenis large
enough. In implementation, we can simply remove
a diagonal element of if it becomes zero since it
corresponds either a constant or a simple deterministic
exponential decaying series, both of which are not much
useful. Then, we continue to run the algorithm until it
converges with no diagonal element ofstill tending to
zero.

c) When with , , learning by (78)
implements data smoothing that regularizes the effect of
finite number of samples. Again, we can update,
via either simulated annealing or (76) which is now sim-
plified with

Tr Tr (81)

d) When , learning by (78) implements normalization
learning with delearning in effect.

In the case that or is simply fixed at , though
the least complexity nature will be in effect during learning by
(78), the scale is prevented to be further reduced. In such cases,
we can enumerateincrementally, and then select an approriate
scale by (54), which is simplified as follows

(a) empirical

(b) normalization
Tr

(c) data smoothing,

(82)

which is obtained from (70) after discarding those irrelevant
items. Also, from the relation between Gaussian factor anal-
ysis and PCA discussed in Section I, we can directly use (82)
at the special case for the subspace dimension with

, where is given by the average of the
least eigenvalues of the sample covariance matrix of. The de-
tails are referred to [67].

• Non-Gaussian FA Versus NonGaussian TFA:Another
direction that extends Gaussian TFA (78) is to consider a
nonGaussian noise in the state equation

. We consider, e.g., given by Item (C) in
Table III with each being Gaussian,
being and being , which can be better understood
from its following two special cases:

a) Non-Gaussian FA:When , ,
for the density by Item (C) in Table III with
Gaussian , we have that
is non-Gaussian and component-wise independent,
with each component described by an one variable
Gaussian mixture. That is, the temporal relation
between , has been removed by setting

. This degenerated case of non-Gaussian
TFA is actually an extension of Gaussian factor

analysis and thus we call it Non-Gaussian FA. In
this case, we can get a considerably improvement
over the previous nonGaussian FA algorithm given
in [68, Eqs. (35), (37), and (38)].

b) Non-Gaussian TFA:When , , for
the density by Item (C) in Table III with Gaussian

, we have a linear additive model
with is non-Gaussian. In this

case, we get non-Gaussian TFA.
Generally, the case of given by Item (C) in

Table III describes a temporal relation between , on
each dimension in a piecewise way by a mixture of expert that
weights a number of linear relations via a gate. We call this
general caseGeneralized Non-Gaussian TFA, which is imple-
mented via modifying (78) according to (75). Also, (82) is cor-
respondingly modified with replaced by

(83)

• Non-Gaussian Observation Noise and Nonlinear Gen-
erative Model: Extensions can be further made with

in (13) replaced by a mixture-of-experts density
in Item (D) of Table III. For a Gaussian ex-

pert , when , for all ,
describes an additive model

, where non-Gaussian noise is modeled by a mix-
ture of Gaussians with different mean and . While

describes a nonlinear model in a piecewise
linear way under a Gaussian noise, when for
all .

• Binary Factor Analysis Versus Independent
HMM: Another non-Gaussian extension is to con-
sider by Item (C) in Table III with

beingBernoulli, with being and
being . This case can be better understood from the
following two special cases:

a) Bernoulli FA: For , reduces
into a Bernoulli density when ,
. In this case, is generated from

independentBernoulli binary factors, and thus is
calledBernoulli factor analysis. There is no need
to consider the cases of , a finite mixture
of Bernoulli densities is still aBernoulli density
since when , .

b) Independent HMM:The temporal relation between
, is taken in consideration by

when . In this case, the series, ,
consists of independent Markov chains which are
hidden to the observed series, , . That
is, we actually encounter an independent hidden
Markov model (HMM). When , the temporal
relation between , is set up via a postlinear

regression . When , the
temporal relation between , is set up via

+ , which reduces
to + under the constraints

, .
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Similar to (78), from (75) we can implement theBernoulli FA
andIndependent HMMby

Step 1) Get in help of Items (B) and (D) in Table II;

Step 2) ,

;
Step 3) With the substitutions of by and by , as

well as by , we have that

a) For Bernoulli FA, is given and
updated as in Item (B) of Table III;

b) For Independent HMM, in a
mixture of Bernoullis is given and updated as
in Item (C) of Table III, [see (84)];Step 4)

(a) For a real with , , up-
date , ,

,
(b) For a binary , , is given and

updated as in either Item (B) or Item (C) of
Table III, with the substitutions of by and

by .
Specifically, the above algorithm is implemented via either

normalization learning when or data smoothing learning
when . Particularly, both cases will reduce to empirical
learning when either , or , .

