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Abstract— We proposed a new self-organizing net based on the principle of Least Mean Square Error Reconstruction
(LMSER) of an input pattern. With this principle, a local learning rule called LMSER is naturally obtained for
training nets consisting of either one or several layers. We proved that for one layer with n, linear units, the LMSER
rule lets their weights converge to rotations of the data’s first n, principal components. These converged points are
stable and corresponding to the global minimum in the Mean Square Error (MSE) landscape, which has many
saddles but no local minimum. The results indirectly provided a picture about LMSER'’s global convergence, which
is also suitable for Oja rule since we proved that the evolution direction of the Oja rule has a positive projection on
that of LMSER. We have also revealed an interesting fact that slight modifications of the LMSER rule (also the
Oja rule) can perform the true Principal Component Analysis (PCA) without externally designing for building

asymmetrical circuits required by previous studies.
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1. INTRODUCTION

Self-organization has been studied intensively by many
researchers for decades. Various models of self-orga-
nizing nets have been developed for various purposes.
The well known results in literature include Grossberg’s
theories on competitive learning and adaptive resonance
(Grossberg, 1969, 1972, 1976a, 1976b, 1987), von der
Malsburg’s models for orientative column formation
and retinotopic map (von der Malsburg, 1973), Fu-
kushima’s cognitron and neocognitron for pattern rec-
ognition (Fukushima, 1975, 1980), Kohonen’s topo-
graphic map for somatosensory map and vector quan-
tization (Kohonen, 1982, 1988), as well as Carpenter
and Grossberg’s pattern recognition models ART1, 2,
3 (Carpenter & Grossberg, 1987a, 1987b, 1988, 1990).
In recent years, many further developments have been
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made along the paths initiated by these classical results
(Ahalt et al., 1990; Barlow, 1989; Desieno, 1988;
Rumelhart & Zipser, 1985; Xu et al., 1992). Further-
more, a number of new roads have also been explored.
Examples are the self-organizing net proposed by
Becker and Hinton ( 1992) for discovering spatially co-
herent properties, the studies on combining self-orga-
nization into supervised learning (Casdagli, 1989;
Hecht-Nielsen, 1987; Jacobs, 1991; Moody & Darken,
1989; Poggio & Girosi, 1990), and Principal Compo-
nent Analysis (PCA) nets for feature extraction and
data compression. Especially, the study on PCA nets,
stemmed from Oja’s constrained Hebbian rule (Oja,
1982), has grown quite rapidly and recently formed a
notable research branch of self-organization with con-
siderable developments (Baldi & Hornik, 1989, 1991;
Chauvin, 1989; Foldiak, 1989; Hornik & Kuan, 1991;
Kammen & Yuille, 1988; Kung, 1990; Linsker, 1986,
1988; Oja, 1989; Oja, Ogawa, & Wangviwattana, 1991;
Rubner & Tavan, 1989; Sanger, 1989; Xu, 1991; Xu,
Oja, & Suen, 1992; Yuille, Kammen, & Cohen, 1989).

However, some important issues about PCA nets
have not been solved or need further exploration. First,
as pointed out by Hornik and Kuan (1991), there are
only results of local convergence analysis about the Oja
subspace rule (Oja, 1989), as well as other related mul-
tiunit PCA learning models (e.g., Rubner & Tavan,
1989), the further global analysis seems to be extremely
challenging although extensive experiments have illus-
trated that these PCA models do converge globally.



628

Second, the Oja subspace rule (Oja, 1989) and some
other PCA models (e.g., Foldiak, 1989) do not perform
true PCA, but a “collective version” of PCA, which can
be called Principal Subspace Analysis (PSA) (i.e., pro-
jecting input patterns onto a subspace spanned by a
number of the largest principal eigenvectors). As will
be further discussed in Section 3.3, PSA is inferior to
PCA in some aspects. Although some existing PCA nets
(Rubner & Tavan, 1989; Sanger, 1989) can perform
the true PCA, some external “hardwiring” has to be
made on the net architecture so that it becomes an
asymmetrical circuit. An interesting question arises:
“Without any external “hardwiring,” is there some way
to make a symmetrical model (like the Oja subspace
rule) break the symmetry so that true PCA can be per-
formed?”” Third, the existing PCA models, as well as
most of the other self-organizing models mentioned in
the above paragraph, are constructed in a bottom up
way, i.e., one first has a local learning rule (e.g., Hebbian
rule or some modified version) for updating the weights
of one unit, then one specifically designs an architecture
for multiple units and heuristically figures out a mech-
anism which can allocate or extend the local learning
rule to act on multiple units appropriately. However,
we are not clear whether these heuristical learning rules
relate to some general principles such as minimization
of some energy or error function, and whether one can
start from some general principle through a top down
manner to naturally obtain some local learning rule
which can also perform PCA. Fourth, if such a general
principle exists, it is interesting to explore further
whether one can build a multilayer self-organizing net
based on the general principle to get more functions
than the existing PCA nets, which, like the Oja subspace
rule, are of one layer architecture and can only perform
feature extraction or data compression tasks.

This paper aims to explore the above issues. We pro-
pose a new self-organizing net which has a general ar-
chitecture consisting of either one layer or multiple lay-
ers. The net is trained by a local learning rule called
LMSER which is naturally derived from a general
principle—Least Mean Square Error (MSE) Recon-
struction of input patterns. The net of one layer archi-
tecture not only can perform true PCA, but also provide
several important results for the problems arising in
the first three issues above. This network is an example
of a multilayer self-organizing system which is trained
based on a general principle rather than some specifi-
cally and heuristically designed bottom up training al-
gorithm. We also speculated that this multilayer net
may possess a number of useful potential functions.

In section 2, the general architecture of our multi-
layer net is proposed in detail. The architecture is very
similar to that of the ordinary fully connected (i.e.,
each unit on one layer is connected to all the units in
the next layer) multilayer feedforward net trained by
the back propagation technique, except that in our net
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each connection weight is bidirectional and symmet-
rical. Each unit will receive the bottom up signals from
the lower layer and the top down signals from the upper
layer. Each unit also emits a top down signal to its lower
layer and a bottom up signal to its upper layer. The net
works in two phases: perception and learning. In the
perception phase, when a pattern is presented to the
bottom layer (called input field), the net will pass the
signals up and the net will experience a stable dynamic
process which has been proved to converge into an
equilibrium. Then, the top-down signal received by the
input field is regarded as the reconstruction of the input
pattern. In the learning phase, all the weights are mod-
ified based on a general principle that the Mean Square
Error (MSE) between input patterns and their recon-
structions is minimized.

In the subsequent sections, we will not thoroughly
explore the proposed multilayer architecture. Some
speculative discussions on a number of potential ap-
plications and extensions of this multiple layer archi-
tecture were given in a recent conference paper (Xu,
1991), while further experimental and theoretical in-
vestigations are left for a separate later study. In Section
3, we concentrate on the further theoretical and ex-
perimental studies of the one layer special case. It can
be seen that this simple net contains rich contents that
can provide several important results.

In Section 3.1, we show that a one layer net of linear
units, trained by the LMSER rule, has the same func-
tion as Oja subspace rule has. More precisely, we have
theoretically proven that for a one layer net consisting
of n, linear units, the LMSER rule (which minimizes
the MSE of reconstruction in the gradient descent way )
will let the weight vectors of these units converge to
some rotations of the first n; principal eigenvectors of
the input data’s covariance matrix, and that these con-
verged points are stable and correspond to the global
minimum in the landscape of MSE of reconstruction.
We have also proved that just like the landscape dis-
covered by Baldi and Hornik (1989) for the linear d-
p-d architecture of supervised learning nets, the land-
scape of MSE of reconstruction has no other local
minimum points but many saddle points. For the Oja
subspace rule, as well as some other PCA learning rules,
although the existing theoretical result from some local
convergence analysis indicates that the converged points
described above are the only stable stationary points,
there is no result about the global convergence for these
rules. Actually, such a global convergence analysis is
regarded to be extremely challenging (Hornik & Kuan,
1992). Here, for the first time, the results about the
LMSER rule have connected these converged points

'i.e., This is a feedforward network consisting of one hidden layer
with ¢ units and one output layer with d units. The dimension of
input X is also d. The net is trained by back propagation with the
same input X being taken as the desired output.
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with an energy landscape which has no other local
minimums. This connection provides a clear picture
about global convergence, although indirectly.

In Section 3.2, we show further that either the one-
unit Oja rule (Oja, 1982) or the subspace rule (Oja,
1989) is a downhill rule for minimizing the MSE of
reconstruction. More precisely, we have proven that on
the average its evolution direction has a positive pro-
jection on the evolution direction of the LMSER rule.
As pointed out in Baldi and Hornik’s (1991) recent
review paper, the Oja rule cannot do a gradient search
of any energy function; but there may be the possibility
that the Oja rule may have a positive scalar product
with the gradient of some energy function and thus still
perform a downhill search. Our result has confirmed
this conjecture and built the connection between the
Oja rule and the LMSER rule. This connection not
only shows that the above results about global conver-
gence of the LMSER rule is also suitable for the Oja
rule since it makes a downhill (although not gradient
descent) search of the same energy landscape, but also
makes it possible for us to further modify the Oja sub-
space rule in Section 3.3 for performing true PCA.

Furthermore, in Section 3.3 we reveal an interesting
and important fact that a slight modification of the
LMSER rule, as well as the Oja subspace rule, will
enable a symmetrically circuited net to perform the
true PCA. Two kinds of modifications are proposed
and the results of theoretical analysis, as well as exper-
imental simulations, are provided to show how they
perform PCA without external design for building
asymmetrical circuits. Since these modifications per-
form the true PCA, they are as capable as Sanger’s GHA
and other asymmetrically circuited nets (e.g., Rubner
& Schulten, 1990) for some practical tasks such as data
compression, feature extraction, and the interpretation
of the development of orientation cells in the cortical
field (Bienenstock et al., 1982; Hubel & Wiesel, 1962;
Sanger, 1989). The more interesting point here is that
these tasks can be performed by a network without
requiring any externally “hardwired” asymmetry re-
quired by Sanger (1989) and Rubner and Schulten
(1990).

