
Anonymity for Continuous Data Publishing∗

Benjamin C. M. Fung* Ke Wang† Ada Wai-Chee Fu§ Jian Pei†

* Concordia University, Montreal, QC, Canada, fung@ciise.concordia.ca
† Simon Fraser University, Burnaby, BC, Canada, {wangk,jpei}@cs.sfu.ca

§ The Chinese University of Hong Kong, adafu@cse.cuhk.edu.hk

ABSTRACT
k-anonymization is an important privacy protection mech-
anism in data publishing. While there has been a great
deal of work in recent years, almost all considered a sin-
gle static release. Such mechanisms only protect the data
up to the first release or first recipient. In practical appli-
cations, data is published continuously as new data arrive;
the same data may be anonymized differently for a differ-
ent purpose or a different recipient. In such scenarios, even
when all releases are properly k-anonymized, the anonymity
of an individual may be unintentionally compromised if re-
cipient cross-examines all the releases received or colludes
with other recipients. Preventing such attacks, called corre-
spondence attacks, faces major challenges. In this paper, we
systematically characterize the correspondence attacks and
propose an efficient anonymization algorithm to thwart the
attacks in the model of continuous data publishing.

1. INTRODUCTION
k-anonymization [11] is a promising approach to data pub-

lishing while protecting the identity of individuals. The data
holder has a table of the form [1]

D(Explicit identifier, Quasi identifier, Sensitive attribute).

Explicit identifier consists of identifying information (such
as SSN and names). Quasi identifier (such as date of birth,
gender, and zip code) does not reveal identity, but can be
used to link to a person or an explicit identity in some exter-
nal sources [11]. Sensitive attribute consists of other person-
specific information (such as medical and DNA entries). In-
stead of publishing the original table D, the data holder
publishes an anonymized release

R(QID, Sensitive attribute),

∗The work was supported by research grants from the Nat-
ural Sciences and Engineering Research Council of Canada
and ENCS faculty start-up funds from Concordia University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

where QID is a k-anonymized version of Quasi identifier
[11]: each record belongs to an equivalence class of size at
least k and all records in an equivalence class are made indis-
tinguishable with respect to QID by hiding some details. In
a k-anonymized release, if an individual is linked to a record
through QID, it is also linked to at least k−1 other records.
Sensitive attribute is not modified because the data useful-
ness depends on the exact information of this attribute.

k-anonymization has been primarily studied for a single
static release of data [3, 4, 6, 9, 11, 13]. In practice, however,
new data arrives continuously and up-to-date data has to be
published to researchers in a timely manner. One approach
is to anonymize and publish new records separately each
time they arrive. This naive approach suffers from severe
data distortion because small increments are anonymized in-
dependently. Moreover, it is difficult to analyze a collection
of independently anonymized data sets. For example, if the
country name (e.g., Canada) is used in the release for first
month records and if the city name (e.g., Toronto) is used
in the release for second month records, counting the total
number of persons born in Toronto is not possible. Another
approach is to enforce the later release to be no more spe-
cialized than the previous releases [13]. The major drawback
is that each subsequent release gets increasingly distorted,
even if more new data are available.

1.1 A Practical Publishing Model
Suppose that the data holder previously collected a set of

records D1 timestamped T1, and published a k-anonymized
version of D1, denoted release R1. Then the data holder
collects a new set of records D2 timestamped T2 and wants
to publish a k-anonymized version of all records collected
so far, D1 ∪D2, denoted release R2. Note, Di contains the
“events” that happened at time Ti. An event, once occurred,
becomes part of the history, therefore, cannot be deleted.
This publishing scenario is different from update scenario in
standard data management where deletion of records can oc-
cur. Ri simply publishes the “history”, i.e., the events that
happened up to time Ti. A real-life example can be found
in California where the hospitals are required to submit spe-
cific demographic data of all discharged patients every six
months.1 The above publishing model directly serves the
following scenarios.

Continuous data publishing. Publishing the release
R2 for D1 ∪D2 would permit an analysis on the data over
the combined time period of T1 and T2. It also takes the
advantage of data abundance over a longer period of time

1http://www.oshpd.ca.gov/HQAD/PatientLevel/

264

to reduce data distortion required by anonymization.
Multi-purpose publishing. With D2 being empty, R1

and R2 can be two releases of D1 anonymized differently to
serve different information needs, such as correlation anal-
ysis vs clustering analysis, or different recipients, such as a
medical research team vs a health insurance company, who
may collude together by sharing their received data.

We first describe the publishing model with two releases
and then show the extension beyond two releases in Sec-
tion 7. Following the convention of k-anonymity [13], we as-
sume that each individual has at most one record in D1∪D2.
This assumption holds in many real-life databases. For ex-
ample, in a normalized customer data table, each customer
has only one profile. In the case that an individual has a
record in both D1 and D2, there will be two duplicates in
D1 ∪ D2 and one of them can be removed in a preprocess-
ing. As in [17], we assume that the records of an individual
remain the same in D1 and D2.

