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BACKGROUND

The renaissance of neural network and then machine learning since the 1980’s is featured by two streams 
of extensive studies, one on multilayer perceptron and the other on radial basis function networks or 
shortly RBF net. While a multilayer perceptron partitions data space by hyperplanes and then making 
subsequent processing via nonlinear transform, a RBF net partitions data space into modular regions 
via local structures, called radial or non-radial basis functions. After extensive studies on multilayer 
perceptron, studies have been turned to RBF net since the late 1980’s and the early 1990’s, with a wide 
range applications (Kardirkamanathan, Niranjan, & Fallside, 1991; Chang & Yang, 1997; Lee, 1999; 
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Mai-Duy & Tran-Cong, 2001; Er, 2002; Reddy & Ganguli, 2003; Lin & Chen 2004; Isaksson, Wisell, 
& Ronnow, 2005; Sarimveis, Doganis, & Alexandridis, 2006; Guerra & Coelho, 2008; Karami & Mo-
hammadi, 2008).

In the literature of machine learning, advances on RBF net can be roughly divided into two streams. 
One stems from the literature of mathematics on multivariate function interpolation and spline approxi-
mation, as well as Tikhonov type regularization for ill-posed problems, which were brought to neural 
networks learning by (Powell, 1987; Broomhead & Lowe, 1998; Poggio & Girosi, 1990; Yuille & 
Grzywacz, 1989) and others. Actually, it is shown that RBF net can be naturally derived from Tikhonov 
regularization theory, i.e. least square fitting subjected to a rotational and translational constraint term 
by a different stabilizing operator (Poggio & Girosi, 1990; Yuille & Grzywacz, 1989). Moreover, RBF 
net has also been shown to have not only the universal approximation ability possessed by multilayer 
perceptron (Hartman, 1989; Park & Sandberg,1993), but also the best approximation ability (Poggio & 
Girosi, 1990) and a good generalization property (Botros & Atkeson, 1991).

The other stream can be traced back to Parzen Window estimator proposed in the early 1960’s. Stud-
ies of this stream progress via active interactions between the literature of statistics and the literature of 
machine learning. During 1970’s-80’s, Parzen window has been widely used for estimating probability 
density, especially for estimating the class densities that are used for Bayesian decision based classification 
in the literature of pattern recognition. Also, it has been introduced into the literature of neural networks 
under the name of probabilistic neural net (Specht, 1990). By that time, it has not yet been related to 
RBF net since it does not directly relates to the above discussed function approximation purpose.

In the literature of neural networks and machine learning, Moody & Darken (1989) made a popular 
work via Gaussian bases as follows:
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This normalized type of RBF net is featured by
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and thus usually called Normalized RBF (RBF). Moody & Darken (1989) actually considered a special 
case S

j j
I= s2 . Unknowns are learned from a set of samples via a two stage implementation. First, 

a clustering algorithm (e.g., k-means) is used to estimate ci as each cluster’s center. Second,  j
j
x( )  

is calculated for every sample and unknowns wj are estimated by a least square linear fitting. Nowlan 
(1990) proceeded along this line with Σj considered in its general form such that not only the receptive 
field of each base function can be elliptic instead of radial symmetrical, but also the well known EM 
algorithms (Redner & Walker, 1984) are adopted for estimating ci and Σj with better performances than 
that by a clustering algorithm.

In the nonparametric statistics literature, extensive studies have also been made towards regression 
tasks under the name of kernel regression estimator, which is an extension of Parzen window estima-
tor from density estimation to statistical regression (Devroye, 1981&87). In (Xu, Krzyzak, & Yuille, 
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1992&94), kernel regression estimators are shown to be special cases of NRBF net. In help of this 
connection, theoretical results available on kernel regression have been adopted, which cast new lights 
on the theoretical analysis of NRBF net in several aspects, e.g., universal approximation extended to 
statistical consistency, convergence extended to convergence rate, etc.

Another line of studies in the early 1990 is featured by using the mixtures-of-experts (ME) (Jacobs, 
Jordan, Nowlan, & Hinton, 1991) for regression:
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One typical example is q z x j G z f x
j j

( | , ) ( | ( , ),= q G
j
) , where G u( | , )m S  denotes a Gaussian den-

sity with mean vector μ and covariance matrix Σ. All the unknowns in this mixture are estimated via the 
maximum likelihood (ML) learning by a generalized EM algorithm (Jordan & Jacobs, 1994; Jordan & 
Xu, 1995).

Furthermore, a connection has been built between this ME model and NRBF net such that the EM 
algorithm has been adopted for estimating jointly all the parameters in a NRBF net to improve subop-
timal performances due to a two stage implementation. In sequel, we start at this EM algorithm, and 
then introduce further advances on NRBF studies. Not only basis functions is extended from radial to 
subspace based functions, and further to temporal modeling, but also studies further proceed to tackle 
model selection problem, i.e., how to determine the number k and the subspace dimensions.

THE EM ALGORITHM AND BEYOND: ALTERNATIVE ME VERSUS ENRBF

Xu, Jordan & Hinton (1994&95) proposed an alternative mixtures-of-experts (AME) via a different gat-
ing net. Considering each expert G z f x
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finite mixture q x( | )f  with its corresponding posteriori as the gating net: 
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Given a training set { , }z x
t t t

N
=1

, parameter learning is made by the ML learning on the joint distribu-

tion q(z x q x q x q z x
j j jj

k
| ) ( | ) ( | ) ( | , )f a f q=

=å 1
, which is implemented by the EM algorithm, i.e., 

Algorithm 1(a). Details are referred to (Xu, Jordan & Hinton, 1995).
We observe that the M step decouples the updating in parts. The one for updating θj of each expert 

is basically same as in (Jacobs, Jordan, Nowlan, & Hinton, 1991) except here we get a different p(j | zt, 
xt) as the E step. The ones for updating the unknowns a f

j j
,  of the gate can be made via letting p(j | zt, 

xt) to take the role of p(j | xt) in the M step of the EM algorithm on a finite mixture or Gaussian mixture 
(Redner & Walker, 1984; Nowlan, 1990).

Alternatively, we can use the resulted p(j | zt, xt) to replace g x
j
( , )f  as the gate in eqn.(5), i.e.,
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When zt is discrete, this equation is still directly computable on testing samples. However, when zt 
takes real values that are usually not available on testing samples, we can not directly use p(j | zt, xt) to 

Figure 1. Algorithm 1: EM algorithm for alternative mixture of experts and NRBF nets
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replace g x
j
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which takes the place of g x
j
( , )f  as the gate in eqn.(4).

Furthermore, NRBF net is obtained as a special case, as shown in Algorithm I(b). In this case, the 
regression function in eqn. (3) becomes
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which is actually an extension of NRBF net with a constant wj generalized to a general regression f x
j j
( , )q . 

That is, we are lead back to eqn.(2) when f x w
j j j
( , )q =  and the so called Extended NRBF (ENRBF) 

net (Xu, Jordan & Hinton, 1994&95; Xu, 1998) when f x W x wj j j j( , )θ = + . Straightforwardly, we can 
use the EM algorithm in Algorithm I to update all the unknowns, from which we can also obtain differ-
ent versions of the EM algorithms at various particular cases (Xu, 1998). For an example, it improves 
the two stage implementation of learning NRBF by (Nowlan, 1990) in a sense that the updating of ci, 
Σj also takes wj in consideration via p(j | zt, xt), while the updating of wj takes ci and Σj in consideration 
via this p(j | zt, xt) too.

It is interesting to further elaborate the connection between RBF net and the ME models from a 
dual perspective. For the RBF net by eqn.(2), we seek a combination of a series of basis functions 
j

j j j
x c( , )- S  via linear weights of wj. For the ME model by eqn.(3), we seek a convex combination 

of a series of functions f x
j j
( , )q  weighted by g x

j
( , )f  that actually takes the role of the basis function 

j
j j j
x c( , )- S  in eqn.(2). That is, there is a dual perspective that can swap the roles of the weighting 

coefficients and what are weighted. The ME perspective provides extensions of RBF net from classical 
radial basis functions jj j j

x c( , )- S  to  
j 1

g x G x G x
j j j j j j j
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=åS S  and further to 
p(j | zt, xt) in eqn.(6a) and eqn.(6b). Moreover, in addition to NRBF net with f x w

j j j
( , )q =  and ENRBF 

net with f x W x wj j j j( , )θ = + , f x
j j
( , )q  can also be implemented by a multilayer networks (Jacobs, 

Jordan, Nowlan, & Hinton, 1991), which actually combines the features of both NRBF net and three 
layer forward networks.
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TWO STAGE IMPLEMENTATION VERSUS AUTOMATIC MODEL SELECTION

Using a structure by a RBF net or a ME model to accommodate a mapping x → z, one needs a learn-
ing algorithm that estimates unknown parameters in this structure. The performance of a resulted RBF 

or ME can be measured via a set of testing samples by either a square error z f x
t t
- ( )

2

 for function 
approximation or classification error for pattern recognition, as well as the likelihood ln p(zt | xt) for 
distribution approximation. Correspondingly, an algorithm is guided by one of these purposes via a set 

of training set. The classic RBF net studies considers minimizing the square error z f x
t t
- ( )

2
 on a 

set X
N t t

Nx= ={ }
1
 of training samples. The studies (Jacobs, Jordan, Nowlan, & Hinton, 1991; Jordan 

& Jacobs, 1995) on the ME model considers maximizing the likelihood ln p(zt | xt) on XN, while the 
alternative ME considers maximizing the likelihood ln p(zt, xt) on XN (Xu, Jordan & Hinton, 1994&95). 
However, a good performance on a training set is not necessarily good on a testing set, especially when 
the training set consists of a small size of samples. The reason is too many free parameters to be deter-
mined. Studies towards this problem have been widely studied along two directions in the literature of 
statistics and machine learning.

