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Rapid and brief communication

Multisets mixture learning-based ellipse detection
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Abstract

We develop an ellipse detection algorithm based on the multisets mixture learning (MML) that differs from the conventional Hough
transform perspective. The algorithm developed has potential advantages in terms of noise resistance, incomplete ellipse detection, and
detecting a multitude of ellipses.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ellipse detection in image is a basic task in pattern recog-
nition and computer vision. It is usually accomplished by
the Hough transform (HT) that involves a heavy computa-
tional load and a large storage requirement since it needs
a five-dimensional parameter space. By adopting the ran-
domized Hough transform (RHT) [1,2] and taking advan-
tage of the symmetry or other particular properties of the
ellipse, the time and space complexities can be considerably
reduced. However, how to correctly detect the true peaks in
the parameter space remains a tough task for the HT and its
variants due to the uncertainties in image. Moreover, since
for one curve concerned, the pixels of the remaining curves
act just as noises, the HT-based methods suffer from a poor
scalability of detecting a multitude of curves.

This paper solves the ellipse detection via the multisets
mixture learning (MML) [3], which is a totally different
perspective from the HT. The MML, proposed as a unified
learning framework for supervised and unsupervised learn-
ing, provides a new viewpoint for object detection by min-
imizing the sample reconstruction error upon each object.
When used for curve detection and in comparison with the
HT-based approaches, it has advantages in terms of noise
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resistance and scalability of detecting a multitude of curves.
In Section 2 we review the MML-based curve detection
method and develop an ellipse detection algorithm. In
Section 3 we experimentally demonstrate the algorithm and
finally we conclude in Section 4.

2. Multisets mixture learning for ellipse detection

Given a data sample set U = {ut }Nt=1 that comes from k

curves, denoted by Si(�i )(i=1, . . . , k), plus random noises,
as illustrated by Fig. 1, the MML estimates the parameters
� = {�i}ki=1 via minimizing the square reconstruction error
E of the samples as follows [3]:

� = arg min
�

E, E =
k∑

i=1

Ei, Ei =
∑

ut∈Ui

ei(ut ),

ei(ut ) = ‖ut − ûi,t‖2, (1)

where ei(ut ) and ûi,t , respectively, denote the reconstruction
error and the best reconstruction of the sample ut upon curve
i, Ui denotes the set that consists of all the samples belonging
to object i. Such estimated curves capture the main axis of
the data samples, and it actually degenerates to detect the
first principal component of the samples when the curve is
constrained as a line.

To detect the ellipse under the framework of MML, we
need first to find the sample reconstruction error upon an
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Fig. 1. Error between sample and curve.
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Fig. 2. Distance between sample u and ellipse.

ellipse. In general, an ellipse takes the following equation:

(x − �)T�(x − �) = 1, � = �TD�, (2)

where � ∈ R2 denotes the ellipse center, � ∈ R2×2 de-
notes a rotation matrix, and the positive-definite diagonal
matrix D ∈ R2×2 indicates the length of its two axes. For
instance, the ellipse shown in Fig. 2 can be represented by
Eq. (2) by setting � = [cos �, sin �; − sin �, cos �]T and
D = [1/a2, 0; 0, 1/b2]. The reconstruction error e(u) of the
sample u, or equivalently the shortest distance between u
and the ellipse can be then found by solving the following
constraint optimization problem:

min
û

e(u) = ‖û − u‖2 subject to (û − �)T�(û − �) = 1

(3)

whose Lagrangian function is obtained as follows:

L(û, �) = ‖û − u‖2 − �[(û − �)T�(û − �) − 1]. (4)

The û that minimizes Eq. (3) should satisfy two points. First,
it is a stationary point of Eq. (4), and second, it leads to the
Hessian matrix of Eq. (4), positive definite. The stationary

point can be obtained by making the derivative of L(û, �)

with respect to û to be zero, i.e.