The Bernoulli FA case is an improved variant of the adaptive
algorithm firstly given in [68, p. 238, eq. (1)] for binary factor
analysis. The independent HMM case with is an im-
proved variant of the independent HMM algorithm previously
given by [64, Tab. IV].

Since is binary, consists of -densities. Thus
in (84), can be regarded as probability after divided
by . In the case of for normalization learning, the
effect of this is cancelled out by letting also divided
by . While in the case for data smoothing learning,

, which results in that cancels out the
effect of from .

Again, model selection will be made automatically during
the implementation of (84), whenis initialized large enough.
During learning, some will tend to either
one or zero as either or diverges. In this case, we can
simply remove the corresponding , , which effectively
makes reduced.

Alternatively, we can also enumerateincrementally from a
small value and running (84). Then, for the case of a real,
we select a best by (82), where a Bernoulli as
in either Item (B) or Item (C) of Table III is used. By Item (B),
e.g., becomes

(85)

While for a binary with given by Item (B) in
Table III, the term in (82) should be replaced by

(86)

where and

• Generalized APT Analyses:In the existing statistical
factor analysis for APT, the requirement on knowing
in (1) is exchanged by assuming that is a standard
Gaussian and uncorrelated (i.e., second-order indepen-
dent in components). However, as discussed in Section I,
some empirical tests [25], [1] failed to provide a strong
support. Here, we still believe that it is on a right direc-
tion to assume that the security returns are affected by
factors that mutually have a minimum dependence on
each other. However, the use of only the second-order
independence leads to the intrinsic indeterminacy (6). It
is this indeterminacy and several problems discussed in
Section I that affect the performances considerably. As
above introduced, the indeterminacy (6) can be removed
by considering either higher order independence (9) in
help of non-Gaussian or temporal relation between

and .

Moreover, the above various models also provide tools for
solving the other problems in Section I. Specifically, we are able
to generalize the existing APT analysis from the following per-
spectives:

a) Being different from [18], the equation in Step 1 of (78)
provides an alternative solution for the cross-sectional
approach discussed in Section I for estimating. The
equation actually provides an optimal inverse of the APT
model (1) in help of estimatinga priori density

when as well as using the temporal relation
when .

b) Using the adaptive algorithm (79) for implementation,
with and as well as a diagonal

, the state space model (13) provides a solution to the
Problem (a) and Problem (f)in Section I, i.e., we get a
temporal extension of the statistical APT by considering

such that the rotation indeterminacy (6)
is removed due to temporal relation.

c) The parameter learning with automated model selection
or making model selection via the criterion (82) provides
a tool for deciding the number of factors, i.e., we get a
solution to theProblem (b)in Section I [20].

d) Thenon-Gaussian FAwith (78) for implementation also
solves the rotation indeterminacy (6) of theProblem (a),
in help of considering higher order independence and
temporal relation. Also, theProblem (b)can be solved by
(83) in this case.

e) TheBinary Factor Analysis and Independent HMMim-
plemented by (84) provide solutions of theProblem (e),
which acts as a type ofindependent binary APT model
that looks more appealing by noticing that news in capital
market is usually binary (e.g., a particular news “come”
or “not come”).

f) The generalized APT analyses can also be made with
non-Gaussian observation noise and nonlinear generative
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model in consideration, as efforts to solve theProblem
(c) andProblem (d).

B. Temporal ICA, Competitive ICA, LMSER+ICA and
Temporal Extensions

We further discuss typical cases of (75) on a F-architecture
and a BI-architecture, which provide some alternative or sim-
plified solutions for implementing APT analyses.

• F-Architetcure: Gaussain TICA, Non-Gaussian TICA
and Competitive ICA: We start at a simple F-architec-
ture with =
and = . With =

and a diagonal , the algorithm (75), especially
its Step 5(b), is simplified into the following steps.

Step 1)

Step 2)

diag (87)

We call this algorithmGaussian temporal ICA. As shown in
[63], without the rotation indeterminacy (6) it is able to make

become independent in components,
because of considering the temporal relation betweenand

.
Generally, we consider a F-architecture that consists of

given by (62) and (63) with and
given by Item (C) in Table III, and with replaced

by and by . After discarding Step 4 and those items ir-
relevant to a F-architecture, from (75) we can get the following
steps.