One is called regularization that adds some constraint or regularity to the unknown parameters, the 
selected structure, and the training samples (Powell, 1987; Poggio, & Girosi, 1990). Readers are referred 
to (Xu, 2007c) for a summary of typical regularization techniques studied in the literature of learning. One 
example is smoothing XN by a Gaussian kernel with a zero mean and a unknown smoothing parameter h as 
its variance, i.e., instead of directly using XN for training we consider  p h G h I

N N
( | , ) ( | , )X X X X= - 0 2 . 

Actually, maximizing ln p(zt, xt) by the alternative ME can be regarded as maximizing ln ( | )p z x
t t

 
plus a term ln ( | )q x f  that adds certain constrain on samples of xt. This is an example of a family of 
typical regularization techniques, featured by the format ln p(zt | xt) or ln ( | ) ( , , )p z x z x

t t t t
+l qW , where 

W( )q  or W( , , )q z x
t t

 is usually called stabilizer or regularizor, and λ is called regularization strength.
However, we encounter two difficulties to impose a regularization. One is the difficulty of appro-

priately controlling a regularization strength λ, which is usually able to be roughly estimated only for a 
rather simple structure via either handling the integral of marginal density or in help of cross validation 
(Stone, 1978), but with very extensive computing costs. The other is the difficulty of choosing an ap-
propriate W( )q  or W( , )q x

t
 based on a priori knowledge that we are usually not available and difficult 

to get. Instead, an isotropic or nonspecific stabilizer is usually imposed, e.g.,. W( )q q=
2
. This type of 

isotropic or nonspecific regularization faces a dilemma. We need a regularization on a structure Sk k( )Q  
with extra parts, while an isotropic or nonspecific regularization can not discard the extra parts but still 
let them in action to blur those useful parts. For an example, given a set of samples { , }z x

t t  that come 
from a curve z = x2 + 3x + 2, if we use a polynomial z a x

ii

k i=
=å 0

of an order k > 2 to fit the data set, 

we desire to force all the parameters {ai, i ≥ 3} to be zero, while minimizing q
2 2

0
=

=å a
ii

k  fails to 
treat the parameters {ai, i ≥ 3} differently from the parameters {ai, i ≤ 2}.

To tackle the problems, we turn to consider the other direction that consists of those efforts made 
under the name of model selection. It refers to select an appropriate one among a family of infinite 
many candidate structures { ( )}Sk kQ  with each Sk k( )Q  in a same configuration but in different scales, 
each of which is labeled by a scale parameter k in term of one integer or a set of integers. Selecting an 
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appropriate k means getting a structure that consists of an appropriate number of free parameters. For 
a structure by a RBF net or a ME model, this k is simply the number k of bases or experts. Usually, a 
maximum likelihood (ML) principle based learning is not good for model selection. The EM algorithm 
in Algorithm I works well with a pre-specified number k of bases or experts. The performance will be 
affected by whether an appropriate k is selected, while how to determine k is a critical problem.

Many efforts have been made towards model selection for over three decades in past. The classical 
one is making a two stage implementation. First, enumerate a candidate set K of k and estimate the 
unknown set Θk of parameters by ML learning for a solution Qk

*  at each k ∈ K. Second, use a model 
selection criterion J( )*Qk  to select a best k*. Several criteria are available for the purpose, such as AIC, 
CAIC, BIC, cross validation, etc (Stone, 1978; Akaike, 1981; Bozdogan, 1987; Wallace& Freeman, 
1987; Cavanaugh, 1997; Rissanen, 1989; Vapnik, 1995&2006). Also, readers are referred to (Xu, 2007c) 
for a recent elaboration and comparison. Some of these criteria (e.g., AIC, BIC) have also been adopted 
for selecting the number k of basis functions in RBF networks (Konishi, Ando, & Imoto, 2004). Un-
fortunately, anyone of these criteria usually provides a rough estimate that may not yield a satisfactory 
performance. Even with a criterion J(Θk) available, this two stage approach usually incurs a huge com-
puting cost. Still, the parameter learning performance deteriorates rapidly as k increases, which makes 
the value of J(Θk) evaluated unreliably.

One direction that tackles this challenge is featured by incremental algorithms that attempts to in-
corporate as much as possible what learned as k increases step by step. Its focus is on learning newly 
added parameters, e.g., the studies made on mixture of factor analyses (Ghahramani & Beal, 2000; Salah 
and & Alpaydin, 2004). Such an incremental implementation can save computing costs. However, it 
usually leads to suboptimal performance because not only those newly added parameters but also the 
old parameter set Θk actually have to be re-learned. This suboptimal problem is lessened by a decre-
mental implementation that starts with k at a large value and reduces k step by step. At each step, one 
takes a subset out of Θk with the remaining parameter updated, and discard the subset with a biggest 
decreasing of J( )*Qk  after trying a number of such subsets. Such a procedure can be formulated as a tree 
searching. The initial parameter set Θk is the root of the tree, and discarding one subset moves to one 
immediate descendent. A depth-first searching suffers from a suboptimal performance seriously, while 
a breadth-first searching suffers a huge combinatorial computing cost. Usually, a trade off between the 
two extremes is adopted.

One other direction of studies is called automatic model selection. An early effort of this direction is 
Rival Penalized Competitive Learning (RPCL) (Xu, Krzyzak, & Oja, 1992&93) for adaptively learn-
ing the centers ci and Σj of radial basis in NRBF networks (Xu, Krzyzak & Oja, 1992&93; Xu,1998a), 
with the number k automatically determined during learning. The key idea is that not only the winner cw 
moves a little bit to adapt the current sample xt but also the rival (i.e., the second winner) cr is repelled a 
little bit from xt to reduce a duplicated information allocation. As a result, an extra cj will be driven far 
away from data with its corresponding a

j
® 0  and Tr

j
[ ]S ® 0 . Moreover, RPCL learning algorithm 

has been proposed for jointly learning not only ci and Σj but also W x w
j j

+  (Sec.4.4 & Table 2, Xu, 
2001&02). In general, RPCL is applicable to any Sk k( }Q  that consists of k individual substructures. 
With k initially at a value larger enough, a coming sample xt is allocated to one of the k substructures 
via competition, and the winner adapts this sample by a little bit, while the rival is de-learned a little 
bit to reduce a duplicated allocation. This rival penalized mechanism will discard those extra substruc-
tures, making model selection automatically during learning. Various extensions have been made in the 
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past decades (Xu,2007d). Instead of the heuristic mechanism embedded in RPCL algorithm, Bayesian 
Ying-Yang (BYY) harmony learning was proposed in (Xu,1995) and systematically developed in the 
past decade, which leads us to not only new model selection criteria but also algorithms with automatic 
model selection ability via maximizing a Ying Yang harmony functional.

In general, this automatic model selection direction demonstrates a quite difference nature from the 
usual incremental or decremental implementation that bases on evaluating the change J J( ) ( )Q Q Dk k- È q  
as a subset qD  of parameters is added or removed. Thus, automatic model selection is associated with 
a learning algorithm or a learning principle with the following two features:

There is an indicator • ρ(θr) on a subset qr kÎ Q , we have r q( r) 0=  if θr consists of parameters of 
a redundant structural part.
In implementation of this learning algorithm or optimizing this learning principle, there is an • 
mechanism that automatically drives r q( r) 0®  and θr towards a specific value. Thus, the cor-
responding redundant structural part is effectively discarded.

Shown in Algorithm 2 (displayed in Figure 2) is a summary of three types of adaptive algorithms for 
alternative ME, including NRBF and ENRBF as special cases. The implementation is almost the same 
for three types of learning, except taking different values of hj t, . Considering k individual substructures, 
each has a local measure H

t j
( )Q  on its fitness to a coming sample xt and the parameters Q

j
 are updated 

by updating rules with same format to three types of learning. The updating rules are obtained from 
the gradientÑQ Q

j
H

t j
( )  either directly or in a modified direction that has a positive projection on this 

gradient, as explained in Figure 3(E). According to Figure 3(A), each updating direction is modified by 
h

j t,  on its direction and step size.
We get a further insight at a special case that h

x
= =0 0,  h

z
 (thus Step (d) discarded). The first al-

locating scheme is hj t j t
p

, ,
= = p (j

t
| )Q = p(j z x

t t
| , ) , i.e., same as the E step in Algorithm I. Actually, 

Algorithm II at this setting is an adaptive EM algorithm for ML learning (Xu, 1998). The second scheme 
only takes values at the winner and the rival, while the negative value of h g

j t j t
p

, ,
= = -  reverses the 

updating direction such that the rival is de-learned a little bit to reduce its fitness H
t r
( )Q  to the current 

sample xt. It extends the RPCL learning for NRBF from a two stage implementation (Xu, Krzyzak, &Oja, 
1992&93) to an improved implementation that updates all the unknowns jointly (Xu, 1998). One prob-
lem to the RPCL learning is how to choose an appropriate γ > 0. The third scheme h d

j t j t t j
p h

, , ,
)= +(1  

shares the features of both the EM learning and RPCL learning without needing a pre-specified γ > 0, 
which is derived from the BYY harmony learning to be introduced in the sequel.