2. MULTIPLE LAYER SELF-ORGANIZING
NETS BASED ON THE LEAST MSE
RECONSTRUCTION PRINCIPLE

2.1. The Architecture of the Multiple Layer Self-
Organizing Net

Let us consider a multiple layer net as shown in Figure
1(a) in which a unit at one layer is connected to all
the units in the next layer. Assume that the connections
are bidirectional and their weights are symmetrical, i.e.,
the architecture used here is the same as the ordinary
multilayer forward net except that here each connection
weight is bidirectional and symmetrical. If biologically
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the existence of such symmetrical weights is a question,
we can divide each of these connections into two parts
with each having the same weight and pointing in op-
posite directions, as shown in Figure 1(a) by the solid
and dashed arrows, respectively. However, for conve-
nience, in the sequel, we will equivalently consider that
there is only one symmetrical weight between the two
units.

In this architecture, the activity zj; of the j-th unit
on the k-th (k > 0) layer is activated by two signals.
One is a bottom-up signal ;,, the other is a top-down
signal u;;. That is,

dz;
Zig = S(Yj + u) or T _d;l = —Zj + S(Vjx + i)

Ng—1 Nic+1

Vik = > WikZik-1y, and = > Wirtk+1)Zr(k+1) (1)
i=1 r=1

where the differential equation for zj is just the con-
ventional dynamic equation for a neural unit which
can be found in many publications, e.g., in Section 3.3
of the book by Hertz, Krogh, and Palmer (1991) or in
Kohonen’s book (Kohonen, 1988). w;; is the weight
connecting the i-th unit on the (k — 1)-th layer and
the j-th unit on the k-th layer, n, is the number of units
on the k layer, and s(.) is a sigmoid function.

On the top layer, each unit receives only bottom up
signals from its immediate lower layer, but no top down
signals. It also does not emit any bottom up signal but
just top down signals to its immediate lower layer. On
the bottom layer, the bottom up signal received by each
unit j is yj = X;, i.e., the j-th component of input vector
X. The top down signal it received is u;, given by eqn
(1) with k = 0. This layer functions as the input field,
each unit j is just a port and does not follow the dynamic
given in eqn (1). A

Equation (1) can also be written in the matrix form.
Let Zi, Vi, U be n, X 1 vectors, we have

3

d
2= St ) or 1ot = 2+ SGi+ i)

Ve = WiZg-1y, and T = Wi Zey, (2)

where W, is a n; X n,_, matrix, and S(f) = [s(&),
..., 8(&)] foran X 1 vector £.

The net works in two phases: perception and learn-
ing, which will be described in Sections 2.2 and 2.3,
respectively.

2.2. The Perception Phase: A Stable Dynamic
Process

When an input pattern X comes as the bottom up signal,
it propagates up to the first layer. Then the units in the
first layer emit both bottom up signals to the second
layer and top down signals back to the input field. Next,
activated by the bottom up signals from the first layer,
the units in the second layer emit both bottom up signals
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input field
(@)
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BV, b2 ' =
£, o

(b)

FIGURE 1. A new self-organizing net (a) The architecture of multi-layer net. Here, the connections are bidirectional and their weights
are symmetrical. Except for the bottom and the top layers, the activity of each unit is activated by two types of signals: bottom up
and top down signals which are indicated by the solid and dashed arrows, respectively. The bottom layer is called input field for
the external input patterns. (b) The matrix-type representation of the connections between the two neighbor layers. Where a}" =
Zpy, b = £q0, 85 = Spepn, bEY = X, for eqn (8a) (see text); and @l = z,, b = Siu1yqu-1)y @2 = 8 hepr, DI = Z, k1) for eqn
(8b). All of these signals are available locally at the two involved units, which causes only local modifications.

to activate the units on the third layer and the top down
signals back to the first layer. These top down signals
will make the activities of the units on the first layer
change. These changes in turn cause the changes in the
top down and bottom up signals emitted by these units.
Furthermore, the changes in these bottom up signals
will alter the activities of the units on the second layer,
which further cause the changes in the activities of the
units on both the first and third layers through top down
and bottom up signals. Here, we can see that actually
the presentation of an input X will drive the net into a
quite complicated dynamic process. Each unit in any
layer (except the input field) remains inactive for just
a while in the beginning. Once the unit is activated by
the bottom up signals from its immediate lower layer,
its activity, as well as its received/emitted top down
and bottom up signals, change. These changes are highly
coupled with the changes corresponding to the rest of
the units in the net. As a result, the top down signals
received by the input field also change, namely, the
reconstructed input pattern also changes. If these
changes are ceaseless, one cannot get a stable recon-
structed pattern. This is not what we want. We want
these changes to eventually vanish so the activities (and
thus all the top down and bottom up signals) can finally
converge to some specific values. If so, we say that this
dynamic process reached its stable state and the dy-
namic process is stable.

Fortunately, the dynamic process described in eqns
(1) or (2)is stable, which is guaranteed by the following
theorem.

THEOREM 1. When s(.) is a sigmoid-type function, the
activities of all the units will finally conveérge to a set of
specific values such that the minimum of the following
global Lyapunov or energy function has been reached

K mey ng
> WiikZik-1)Zjk
=2 i=1 j=1

K ne pzy ny ng
+s f sNDdz+ 3 S zxwy. (3)
1 0

k=1 j= j=1i=0

Proof. Let Z = [Z1, ..., Z%]’ and for simplicity we
redenote the components of Z by z,, p=1,..., N
(ie., Z = [z}, ..., zy]") with N = K| . It is not
difficult to see that eqns (1) and (3) are the special
case of the following equations:

’

dz
T=2=—z,+ 5| > whz, + I,,)
dt p

N

! ! !
2 WpaZ4Z)p
#

M=

Jnet ==

N —
]
o
=

p

N zp N
+ > f sNz)dz+ 3 z,1,. (4)
p=1 0 p=1
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That is, eqns (1) and (3) are obtained from eqn (4)
by letting those g = Wik ifz, = zje—1y, 24 = Zjg, k>
1 and w,, = 0 if z},, z; are not the two units that one
is located on a layer and the other is on the next layer,
as well as by letting I, = y;; = 2; z;,x; if z, = z); and
I, = 0if z}, is not located on the 1st layer.

Equation (4) is just the global Lyapunov or energy
function studied by Cohen and Grossberg (1983) and
Hopfield (1984). It is well known that the dynamic
process will converge to the minima of J,;. Q.E.D.

After the process reached its stable state, the top
down signals %, = W {Z, from the first layer are also
stabilized. If %, — X = 0, then we say that 7, is a com-
plete reconstruction of the input pattern X. In this case,
no learning will take place and the activities of the units
on the top layers or/and other upper layers can be re-
garded as the perception of the present input X. If 7,
— X # 0, then we say that 7, is a partial reconstruction
of X. One can also regard 7, as the recalled pattern by
key X. The activities of the units on the top layers can
be regarded as the partial perception of the input X.
Moreover, one can also trigger the following learning
phase to reduce the difference 7, —

2.3. The Learning Phase: Based on the Least MSE
Reconstruction Principle

The task of learning is to adjust all the weights in the
net in order to reduce the reconstruction error. These
weights are usually initialized randomly.

Here, we let the learning be guided by the principle
of minimizing the MSE, that is,

Min J,

{ Wik=1,..,K}
J=3E(I% = %l*) = 3E(I% = WiZ,%). (5a)

Using the gradient descent approach, we have the
following rule to modify each weight wy;:

wOWi _ 8

ot I (30)

In the practical implementation of this gradient de-
scent rule, there are usually two ways to obtain dJ/
Ow. One is to collect a batch of data X(i),i=1,...,
NanduseJ = 1/2N X, |%(i) — %l ? as an estimate
of J given by eqn (5a). Then we try to obtain dJ/ Wi
for replacing 8J/dw;; in eqn (5b). This is usually called
the batch way. The other way is to just use J® = |
— Uo|? to replace the J given in eqn (5b), i.e., to let
the following rule replace the rule eqn (5b):

LW J°
ot B 3w,~jk ’

(5¢)

This is usually called the adaptive way or stochastic
approximation. In the cases that the input X comes
randomly and stationary from a distribution (i.e., the
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input sequence about X is a stationary process), by
taking expectation on both sides of eqn (5c) we can
approximately? obtain

v BEIR- Tl __ &)

at 6w,»jk aw,»jk ’

Therefore, on the average, the rule in eqn (5c) mini-
mizes the J given in eqn (5a) in the gradient de-
scent way.

The batch way needs a period of time and some
extra storages for collecting data samples and thus this
rule is not suitable for on line processing. The adaptive
way or stochastic approximation solves such a problem.
For a nonreal-time application, an optimization prob-
lem like that given in eqn (5a) can be implemented by
either batch way or stochastic approximation. Many
existing self-organizing algorithms, such as the Oja rule
(Oja, 1982, 1989) and the Kohonen learning rule (Ko-
honen, 1988), use the stochastic approximation ap-
proach. In this paper we adopt the stochastic approx-
imation approach for implementing the minimization
of the MSE of the reconstruction.

We start from eqn (5c¢) to derive our local learning
rule. First we rewrite J° into

PSR- WEP =3 S5 - 3wz
2 141 2 1 jil&jl A
i=1 =1 j=1
1% 2
+§ > (Z w,,.zﬂ) . (5d)
i=1 \ j=1

Noticing that zj, = s(y;x + ;) and u;; is irrelevant
to any weights below the k-th layer, we try to decouple
the problem of eqn (5d ) layer by layer from the bottom
to the top of the net.

First, for the layer k = 1, we have

B BJO_ ny B ho n _ -
&1 = _a—" = Z Wij1 Xj Z Wiji Z WriiZe | = Yo — Vit
Zir  j=t1 j=1 r=1
aJ°
gjo = — a—"" = Xj — Ujo (6&)
ujo

0z;, _ Os(ya + uin) _ ad

!

prql 6qul aqul

614]'0 6 o
— = i1 Zy 0; 6b
MW OWpg rzl HEn = it (6b)

2 wljlxj ,il 5ipxqa

where yj = 2 7%7' Wildyk—1) OT in the matrix form 7}
= Widix_i. Vi can be regarded as the reflected signals
of the top down signals #_,,. Furthermore, we denote
Sk = 8'(yi + ug), and let 8, = 1 if i = ¢; 6, = 0 if i
#q.