Step 1) By (67), get

arg

Step 2)

Step 3) Update , with given as
in Item (C) of Table III.

Step 4)

(88)

which is implemented via normalization learning that reduces
to empirical learning when .

In the special case of by (62) with , we
have only one linear function . In

this case, we can drop the equation forand every appearance
of the index in (88). Then, we can get further insights by
considering three typical cases of as follows:

i) describes a linear model
with being non-Gaussian, when ,
, and is given by Item (C) in Table III with Gaussian

. In this case, the above (88) is actually
equivalent to the temporal ICA algorithm (TICA) given
by [63, eq. (42)]. Moreover, it is not difficult to observe
that this TICA reduces to the above Gaussian TICA (87)
at .

ii) describes a Gaussian mixture, if we further
impose , , and is given by Item (C)
in Table III with Gaussian . Fixing

, and thus , both the above
TICA and (88) further degenerate to the previously
proposed learned parametric mixture based ICA [69],
[72], [79]that improves the ICA algorithm [3], [8], as
discussed in Section I.

iii) Generally, given by Item (C) in Table III with Gaussian
, describes the temporal rela-

tion between , in a piecewise way by a mixture
of expert. We call (88) in this casegeneralized TICA.

Furthermore, for the cases of in (62) with
, (88) implements different generalized TICAs via a WTA

competition in Step 1. Each of these generalized TICAs
works locally on a segment of a time series at the location.
Thus, (88) in such a case is calledcompetitive TICAor particu-
larly competitive ICAin the above case ii), which is more suit-
able for a series of with a number of different local
statistical properties.

• BI-Architetcure: LMSER, LMSER+ICA and Tem-
poral Extensions: The B-architectures and the F-ar-
chitectures both have advantages and weak points. A
B-architecture focuses on how data is reconstructed by

from factors of to fit the observed data
, such that not only noise is taken in consideration but

also the factors can be evaluated as principal or minor in
a sense of the fitting goodness, which makes meaningful
the problem of model selection for the best factors or
structures of minimum complexities. However, the dis-
advantage of a B-architecture is its expensive computing
cost both on learning and on performing the mapping

that involves the peaking finding by (48). In con-
trast, a F-architecture implements the mapping
directly by a parametric model with a much reduced
computing cost. However, there are two disadvantages in
F-architecture. First, there is no consideration on noise.
Second, as discussed at the end of Section II-C, there is
no concept on principal or minor components such that
the selection of the best factors is meaningless.

In a BI-architecture, the advantages of a B-architecture and of
a F-architecture are both retained via a parametric
and a parametric in a tradeoff way. Moreover, a
parametric also helps to regularize
to avoid over-fitting.
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We further investigate the BI-architecture part of (75) by
starting at a special case that

(a) Bernoulli,

(b) Gaussian,
By Item (C) in Table III

(c) Independent non-Gaussian.

(89)

In this case, the algorithm (75) is simplified as follows.

Step 1)
Step 2)

(a) Bernoulli
(b) Gaussian
(c) Non-Gaussian.

Step 3)

a) For Bernoulli

b) For Gaussian

diag
c) For non-Gaussian

Tr

with given by Item (C) in Table III.
Step 4)

Step 5)

(a) Bernoulli
(b) Gaussian
(c) nonGaussian

(90)

Similar to the discussions made after (75), the above (90) is
implemented via either normalization learning when or
data smoothing learning when . Again, both cases reduce
to empirical learning when either , or ,

, .
We can further understand the above algorithm by starting at

the simplest special case that is Bernoulli with
and is approximately regarded to be irrelevant to, . In
this case, (65) becomes equivalent to

or

When

(91)

Thus, is equivalent to . Further letting
, it becomes equivalent to the least mean square error re-

construction (LMSER) learning that was firstly proposed with
both batch and adaptive gradient algorithms provided in [75]
and [82]. Moreover, it was also first discovered in [75] and [82]
that with a sigmoid nonlinearity it can automatically break
the symmetry of the components in the subspace. Three years
later, the LMSER learning and its adaptive algorithm given in
[75] and [82] have been directly adopted to implement ICA with
promising results by the authors of [37] under the name of non-
linear PCA.