BYY HARMONY LEARNING: FUNDAMENTALS

As shown in the left –top corner of Figure 4, a set X = {x}of samples are regarded as generated via a 
top-down path from its inner representation R {Y, }= Q , with a long term memory Θ that is a collec-
tion of all unknown parameters in the system for collectively representing the underlying structure of 
X, and with a short term memory Y that each element y ∈ Y is the corresponding inner representation 
of one element x ∈ X. A mapping R X®  and an inverse X R®  are jointly considered via the joint 
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distribution of X, R in two types of Bayesian decomposition. In a compliment to the famous ancient 
Ying-Yang philosophy, the decomposition of p(X, R) coincides the Yang concept with a visible domain 
p(X) for a Yang space and a forward pathway by p( | )R X  as a Yang pathway. Thus, p(X, R) is called 
Yang machine. Also, q(X, R) is called Ying machine with an invisible domain q(R) for a Ying space and 
a backward pathway by q(X | R) as a Ying pathway. Such a Ying-Yang pair is called Bayesian Ying-Yang 
(BYY) system. It further consists of two layers. The front layer is itself a Ying-Yang pair for X Y®  
and Y X® . The back layer supports the front layer by a priori q( | )Q X , while p(R | X) consists of the 
posteriori p( | , )Q XX  that transfers the knowledge from observations to the back layer.

The input to the Ying Yang system is through p p h
x N

( | ) ( | , )X X XQ =  obtained from a sample 
set X

N t t
Nx= ={ }

1
, e.g.,  p h G h I

N N
( | , ) ( | , )X X X X= - 0 2 . To build up an entire system, we need to 

Figure 2. Algorithm 2: Adaptive learning algorithm for alternatve ME and NRBF nets
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design appropriate structures for the rests in the system. Different designs perform different learning 
tasks and thus typical learning models are unified under a general framework. As shown in Figure 4, 
designs are guided by the following three principles, respectively:

• Least Redundancy Principle Subject to the nature of learning tasks, q(R) should be in a struc-
ture for the inner representation of XN encoded with a redundancy as least as possible. First, the 
number of variables and parameters of R Y= { , }Q  should be as less as possible, which is itself 
the model selection task that is beyond the task of design. Second, the dependences among these 

Figure 3. Allocating schemes, typical examples, and gradient based updating
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variables should be as least as possible, which is possibly or at least partly to be considered. E.g., 
when Y consists of multiple components Y = { }( )Y j , we design q q Y

j

j
y
j( | ) ( | )( ) ( )Y Q =Õ q .

• Divide and Conquer Principle Subject to the representation formats of X and Y, a complicated 
mapping Y X®  is modeled by designing q q( | ) ( | , )X R X Y= Q  via a mixture of a number of 
simple structures. E.g., we may design q( | , )X Y Q  via a mixture of a number of linear regres-
sion featured by Gaussians of Y conditional on X. In some situation, it is not necessary to design 
q(R) and q(X | R) separately. Instead, we design q(X, R) (especially q

q
( , , )X Y Q ) via a single 

parametric model as a whole but still attempting to follow the above two principles. One example 
is a product Gaussian mixture, as the one encountered in Type B of Rival penalized competitive 
learning (see Xu, 2007b). In general, we may consider an integrable measure M

q
( , , )X Y Q  by

Figure 4. Bayesian Ying-Yang system and best harmony learning
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q M M d d
q q q

( , , ) ( , , ) / ( , , )X Y X Y X Y X YQ Q Q= ò  

• Uncertainty Conversation Principle In a compliment to the Ying-Yang philosophy, Ying is pri-
mary and thus is designed first, while Yang is relatively secondary and thus is designed basing on 
Ying. Moreover, as illustrated by the Ying-Yang sign located at the top-left of Figure 4, the room 
of varying or dynamic range of Yang should balance with that of Ying, which motivates to design 
p(X, R) (in fact, only p(R | X) because we have p p h

x N
( | ) ( | , )X X XQ =  already) under a prin-

ciple of uncertainty conversation between Ying-Yang. In other words, Yang machine preserves a 
varying room or dynamic range that is appropriate to accommodate uncertainty or information 
contained within the Ying machine. That is U p U q( ( , )) ( ( , ))X R X R=  under a uncertainty mea-
sure U(p), in one of the choices within the table in Figure 4. Since a Yang machine consists of 
two components p p( | ) ( )R X X , we may consider one or both of the uncertainty conversations as 
follows:

U p U q q q q( ( | )) ( ( | )), ( | ) ( , ) / ( )R X R X R X X R X= =   and 
U p U q q q d( ( )) ( ( )), ( ) ( , )X X X X R R= = ò  

The above uncertainty conservation may occur at three different levels. One is likelihood based con-
servation that the structure of Yang machine gets a strong link to the ones of Ying machine. Considering 

p L |
L XL

( , )
|

X qå = 1 , the Yang structure is actually given by the Bayesian inverse of Ying machine 
p L | q q

L X L
( , ) ( , ) / ( , )

|
X X R X Rq = å , further examples are referred to Tab.2 of (Xu, 2008a). A less 

constrained link is provided by a Hessian based conversation, i.e., a conservation on local convexity, 
which is applicable to Y, Θ of real variables. This is a type of local information conservation, e.g., Fisher 
information conservation. The most relaxed conservation is based on a collective measure instead of 
details, e.g., Shannon entropy.

Again, we use Sk k( )Q  to denote a family of system specifications, with k featured by the scale or 
complexity for representing R, which is contributed by the scale kY  for representing Y and an effec-
tive number standing for free parameters in Qk.  An analogy of this Ying Yang system to the Chinese 
ancient Ying-Yang philosophy motivates to determine k and Qk  under the best harmony principle, 
mathematically to maximize

H p q p p h q q d d
N

( || , , ) ( | ) ( | , ) ln[ ( | ) ( )] .k R X X X X R R X RX = ò  (8)

On one hand, the maximization forces q q( | ) ( )X R R  to match p p h
N

( | ) ( | , )R X X X . In other 
words, q q( | ) ( )X R R  attempts to describe the data p h

N
( | , )X X  in help of p(R | X), which uses actually 

q q q d( ) ( | ) ( )X X R R R= ò  to fit p h
N

( | , )X X  not in a maximum likelihood sense but with a promising 
model selection nature. Due to a finite size of XN and structural constraint of p(R | X), this matching aims 
at (but may not really reach) q q( | ) ( )X R R = p p h

N
( | ) ( | , )R X X X . Still we get a trend at this equality 

by which H p q( || , , )k X  becomes the negative entropy, and its further maximization is minimizing the 
system complexity, which consequently provides a model selection nature on k.
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At the first glance, one may feel the formulae eqn.(8) somewhat familiar. In fact, its degenerated 
case with R vanished leads to H p q p q d( || ) ( ) ln ( ) .= ò X X X  With p p h

N
( ) ( | , )X X X=  at h = 0 and 

q q( ) ( | )X X= Q , maximizing this H p q( || )  becomes max ln ( | )Q Qq
N

X , i.e., maximum likelihood 
(ML) learning. The situation with p(X) beyond p h

N
( | , )X X  was also explored in the signal processing 

literature, via min ( || )
( )q

H p qX -  under the name of Minimum Cross-Entropy (Minxent). It was noticed 
that min ( || )

( )p
H p qX -  leads to a singular result that p( ) ( ),*X X X= -d X XX

* arg max ln ( | )= q Q , 
which was regarded as irregular and not useful. Instead, efforts were turned to minimizing the classic 
Kullback–Leibler divergence KL p q H p p H p q( || ) ( || ) ( || )= -  with respect to p, which pushes p to 
match q and thus the above singular result is avoided. Moreover, if p is given, min ( || )

( )q
KL p qX  is 

still equivalent to min ( || )
( )q

H p qX - . Thereafter, Minimum Cross-Entropy is usually used to refer this 
min ( || )KL p q .

Interestingly, with an inner representation R considered in the BYY system, the scenario becomes 
different from the above classic situation. With p p h

N
( ) ( | , )X X X=  fixed, max ( || )

( )p
H p qX  is made 

with respect to only p(R | X), which is no longer useless but responsible to the promising least complex-
ity nature discussed after eqn.(8). In other words, maximizing max ( || )H p q  with respect to unknowns 
not only in Ying part q(X, R) but also in Yang part p(X, R) makes the Ying-Yang system become a best 
harmony. Alternatively, we may regard such a mathematical formulation as an information theoretic 
interpretation of the ancient Ying Yang philosophy.