2 Where we assume that w;; changes slowly relative to X.
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On the first layer it follows from eqns (6a) and (6b)
thatforp=1,...,n,q9=1,..., n;, we have

wWour __ 0J . 0J° 9z
ot aqul i=1 62,». aqul
St 872 du

= s}.e,,,xq + €402p1- (60)
j=1 aujo 3qu1

Second, for the layers k = 2, . .., K, we have

91y _ 0SWite=n + hun) _ o, By
0zy dZi TN 9z
- 02 WZm S
= 9jk-1) T 7 T = §jk-1 ijk
J(k=1) azik J(k=1)Wij
P A S VA -
!
0z imt 0Zjg—1y 0z
Nk-1) aZ* Nk-1)
jk—=1) _
&j(k-1) = gik-nWie  (7a)
9zjx j=1

j=1

where e, i = 1, ..., n; can be obtained recursively
from the bottom layer up to the top layer, with the
initials given by eqn (6a).

We further calculate

9z , Oy , 0
= Sik = Sik Wik Zj(k-1)
3quk 0quk 6w,,,,k j=1
g du;
— k1)
= SubipZau-1y T Sik 2 WiSj-1)
Jj=1 awqu
gy _ o Wiken _ 9 S .z
= Sitk-1) = Si(k-1) jikZjk
aquk 6w,,,,k é)wqu j=1
ny ay
— Jk
= Sit-1)0igZpk T Sik-1y 2 WinSk
Jj=1 awqu

These are the highly coupled equation groups, the
solutions of which need to be solved nonlocally. How-
ever, we have s'(.) = s(1 — 5) < v = { for sigmoid
function s(.). The second terms in the both equations
are of order v, while the first terms are of order 7.
Thus we can use the following approximations to re-
place the above coupled equations:

9z 9Zig-1)

- = SibipZgk-1)»
awqu awqu

~ S;‘(k_])a,‘quk. (7b)

Consequently, on the k-th layer it follows from eqns
(7a) and (7b) thatforp=1,...,n,q=1,..., n,
we have the following learning rule:

wawqu _ aJ _ % e 8Zik k1) R 6Zi(k_1)
=T = ik i(k~1)
ot 8ka i=1 ! 6quk i=1 ! awqu
~ SpkeikZqk-1) T Sqk-1)8qtk-1)Zpk- (7c)

As a summary, we rewrite the main learning equa-
tions eqns (6a)(6¢), (7a)(7c) together:

&0 = X; ~ Uio, &1 = Vi1 = Vi1,

aw,
Tw—gl;—ql=8qozpl + Shiepx,, for k=1 (8a)
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N(k-1) ow

— pak !
= 2 Eitk-1)Wigk> T o = Sq(k-1)€q(k-1)Zpk
Jj=1

+ s;,keikzq(k_,), for k=2. (8b)

To gain more insights on the obtained learning
equations eqn (8a) and (8b), we unfold the connections
between the k-th and k + 1-th layers into matrix-type
as shown in Fig. 1(b), where for the first layer we
have a{" = z,;, b{) = 40, af? = shie,1, bSP = x,,
and for the k-th layer we have al" = z,, b{» =
S:,(k_.l)eq(k_l), al(,z) = S;,kepk, b((IZ) = Zgk-1)- All of these
signals are available locally at the two involved units,
thus all the computations are local.® Furthermore, in
the first term of eqn (8a), we can see that z,, X, is just
the classical Hebbian learning term. Because the rule
in eqn (8) is obtained from the LMSER principle, for
convenience, we call it the LMSER learning rule.
Moreover, since the learning occurs bottom up through
forwardly propagating e; (which can also be regarded
as errors), we can also call this bottom up implemen-
tation of the LMSER rule as a Forward Error Propa-
gation method.

It should be noticed that the perception and the
learning phases take place at the same time but at dif-
ferent time scales. As the changes of weights disturb
the old dynamic equilibrium, the new equilibrium will
be established quickly. Moreover, the smaller the dif-
ference #, — X and the shorter the time that x is exposed
on the input field, the less is learned about x. In con-
trast, the larger the difference i, — X and the longer the
time that X is exposed on the input field, the more is
learned about x. This feature is somewhat similar to
that of human learning.

3. FURTHER THEORETICAL
AND EXPERIMENTAL STUDIES
ON ONE LAYER SPECIAL CASE

3.1. Mathematical Analysis on Linear Units:
PSA Emerges Automatically

When K = 1, i.e., the number of layers is reduced to
1, we get a special case as shown in Figure 2. In this
case, we can simplify the notations as Z = Z,, J =
Vi, U = Uy, W= W,, and rewrite eqns (2) and (5a)
into
z2=8S1), y=Wx, u=W'2
J=3E(% - ul?) (9a)

3 When calculating ¢,1in eqn (8a), one needs y7, which, as men-
tioned earlier, is the reflection of the top down signal . Vi is still
a local signal although it costs a little more computation. Moreover,
in eqn (8a), 5,1¢,1x, is of one order higher than z,,¢, with respect
to v, in the way similar to eqn (7b) we can also just omit the term
Sp1€p1X, for saving some computations. However, in the multilayer
net this saving is not so critical. Here we would rather keep
Sp1€p1X, 10 eqn (8a).
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J = E(||£ - ﬁ”2)

I Ty 3

FIGURE 2. The architecture of one layer with n, units, each of
which is connected to all the variables of the n, X 1 input vector
X.Here, Z = [z, . .., z,,] are the activity of n, units, W is the
connection matrix. y is the bottom up signals from the input
field and U the top down signal from the neural layer to the
input layer. u is regarded as the reconstruction of X produced
by the neural layer, and J is the MSE of this reconstruction.

where S(£) = [s(£)), ..., s(£,)] for a n X 1 vector
£, 7 is the bottom up signals from the input field and
71 the top down signal from the neural layer to the input
layer. 7 is regarded as the reconstruction of the input
X by the neural layer. Thus, J is the MSE of this re-
construction.

Moreover, eqn (8b) has gone and eqn (8a) becomes

To=X-0, H=F-F, ¥ =Wa

S§' = diag[s'(y1), ..., S'(¥a)]. (9b)

This is a stochastic approximation rule for minimizing
J by gradient descent. Equation (9b) can also be ob-
tained by directly solving d.J/d W through certain steps
of derivations.

In this subsection, we study the case that s(x) = x.
In this case, we have Z = 3, S’ = I. It follows from
eqns (9a) and (9b) that

PP+ PR - PR = WRR - WEXRW'W
+ WXX' — WW'W3Xx' (10a)

Assume that X comes from a stationary process with
E(X) = 0, and let T denote the covariance matrix
E(XX'). Let us further assume that W changes slowly
relative to X. Following the average analysis used by
Oja (1982), we take expectation on both sides of eqn
(10a), resulting in

aw
TW'ZZ" =WZ-WZW'W+ WZ - WW'WZ. (10b)

We will now prove that the learning rule of eqn (10a)
performs automatically PSA. First, we will prove that
all the possible converged points of the weight matrix
W (i.e., all the critical points of eqn (10b)) are, up to
an arbitrary rotation, the matrices consisting of 7, ei-
genvectors of 2 as their row vectors (Theorem 2). Sec-
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ond, we will prove that all these possible converged
points of W are saddle points of the energy landscape
of J, except the only stable one which is, up to an
arbitrary rotation, a matrix consisting of the first n,
eigenvectors of 2 as its row vectors, and this stable point
let J reach its global minimum value (Theorem 3).

THEOREM 2. Assume n, < ny and Z is nonsingular. Let
®=1[¢, ..., bnl and A = diag[\y, ..., \,] be the
matrices of eigenvectors and eigenvalues of T respec-
tively, then the critical points of eqn (10b) are W =
RDP®', R is an arbitrary n, X n, rotation matrix, i.e.,
R‘R=1 D =[D,|0] is n; X ny matrix with D, being
an n; X n, diagonal matrix and its diagonal elements
only taking value of +1, —1, 0. Py, is an arbitrary
permutation matrix.

Proof. Let dW/dt = 0, we know that the critical points
of eqn (10b) satisfy

WZ—-WIW'W+ WZ-WW'WZ2=0. (10c)

By singular value decomposition, we can write W
= Ry;xn, Dyyseng ¥ ngxcno SUCh that R‘R = I, ¥'W¥ = [,
D= [D1|6], D, is an n; X n; diagonal matrix and
some of its diagonal elements may be zero. We can also
decompose WZ~! = R'D'¥' with R"'R' = I, V''¥' =
ITand D' = [D|0].

Since Rank[W] = Rank[WZ~'], Rank[D'] =
Rank[D'] = Rank[D] = Rank[D,], thus

W=RDV"Z

= R'D'V'"'®PAP' = RDV' = W= R'R'D'V"'PADP'Y

= R'R'D'V'"®PAPPY =D = R'R' =1,

V'ep=1 PP'V=1 D'A=D<R=R,
V'=V¥=¢P, D'A=D

where P, ., is an arbitrary permutation of the identity
matrix Lygxn,

Therefore, we have W= R, xn, Dy, xn, P®*, put it into

eqn (10c) and notice that R'R =1, ®'® =], PP' =]
and P'P = I, we have

DPA — DPAP'D'DP + DPA — DD'DPA =0
DPAP' — DPAP'D'D + DPAP' — DD'DPAP' = 0.

Then noticing that PAP' = A’ is a diagonal matrix (its
diagonal elements are permutation of the diagonal ele-
ments of A), we have

DAy — DA\ DD, + DAy — D,D'D\Ay =0 (10d)

where A’ = diag[ A}, A}] with A being a n; X n, ma-
trix. It follows from eqn (10d) that D;A’, = D} & D,
= D3 < the diagonal matrix only has the diagonal
elements with values +1, —10. Q.E.D.

THEOREM 3. Assume Ay = Ay ... Ay > Nyiq = Ay >
Oand & = [¢,, ..., $n0]. Then all the critical points
of eqn (10b) given by Theorem 2 are saddle points of
the energy landscape of J, except those with W= R'® ",
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R'R' = I, ®'® = I, where & = D¥, and D =
[D,|0] with D, being diagonal matrix and its diagonal
elements being either +1 or —1. Furthermore, these W
=R'®"let J = E(|X — u||*) = {E(|X - W'WZX|? )
reach its only local (also global) minimum J,,;, = 4
Zr—onﬁl )\

Proof. To notice tr(Xx!) = tr(X'X) =
= tr(BA), we have
2J =tr(E(X — W'W3X)(X— W'WX)")
=tr(2) -2t (WZIW") +tr(W'WIEIW'W).