�L(û, �)

�û
= 2(û − u) − 2��TD�(û − �) = 0

⇒ û = (�� − I )−1(��� − u), (5)

⇒ e(u) = ‖(�� − I )−1(��� − u) − u‖2, (6)

where the � can be found via replacing the x in Eq. (2) by
û as follows:

f (�) = 1 − (û − �)T�(û − �) = 0 (7)

with û given by Eq. (5). The solution of Eq. (7) should resort
to numerical techniques due to its analytical intractability.
Here we adopt the Newton’s iteration scheme by finding

f ′(�) = 2((�� − I )−1(��� − u) − �)T�(�� − I )−1

× �((�� − I )−1(��� − u) − �).

The Hessian matrix of Eq. (4) is

∇2
ûL(û, �) = 2�T(I − �D)�.

To make it positive definite, the � must satisfy

� <
1

Dbig
, Dbig = max{D11, D22},

since D is a positive-definite diagonal matrix. It can be guar-
anteed by introducing the line search procedure, e.g., the cu-
bic polynomial method, or simply the form �= 1/Dbig − e�

with another variable �.
As the sample reconstruction error has been obtained, Eq.

(1) can be performed to detect ellipse. We choose the rival
penalized competitive learning (RPCL) for Eq. (1), which
mathematically consists of the following two steps [4,3]:

Step 1: For the sample ut , find the winner cluster ic and
the rival one ir as follows:

ic = arg min
i

�iei(ut ), ir = arg min
i �=ic

�iei(ut ),

�i = ni∑k
j=1 nj

, (8)

where nj denotes the cumulative times of the cluster j being
winner.

Step 2: Update the parameters as follows:

�new
ic

= �old
ic

− �c∇�ic
eic (ut ), �new

ir
= �old

ir
+ �r∇�ir

eir (ut ),

�i = {�i , �i , Di}, (9)

where ∇�i
ei(u) denotes the derivative of ei(u) with respect

to �i , and the learning rate �c is much larger than the de-
learning rate �r .
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Learning via RPCL will not only possess model selection
ability by pushing the redundant cluster centers far away
from the data, but also avoid the dead unit trouble for cluster-
ing due to the introduced conscience and de-learning mech-
anisms [4].

Based on the reconstruction error e(u) of sample u given
by Eq. (6), the specific updating forms for {�, D, �i} in step
2 are obtained as follows:

∇�i
ei(u) = 2�i�i�igi , (10)

∇Di
ei(u) = 2�i diag[�i�igi (�i − gi − u)T�T

i ], (11)

∇�i
ei(u) = 2�i Di�i[(�i − gi − u)gT

i �i

+ �igi (�i − gi − u)T], (12)

where gi = �i (�i�i�i − ut ) − ut , �i = (�i�i − I )−1. In
practice we can introduce Di =e�i to guarantee the diagonal
matrix Di is positive definite, where �i is a diagonal matrix.
For the � which is under the orthonormality constraint, its
updating along the geodesic on the Stiefel manifold is as
follows [5]:

�i (	) = �iM(	) + QN(	),(
M(	)
N(	)

)
= exp

{
	

(
A −RT

R 0

)} (
Ip

0

)
,

A = �T
i H, H = �i (∇�i

ei(u))T�i − ∇�i
ei(u),

QR = (I − �i�
T
i )H(�i ) is the compact

QR decomposition, (13)

where 	 takes the same role as the learning rate � in Eq. (9).
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Fig. 3. Synthetic images containing different noise levels used in the experiment: (a) noise free, (b) moderate noise, and (c) heavy noise.

Table 1
Comparisons on performance by different algorithms

MML (20 runs) HT RHT (20 runs)

Min Max Mean Min Max Mean

Fig. 3
(a) Noise free 3 4 3.8 4 3 4 3.9
(b) Moderate noise 2 4 3.7 2 1 4 2.7
(c) Heavy noise 3 4 3.8 0 0 2 0.9

Fig. 4 (5 ellipses) 2 5 4.3 1 0 2 1.5
Fig. 6 (11 ellipses) 4 11 8.6 2 1 10 6.5

Min, max and mean denote the minimum, maximum and average number of ellipses detected, respectively.

Finally, we summarize the three steps for the ellipse de-
tection as follows:

Step 1: for sample ut , find {�i}ki=1 by the Newton’s itera-
tion scheme,

Step 2: perform the first step of RPCL shown in Eq. (8),
Step 3: perform the second step of RPCL shown in

Eq. (9). If converged, stop; otherwise, go to step 1.