In implementation, H p q p H p q d
N

( || , , ) ( | ) ( || , , , )k X kX Q Q X Q= ò  can be approximated via a 
Taylor expansion of H p q( || , , , )Q Xk  around Q*  up to the second order as follows:

( || , , ) ( | ) ( || , , , ) H( ,k, ) 0.5 ( ),    *
N

H p q p H p q d p || q, dkk X k

q darg max ( || , , , ),    ) [ ( )] , ,  * * * T * *
k

H p ( Tr ( ) ( )( )k  

  H p q H p q q( || , , , ) ( || , , , ) ln ( | ),Q X Q X Q Xk k= +
0

 

0 ( || ,H p q , ,Θ k )Ξ = ∫ ( | ,p Y X y|x ) ( | , )N hX X ln [ ( | ,q X Y x|y ) y( | )]Y d d +X Y ln ( ),q h

2 , Ξ = ∇ H(p || q, ,k, ( | )N= ∫ X , d ( )( ) ( | )T
N= − −∫ X .d   

 (9)

The maximization of H p q( || , , )k X  consists of an inner maximization that seeks the best harmony 
among the front layer Ying-Yang supported by a priori q( | )Q X  and an outer maximization that seeks 
the best harmony of the entire Ying Yang system with d ( )

k
X  taken in consideration for the interaction 

between the front and back layers.

BYY HARMONY LEARNING: CHARACTERISTICS AND IMPLEMENTATIONS

Systematically considering two pathways and two domains coordinately as a BYY system under a prob-
ability theoretic ground and designing three system components under the principles of least redundancy, 
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divide-conquer, and uncertainty conversation, respectively. BYY harmony learning is different not only 
from cognitive science motivated adaptive resonance theory (Grossberg, 1976; Grossberg & Carpenter, 
2002) and the least mean square error reconstruction based auto-association (Bourlard & Kamp, 1988) 
and LMSER self-organization (Xu, 1991 & 93), but also from those probability theoretic approaches 
that either merely consider a bottom-up pathway as the inverse of a top-down pathway (e.g., Bayes-
ian approaches), or approximate such inverses for tackling intractable computations (e.g., Helmholtz 
machine, varianional Bayes, and extensions). Mathematically implementing the Ying-Yang harmony 
philosophy, in a sense that Ying and Yang not only matches each other but also seeks a best match in 
a most compact way, by determining all unknowns in a BYY system via maximizing the functional of 
H p q( || , , )k X , with the model selection nature explained after eqn.(8).

Readers are further referred to (Xu, 2007a) for a systematical overview on relations of Bayesian Ying 
Yang learning to a number of typical approaches for either or both of parameter learning and model 
selection, covering the following aspects:

• Best Data Matching perspective, for modeling a latent or generative model and involving ML, 
Bayesian, AIC, BIC, MDL, MML, marginal likelihood, etc;

• Best Encoding perspective, for encoding inner representation by a bottom-up pathway (or called 
a transformation / recognition / representative model) and involving INFOMAX, MMI based ICA 
approaches and extensions;

• Two Pathway Perspective, involving information geometry based em-algorithm, Helmholtz 
Machine, variational approximation, and bits-back based MDL, etc.

• Optimal Information Transfer Perspective, involving MDL, MML, and bits-back based MDL, 
etc.

The model selection nature of maximizing H p q( || , , )k X  can also be observed from its gradient follow 
with the Yang path in a Bayesian structure p q q q( | ) ( | ) ( ) / ( )R X X R R X= , q(X) = q q d( | ) ( )X R R Rò . 
It follows that we have

dH p q p dL p h d d
L N

L

( || , , ) ( | )[ ( , )] ( , ) ( | , ) ,

( ,

k R X X R X R X X X R

X

X = +ò 1 d

d RR X R R X X R R X R X R R) ( , ) ( | ) ( , ) , ( , ) ln[ ( | ) ( )]= - =òL p L d L q q and   (10a)

Noticing that L(X, R) describes the fitness of an inner representation R on the observation X, we 
observe that d

L
( , )X R  indicates whether the considered R fits X better than the average of all the pos-

sible choices of R. Letting d
L
( , )X R = 0 , the rest of dH p q( || , , )k X  is actually the updating flow of 

the M step in the EM algorithm for the maximum likelihood learning (McLachlan & Geoffrey,1997). 
Usually d

L
( , )X R ¹ 0 , i.e., the gradient flow dL(X, R) under all possible choices of R is integrated via 

weighting not just by p(R | X) but also by a modification of a relative fitness measure 1+ d
L
( , )X R . If 

d
L
( , )X R > 0 , updating goes along the same direction of the EM learning with an increased strength. 

If 0 1> >-d
L
( , ) ,X R  i.e., the fitness is worse than the average and the current R is doubtful, updating 

still goes along the same direction of the EM learning but with a reduced strength. When - >1 d
L
( , )X R

, updating reverses the direction of the EM learning and actually becomes de-learning. In other words, 
the BYY harmony learning shares the same nature of RPCL learning but with an improvement that 
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there is no need on a pre-specified de-learning strength γ > 0, as previously discussed in Figure 3(A) 
on a special case of NRBF & ME with R = { , }j Q , where p

L
( | )[ ( , )]R X X R1+ d  is simplified into 

p h
j t t j, ,

)(1+ d  and d
L
( , )X R  into dh

t j,
.

More specifically, the model selection nature of Bayesian Ying Yang learning possess the following 
favorable promising features.

The conventional model selection approaches aim at model complexity conveyed at either or both • 
of the level of structure Sk and the level of parameter set Q. This task is difficult to estimate, usu-
ally resulting in some rough bounds. Bayesian Ying Yang learning considers not only the levels of 
Sk and Q but also the level of short memory representation Y by the front layer of BYY system in 
Figure 4(a). That is, the scale k of the BYY system is considered with the part kY for representing 
Y, while the rest part, contributed by Sk and Q, is estimated via ln q(Q|X) and dk( )X  in eqn.(9), 
which is along a line similar to the above conventional approaches. Interestingly, the part kY is 
modeled via q(Y|Qy) in H p q

0
( || , , , )Q Xk , which is estimated more accurately than the rest part. 

Promisingly, the model selection problems of many typical learning tasks can be reformulated into 
selecting merely the kY part in a BYY system (Xu, 2005). Therefore, the resulted BYY harmony 
criterion J(k) shown by the left one of Figure 4(b) may considerably improve the performances by 
typical model selection approaches, which has been shown by in experiments (Shi, 2008).
Even interestingly, this • kY part associates with a set 

yy
  of parameters on which there ex-

ists an indicator ( )
y
 . Maximizing H p q

0
( || , , , )Q Xk  will exert a force that pushes ( ) 0

y
 , 

which means that its associated contribution to kY can be discarded. E.g., each j of k values 
associates with one αj, we can discard a structure if its correspondent r a a( )

j j
= ® 0 . As a 

result, k effectively reduces to k − 1. As illustrated on the right of Figure 4(b), a
j
® 0  means 

its contribution to J k( )  is 0, and a number of such parameters becoming 0 result in that J k( )  
has effectively no change on a range [ ,̂ ]k k . Also, each dimension y(i) of q y

j
y( | )q  associates with 

its variance l
j  and this dimension can be discarded if l

j
® 0 . As illustrated beyond k  on the 

right of Figure 4(b), such a parameter becoming 0 contributes to J k( )  by -¥ . As long as kY is 
initialized at a big enough value, k̂  can be found as an upper bound estimate of k*. That is, an 
automatic model selection is incurred during parameter learning. Details are referred to Sec.2.3 
of (Xu, 2008a&b).
The separated consideration of • kY from the rest of k also provides a general framework that in-
tegrates the roles of regularization and model selection, such that not only the automatic model 
selection mechanism on kY can avoid the previously mentioned disturbance by a regularization 
with an inappropriate priori q( | )Q X , but also imprecise approximations caused by handling the 
integrals may be alleviated via regularization. Specifically, model selection is made via q( | )Y Q

y
 

in Ying machine, while regularization is imposed in Yang machine via designing its structure un-
der a uncertainty conservation principle given at the bottom of Figure 4 and making data smooth-
ing regularization via p p h

N
( ) ( | , )X X X=  with h ¹ 0  that takes a role similar to regularization 

strength, while the difficulty of the conventional regularization approaches on controlling this 
strength has been avoided because an appropriate h ¹ 0  is also determined during maximizing 
H p q( || , , , )Q Xk .
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At a first glance, a scenario with q( | )Y Q
y

 is seemly involved also in several typical learning ap-
proaches, especially those with an EM like two pathway implementation, such as the EM algorithm 
implemented ML learning (Redner & Walker, 1984), information geometry based em-algorithm (Amari, 
1995), Helmholtz Machine (Hinton, Dayan, Frey, & Neal, 1995; Dayan, 2002), variational approxima-
tion (Jordan, Ghahramani, Jaakkola, & Saul, 1999), the bits-back based MDL (Hinton & Zemel, 1994), 
etc. Actually, these studies have neither put q( | )Y Q

y  in a role for describing kY nor sought for the 
above nature of automatic model selection. Instead, the role of q( | )Y Q

y  in these studies is estimating 
x|y y

( ) ( | , ) ( | )q q q dX X Y Y Y in a ML sense or approximately, which is similar to the one in Bayes-
ian Kullback Ying Yang (BKYY) learning that not only accommodates a number of typical statistical 
learning approaches (including these studies) as special cases but also provides a bridge to understand 
the relation and difference from the best harmony learning by maximizing H p q( || , , , )Q Xk  in eqn.(8). 
Proposed in (Xu,1995), BKYY learning performs a best Ying Yang matching by minimizing:

KL p q p p h
p p h

q q
d

N
N( || , , ) ( | ) ( | , ) ln

( | ) ( | , )

( | ) ( )
k R X X X

R X X X

X R R
XX = ò dd H p qR k- ( || , , ),X  (10b)

that is, a best Ying Yang harmony includes not only a best Ying Yang matching as a part but also mini-
mizing the entropy or the complexity of a Yang machine. In other words, it seeks a Yang machine that 
not only best matches the Ying machine but also keeps itself in a least complexity.