Two direct extensions of the LMSER learning are obtained
by relaxing and . Also, it follows from (91)
that we have the following simple criterion for selecting a best
number as the dimension of :

or

(92)

which is an open problem that has not be studied in [75].
Further extensions of the LMSER learning include 1) con-

sidering either the role of by setting in (90) for
normalization learning or the role of by setting in
(90) for data smoothing learning and 2) relaxing the constraint

and letting to be either of the three choices in
(89) such that learning is made with automated model selection
or structural minimization.

The general case of (90) can be understood from the term
, + which

is the major part of both (65) and (70). From the fact that
is also the major part of (66), we know that

its role is to implement ICA or TICA. This point can also be ob-
served from the existence of a term in Step 5, which helps
to reduce couplings among the components of. Moreover, as
discussed above, the term , imple-
ments LMSER-like learning that also performs ICA from the
perspective of nonlinear PCA. Thus, the general case of (90)
should perform ICA-like tasks by combining the two types of
features.

Specifically, the forward performs an ICA map-
ping such that the backward linear mapping can best
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reconstruct . When the dimension of is larger than the
dimension of , there will be choices to select thecom-
ponents of . The components are regarded as principal or im-
portant in a sense that can give a best reconstruction to. In
this case, we say that retains the principal information of .
This role is similar to principal component analysis (PCA) that
extracts a -dimension subspace spanned byprincipal compo-
nents. But there is no such a role in the existing ICA approaches
which only provide a -dimension subspace spanned by any
independent factors. In other words, (90) implements a type of
task that can be called principal ICA (P-ICA) or LMSER+ICA.

Similar to (92), we can also have

Choice (a)
Choice (b)

Choice (c).

(93)

The above LMSER-like learning, PICA and LMSER+ICA
learning can all be further extended along two lines. One is to
consider that are both Bernoulli densities that
are given and updated as in Item (B) of Table III, which leads to
a case that is equivalent to the one layer deterministic Helmholtz
machine learning [30], [21], [22], as previously discussed in
[68], [63]. The other direction is made toward to temporal situ-
ations, which are covered by the BI-architecture part in (75).

C. Return Prediction, Macroeconomic Modeling, and Portfolio
Management

In addition to directly implementing APT financial analyses
as previously discussed, we can also make other financial appli-
cations in help of making APT analyses as a pre-stage. Three
examples are given as follows.

• Time Series Prediction:After setting up an independent
state-space model (13) with , we can use to
get , e.g., by = +

in the Gaussian TFA model. Then, we get
which in turn provides a prediction = . This
prediction method can be applied, e.g., to predict the return
movement of securities.

• Macroeconomic Prediction via Capital Market: We can
build a macroeconomic prediction model in two steps.
First, we use statistical APT on the security returnsto
get its hidden factors . Second, we believe that the cur-
rent economic situation is reflected in the capital market,
and thus it is able to predict the macroeconomic indexes

via the current capital market. Therefore, we set up a
regression based on the basic factorsof
the capital market obtained via APT.

• Portfolio Management: Using an APT analysis as the
first step, we can make portfolio management under the

control of the discovered hidden factors behind the secu-
rities in the portfolio.

We consider a portfolio of risk securities with returns ,
and a risk-free bond with return , where the

return is defined as . Moreover, we
distribute percentage of capital on risk securities and thus

percentage of capital on the risk-free bond. In this case,
the return of the portfolio is given by

subject to

Choice (a)

no constraint on

Choice (b).

(94)

In the choice (a), short of a risk security is not permitted but
borrowing from the risk-free bond is allowed (i.e., we can have

or ). While in the choice (b), short of a risk
security is permitted.

Our purpose is to maximize the return by adaptively con-
trolling the weights as time goes. Any change on
leads to a transaction that incurs a cost return

where is the rate of transaction cost. Thus, we have the fol-
lowing adjusted return:

(95)

We want not only to maximize the adjusted returnbut also to
minimize its uncertainty or called volatility, which is measured
by its variance . This purpose is implemented by

Subject to
for Choice (a),

for Choice (b).

(96)

The above is a modification of the well-known Sharpe ratio
that has been widely used in the fi-

nance literature for evaluating the performance of a portfolio
[53], [52]. In recent years, several efforts have been made on
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maximizing the Sharpe ratio by adjusting the weights , in-
stead of just being used for a performance evaluation [42], [15].
In those existing efforts, the weights either are constants or
depend directly on the security returns.