X'X and tr(4B)

From Theorem 2 that any critical point is given by W
= R¥', §'' = DPP’, we have

2J=1tr(2) — 2tr(P"ZP) +tr(¥P""Z¥P). (11)

First, we consider all of the critical points with
Rank[D] = r < n,. In this case, only r rows of &' are
eigenvectors of 2 and the other rows are zero vectors.
Assume the j-th rowisa zero vector, we slightly perturb
the row by eq)k such that ¢k is not among the r eigen-
vectors. Then from eqn (11), we can have 2AJ = — €2\,
+ O(€*), i.e., J decreases. Thus, these critical points
are saddle points.

Second, we see the case that Rank[D] = n,, which
means that the diagonal elements of D, are either +1
or —1 and thus the n;, rows of &' are eigenvectors of
2. Due to the permutation caused by P # I, there are
two possible situations. One situation is that not each
of the n, rows is among the first 7, elgenvectors of Z.
Assume the j-th row is an eigenvector ¢, ) | > n, we
shghtly erturb the TOW through replacing d>, by (¢,
e¢k)/ + €2 with ¢k being among the first n, eigen-
vectors; Then from eqn (11), we can have 2AJ =
—e2(A— N;)/(1 + €2), again J decreases. Thus, these
critical points are also saddle points. The other situation
is that the rows of &'’ are the first n, eigenvectors of =.
Now if F one of the rows 1s perturbed through replacing
qS, by (¢, + eqbk)/ﬂ ¢ with k > n,, Jwill increase.
That is, only those ® consisting of the first n, eigen-
vectors of 2 are local minimums. This means that ®'*
= P'D®’, or W = RP'D®’, where P'is a n; X n, per-
mutation matrix. Furthermore, let R’ = RP’, we also
have R"'R' = 1.

In addition, in this case, eqn (11) becomes

no no
2.]:2)\,_ A,’= 2 A,’.

i=1 i=1 i=ny+1

QED.

Theorem 2 and Theorem 3 have not only shown
that the stable converging point of W is the rotation of
the first n, principal component, but also that the land-
scape of J has only one unique minimum which has a
flat bottom (the different rotations corresponds to the
horizontally moving within the flat area). As shown in
Figure 3, going up from this flat bottom there are in
total 271, C; — 1 plateaux which form all the other
critical points of eqn (10b) (the first C;} — 1 plateaux
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FIGURE 3. The landscape of J. There is only one unique min-
imum which is the flat bottom, and there are in total 2}, C}, —
1 plateaux which are the saddle points.

due to all the other », nonsingular combinations of
eigenvectors, the next C;',(;“ plateaux due to all the n,
— 1 combinations, . . ., and so forth).

Theoretically, the gradient descent search may get
stuck in any of these plateaux. In general, however, the
stochastic approximation learning rule of eqn (10a)
does not exactly search along the gradient descent di-
rection of J, but with some random fluctuations which
will make W horizontally random walk in the flat area
where the learning was stuck. As long as the probability
that it moves to the unbounded margin (e.g., point F
in Figure 3) is greater than zero (this is generally true
when X is randomly sampled from a population), W
will eventually fall down the plateau. The similar thing
will happen when the learning is stuck in any one of
other plateaux until it finally falls down to the bottom.
This indicates that the LMSER rule will let W globally
converge to its only stable points—-the rotations of a
matrix consisting of the first , eigenvectors of =. That
is, the row space of W is the subspace spanned by the
first n, principal components. Thus, the LMSER rule
automatically performs PSA.

In fact, the landscape of J is quite similar to the
energy landscape of the linear d-p-d architecture of a
two-layer forward net by back propagation (Baldi &
Hornik, 1989). Thus, Theorems 2 and 3 have also built
a connection between the one-linear-layer special case
of our self-organizing net to Baldi and Hornik’s linear
d-p-d architecture of two-layer self-supervised net. The
connection will explain, from the landscape viewpoint,
why the two obviously different architectures, as well
as the related learning rules, will lead to similar results.

3.2. By-Products: New Results About Oja’s
Subspace Rule

By generalizing his classical one-unit PCA rule given
in 1982 to the cases of multiunits in one layer, Oja
(1989) proposed his subspace rule for PCA given as
follows:

TV =YX -JYVW, V= WX (12)
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Several authors have investigated this rule (Hornik
& Kuan, 1992; Krogh & Hertz, 1990). A good review
about them and other PCA related methods is recently
given by Baldi and Hornik (1991). Here, we prove a
theorem which can build up a connection between the
LMSER rule and the Oja subspace rule. Then based
on this connection, we give several new results about
the Oja subspace rule.

THEOREM 4. On the average, the evolution direction of
Oja’s subspace rule in eqn (12) has a positive projection
on the evolution direction of the LMSER rule given
in egn (10a). Precisely, E(vec[Gy]) E(vec[G]) =
2E(vec[Gol)'E(vec[Gy]) > 0, where Gy = X! —
YIVW,G=3(X—-u)'+ (Y- )X, and ‘“vec” trans-
forms a matrix into a column vector by stacking the
columns of the matrix one underneath the other.

Proof. Since G is the first term of G, we have
E(vec[Go]) E(vec[G]) = E(vec[Gyp]) E(vec[Go])
+ Py, Py = E(vec[Go]) E(vec[(¥ — Y)X'])
By vec[A]'vec[B] = tr(AB') = tr(B'A), we further
have
Po = tr(E(Go)E((Yy — p")X'))
=tr(WZ - WIW'W)YWE - WW'W3Z))
=tr(WZ(WZ)) — tc(WEZW'W (W Z)")
—tr(WZ(WW'WZ)) + tr(WIW'W (W W'WI)).
To Notice that
trf(WEWW (W WWZ)) = te(W(WW'WI)WIW?)
=tr(WZW'W(WZIW'W)",
Summing up the first, second and fourth term and an
extra second term, the result is tr( E(G,) E(G,)*) > 0.

Thus we have Py = tr(E(Gy)E(G,)") + P with P}
given by

Po=tr(WEW'W(WZ)) — (WI(WW'WZ))
=t (SW'WIWW) — tr(Z*W'W W'W).

Since W'W is semipositively defined, and 2 is pos-
itively defined. It is well known that there should be a
rotation matrix ®, ®'® = I such that T = ®AP' W'W
= ®D®', and A, D are diagonal matrix with their ele-
ments = 0. Putting them into P{ and noticing ®'® =
I, we have

Py = tr(®'ADAD®) — tr(®'DADP)
= tr(®'A’D?®) — tr(®'A2D?®) = 0.

Thus, in summary, we have E(vec[Gy]) E(vec[G])
= 2E(vec[Gy]) E(vec[G,]) > 0. Q.E.D.

Based on this theorem, we obtain some new results
about the Oja subspace rule in eqn (12).

First, for the Oja subspace rule, presently no global
picture such as energy landscape has been obtained. In
fact, Baldi and Hornik (1991) have shown that the rule
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in eqn (12) cannot be interpreted as a gradient descent
search of any energy function. But they did not exclude
the possibility that the rule may have a positive scalar
product with the gradient of some energy function and
thus still perform a down hill search. Theorem 4 con-
firms their conjecture. The LMSER function J =
LE(||x — u)?) is such an energy function.

Second, for the Oja subspace rule, it is only known
that the rotations of the first n; principal eigenvectors
are the local stable points of eqn (12). There is no
global picture about how the rule works. Here, Theorem
3 and Theorem 4 together give a global picture of the
search process of Oja’s subspace rule. The search pro-
cess is quite similar to the search process of the LSMER
rule described earlier. When the search is stuck at a
plateau of J, the random walks produced by the sto-
chastic approximation rule and the random sampling
of input patterns will eventually make W fall down the
plateau until it finally reaches the only bottom of the
landscape of J. That is, like the LMSER rule, Oja’s
subspace rule has the global convergence. This is quite
a strong result. Presently in the literature, as pointed
out by Hornik and Kuan (1991), only local convergence
analysis about the Oja subspace rule as well as other
related PCA learning rule has been made and the global
convergence analysis on these rules seem to be ex-
tremely challenging. Here, although our analysis is not
extremely strict, i.e., we have not strictly shown that
under what condition the random walks of W on each
plateau has a positive probability to reach the unbound
margin of the plateau (we believe this condition should
be very mild for the stochastic approximation algo-
rithm, even the independent random sampling of pat-
terns alone may be enough), this analysis does supply
a reasonable global analysis.

Third, the Oja subspace rule is regarded as a rule
which needs nonlocal computations and thus is not so
“biologically plausible” (Hornik & Kuan, 1992; Oja,
1989). However, from eqns (10a) and (9a) and eqn
(8a)and eqn (2), we see that eqn (12) can be obtained
by just dropping the second term in the LMSER rule
for one layer net. As shown in Section 2.3 and Figure
1(b), the LMSER rule involves only local computa-
tions. Thus, Oja’s subspace rule, which involves only
a part of the computation needed by the LMSER rule,
can also be reformulated and implemented as a local
algorithm and should also be as “biologically plausible”
as other local algorithms.

To obtain more insights about the Oja rule and the
LMSER rule, we show some experimental examples.

We let X be a 3-D vector coming from a 3-D pop-
ulation of 400 samples with zero mean. These samples
locate on a ring in R? space. Its projection on x — y,
¥y — z, and x — z planes are shown in Figure 4. Figure
5 and Figure 6 show the results of one-unit and two-
unit case, respectively. These simulations demonstrate
how weight vectors converge as learning proceeds.
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FIGURE 4. The projections of 400 three dimensional samples with zero mean.

For simplicity, we fixed the learning rate for both
rules with @ = 0.01 for one unit case and « = 0.05*
for two units case and let both cases start from the
same randomly chosen initial of weight vector.

The results of the two rules are quite similar except
that the Oja rule fluctuates a little bigger but converges
a little faster than the LMSER rule. We also tried dif-
ferent initial weights. For the one-unit case, the weight
vector always converges to the first eigenvector for both
rules. However, for the two-unit case, as shown in Figure
7, the weight matrix converged to different values for
different rules, which the different values locate all at
the bottom of energy landscape. This is because of the
arbitrary rotation matrix R given in the above theorems.