Considering a learning system in a Ying-Yang pair naturally motivates to implement the maximization 
of H p q( || , , , )Q Xk  or the minimization of KL p q( || , , , )Q Xk  by an alternative iteration of

• Yang step: fixing all the unknowns in the Ying machine, we update the rest of the unknowns in the 
Yang machine (after excluding those common unknowns shared by the Ying machine);

• Ying step: fixing those just updated unknowns in the Yang step, we update all the unknowns in 
the Ying machine.

Not only this iteration is guaranteed to converge, but also it includes the well known EM algorithm 
and provides a general perspective for developing other EM-like algorithms.

Recalling eqn.(9), the maximization of H p q( || , , , )Q Xk  can be approximately decoupled into an 
inner maximization for the best harmony among the front layer supported by a priori q( | )Q X  and an 
outer maximization for interaction between the front and back layers. Thus, we have the following two 
stage implementation:

k k

K (0)

( ) ( 1)

( ) ( ) ( ) ( ) ( )

Stage I   enumerate each , initialize  and iterate :

      ( )   arg max/incr ( || , , , ),

      ( )   arg max/incr [H( , , ) ( )],   ,  1, 

          

t t

t t t t t

a H p q

b p || q, dk

k

k

k
( ) ( ) ( ) * *

*

   ( ) ( ) ( , ,   after convergence we  get   , ;

Stage II   argmin ( ),   ( ) ( ) 0.5 ( ).

t T t t
f

f

d n

J J J n
k k

k k

)

k k  (11a)
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during which a previous estimate Q( )t-t  is used as z  with G W Q X= - -1( )* , , and thus dk( )X  is simpli-
fied into ( ) ( ) ( )( ,t T t t) , where an integer nf

(Qk)  denotes the number of free parameters in Θk. 
Being different from a classic two stage implementation, not only model selection is made at Stage II, 
but also automatic model selection occurs during implementing Stage I that is actually implemented by 
one Ying Yang iteration as above, from which we can further get detailed algorithms, e.g., Algorithm 2 
in the previous section and Algorithm 3 in the next section, as further discussed in sequel.

When samples X
N t t

Nx= ={ }
1

 are independent and identically distributed (i.i.d.), from 
Y

N t t t
Ny j= ={ , }

1  and q q h q
jj

k
( | ) ( ) ( | )Q X Q X=

=Õ 1
, H p q

0
( || , , , )Q Xk  in eqn.(11a) becomes 

p j x p y x G x x h I q x | y, q yy x
j
y x

t x j
x y

j
( | , ){ ( | , ) ( | , ) ln[ ( ) ( || | |q q q q 2 yy

jj

k

t

N
dxdy) ] }aòåå == 11

 with aj = q(j). 
By a Taylor expansion of ln[ ( ) ( | ) ]

|
q x | y, q y

x y
j

j
y

j
q q a  with respect to x, y around x

t
 and h q( | )|x

t j
y x , 

respectively, from which we further get

H p q p j x H
t

y x

j

k

t j
t

N

0
11

( || , , , ) ( | , ) ( ),|Q X Qk »
==
åå q  (11b)

| 2 1
,

2

 

( ) ( ( | ), ) 0.5 [ ] ln ( ),

ln ( ),  ,   ( , ) ln[ ( ) ( | ) ],

y x x y|x y
t j t t j j j j j N

x x|y y x|y y
j j j t j t j t j j jx y

H x x Tr h q h

q x | y, (y, ) y q x | y, q y2  

h q q q h( | ) ( | , ) , ( | , )[ (| | |x yp y x dy p y x y x
t j

y x
t j

y x
j
y|x

t j
y x= = -ò    G

tt j
y x

t j
y x Ty x dy| )][ ( | )] .| |q h q-ò  

In the special case Y
N t t

Nj= ={ }
1
, i.e., { , }y j j®  without y, H

t j
( )Q  becomes p( , )x

j
Q -

0 5 2 2 1. [ ln ( | )] ln ( ), ( , ) ln[ ( ) ]
,

Tr h q x q h x q x |
x j N j j j

Ñ + =q p q a  .Q  Further considering the substitution 
x → x, z and thus q x | q x q z x

j j j
( ) ( | ) ( | , )q f q®  with G x x h I

t
( | , )2 ® G x x h I G z z x h I

t x t t z
( | , ) ( | ( ), )2 2  

and q h q h q h
x z

( ) ( ) ( )® , Ht j
( )Q  in eqn.(11b) is simplified into the one same as in Algorithm 2(a).

We consider the design of p j x
t x

( | , )q  according to a principle of uncertainty conversa-
tion between Ying-Yang, under the likelihood based measure given in Figure 4(c). From   
p j x q x q z x

x j j j
( | , ) ( | ) ( | , )q f q aµ  a n d  t h e  c o n s t r a i n t  p j x

xj
( | , )q =å 1 ,  w e  h a v e 

p j x q x q z x q x q z x
x j j j j j jj

( | , ) ( | ) ( | , ) / ( | ) ( | , )q f q a f q a= å = p j
t
( | )Q , which concurs with the 

one in Algorithm 2(a) and Figure 3(a). In this setting, we further have

• dH p q
0
( || , , , )Q Xk  as in Algorithm 2 (b), based on which we update Q Q DQnew old= + ,  

DQ Q X Qµ dH p q d
0
( || , , , ) /k  with q

j
( | )Q X  ignored by letting ln ( | )q

j
Q X = 0 , which leads 

to Algorithm 2 and Figure 3(a).
• h d

j t j t t j
p h

, , ,
)= +(1  modifies the EM learning by 1+ dh

t j,  that either enhances or weaken p
j t,

 
depending on whether or not its fitness is better than the average. Even this h d

j t j t t j
p h

, , ,
)= +(1  

will become negative if its fitness falls far below the average, and thus leads to de-learning, which 
acts as an improvement of RPCL learning.

Maximization of • H p q
0
( || , , , )Q Xk  pushes p j x

t
y x

jj

k

t

N
( | , ) ln|q a ®

== åå 11
N

j jj

k
a aln

=å 1
 

with N
j

a = p j x
t

y x

j

k
( | , )|q

=å 1
. Further more, N

j jj

k
a aln

=å £
1

0  approaches its upper bound 
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with some a
j
® 0  if the j-th basis function or expert is redundant, and its contribution N

j j
a aln  

becomes 0. In other word, we get an example that concurs with the previously discussed feature, 
i.e., J k( )  remains unchanged on [ ,̂ ]k k , as illustrated on the right of Figure 4(b).

The above scenario can be directly extended to the case Y
N t t t

Ny j= ={ , }
1
 with

q x
j

( | )f = ( | ) ( | )x|y y
j jq x y, q y dyθ θ∫  (11c)

put into H
t j
( )Q  in Algorithm 2(a). 

In fact, the resulted model conceptually has no big difference from NRBF, ENRBF, ME, etc. The 
difference lays in that the basis function bases on the marginal density q x

j
( | )f .

More generally,  we can put the substitution x ® x,z  and its induced sub-
s t i t u t i o n s  q x | y, q x z | y, q z x y, q x y,

j
x|y

j
x z|y

j
z|x y

j
x|y( ) ( , ) ( | , ) ( | ), ,q q q q® = ,  G x x h I

t
( | , )2 ®

G x x h I G z z x h I
t x t t z

( | , ) ( | ( ), )2 2  and q h q h q h
x z

( ) ( ) ( )®  directly into eqn.(11b), resulting in

H p q p j x z H
t t y|x

j

k

t j
t

N

0
11

( || , , , ) ( | , , ) ( ),Q X Qk »
==
åå q    

 (11d)

2 | 21 1
2

| 2 2

( ) ( ) [ ( ) ] ln{ ( ) ( )},

ln ( ),   ln ( ),  { , }

x z x z y|x y
t j t j x j j z j j j x zN

z x z| z z|
j x j j z j

H Tr h h q h q h

q z | , q z | , x y ,  

p p h q p x q x
t j t t j

y x
j t j t j

z|
t

x y q z | , q x |( ) ( ( | ), ), ( , ) ln[ ( ) (|Q Q Q= =  yy, q y
j
x|y

j
y

j
q q a) ( | ) ].  

P
j
x , h q( | )|x

t j
y x  and G

j
y|x  are same as in eqn.(11b), from which and eqn.(11c) we can derive Algorithm 

3 to be introduced in the next section. Moreover, in additional to the feature of pushing an extra aj
® 0 , 

the maximization of H p q
0
( || , , , )Q Xk  in eqn.(11d) pushes p

t j
( )Q  to increase, which then pushes 

ln ( | )q y
j
yq  to increase. If there is a redundant dimension y i( ) , the corresponding q y i

j
y( | )( ) q  is pushed 

towards d( )( ) ( )y ci i-  with its variance lj
® 0 , which contributes to J k( )  by -¥ . In other word, we 

also get an specific example that concurs with the previously discussed feature that J k( )  tends -¥ , 
as illustrated beyond k  on the right of Figure 4(b).