In contrast, in (96) are functions of the independent
factor vector in (13) and we learn the best weights after
we first implement the temporal APT model (13) and then
make the mapping . Specifically, both , in (96)
are modeled with both and implemented by
any forward network, e.g., a mixture of expert or its special
case—the extended normalized RBF net [66]. The simplest
case is to use linear functions

(97)

We can indirectly adjust , to get optimal , that change
with under the control of . In implementation, the maximiza-
tion can be made simply by using gradient ascent method.

The above method will deteriorate when the variance
varies with . One solution is to use the ARCH [26] or GARCH
[11] to estimate the time-varying variance and then make
learning adaptively

is a stepsize (98)

D. Macroeconomics Modulated Independent State-Space
Model

For a market of risk securities which form a vector in
, if we can get a portfolio via the weights of which

also form a vector in such that

with

(99)

it is said that we have an arbitrage chance of getting a profit
with a zero investment. All the possible zero investments form
a dimensional hyperplane that passes the origin of
and is orthogonal to the vector. Thus, no arbitrage chance in an
equilibrium market means that in equilibrium is orthogonal
to the same dimensional hyperplane, i.e., . As a
result, we get with being an arbitrary constant. That
is, each security gets a same return, and thus it is not a much
interesting case. So, strictly speaking, there should be some ar-
bitrage chance theoretically, though such a chance is difficult to
discover or use due to fast or random movement of.

The APT theory imposes an arbitrage constraint on the factor
model in (8) or equivalently

in (1). That is, we have

with

(100)

where . Similarly, requiring (100) to hold
for any zero investment leads to for constants ,

. So, strictly speaking, an equilibrium market via
with no arbitrage chance does not exist in the

sense of considering all the possible zero investments, though
it may exist when we only consider one or a subset of specific
zero investments.

Therefore, we relax the condition of an equilibrium market
from no arbitrage chance to that there is an equilibrium factor
model such that the series of consists of
i.i.d samples from a density that is independent from, and
the elements of are independent to each other but may be
time-varying as .

Moreover, we use model and thus get
the state-space model (13), which are then implemented in var-
ious cases as given in Section III-A. Particularly, for Gaussains

and , we use (78) for the modeling via im-
plementing Gaussian TFA.

Furthermore, we can also take macroeconomic indexes,
which are usually observable, into the modeling of a capital
market as follows:

are white noises and independent

from each other

is independent from both and

are independent from (101)
where consists of a number of macroeconomic indexes, and

consists of a number of known nonmarket-factors that af-
fect the macro-economy. Specifically, describes the indi-
rect effect of the macroeconomic indexes to the security market
via the hidden factors , and describes the feedback ef-
fect of the market to the macroeconomic indexes. Thus, we
call (101)macroeconomics modulated independent state-space
model. We belive that the model (101) describes a capital market
via both a short-term dynamics and a long-term dynamics. In
the short-term dynamics, , and perhaps move to reach
an equilibrium in the sense that the series of, , become
stationary white noises, while the parameters, , , ,
and statistics of , , can be relatively regarded as constants
due their slow changing. In a long-term dynamics, the parame-
ters , , , , and statistics of , , are all in changing
to cohere the current equilibrium.

The process of the long-term dynamics is the process of
learning. With fixed, acts as a constant and can be re-
garded as a part of the mean of. Thus, we can make learning
on the first two equations in (101) in the same way as in (78).
Moreover, can be handled in the way
similar to . Furthermore, the task of estimating

is a linear regression problem when, , are fixed.
Particularly, for , and
we can modify (78) for implementing (101) as follows:

Step 1)
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Step 2)

Step 3)

diag

diag

diag

diag

Step 4)

Step 5)

(102)

where are a set of observations onthat consists of a
number of the macroeconomic indexes.

1) Remarks:

a) Similar to the discussions made after (90), (102) is imple-
mented via either normalization learning when or
data smoothing learning when . Also, both cases
degenerate to empirical learning when either ,

or , .
b) When making data smoothing learning, we can update,

, via either simulated annealing or (81) which now
becomes

Tr

Tr

Tr

(103)

where is the number of macroeconomic indexes.
c) By simply setting in (101) and (102), we can ignore

when it is not available. Moreover, by setting
we can ignore the effect of the market to the effect of
macroeconomic indexes, while by setting we can
ignore the macroeconomic indexes to the market.

d) We can also take in consideration the fact that securities
are divided into groups, with each group affected by
specific factors and macroeconomic indexes. Usually, the
interactions between groups are much weaker and thus
can be ignored. In such cases, we can impose the con-
straint that , , , are block matrices of the form

diag .