Before closing this subsection, we would like to make
a few remarks on some related work. As indicated in
Section 2.1, Theorem 2 and Theorem 3 build a con-
nection between the LMSER rule for one layer linear
self-organizing net and Baldi and Hornik’s (1989) work
of using linear d-p-d architecture of two layer self-su-
pervised net by back propagation. Theorem 4 has fur-
ther linked such a connection to the Oja subspace rule.
Recently, in the deep study of their d-p-d architecture
which minimizes E(||x — 4ABx||?) by using two weight
matrices: A for one d-p layer, B for other p-d layer,
Baldi and Hornik (1991) realized the possibility of
minimizing E(|x — 4A4'x||?) (which is equivalent to

* Where the learning rate « is involved due to the following discrete
implementation of eqn (10a):

W(t+1)=W(t)+o[P(Z-0)+ (¥ —F)X'].

J) may behave similar to Oja’s rule (called the Sym-
metric Algorithm). In fact, they have derived the gra-
dient descent learning rule for minimizing this error
function in the special case of only one unit, and roughly
showed that it approximates Oja’s one unit rule when
the normal of weight vector is approaching 1. However,
they found the rule “is not particularly simple and lo-
cal.”® This may be one reason that they did not further
explore this possibility. Hrycej (1990) also intuitively
connected the Oja rule to the error function J and
thought that Oja’s rule exactly performs the gradient
descent search of J. Unfortunately, this thought is in-
correct since Baldi and Hornik (1991 ) have shown that
the Oja rule cannot do gradient descent search of any
energy function.

3.3. Performing PCA by Symmetrically
Circuited Nets

As shown above, with the simple activation s(x) = x,
both the LMSER rule and the Oja rule let the weights
of n; units of the symmetrically circuited net in Figure
2 to converge not to the first n, principal component
but to an arbitrary rotation of the first »n, principal
components. That is, these weight vectors collectively
tune to the n,-D principal subspace spanned by the n,
principal components of the input data. The output

5 This is because of their formulation. In our formulation, even
for the multiunits case, the LMSER rule is local and quite simple.
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FIGURE 5. The comparison of the learned weights by the LMSER
rule and the Oja rule in the one linear unit case. The results of
two rules are quite similar. The weight vector w is converged
to the first principal component of the data given in Figure 4.

signals of 7, units are not decorrelated, but be smeared
with the equal variance on the average. Each unit has
not been specialized for selecting one feature dimension.
Instead, on the average, each unit equally shares all of
the n, feature dimensions. Thus, the rules do not per-
form the true PCA, but a “collective version” of PCA,
or PSA.® In comparison with a true PCA (i.e., each
unit tunes to one component, e.g., made by Sanger’s
GHA, 1989), PSA may have disadvantages. First, the
number n, is critical. It needs to be externally prede-
fined. If it is too small, the net is incapable of capturing
all the major features of complex patterns. If it is too
large, the net will inefficiently use many units to rep-
resent simple patterns. While PCA can use a small
number of units (even one unit) to extract the principal
features of patterns, when the patterns are too complex
and there remain features not extracted by the previ-
ously used units, more units will join in for extracting
the extra features. Second, from the view of practical
application, PCA has more information compression
ability than the collective one (Sanger, 1989).
Presently there are two ways for realizing PCA by a
neural net. One is due to Sanger’s (1989) GHA or
Rubner and Schulten’s (1990)’s approach, which needs
to design externally an asymmetrical circuit for neural
units. The other way is to combine Oja’s one unit rule
and the competitive learning (Barrow, 1987). The
competitive learning can be implemented by either the
“hardcut” Winner-Take-All (WTA) or the lateral in-
teraction of units, where the latter implements an ap-
proach more plausible for biological system. However,
for the linear units, the combined use of Oja’s one unit
rule and the symmetrical lateral interactions still per-

6 This is also the reason that Oja called his rule a subspace rule
but not a PCA rule.
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form similarly to the LMSER and Oja subspace rules
(Foldiak, 1989; Hornik & Kuan, 1992). Again, a par-
ticular asymmetrical circuit should be externally
“hardwired” (Hornik & Kuan, 1992; Rubner & Tavan,
1989) in order to perform PCA. These results seem to
give a feeling that some external hardwiring of an
asymmetrical circuit seems necessary and the learning
rules for these asymmetrical circuits seem superior to
the learning rules (like the Oja subspace rule) for the
symmetrical circuit shown in Figure 2 (Hornik, 1991).

However, in this subsection we will reveal an inter-
esting fact that a slight modification of the Oja subspace
rule in eqn (12), as well as the LMSER rule in eqn
(10a) is able to let the symmetrically circuited net
shown in Figure 2 to perform PCA. Two kinds of mod-
ifications will be proposed and the results of theoretical
analysis, as well as experimental simulations, will be
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FIGURE 6. The comparison of the learned weights by the LMSER
rule and the Oja rule in the two linear units case. Again, the
similar behaviors as in Figure 5 are observed. (a) and (b) are,
respectively, the learning curves of w,, and w,, which con-
verged to a rotation of the first and second principal compo-
nents of the data given in Figure 4.
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FIGURE 7. The results are obtained in the same condition as
those given in Figure 6 for another set of initial weights. Now,
the weights for two rules converged to the two different rota-
tions of the first and second principal components of the data.
This is because of the arbitrary rotation matrix R given in Theo-
rems 2, 3, and 4.

provided to show how they perform PCA without ex-
ternally hardwiring for forming an asymmetrical cir-
cuit.

The first modification is to slighly change eqn (12)
into eqn (13) or eqn (10a) into eqn (14):

daw
‘rw':i;-='z’§?’—?-ﬁ’, (13)

w
rwidt— = X' = PUL+ X — FR, (14)

where 7, 4, 7" are still the same as they are defined in

eqns (9a) and (9b). But here Z is not the simplest case

Z =79, it is given by
Z2=S(9) = Any,

and a; > a, > ... > a,, are all positive. That is, the
activation function S(.) is still linear, but for each unit

A, = diaglay, ..., a,] (15)

L. Xu

the output y; is amplified by a different factor g; (i.e.,
=ay,j=1,...,n).

By observing that yX' is the Hebblan term for the
simplest activation s( y) = y and ZX'is the Hebbian
term for the activation z; = a;);, a; > 0, one can see
that eqns (13) and (14) are obtained from eqns (12)
and (10a) by slightly changing the Hebbian term in
accordance with the change of activation function. One
can also find that such changes do not involve any ex-
ternal hardwiring of an asymmetrical circuit. The sym-
metrical circuit shown in Figure 2 is still used. But in
this case there does exist some external design of an
asymmetry—asymmetrical amplifying factors for the
neural units.

In the sequel, we will show that both eqns (13) and
(14) can automatically perform PCA.

As in eqn (10), we take expectation on both sides
of eqn (13) and eqn (14), resulting in

r %:A WZ - WEW'A,W, (15a)
Twidl;_lfz AmWE - WEW’AmW

+A4,WZ - WW'4,WZ. (15b)

In a way similar to what we did in proving Theorem
2, we can also prove Theorem 5 which states that all
of the possible converged points of the weight matrix
W, i.e., all the critical points of eqns (15a) and (1b),
are the matrices consisting of n, eigenvectors of X as
their row vectors.

THEOREM 5. Assume ny < no and Z is nonsmgular Let

=[¢y, .. ¢,,0] and A = diag[\,, ..., \,] be the
matrzces of ezgenvectors and eigenvalues of 2, respec-
tively, then the critical points of eqn (15a) and (15b)
are W = DP®', where D = [D,|0] is n, X ny matrix
with D, being an n, X n, diagonal matrix and its di-
agonal elements only taking value of +1, —1, 0.
Proxno IS an arbitrary permutation matrix.

Proof. Let dW/ dt = 0, we know that the critical points
of eqns (15a) and (15b) satisfy
AWZ — WIW'A,,W =0, (16a)
AWZ — WIW'A, W+ A, W2
- WW'4,WZ=0. (16b)
By singular value decomposition and through a der-
ivation as the first part of the proof of Theorem 2, we
also have W = R, xn, Dy, xn, P®"; put it into eqns (16a)
and (16b) and notice that R'R =1, ®'d =1, PP' =],
and P'P = I, we have
A, RDPAP' —
A RDP'AP' —

RDPAP'D'R'A,,RD = 0,
RDPAP'D'R'A4,,RD + A,,RDPAP’
— RDD'R'A,,RDPAP' = 0.
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The equalities hold only when every term is a diagonal
matrix. Since A4,, and PA P! are both diagonal, in order
to ensure A,, RDPA P! be diagonal, it must be that R is
diagonal. Further from R'R =1, wesee R = I.

Furthermore, by putting R = I into the two equalities
and following the same way as we did in the proof of
Theorem 2, we can see that D, has only the diagonal
elements with values +1, —1,0. Q.E.D.

Next, we need to show that all the critical points are
unstable, except of the one which consists of the first
n, eigenvectors of 2 as its row vectors.

First we consider the rule in eqn (13). One may
already noticed that eqn (15a) looks quite similar to
Brockett’s (1991) eqn (1)—the gradient flow equation
on the space of n X n orthogonal matrices:

6 = —ONO'Q0 + QON, (17)

which has only one stable critical point that © consists
of the n eigenvectors of the symmetrical matric Q as
the column vectors and these eigenvectors are ordered
in such a way that the order of eigenvalues A, ..., A,
is the same as the order of the diagonal elements #,,,
..., Np,! where N = diag[n,, ..., n,]isanXn
positive diagonal matrix.

However, we shoud point out that eqn (15a) is dif-
ferent from Brockett’s equation on two points. One is
that in eqn (17), © is a n X n square matrix, while in
eqn (15a), Wis a n; X ny nonsquare matrix. The other
is that in eqn (17), © is constrained to always belonging
to the set SO(n) of n X n orthogonal matrices with a
positive determinant, while in eqn (15a), the initial W
can be of any n; X n, matrix. Therefore, Brockett’s
results on eqn (17) cannot be directly brought to eqn
(15a). Fortunately, we can use some of his results to
reach our goal here.

Similar to the way that Brockett used to show that
eqn (17) is the gradient ascent equation which maxi-
mizes tr(6/QON) in the constraint of O varying among
SO(n), we can also show that eqn (15a) is the gradient
ascent equation which maximizes®

J,=tt(WEW'A,,) (18)

in the constraint that W varies among SO(ny, n,)—a
set consists of matrices which contain 7, mutually or-
thogonal ny, dimensional vectors as their row vectors.