SUBSPACE BASED FUNCTIONS AND CASCADED EXTENSIONS

In many practices, there is only a finite size of training samples distributed in small dimensional sub-
spaces, instead of scattering over all the dimensions of the observation space. These subspace structures 
can not be well captured by considering q x G x

j j j
( | ) ( | , )f m= S  only. Moreover, there are too many 

free parameters in Σj, which usually leads to poor performances. Towards the problems, we consider 
q x

j
( | )f  via subspace by independent factor analysis as shown in Figure 5, where observed samples are 

regarded as generated from a subspace with independent factors distributed along each coordinate of an 
inner m dimensional representation y y y m= [ , ]( )( )1

 . Typically, we consider q y i
j
y( | )( ) q  of a Gaussian 
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for a real y(i) and of a Bernoulli for a binary y(i).
By eqn. (10c) we get q x

j
( | )f  to be put into eqn.(5) for extensions of basis functions or gating nets 

g x
j
( , )f , which leads to subspace based extensions of ME and RBF networks. Correspondingly, f(x) in 

eqn.(3) has been extended from a combination of functions supported on radial bases to a combination 
of functions supported on subspace bases, which are thus called subspace based functions (SBF). As 
discussed after eqn.(11c), learning of SBF can still be made by either Algorithm 1 or 2, with the updating 
formulae for q x

j
( | )f  revised accordingly. Also, to facilitate computing we get a f r

j j t j
q x ( )( | ) = Q  

approximately by

r p p h qp

t j

(y, ) . m

j
y .

t j
y|x

j
( ) e dy ( ) | | ( (x | ), )t j jQ P QQ= »ò 2

0 5 0 5 exp[ ]] ,,   as in eqn.(11b) P
j
y  (12)

where `»̀  becomes `=̀  when ( | )x|y
jq x y,θ  and q y

j
y( | )q  are both Gaussian.

As before, an appropriate number k can be determined by automatic model selection during imple-
menting Algorithm 2. In addition to k, we need an appropriate dimension m



 for each subspace too, 
which can not be performed by Algorithm II. Though the problem may be handled in help of a two stage 
implementation, the effect of a finite number of samples will more seriously deteriorate the evaluation 
on the values of J

k
( )Q  because we need to determine k + 1 integers (i.e., k plus m



, = 1, , k ).
Alternatively, instead of implementing a direct mapping x z®    by q z x

t t j
z x( | , )|q  or f x

j j
z x( , )|q , 

extensions can also be made in help of the hidden factors y by q z q z y
t j

z
t j

z y( | , ) ( | , )| |x q qx = , as shown 
in Figure 5. Two cascade mappings x y®  and y z®  replace the direct map  x z®  by f x

j j
z x( , )|q  or 

q z x
t t j

z x( | , )|q . The mapping x y®  acts as feature extraction, and thus the cascade  x y z® ®  can 
discard redundant parts, which is called cascaded subspace based functions. In a regression task, the 
cascaded  x y z® ®  is exactly a compound function of the regressions for x y®  and y z®  when 
the latter is linear. In other cases, an approximation is obtained from a Taylor expansion of z q( | )|y

j
z y  

around h q( | )|x
j
y x  up to the second order.

However, it is no longer applicable to use eqn.(11c) to get q x
j

( | )f  in eqn.(5) for g x
j
( , )f . Instead, 

we consider q x q z x q x y, q y q(z | , )dy
j j j

x|y
j
y

j
z|( | ) ( | , ) ( | ) ( | )f q q q x q x= ò  and get p(j x z

t
| , )  from eqn.

(6b). To facilitate computing, we can also get a f q
j j j
q x q z x( | ) ( | , ) = r

t j
( )Q  approximately by eqn.

(12) with p
t j
(y, )Q  extended accordingly. That is, we have

p(j x z ( ) ( ) ( )
t j t jj

k

t j
| , ) / ,=

=år r rQ Q Q
1

  with   by eqn.(12)  andd   by eqn.(11d).p
t j
(y, )Q   

 (13)

Learning is made to maximize H p q
0
( || , , , )Q Xk  in eqn.(11d), from which we obtain an adaptive 

algorithm as summarized in Algorithm 3, for implementing learning with an appropriate number k and 
an appropriate dimension m



 of each subspace determined automatically. According to three typical 
cases of q z

j
z( | , )|x q x , Algorithm 3 performs one of the tasks shown in Figure 6.



79

Learning Algorithms for RBF Functions and Subspace Based Functions

• Let q z
j
z( | , )|x q x = 1  (i.e., ignored), it degenerates into the adaptive algorithms for learning on 

either a local factor analysis (LFA) given in Table 3 in (Xu, 2008) or a local binary factor analysis 
(BFA).
When • q z G z W w

j
z

j
z

j
z

j
z( | , ) ( | , )| | | |x q xx x x x= + S , it performs a regression that consists of a 

number of local functions. For the SBF case with q z x
j
z x( | , )|q =G z W x w

j
z x

j
z x

j
z x( | , )| | |+ S , 

each local linear function is z W x w
j
z x

j j
z x= - +| |( )m , and the mapping x z®  is 

p(j x W x w
tj

k

j
z x

t j j
z z| , )[ ( ) ].| |Q

=å - +
1

m  In this case, Algorithm 3 shares with Algorithm 2 the 

Figure 5. Subspace based independent factor analyses and extensions to cascaded subspace based 
functions

2
y∇
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same equations for updating q z x
t t j

z x( | , )|q  by Figure 3(C)&(D). For a cascaded SBF case with 
q z y

j
z y( | , )|q = +G z W y w

j
z y

j
z y

j
z y( | , )| | |G , a local mapping is made by h q( | )|x

j
y x = s W x w

j j
( ) +  

that performs a local dimension reduction and a regression z W y w
j
z y

j
z y= +| | , with x z®  by 

p(j x W s W x w w
tj

k

j
z y

j j j
z y| , )[ ( ) ].| |Q

=å + +
1

  Being different from Algorithm 2 that makes au-
tomatic selection only on k, learning by Algorithm 3 on the part for y z®    is coupled with the 
part for x y® , during which automatic model selection is obtained on the dimension of each 
subspace, as previously explained after eqn.(11d).
When • q z y q(z y )

j j
( | , ) | , ,q q= = =   1, ,k , it performs a classification  x z®  into one of 

labels. In help of those terms in Figure 6, the task is made by a group of classifiers with a local 

Figure 6. Typical terms in Algorithm 3
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feature extraction by h q( | )|x
j
y x = s W x w

j j
( ) + .

Simplified variants of Algorithm 3 may be considered with degenerated settings on one or more 
of h

x
= 0, h

z
= 0, G

j
y x| = 0  that actually remove certain regularization on learning. Specifically, hx = 

0 shuts down smoothing regularization on samples of x, and hz = 0 shuts down the one on samples of 
z, while G

j
y x| = 0  shuts down a regularization on the domain of y. Also, Algorithm 3 may degenerate 

into EM or RPCL with a degenerated setting hx = 0 by choosing its corresponding allocating scheme in 
Figure 3(A).

The cases that the variable y(i) on each coordinate of a subspace is binary by a Bernoulli are usu-
ally encountered in practical problems that encodes each input x into binary codes for subsequent 
processing (Heinen, 1996; Treier & Jackman, 2002). The cascaded mapping x y z® ®  implements 
f x W s Wx w w
j j

z x
j
z y

j j
z y( , ) ( )| | |q = + +  that is a three layer forward net. In other words, the special case k 

= 1 leads us to a classic three layer forward network. Being different from both the least square back 
propagation learning (Rumelhart, Hinton, & Williams, 1986) and the EM algorithm based ML learning 
(Ma, Ji, & Farmer, 1997), there is favorably an automatic model selection on the number m



 of hid-
den units during implementing Algorithm 3 (shown in Figure 7). Moreover, a general case k > 1 leads 

to f x z x( , )|q = p(j x f x
tj

k

j j
z x| , ) ( , )|Q

=å 1
q  , i.e., a mixture of experts with each expert in a three layer 

forward networks. Sharing a hidden representation y in Figure 5(A) by experts and its gate, the number 
of free parameters is reduced. This mixture of experts is different from the conventional way of using 
one three layer forward networks as each expert in either (Jacobs, Jordan, Nowlan, & Hinton, 1991) or 
(Xu, Jordan & Hinton, 1995), where q z

j
z( | , )|x q x = q z x

j
z x( | , )|q  is implemented via a three layer forward 

networks as a whole.
In the cases with a binary vector y, the integral dyò  becomes a summation yå over all the 

2m
  terms, which becomes impractical computationally. Conceptually, the technique of using Taylor 

expansion in eqn.(11b) and eqn.(11d) is not applicable to y of a binary vector. Still, we can get eqn.
(11b) and eqn.(11d) by rewriting p

t j
(y, )Q  in a format b b y Ey

0 1
+ -[ ] + - -b y Ey y Ey T

2
[ ][ ] , and we 

replace dyò  by 
yå to get G

j
y|x  in eqn.(11b) and r

t j
( )Q  in eqn.(13) . Moreover, the task of getting 

y (y, )
j,t
*

y t j
= arg max p Q  is also conceptually a NP hard 0-1 programming. In Algorithm 3, it is ap-

proximately handled as suggested in (Table II, Xu, 2001b) under the name of fixed posteriori approxi-
mation, i.e., solving Ñ =

y t j
(y, )p Q 0  as if each y(i) is real and then is rounded into binary. With an extra 

computing for solving a nonlinear equation of a scalar variable, a further improvement can be obtained 
by adopting the canonical dual approach (Fang, Gao, Shu, & Wu, 2008; Sun, Tu, Gao, & Xu, 2009).