E. Experimental Illustrations

Experiments on temporal model (13) can be found in [63],
[14], [61], either with real factors by the Gaussian TFA algo-
rithm (79) and temporal ICA, or with binary factors by the
Bernoulli FA and independent HMM algorithm (84). Here, we
give two more illustrations on financial analyses.

• Illustration on the APT-Based Portfolio Management:
We consider to set up a portfolio by (96) such that it is
managed dynamically by . The portfolio consists of
four compound securities of Hong Kong Heng Seng in-
dexes on finance, utilities, properties and commerce and
industry, denoted by , . The data consists
of the closing value of each day from 1 Jan 1990 to 27
July 1999. The first 2000 samples are used for training the
value of by (96). The remaining 500 samples are used
for testing the results. The transaction costs are ignored.

In implementation, we first use the Gaussian TFA algorithm
(79) on the temporal APT model (13) to get the hidden factor
from securities , . Then, we use the obtained

in (96) to get . Equation (96) is imple-
mented in the batch way by a gradient ascending algorithm. To
compare the advantage of using the hidden independent factors
for controlling, we also run (96) on the same experiment with

, with consisting of the original indexs. For
simplicity, we denote (96) by Portfolio based on TFA for the
case , and by Portfolio without TFA for the
case .

Shown in Fig. 2(a) are the resulted relative returns by the Port-
folio based on TFA and the Portfolio without TFA. It can be
observed that the Portfolio based on TFA outperforms the Port-
folio without TFA. Moreover, we can recursively get the port-
folio price with initial . We plot each
price curve of in comparison with the normalized original in-
dices such that all of them start at the same level that is one. As
shown in Fig. 2(b), the Portfolio based on TFA outperform the
Portfolio without TFA considerably, and also both outperform
each of the original indexes. However, it should be noticed that
this is only a preliminary result. The ignorance of transaction
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(a)

Fig. 2. Comparisons on Portfolio based on TFA and Portfolio without TFA. (a) The relative returns.

costs can be a severe limitation. Further experiments should be
made with these costs taken in consideration.

• Illustration on Modeling and Prediction of Macroeco-
nomic Indexes via Securities:Preliminary experiments
are also demonstrated on the proposed two-step modeling
in Section III-C for modeling macroeconomic indexes via
securities in a capital market. Focusing on the issue of
the higher order independence versus the second-order in-
dependence only, we omit the temporal relation and ig-
nore the observation noise, and implement the mapping

by using the learned parametric mixture based
ICA [69], [72], [79], i.e., the special case ii) of (88), in
comparison with using PCA.

The experiments were made on the 340 real stocks of the S&P
500 since January 1973. In the same period, we consider ten
macroeconomic indexes. The linear mapping maps
the 340–dimensional into the ten-dimensional factor vector

. Then, we use the least square approach to build up a linear
repression between each of the ten macroeco-
nomic indexes and the ten basic factors. Specifically, we use
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(b)

Fig. 2. (Continued.) Comparisons on Portfolio based on TFA and Portfolio without TFA. (b) The portfolio pricep with initial p = 1 and the normalized
indexesx = x =x , j = 1, 2, 3, 4.

80% of data as a training set for getting, , and then use 20%
of data as a testing set to getby and to predict each

of the ten macroeconomic indexes by . The pre-
diction performance is demonstrated via the mean square error

as shown in Table IV. The pre-
diction results based on ICA outperform considerably the re-
sults based on PCA, which have demonstrated the feasibility of
using a F-architecture-based ICA for a simplified APT imple-
mentation. However, this is only a preliminary result and further
experiments should be made with error bars provided.

IV. CONCLUSION

The relationship between factor analysis and the well-known
arbitrage pricing theory (APT) for financial market has been dis-
cussed, with a number of to-be-improved problems listed. The
BYY ISS system and harmony learning principle, with a general
adaptive learning procedure, have been suggested as a unified
guide to tackle the problems systematically. New adaptive algo-
rithms, regularization methods and model selection criteria are
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TABLE IV
THE MEAN SQUARE ERROR(MSE) OF PREDICTIONS ONMACROECONOMIC

INDEXES

provided on various specific cases of each of three typical archi-
tectures, with applications to APT analyses for solving the listed
to-be-improved problems. Moreover, other APT-based applica-
tions, namely macroeconomic prediction, optimal asset alloca-
tion, and macroeconomics modulated independent state-space
model are also proposed.
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