"i.e., if A is the j-th largest among A, .
the j-th largest among ny,, .. ., n,,.

8 In fact, simply by letting N = C*'4,,C, C = [Lxn, | Onx(ng-np ]
and denoting T = Q, W' = OC" (i.e., W'is the first n, column vectors
of ©), we can see that tr(©‘QON) is identical to J, and that eqn
(17) becomes

.., A\, then ny is also

O=-—W'4,20 + ZW'A4,C.

Furthermore, if we let both sides of the equation being multiplied by
C' from right and then let the resulted equation be transposed in the
both sides, we can get exactly eqn (15a).
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Moreover, we know from Brockett’s paper (1991)
that if O starts at an element of SO(#), eqn (17) will
let © always remain in SO(#). Similarly, here we also
have that if W starts at an element of SO(ny, n,), eqn
(15a) will let W always remain in SO(#ng, n,). As de-
scribed in Theorem 5 we know that from any initial
values, W will finally reach one of critical points, i.e.,
W will finally reach one element of set SO(no, n;).
Therefore, we see that eventually eqn ( 15a) will evolve
only within SO(ny, n,) to maximize J, and thus the
evolving process can be explored through the landscape
of J, which is described by the following theorem:

THEOREM 6. Assume Ny > Ay .. Ny > Ny 2 A, >0
and ® = [?5 Ly v e s ?5,,0], then all of the critical points
of eq. (15a) given by Theorem 5 are saddle points of
the landscape of J,, except the one with W = D®’, and
D = [D,|0] with D, being diagonal matrix and its
diagonal elements being either +1 or —1. Furthermore,
this W = D®' lets J, reach its only local (also global)
maximum J7* = 0 ai\;.

Proof. Let us consider the critical points W = DP®’
given in Theorem 5 separately, according to the different
cases of D, P:

1. Rank[D] = r < n;, which means that there are only
rrows of W are eigenvectors of 2 and the other rows
are zero vectors. Assuming the j-th row is a zero
vector, we slightly perturb the row by e$k such that
& is not among the r eigenvectors; then from eqn
(18), we have AJ, = €’\a;, i.e., J, increases. Thus,
these critical points are saddle points of J,.

2. Rank[D] = n;, which means that the diagonal ele-
ments of D, is either +1 or —1 and thus the n, rows
of W are eigenvectors of 2. Due to the permutation
caused by P # I, there are three possible situations.
First, not all the #n, rows are the first n, eigenvectors
of 2. Assuming the j-th row is an eigenvector 5,-, i
> n,, we slightly perturb the row through replacing
$: by ($; + ed)/ V1 + €* with $, being among the
first n, eigenvectors; Then from eqn (18), we have
AJ, = (M — N)ai/(1 + €%),i.e., J increases. Thus,
these critical points are saddle points of J,. Second,
the n, rows are the first n, eigenvectors of 2, but
they are not in the descent order. In this situation,
there is at least a pair (i, j), i < j such that the i-th
row is ?5, and the j-th row is &, with r > k. We
slightly perturb the i-th row through replacing &, by
(¢, + edr)/V1+ € and perturb the Jj-th row
through replacing ¢, by (i + €6,)/ V1 + €2; Then
from eqn (18), we have AJ, = €*(a; — a)) (M — \,)/
(14 €*)> 0 (since a; > a;, A > \,), i.€., J, increases.
Thus, these critical points are also saddle points of
J,. Finally, the third situation is that W = D®’  i.e.,
W =[%+¢,,...,%¢,]. Now, for any pair (i, j), i
< j, the perturbation of replacing & by (¢; +
¢¢)/VL+ € and replacing §; by (4 +
e6)/V1 + € will result in AJ, = €2(a; — a;)(\; —
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M)/ (1 + €%) <0, i.e., J will decrease. Thus we see

that W = D®' is the only local (also global) maxi-

mum point. Furthermore, in this case, we have J,

= Z;"’L] a\;. QED

Although Theorem 6 is for eqn (15a) and the rule
in eqn (13), this theorem is also true for eqn (15b)
and the rule in eqn (14). This is because of Theorem
7, which reveals that on the average, the evolution di-
rection of eqn (13) has a positive projection on the
evolution direction of eqn (14).

THEOREM 7.
E(vec[Go])' E(vec[G]) = 2E(vec[Gp]) E(vec[Go]) > 0,

=y ==t ==y

where Gy = ZX' — yu', G = ZX' — pu' + X' — y'X".
Proof.
E(vec[Go]) E(vec[G])
= 2E(vec[Gyl) E(vec[Gy]) + tr(A4),

and 4 = (NWZ — WIW'NWY (WIEIW'NW —
WWI!NW2) = ZIW!NWIW!NW - 3IW-
NWW!NWZ - W!INWIW'WIW!NW +
W!NWEIW'WW'!'NW 2.

Since W!NW is semipositive defined, T is positive
defined, similar to that in Theorem 4, we have ®, ®'®
= ] such that £ = ®AP’, W'NW = &DP’, and A, D
are diagonal matrix with their elements = 0. Put them
into A4 and noticing ®‘® = I, we have

A= ®'ADAD® — ®'ADDA® — ®'DAADP
+ ®'DADA® = 0.

Thus, we have tr(A4) = 0 and E(vec[Gy]) E(vec[G])
= 2E(vec[Gy) E(vec[Gp]) > 0. Q.E.D.

Theorems 2, 3, and 4 describe the evolving process
of the LMSER rule and the Oja subspace rule. In a
similar fashion, Theorems 6, 7, and 8 show that the
learning process of rules in eqns (13) and (14) will let
W climb the mountain of J, and eventually will reach
the top point J®* = > 7L, g, \; for whatever initial val-
ues of . Although the landscape has many plateaux
which are the saddle points of J,, some random fluc-
tuations produced by stochastic approximation will
drive the learning get rid of these plateaux.

Figures 8 and 9 show the simulation results of the
modified Oja rule in eqn (13) and the modified LMSER
rule in eqn (14) in comparison with the results of the
original Oja rule in eqn (12) and LMSER rule in eqn
(10a). The simulations were made on a two-units net
shown in Figure 2 with the data still being that shown
in Figure 4. In these simulations, the learning rates and
the initial weight vectors are the same as those used in
the simulation shown in Figure 7. The amplifying factor
matrix used here is 4,, = diag[2, 1]. In Figures 8 and
9, the curves show the developments of the angles be-
tween each weight vector to each of the three eigen-
vectors of the data given in Figure 4. The results of

L. Xu

Figure 8 are obtained by the modified and original
LMSER rules in eqns (14) and (10a). It is shown in
Figure 8(a) that by the modified rule, weight vector
W, of the first unit has converged to an orientation which
is nearly parallel (having an angle around 3 degrees)
to that of the first eigenvector of the data, and this ori-
entation is orthogonal (or nearly orthogonal) to both
the second and third eigenvectors, respectively. In con-
trast, in Figure 8(b), by the original rule, W, is only
orthogonal to the third eigenvector, but parallel to nei-
ther the first or second eigenvector (having angles of 68
degrees and 160 degrees, respectively). Furthermore,
in Figure 8(c), the modified rule has let the weight
vector W, of the second unit converge to an orientation
which is nearly parallel (having an angle around 3 de-
grees) to that of the second eigenvector, and orthogonal
(or nearly orthogonal) to both the first and third ei-
genvectors, respectively. Again, in contrast, in Figure
8(d), the original rule has let W, be only orthogonal
to the third eigenvector, but parallel to neither the first
or second eigenvector (having angles of 20 degrees and
70 degrees, respectively). The results of Figure 9 are
obtained by the modified and original Oja rules in eqns
(13) and (12). The situations are very similar to those
of Figure 8 except that again the results here fluctuate
a little bigger but converge faster. So, we see that these
simulation results have verified that the learning rule
of eqns (13) and (14) do perform true PCA.

In the rest of this subsection, we introduce another
kind of modification to the LMSER rule in eqn (10a)
and the Oja subspace rule in eqn (12). This modifi-
cation is even more interesting. As mentioned previ-
ously, the modifications in eqns (13) and (14) still need
some external design of asymmetry on the amplifying
factors ay, ..., a,, even though an externally hard-
wired asymmetrical circuit is unnecessary. Here the
second kind of modifications do not need any kind of
external design of asymmetry at all. In fact, one only
need to include the sigmoid type nonlinearity s(.) in
each unit, and this nonlinearity s(.) can be the same
for all the units. In other words, the LMSER rule or
the Oja subspace rule on the one layer net with sigmoid
nonlinear units as shown in Figure 2 can perform PCA.
More precisely, we can directly use the nonlinear
LMSER rule in eqn (9b) and the following direct ex-
tension of the Oja subspace rule® to perform PCA:

w aw = T — 7\
T 7 =Z(X — 1), (19)
where Z and % are the same as in eqns (9a) and (9b).
The theoretical analysis on “why the nonlinearity
can cause the units to become selective automatically”
seems quite difficult. A partial reason may be that the

° This rule is equivalent to the 4-th equation in his own general-
ization to nonlinear unit by Oja (1991), where he thought the equation
is the most difficult one.
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FIGURE 8. The developments of the angles between each learned weight vector to each of the three eigenvectors of the data given
in Figure 4. These results are obtained by the modified LMSER rule in eqn (14) in comparison with the results of the original LMSER
rule in eqn (10a). The learning rates and the initial weight vectors used here are the same as those used in the simulation shown
in Figure 7. (a) With the modified LMSER rule, w, has converged to an orientation which is nearly parallel (having an angle around
3 degrees) to that of the first eigenvector of the data, and is orthogonal (or nearly orthogonal) to both the second and third
eigenvector, respectively. (b) With the original LMSER rule, w, is only orthogonal to the third eigenvector, but not parallel to either
the ﬁrst or second eigenvector (having angles of 68 degrees and 160 degrees, respectively). (c) The modified LMSER rule has
let w, converge to an orientation which is nearly parallel (having an angle around 3 degrees) to that of the second elgenvector,
and orthogonal (or nearly orthogonal) to both the first and third eigenvectors, respectively. (d) The original LMSER rule w, is only
orthogonal to the third eigenvector, but not parallel to either the first or second eigenvector (having angles of 20 degrees and 70
degrees, respectively).

amplifying factor s'(y) changes as y takes different val-
ues, and that the y values of different units are usually
different for the same input X. As a result, the different
§'(y) values taken by these units together behave some-
what like that 4,, did in eqn (15). Instead of exploring
theoretical analysis, we demonstrate some experimental
results in Figures 10-15. In these experiments we sim-
ply let the nonlinear sigmoid function be given by
eﬂx — e b

s(x) = tanh(Bx) = Py

(20)

and use parameter § = 3. Figure 10 and Figure 11 are
the counterparts of Figure 6 and Figure 7, respectively.