In addition to getting G
j
y|x  in eqn.(11b) by G

j
y|x

j,t j,t
T= e e  in Algorithm 3, we also have a degenerated 

choice and a generalized choice as follows:

a degenerated choice is considering • G
j
y|x

j t j t

m
diag j= [ , , ],

,
( )

,

( )g g1
   g

j t
i

t
i

t
is y s y

,
( ) ( ) ( )( )( ( )),= -1  

which is equivalently considering a conditional independent distribution 
   q y x s y s y y W

j
y x i y i y

i

m

t j
yi i

j( | , ) ( ) ( ) ,| ( ) ( ) |( ) ( )

q = -( ) =-

=Õ 1 1

1

xx
t j

x w+

a generalized choice is estimating:  • 
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Figure 7. Algorithm 3: Adaptive algorithms for LFA, cascade SBF and their binary variants
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G
j
y|x

j,t
* t j

y|x
t j

y|x T

y N(yN(y )
[y (x | )][y (x | )] ,   

j,

= - -
Î

1

#
h q h q

tt
* ) j,t

*
y t j

y  (y, )å = arg max ,p Q
 (14) 

where N(y )
j,t
*  consists of yj,t

*  and those values with a κ bit distance away, e.g., κ = 1.

FUTURE TRENDS

A further direction is extending SBF models in order to model temporal relations among data, via pro-
viding q(y(i)|ω(i)) with a temporal structure such that temporal structure underlying samples of x can be 
projected to the temporal structures of y, as shown Figure 5(C). There have been three types of efforts. 
The straightforward one is to let each f x

j j
( , )q  being a regression of past samples |

1
({ } , )z x

j t j
f x , 

which has no difference from f x
j j
( , )q  by regarding { }x

t- =t t
k

1
 as a vector. The second is embedding 

temporal structure

a a a
t t t t t k

T
ji ji ji

k
Q q q q= = = £ £ =- =1 1

1 1, [ , , ] , ], ,
, ,

   Q [   0  
i 1

a a åå ,  (15)

into each priori 0 ,  
j

£ =åa a
j j

1 . From t-1 to t, a new αt is computed from its past αt-1, and modulates 
the gate g x

j
( , )f  in eqn.(5) to vary as time goes. For learning Q, we modify Step (a) of Algorithm 2&3, 

in either of the two ways as follows.

Recursive Updating

Update     by   via    by  Q q e e C c C C
ji

c c

ji
new oldji j= = =å 



[ ] ++ µ --D DC C g Q diag g

Tr g

t
T T, [ ],     

which  comes   from  [

a a a

a

1

TT
t t t

T
k
T

k
d d dQ dC d da a a] , , ],  via   and  dQ [   

Q

T= = --1 1 1
1 q c q c

TT [   ,  and  from 

[ [

= =

=

q q q
1 1
, , ], [ , , ]

]

 

k j j jk
T

T
t

q q

Tr g d Tr ga a aa a a aa a aT
t t

T T
t
TdQ Tr g dQ Tr g dC diag g QdC- - -= = -

1 1 1
] ] [ ] ].[ [  

 (16a)

Asymptotic Updating

As t ® ¥, a a
t
®  we have a a a a= =Q d dQ, ( )  thus  (I-Q) ,

or d dQ Tr g I Q dQ Tr g dC diT Q Ta a a aa a= - = -- -  (I-Q)   from  [  [1 1( ) , ( ) ] aag g QdC

C C C C g Q

Q

new old QT old

[ ] ],

,
a

aa

 

we update     old  = + µ -D D TT Q Q old Tdiag g g I Q g[ ], ( ) .a a a  = - -

 (16b)

Putting eqn.(15) into eqn.(5), we get an extension of alternative ME to a temporal one gated by a Hidden 
Markov chain. Initially, let a

0 0 1 0
= [ , , ]

, ,
a a

k
T  we can get at  from either a a

t
tQ=

0
 or via Qt

t
a -1

  
step by step, which makes the gate varies as time.
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As shown in Figure 5(C), the third way is embedding a temporal structure q y
t t

( | )w  into the 
distribution of y i( )  in each subspace, via a regression parameterization w J t ttt i t

f y= -å( )
,

 on past 
samples of y

t
i( )  or estimating q y

t
i( )( )  as a marginal distribution q y

t
( ) = q y y q y

t t tyt

( | ) ( )- -
-

å 1 1
1

 or 
q y q y y q y dy

t t t t t
( ) ( | ) ( )= - - -ò 1 1 1  via the distributions of past samples. Shown in Figure 8 are detailed 

equations. For subspaces of Gaussian y
t
i( ) , y B y e

t j t t
y= +-1

 is embedded into subspaces of local fac-
tor analysis, and thus has been studied under the name of local temporal factor analysis (TFA) (see Sec.
IV, Xu, 2004).

Figure 8. Modified updating equations for temporal subspaces
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Traced back to the early 1960’s in the literature of nonparametric statistics, studies on RBF networks 
started from simple kernels k(x, xi) located at each sample and combined by linear weights that are simply 
samples of z. Then, studies proceeded along a direction not only with k(x, xi) extended to learning various 
structures in different subspaces and for different temporal dependences, but also with those combining 
weights estimated from samples or further extended to a learning gating structure.

Interestingly, a reversed direction of trends has also become popularized in recent years. One example 
is that SBF seeks to use simple linear subspaces instead of experts in a sophisticated structure. Another 
example is the widely studied support vector machine (SVM). It returns to considering locating each 
base or kernel k(x, xi) at each sample xi. In help of convex optimization techniques (Rockafellar, 1972; 
Vapnik, 1995), learning is made both on weighting parameters for linear combination and on selecting a 
small subset of samples for locating kernels k(x, xi). In the past decade, efforts are made not only beyond 
the classic SVM limitation of only considering two category classification, but also on how to estimate 
an appropriate structure for kernels k(x, xi).

Cross-fertilization of two directions deserves be explored too. The first direction aims at modeling 
samples by seeking its distribution or structure, based on which classification and also other problem 
solving tasks are handled. While a crucial nature of SVM is seeking a discriminating strip such that 
two classes become more apart from each other, merely based on samples around the boundary of two 
classes. To classifying samples with a more sophisticated structure, studies on the second direction fur-
ther proceed to estimate an appropriate structure for kernels, for which it is helpful to recall RBF studies 
that have experienced a path from simple kernels to various structures. On the other hand, studies of the 
first direction may also get a help from studies of the second direction by enhancing efforts on seeking 
a more robust boundary structure, e.g., in Algorithms II or III, with  



* arg max | ,= =q(z x )
j

q  we 
require q(z x ) q(z j x )

j j j
= - =

¹




* | , max | ,*q q  to be larger than a pre-specified threshold.
The last but not the least, its mathematical relation of Bayesian Ying Yang learning to the classical 

generalization error bound still remains an open issue. We recall that the concept of generalization er-
ror comes from measuring the discrepancy of a model estimated on a training set X

N t t
Nx= ={ }

1
 from 

the true regularity of samples underlying XN. Actually this concept involves a truth-learner philosophy. 
That is, there are a truth or regularity and a learner. The learner can not directly see the truth or regular-
ity but can get a set XN of samples from the truth or regularity subject to some disturbances or noises. 
The learner attempts to describe this XN as well as future samples from the same truth or regularity. It 
describes XN via measuring an error that the learner fits XN (e.g., those minimum fitting error based 
approaches) or how likely XN really comes from a model described by the learner (.e.g., the maximum 
likelihood based methods). More generally, a generalization error attempts to measure an error that the 
learner fits not only XN but also any samples from the same truth or regularity, which has a prediction 
nature and thus is difficult to obtain accurately.

In a contrast, a Ying Yang harmony involves a relative philosophy about two matters or systems that 
interact each other, while the concept of learner-seeking- truth is extended to a concept about how close 
the two systems are, which may be observed from two general aspects. One is externally observing 
how the two systems describe XN, which leads to either a correlation type concept if we are interested 
in whether two descriptions share certain common points or an indifference concept (a relaxed version 
of equivalence concept) if we are further interested in how close or how different the two descriptions 
are. This scenario includes the truth-learner type as a special case that a system is simply the one that 
generates XN. Still, we may need to consider the concepts of correlation and indifference about how the 
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two systems describe samples beyond XN but from the same truth or regularity. This lacks study yet but 
likely involves a trading-off between a minimum fitting error and a least model complexity.