3. Preliminary experiments and discussions

We now demonstrate the ability of the algorithm devel-
oped on (1) noise resistance ability, (2) ability of detecting
incomplete ellipses, and (3) scalability in terms of detect-
ing a multitude of ellipses. Meantime, we choose the stan-
dard HT-based algorithm and RHT-based algorithm [2] for
comparison, and both MML and RHT-based algorithms are
randomly repeated 20 times.

The three synthetic images adopted for demonstrating
the noise resistance are characterized, noise-free, moderate
noise and heavy noise shown in Fig. 3. The results obtained
are listed in Table 1, where we present the maximum, min-
imum and average number of ellipses detected in the 20
runs of the MML and RHT-based algorithms. For saving the
space, the visual experiment results are not shown here. As
shown by the results, the performance of the MML-based
algorithm is quite insensitive to noise. The results could be
contrasted with HT and RHT-based algorithms whose per-
formance deteriorates as noise level increases. A possible ex-
planation for such differences may be as follows. For ellipse
detection, the MML-based algorithm captures the main axis
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Fig. 4. Five incomplete elliptic bacteria before and after edge detection.
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Fig. 5. Typical results by different algorithm on incomplete ellipse detection: (a) 5 ellipses detected by MML, (b) 1 ellipse detected by HT, and
(c) 2 ellipses detected by RHT.
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Fig. 6. Eleven elliptic blood cells before and after edge detection.

of the ellipses by minimizing the total reconstruction error.
Thus, its performance is insensitive to the noise as long as
the main axis of the data samples can be traced. However,
for the HT and RHT-based algorithms, the patterns trans-
formed by the noise would submerge the true peaks in the
parameter space as the noise level increases. The RHT has a
better noise resistance ability than the HT because the RHT
can increase the resolution of parameterization and the ro-
bustness to outliers [1].

The image used for the incomplete ellipse detection is a
real biological image that contains five elliptic bacteria, of
which four are incomplete, as shown in Fig. 4. Among the
four incomplete bacteria, the top one is almost half curtained
by the rectangle-shape noise, the bottom one only leaves half
due to the improper image cut, and the other two are inter-
laced together. Experimental results are tabulated in Table 1
and illustrated in Fig. 5. While the MML-based algorithm
is capable of detecting 4.3 ellipses on average, the HT and

RHT can only detect 1 and 1.5 ellipses, respectively. The
fact that the MML-based algorithm outperforms its coun-
terparts could also be explained by the strategy of captur-
ing the main axis of samples. For example, although the top
incomplete ellipse is contaminated by the rectangle-shape
noise, the axis of the samples detected by the MML-based
algorithm would still roughly represent the original ellipse.
On the other hand, such a contaminated ellipse can hardly
create an effective peak in the parameter space for the HT
or RHT-based algorithms.

The image shown in Fig. 6 is adopted to demonstrate
the scalability of the algorithms, which is a real world im-
age containing 11 elliptic blood cells pre-processed by edge
detection. Results are provided in Table 1. As shown in
Table 1, the MML-based algorithm outperforms its coun-
terparts by detecting 8.6 ellipses on average while the RHT
and HT detect only 6.5 and 2 ellipses, respectively. Actu-
ally, the difficulties facing different algorithms on detecting
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a multitude of ellipses are not the same. The major diffi-
culty underlying the MML-based algorithm originates from
the so-called “dead unit” problem, due to the existence of
some empty cluster centers that cannot occupy any samples.
However, the MML-based algorithm overcomes this prob-
lem by introducing the conscience and de-learning mech-
anisms with the help of the RPCL. On the other hand, as
the HT and RHT-based algorithms are employed to detect
a particular ellipse in the presence of many other ellipses,
pixels of other ellipses would unavoidably pose as noises to
worsen their performance.

4. Conclusion

An ellipse detection algorithm is developed based on the
multisets mixture learning and it differs from the viewpoint
of HT family. The algorithm is shown experimentally and
analytically to have certain advantages over the conventional
approaches.
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