They are obtained by using the same learning rate and
initial weights as their counterparts. The LMSER rule
used here is slightly simplified from eqn (9b) by letting
S'=Ibutnowy = Wi, i = W'Z,Z = S(7), ie,
the sigmoid nonlinearity takes its main role in getting
Z. From Figure 11 we can observe that unlike its
counterpart Figure 7, the weights by both the LMSER
rule and the Oja rule converge to the similar values.
This is because the sigmoid nonlinearity has reduced
the arbitrariness caused by the rotation matrix R in
Theorem 4.

The results are also shown in Figures 12 and 13,
which correspond to Figure 10, and in Figure 14 and
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FIGURE 9. All are the same as in Figure 8 except that Figures 9(a) and (c) and Figures 9(b) and (d) are obtained by the modified
Oja rule in eqn (13) and original Oja rule in eqn (12), respectively. The situations are very similar to those of Figure 8.

15, which correspond to Figure 11. In these figures,
the curves show the developments of the angles between
each weight vector to each of the three eigenvectors of
the data given in Figure 4. The results of Figure 12 are
obtained by the LMSER rule. It is shown in Figure
12(a) that with the nonlinear activation, the weight
vector W, of the first unit has converged to an orientation
which is nearly parallel (but in the opposed direction,
i.e., having an angle around 170 degrees) to that of the
second eigenvector of the data, and this orientation is
orthogonal (or nearly orthogonal) to the first and the
third eigenvectors, respectively. In contrast, Figure
12(b), with the linear activation #, is only orthogonal
to the third eigenvector but parallel to neither the first
nor second eigenvector (i.e., having angles of 30 degrees
and 60 degrees, respectively). Furthermore, in Figure
12(c), the nonlinear activation has make the weight
vector W, of the second unit converge to an orientation
which is nearly parallel (having an angle below 10 de-
grees) to that of the first eigenvector, and orthogonal

(or nearly orthogonal) to the third and second eigen-
vectors, respectively. Again in contrast, in Figure 12(d),
the linear activation #, is only orthogonal to the third
eigenvector but not parallel to either the first or second
eigenvector (i.e., having angles of 60 degrees and 150
degrees, respectively). Thus, we see that the sigmoidal
nonlinearity does make units become selective with
each sensitive to one principal direction. That is, now
the net performs true PCA.

For the results of Figure 13 obtained by the Oja rule,
the situations are very similar to those of Figure 12
except that again the results here fluctuate a little bigger
but converge faster than those in Figure 4. Furthermore,
the similar things happen in Figures 14 and 15. By
nonlinear LMSER and the Oja rule, #, and #, converge
to the direction nearly in parallel to the first and second
eigenvectors, respectively. That is, the net also per-
forms PCA.

We also tried many other random initial values for
weight vectors. For linear activation, the obtained re-
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FIGURE 10. The comparison of the learned weights by the non-
linear LMSER rule and the nonlinear Oja rule in the two units
case were obtained under the same initial weights and learning
rate as those used in Flgure 6. (a) and (b) are, respectively,
the learning curves of w, and w,, which now directly tend to
the directions of second and first principal components of the
data given in Figure 4.

sults may change considerably due to the arbitrary ro-
tations. However, for nonlinear activation, the results
remain nearly unchanged with different initial condi-
tions subject to the reversed directions or the switch
from that W, tuned the first eigenvector and #, tuned
the second to that W, tuned the second and W, tuned
the first. We varied 8 for tanh(8x) in eqn (20), and
the similar results were obtained as well.!? So, we have
experimentally confirmed that nonlinear activation
does let the LMSER and Oja rules perform PCA.
Finally, before ending this subsection we give some
further remarks:
1. Since the nonlinear LMSER and Oja rules, as well
as the modified Oja rule in eqn (13) and the LMSER

' However, too small or too large 8 will influence the performances.
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rule in eqn (14) perform true PCA, they should be
as capable as Sanger’s GHA and other asymmetri-
cally circuited nets for practical tasks such as data
compression. For the same reason, they should also
be able to give an interpretation similar to those
given by Sanger (1989) and Rubner and Schulten
(1990) for the emergence of the selective cells in the
cortical receptive field. More interestingly, the non-
linear rules can perform PCA without any externally
“hardwired” asymmetry as made by Sanger (1989)
and Rubner and Schulten (1990). The symmetry
is naturally broken by the nonlinearity of sigmoid
function.

2. Ifwelet A,, = I'in eqns (15) and (18), we will see
that the rule in eqn (13) returns back to the Oja
subspace rule in eqn (12), and thus we see that al-
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FIGURE 11. The comparison of the learned weights by the non-
linear LMSER rule and the nonlinear Oja rule in the two units
case were obtained under the same initial weights and learning
rate as those used in Figure 7. Being different from those in
F|gures 7or8, now due to the function of the sigmoid nonlin-
earity, W, and w, by both the LMSER rule and the Oja rule
converge to the similar values, i.e., the directions of first and
second principal components of data, respectively.
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FIGURE 12. The developments of the angles between each learned weight vector to each of the three eigenvectors of the data
given in Figure 4. These results are obtained by the LMSER rule and correspond to those in Figure 10. (a) With the nonlinear
activation, w, has converged to an orientation which is nearly parallel (having an angle around 170 degrees) to that of the second
eigenvector of data, and is orthogonal (or nearly orthogonal) to the third (or the first) eigenvector, respectively. (b) With the linear
activation, w, is only orthogonal to the third eigenvector, but not paraliel to either the first or second eigenvector (i.e., having
angles of 30 degrees and 60 degrees, respectively). (c) The nonlinear activation has let w, converge to an orientation which is
nearly parallel (having an angle below 10 degrees) to that of the first eigenvector, and orthogonal (or nearly orthogonal) to the
third (or the second) eigenvector, respectively. (d) With the linear activation, W, is only orthogonal to the third eigenvector, but
not paraliel to either the first nor second eigenvector (having angles of 60 degrees and 150 degrees, respectively). We see that
the sigmoid nonlinearity does make units become selective.

though the Oja rule cannot be interpreted as a un-
constrained gradient descent search of any energy
function (Baldi & Hornik, 1991), the rule can be
interpreted as a gradient ascent search of tr(W ZW')

in

Moreover, Theorem 5, plus a small modification of
Theorem 6,'! provides also a description of the
global picture about the convergence of the Oja sub-

the constraint that W always satisfies W W' = I,

space rule.

"ie., using W = PD®’ to replace W = D®’, where Pis a n, X

n, permutation matrix.

3. From Figures 12-15, we can also observe that there
is some bias between the desired eigenvectors and
the converged vectors obtained by the nonlinear
LMSER and Oja rules. For example, in Figure
12(a), w, does not exactly approach the second ei-
genvector but with an angle around 170 degrees,
also it is not exactly orthogonal to the first eigen-
vector but with an angle around 80 degrees. The
reason is that due to the nonlinear activation, the
rules may not perform exactly PCA as well as even
PSA. It may be interesting to study further the im-
pacts of these bias, which may be a reason that Oja
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FIGURE 13. All are the same as in Figure 12 except that these results are obtained by the Oja rule. The situations are very similar
to those of Figure 12.

(1991) recently observed that the sigmoid is able to
reduce strong noise effectively.

. We may also form conjectures about other sym-

metrical PCA nets such as that given by Foldiak
(1989); they may also perform true PCA when
the sigmoid nonlinearity is included. It is also in-
teresting to study further the functions of the “magic
sigmoid”. Grossberg (1973) showed that in a lat-
erally feedback competitive net, the sigmoid acti-
vation can suppress noise, contrast enhance supra-
threshold activities, normalize total activity, and
store the contrast enhanced and normalized pattern
in short term memory. The sigmoid was also shown
by Oja (1991) to be able to suppress strong outlier
for PCA. It also takes a key role in back propagation
and the fully connected associative memory model.
In this subsection, we have shown that it can make
the LMSER rule or Oja rule perform true PCA.

5. CONCLUSIONS

We proposed a new self-organizing net based on the
LMSER principle. The net has a general architecture
of either one layer or multilayer. We proved the stability
of its dynamic process in the perception phase, and
derived the local learning rule which performs gradient
descent of the LMSER. Particularly for one layer with
n, linear units, we have shown that the LMSER rule
will let their weight vectors converge to some rotations
of the first n; principal eigenvectors of the covariance
matrix of input data. These converged points are stable
and corresponding to the global minimum of the land-
scape of J. This landscape has no other local minimum
points but many saddle points. Furthermore, we have
also shown that on the average the evolution direction
of the Oja subspace rule has a positive projection on
the evolution direction of the LMSER rule. This con-
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FIGURE 14. These results are obtained by the LMSER rule and correspond to those in Figure 11. (a) With the nonlinear activation,
w, has converged to an orientation which is nearly parallel (having an angle below 10 degrees) to that of the first elgenvector, and
is orthogonal (or nearly orthogonal) to the third (or the second) eigenvector, respectively. (b) With the linear activation, w, is only
orthogonal to the third eigenvector, but not parallel to either the first or second eigenvector. (¢c) The nonlinear activation has let
W, converge to an orientation which is nearly parallel (having an angle over 170 degrees) to that of the second elgenvector, and
orthogonal (or nearly orthogonal) to the third (or the first) eigenvector, respectively. (d) With the linear activation, w, is only
orthogonal to the third eigenvector, but not parallel to either the first or second eigenvector.

nection indicates that the Oja rule has the character-
istics similar to those of LMSER. Interestingly, we have
discovered that through the sigmoid nonlinearity or
some slight linear modification, the LMSER rule, as
well as the Oja rule, enables a symmetrically circuited
one-layer-net to perform true PCA. Two kinds of mod-
ifications have been proposed and the results of theo-
retical analysis, as well as experimental simulations,
have been provided to show how they perform PCA
without the external design of an asymmetrical circuit
which is necessarily required by the methods of Sanger
(1989) and Rubner and Schulten (1990). These results
indicate that with slight modifications, the LMSER
rule, as well as the Oja rule, should be as capable as

Sanger’s GHA and other asymmetrically circuited nets
(e.g., Rubner & Schulten, 1990) for practical tasks
based on PCA. They may also interpret how the de-
velopment of biological cortical field can break sym-
metry without any externally “hardwired” asymmetry.