The other aspect is observing how the two systems are, both externally on describing XN and in-
ternationally on the inner representation R. Not only concepts of correlation and matching should be 
considered for two systems with respect to both X and R, but also each system M( , )X R  may have two 
different architectures, e.g., we get two complement systems p p( | ) ( )X R R  as Ying and p p( | ) ( )R X X  
as Yang for a joint distribution p( , )X R , or generally M M( | ) ( )X R R  and M M( | ) ( )R X X  even beyond 
a probability theoretic framework. That is, we have the interaction between two complement systems, the 
one M M( | ) ( )X R R  models or describes the external data XN, while the other M M( | ) ( )R X X  consists 
of M( | )R X  for perceiving XN and M(X) that comes from the data XN directly or after smoothing. On 
such two complement systems that describe both an external data XN and the inner representation R, a 
correlation type concept is further developed into a harmony concept under certain conservation prin-
ciple (e.g. p d d( , )X R X Rò = 1 ), which combines the concepts of a minimum fitting error and a least 
model complexity while not facing the difficulty of seeking an appropriate trade-off. In other word, this 
XN based Ying Yang harmony closely relates to the classical concept of generalization error that bases 
on future samples with a difficult prediction nature.

CONCLUSION

Studies on RBF networks have been reviewed along the streams of its developments in past decades. 
Backtracked to the early 1960’s in the literature of nonparametric statistics on Parzen Window estima-
tor and subsequently on kernel regression estimator, advances are featured not only by the era from 
nonparametric based simple kernels to parameter estimation based normalized RBF networks, but also 
by the era of extending simple kernels into certain structures, from studies on mixture of experts and its 
alternatives to studies on subspace based functions (SBF), as well as further extensions for exploring 
temporal structures among samples. Moreover, different types of typical learning algorithms have also 
been summarized under the Bayesian Ying Yang learning framework for learning not only normalized 
RBF, ME and alternatives, but also SBF and temporal extensions.
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KEY TERMS AND THEIR DEFINITIONS

Normalized Radial Basis Function (NRBF) and Extended NRBF: A radial basis function (RBF) 
f x w x c

j j j jj
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=å j q
1

 is a linear combination of a series of simple function { ( , )}j q
j j j j

kx c- =1
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with each called a base that is located at c
j
. Each base is classically radial symmetrical from its cen-

ter c
j
, while it becomes unnecessary presently. A RBF is called normalized RBF (NRBF) if we have 
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1 , and is further called Extended NRBF when each constant w

j
 is extended into 
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Mixtures-of-Experts (ME) and Alternative ME (AME): Initially, a mixture-of-experts is a weighted 
combination f x g x f x
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that is called a gating net with each v x

j
( , )f  implemented 

by a three layer forward net. Generally, this weighted combination is actually the regression equation 
of a mixture of conditional distributions, i.e., q(z x g x q z x
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 All the unknowns are 

estimated via the maximum likelihood (ML) learning on q(z x| )  by a generalized Expectation and Maxi-
mization (EM) algorithm. Moreover, alternative ME is a particular ME family with p z x( | ) supported 
on a finite mixture q x( | )f = a f a a

j jj
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1 0  and with its corresponding 
posteriori as the gating net   g x q x q x
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learning on q(z x q x| ) ( | )f = a f q
j j jj

k
q x q z x( | ) ( | , )

=å 1
 by the EM algorithm.

Subspace Based Functions and Cascaded Extensions: Considering q x
j

( | )f  as generated from a 
subspace with independent factors distributed along each coordinate of an inner m dimensional repre-
sentation y y y m= [ , ],( )( )1

  we get basis functions or the gating net by   g x q x q x
j j j
( , ) ( | ) ( | )f a f f=  

based on different subspaces, resulting in subspace based extensions of ME and RBF networks. That 
is, we get f x g x f x

j j jj

k
( ) ( , ) ( , )=

=å f q
1

 as a combination of functions supported on subspace bases, 
which is thus called subspace based functions (SBF). Moreover, a direct mapping x z®    by f x

j j
( , )q  

can be replaced by a mapping x y®  as feature extraction or dimension reduction and then followed by 
another mapping y z® , from which we get a cascade  x y z® ®  mapping. This cascaded extension 
will discard redundant parts with further improvements on performance.

Model Selection and Two Stage Implementation: It refers to select an appropriate one among a 
family of infinite many candidate structures { ( )}Sk kQ  with each Sk k( )Q  in a same configuration but 
in different scales, each of which is labeled by a scale parameter k in term of one integer or a set of in-
tegers. Selecting an appropriate k means getting a structure consisting of an appropriate number of free 
parameters. Usually, a maximum likelihood (ML) learning is not good for model selection. Classically, 
model selection is made in a two stage implementation. First, enumerate a candidate set K of k and 
estimate the unknown set Q

k
 of parameters by ML learning for a solution Qk

*  at each  k Î K . Second, 
use a model selection criterion J( )*Qk  to select a best  k* . Several criteria are available for the purpose, 
such as AIC, CAIC, BIC, cross validation, etc.

Rival Penalized Competitive Learning (RPCL): It is a further development of competitive learn-
ing in help of an appropriate balance between participating and leaving mechanisms, such that an ap-
propriate number k of individual substructures will be allocated to learn multiple structures underlying 
observations. With k initially at a value larger enough, the participating mechanism is featured by that 
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a coming sample xt  is allocated to one of the k substructures via competition, and the winner adapts 
this sample by a little bit, while the leaving mechanism is featured by that the rival is de-learned a little 
bit to reduce a duplicated allocation, which will discard extra substructures, with model selection made 
automatically during learning.

Bayesian Ying-Yang System: A set X = { }x  of samples and its inner representation R in an intel-
ligent system are jointly considered by their joint distribution in two types of Bayesian decomposition. In 
a compliment to the famous ancient Ying-Yang philosophy, one decomposition p p p( , ) ( | ) ( )X R R X X=  
coincides the Yang concept with a visible domain p(X) as a Yang space and a forward pathway by 
p( | )R X  as a Yang pathway. Thus, p(X, R) is called Yang machine. Also, q q q( , ) ( | ) ( )X R X R R=  is 
called Ying machine with an invisible domain q(R) as a Ying space and a backward pathway by q( | )X R  
as a Ying pathway. Such a Ying-Yang pair is called Bayesian Ying-Yang system. The input to the Ying 
Yang system is through p p h

N
( ) ( | , )X X X=  directly from a training sample set X

N t t
Nx= ={ }

1
, while 

the inner representation q q q q( ) ( ) ( | ) ( | )R Y, Y= =Q Q Q X  describes both a long term memory Θ that 
is a collection of all unknown parameters in the system and a short term memory Y with each y Î Y  
corresponding to one element x XÎ . To build up an entire system, we need to design appropriate 
structures for each component. Specifically, the structure of q( | )Y Q  is designed subject to the nature 
of learning tasks and a principle of least representation redundancy, the structure of q( | )X R  is designed 
to suit the mapping Y X®  under a principle of divide and conquer so that a complicated mapping is 
realized by a number of simple ones, while the structure of p( | )R X  is designed for an inverse map 
X Y®  under a principle of uncertainty conversation between Ying-Yang, i.e., Yang machine preserves 
a room or varying range that is appropriate to accommodate uncertainty or information contained in the 
Ying machine.

Bayesian Ying Yang Learning: Named in a compliment to the famous ancient Chinese Ying-
Yang philosophy, it refers to a general statistical learning framework that formularizes learning tasks 
in a two pathway featured intelligent system via two complementary Bayesian representations of 
the joint distribution on the external observation and its inner representation, with all unknowns in 
the system determined by a principle that two Bayesian representations become best harmony. This 
system is called Bayesian Ying Yang system, mathematically described by q q q( , ) ( | ) ( )X R X R R=  
and p p p( , ) ( | ) ( )X R R X X= . This best harmony is mathematically implemented by maximizing 
H p q p p q q d d( || ) ( | ) ( ) ln[ ( | ) ( )] ,= ò R X X X R R X R called Bayesian Ying Yang harmony learning. It 
follows from H p q KL p q( || ) ( || )= - + p p p p d d( | ) ( ) ln[ ( | ) ( )]R X X R X X X Rò  that this best Ying 
Yang harmony principle includes not only a best Ying Yang matching by minimizing the Ying Yang 
divergence KL p q p p p p q q d d( || ) ( | ) ( ) ln[ ( | ) ( ) ( | ) ( )] ,= ò R X X R X X X R R X R but also minimizing the 
entropy -ò p p p p d d( | ) ( ) ln[ ( | ) ( )]R X X R X X X R  of the Yang machine. In other words, a best Ying 
Yang harmony seeks a Yang machine as an inverse of Ying machine such that it best matches the Ying 
machine and also keeps a least complexity. Moreover, this best Ying Yang matching provides a general 
perspective that unifies a number of typical statistical learning approaches.

Automatic Model Selection: Being different from a usual incremental or decremental model selec-
tion that bases on evaluating the change J J

new
( ) ( )Q Qk k- È q  as a subset θnew of parameters is added or 

removed, automatic model selection is associated with not only a learning algorithm or a learning principle 
but also an indicator r q( r) on a subset qr kÎ Q .  If θr consists of parameters of a redundant structural 
part, learning via either implementing this learning algorithm or optimizing this learning principle will 
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drive r q( r) 0®  and θr towards a specific value, such that the corresponding redundant structural part is 
effectively removed. One example of such a learning algorithm is Rival Penalized Competitive Learning, 
while one example of such a learning principle is Bayesian Ying-Yang Harmony Learning.