Finally, we would like to also mention that the net
proposed in this paper may have a number of potential
applications, such as associative memory, feature ex-
traction, data compression, unsupervised pattern clus-
tering and recognition, attentional recognition, and for
interpreting the development of orientation cells in the
cortical field, as well as the emergence of mental im-
agery image in brain. Some speculative discussions were
recently made (Xu, 1991) on these potential applica-
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FIGURE 15. All are the same as in Figure 14 except that these results are obtained by the Oja rule. The situations are very similar

to those of Figure 14.

tions, as well as on the possibilities of extending the net
to the supervised learning net or to a generalized as-
sociative memory.

REFERENCES

Ahalt, S. C., Krishnamurty, A. K., Chen, P., & Melton, D. E. (1990).
Competitive learning algorithms for vector quantization. Neural
Networks, 3, 277-291.

Baldi, P., & Hornik, K. (1989). Neural networks and principal com-
ponent analysis: Learning from examples without local minima.
Neural Networks, 2, 52-58.

Baldi, P., & Hornik, K. (1991). Back-propagation and unsupervised
learning in linear networks. In Y. Chauvin & D. E. Rumelhart
(Eds.), Back propagation: Theory, architectures and applications.
Hillsdale, NJ: Erlbaum Associates.

Barlow, H. B. (1989). Unsupervised learning. Neural Computation,
1, 295-311.

Barrow, H. G. (1987). Learning receptive fields. Proceedings of the
1987 IEEE First Annual Conference on Neural Networks, 4, 115-
121.

Becker, S., & Hinton, G. E. (1992). Self-organizing neural network
that discover surfaces in random-dot stereogram. Nature, 355,
161-163.

Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory
for the development of neuron selectivity: Orientation specificity
and binocular interaction in visual cortex. Journal of Neuroscience,
2, 32-48.

Brockett, R. W. (1991). Dynamical systems that sort lists, diagonalize
matrices, and solve linear programming problems. Linear Algebra
and Its Applications, 146, 79-91.

Capenter, G. A., & Grossberg, S. (1987a). A massively parallel ar-
chitecture for a self-organizing neural pattern recognition machine.
Computer Vision, Graphics, and Image Processing, 37, 54-115.

Capenter, G. A., & Grossberg, S. (1987b). ART2: Self-organization
of stable category recognition codes fo analog input patterns. Ap-
plied Optics, 26, 4919-4930.

Capenter, G. A., & Grossberg, S. (1988, March). The ART of adaptive
pattern recognition by a self-organizing neural network. [EEE
Computer, 77-88.

Capenter, G. A., & Grossberg, S. (1990). ART3: Hierarchical searching
using chemical transmitters in self-organizing pattern recognition
architectures. Neural Networks, 3, 129-152.



648

Casdagli, M. (1989). Nonlinear prediction of chaotic time series,
Physica, 35D, 335-356.

Chauvin, Y. (1989). Principal component analysis by gradient descent
on a constrained linear Hebbian cell. Proceedings of the IEEE
International Conference on Neural Networks, Washington D.C.,
I, 373-380.

Cohen, M. A., & Grossberg, G. (1983). Absolute stability of global
pattern formation and parallel memory storage by competitive
neural networks. IEEE Transactions on Systems, Man and Cy-
bernetics, 13, 815-826.

Desieno, D. (1988). Adding a conscience to competitive learning.
Proceedings of the IEEE International Conference on Neural Net-
works, 1, 117-124.

Foldiak, P. (1989). Adaptive network for optimal linear feature ex-
traction. Proceedings of the IEEE International Conference on
Neural Networks, Washington D.C., 1, 401-405.

Fukushima, K. (1975). Cognitron: A self-organizing multilayered
neural network. Biological Cybernetics, 20, 121-136.

Fukushima, K. (1980). Neocognitron: A self-organizing neural model
for a mechanism of pattern recognition unaffected by shift in
position. Biological Cybernetics, 36, 193-202.

Grossberg, S. (1969). On learning and energy entropy dependence
in recurrent and nonrecurrent signed networks. Journal of Sta-
tistical Physics, 1, 319-350.

Grossberg, S. (1972). Neural expectation: Cerebellar and retinal an-
alogs of cells fired by learnable or unlearned pattern classes. Ky-
bernetik, 10, 49-57.

Grossberg, S. (1973). Contour enhancement, short term memory,
and constancies in reverberating neural networks. Studies in Ap-
plied Mathematics, 52, 217-257.

Grossberg, S. (1976a). Adaptive pattern classification and universal
recording: 1. Parallel development and coding of neural feature
detectors. Biological Cybernetics, 23, 121-134.

Grossberg, S. (1976b). Adaptive pattern classification and universal
recording: I1. Feedback, expectation, olfaction, illusions. Biological
Cybernetics, 23, 187-202.

Grossberg, S. (1987). Competitive learning: From interactive acti-
vation to adaptive resonance. Cognitive Science, 11, 23-63.

Hecht-Nielsen, R. (1987). Counterpropagation networks. Applied
Optics, 26, 4979-4984.

Hertz, J., Krogh, J., & Palmer, R. G. Introduction to the theory of
neural computation. Reading, MA: Addison-Wesley.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular
interaction, and functional architecture in the cat’s visual cortex.
Journal of Physiology (London), 160, 106-154.

Hopfield, J. J. (1982). Neural Networks and physical systems with
emergent collective computational abilities. Proceedings of the
National Academy of Science, USA, 19, 2554-2558.

Hopfield, J. J. (1984). Neurons with graded responses have collective
computational abilities like those of two-state neurons. Proceedings
of the National Academy of Science, USA, 81, 3088-3092.

Hornik, K., & Kuan, C. M. (1992). Convergence analysis of local
feature extraction algorithms. Neural Networks, 5(2), 229-260.

Hrycej, T. (1990). Self-organization by delta rule. Proceedings of the
1990 International Joint, Conference on Neural Networks, 2, 307-
312

Jacobs, R. A, Jordan, M. 1., Nowlan, S. J., & Hinton, G. E. (1991).
Adaptive mixtures of local experts. Neural Computation, 3, 79—
87.

Kammen, D. M., & Yuille, A. L. (1988). Spontaneous symmetry-

L. Xu

breaking energy functions and the emergence of orientation se-
lective cortical cells. Biological Cybernetics, 59, 23-31.

Kohonen, T. (1982). Self-organized formation of topologically correct
feature maps. Biological Cybernetics, 43, 59-69.

Kohonen, T. (1988). Self-organization and associative memory. Berlin:
Springer-Verlag.

Krogh, A., & Hertz, J. A. (1990). Hebbian learning of principal
components. In R. Eckmiller, G. Hartmann & G. Hauske (Eds.),
Parallel processing in neural systems and computers (pp. 183-
186). Amsterdam: Elsevier (North-Holland).

Kung, S. Y. (1990). Constrained principal component analysis via
an orthogonal learning network. Proceedings of the 1990 IEEE
International Symposium on Circuits and Systems, New Orleans,
LA (pp. 138-140). New York: IEEE Press.

Linsker, E. (1986). From basic network principles to neural archi-
tecture. Proceedings of the National Academy of Science, USA,
83, 7508-7512, 8390-8394, 8779-8783.

Linsker, E. (1988, March). Self-organization in a perceptual network.
IEEE Computer, 105-117.

von der Malsburg, Ch. (1973). Self-organization of orientation sen-
sitive cells in the striate cortex. Kybernetik, 14, 85-100.

Moody, J., & Darken, C. (1989). Fast learning in networks of locally-
tuned processing units. Neural Computation, 1, 281-294.

Nowlan, S. J., & Hinton, G. E. (1990). From competitive learning
to adaptive mixtures of experts. Proceedings of the 1990 Neural
Information Processing Systems, Denver.

Oja, E. (1982). A simplified neuron model as a principal component
analyzer. Journal of Mathematical Biology, 16, 267-273.

Oja, E. (1989). Neural networks, principal components, and sub-
spaces. International Journal of Neural Systems, 1, 61-68.

Oja, E., Ogawa, H., & Wangviwattana, J. (1991). Learning in non-
linear constrained Hebbian networks. Proceedings of the Inter-
national Conference on Artificial Neural Networks, Helsinki (pp.
385-390). Amsterdam: North-Holland.

Poggio, T., & Girosi, F. (1990). Regularization algorithms for learning
that are equivalent to multilayer networks. Science, 247, 978-982.

Rubner, J., & Tavan, P. (1989). A self-organizing network for principal-
component analysis. Europhysics Letters, 10, 693-689.

Rubner, J., & Schulten, K. (1990). Development of feature detectors
by self-organization. Biological Cybernetics, 62, 193-199.

Rumelhart, D. E., & Zipser, D. (1985). Feature discovery by com-
petitive learning. Cognitive Science, 9, 75-112.

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer
linear feed forward neural network. Neural Networks, 2, 459-473.

Sanger, T. D. (1989). Optimal unsupervised learning in feedforward
neural networks (Tech. Rep. No. 1086). Cambridge, MA: MIT
Al Lab.

Xu, L. (1991). Least MSE reconstruction for self-organization: (I)
Multi-layer neural-nets and (II) further theoretical and experi-
mental studies on one layer nets. Proceedings of the International
Joint Conference on Neural Networks-1991-Singapore, 2363-2373.

Xu, L., Krzyzak, A., & Oja, E. Rival penalized competitive learning
for clustering analysis, RBF net and curve detection. IEEE Trans.
on Neural Networks as a Regular Paper. (in press).

Xu, L., Oja, E., & Suen, C. Y. (1992). Modified Hebbian learning
for curve and surface fitting. Neural Networks, 5, 393-407.

Yuille, A. L., Kammen, D. M., & Cohen, D. S. (1989). Quadrature
and the development of orientation selective cortical cells by Hebb
rules. Biological Cybernetics, 61, 183-194.