1.2 Correspondence Attacks
We show, by an example, that the traditional k-anonymization

is insufficient for preventing correspondence attacks.

Example 1.1. Consider Tables 1-2, where QID is [Birth-
place,Job] and the sensitive attribute is Disease. The data
holder (e.g., a hospital) published the 5-anonymized R1 for
5 records a1-a5 collected in the previous month (i.e., times-
tamp T1). The anonymization was done by generalizing UK
and France into Europe; the original values in the brackets
are not released. In the current month (i.e., timestamp T2),
the data holder collects 5 new records (i.e., b6-b10) and pub-
lishes the 5-anonymized R2 for all 10 records collected so far.
Records are shuffled to prevent mapping between R1 and R2

by their order. The recipients know that every record in R1

has a “corresponding record” in R2 (that originates from the
same record in D1). One recipient, the attacker, tries to
identify his neighbor Alice’s record from R1 or R2, knowing
that Alice was admitted to the hospital, as well as, Alice’s
QID and timestamp. Consider the following scenarios.

Scenario I. Alice has QID=[France, Lawyer] and times-
tamp T1. The attacker seeks to identify Alice’s record in R1.
Examining R1 alone, Alice’s QID matches all 5 records in
R1. However, examining R1 and R2 together, the attacker
learns that the records a1,a2,a3 cannot all originate from Al-
ice’s QID; otherwise R2 would have contained at least three
records of [France, Professional, Flu] since every record in
R1 has a corresponding record in R2. Consequently, the
attacker excludes one of a1,a2,a3 as possibility; the choice
among a1,a2,a3 does not matter as they are identical.

Scenario II. Alice has QID=[France, Lawyer] and times-
tamp T1. Knowing that R2 contains all records at T1 and T2,
the attacker seeks to identify Alice’s record in R2. The at-
tacker infers that, among the matching records b4-b8 in R2,
at least one of b4,b5,b6 must have timestamp T2; otherwise
b4,b5,b6 would have timestamp T1, in which case there would
have been at least three (corresponding) records of the form
[Europe, Lawyer, HIV] in R1. In this case, the attacker ex-
cludes at least one of b4,b5,b6 since Alice has timestamp T1.

Scenario III. Alice has QID=[UK, Lawyer] and times-
tamp T2 and the attacker seeks to identify Alice’s record in
R2. The attacker infers that, among the matching records
b1,b2,b3,b9,b10 in R2, at least one of b1,b2,b3 must have times-
tamp T1; otherwise one of a1,a2,a3 would have no corre-
sponding record in R2. In this case, at least one of b1,b2,b3

Table 1: 5-anonymized R1

RID Birthplace Job Disease
(a1) Europe (UK) Lawyer Flu
(a2) Europe (UK) Lawyer Flu
(a3) Europe (UK) Lawyer Flu
(a4) Europe (France) Lawyer HIV
(a5) Europe (France) Lawyer HIV

Table 2: 5-anonymized R2

RID Birthplace Job Disease
(b1) UK Professional (Lawyer) Flu
(b2) UK Professional (Lawyer) Flu
(b3) UK Professional (Lawyer) Flu
(b4) France Professional (Lawyer) HIV
(b5) France Professional (Lawyer) HIV
(b6) France Professional (Lawyer) HIV
(b7) France Professional (Doctor) Flu
(b8) France Professional (Doctor) Flu
(b9) UK Professional (Doctor) HIV
(b10) UK Professional (Lawyer) HIV

is excluded since Alice has timestamp T2.
In each scenario, at least one matching record is excluded,

so the 5-anonymity of Alice is compromised.

All these attacks “crack” some matching records in R1

or R2 by inferring that they either do not originate from
Alice’s QID or do not have Alice’s timestamp. Such cracked
records are not related to Alice, thus, excluding them allows
the attacker to focus on a smaller set of candidates. Since
cracked records are identified by cross-examining R1 and R2

and by exploiting the knowledge that every record in R1

has a “corresponding record” in R2, such attacks are called
correspondence attacks.

Having access to only R1 and R2, not D1 and D2, crack-
ing a record is not straightforward. For example, to crack a
record in R1 for Alice having QID=[France, Lawyer], the at-
tacker must show that the original birthplace in the record
is not France, whereas the published Europe may or may
not originate from France. Similarly, it is not straightfor-
ward to infer the timestamp of a record in R2. For example,
any three of b1,b2,b3,b7,b8 can be the corresponding records
of a1,a2,a3, so none of them must have timestamp T1. In
fact, observing only the published records, there are many
possible assignments of corresponding records between R1

and R2. For example, one assignment is
(a1, b1), (a2, b2), (a3, b3), (a4, b4), (a5, b5),

where the original record represented by (a1, b1) is [UK,
Lawyer, Flu]. Another assignment is

(a1, b7), (a2, b2), (a3, b8), (a4, b6), (a5, b9).
In this assignment, the original record represented by (a1, b7)
is [France, Lawyer, Flu]. All such assignments are possible
to the attacker because they all produce the same “view”,
i.e., R1 and R2. Detecting correspondence attacks assuming
this view of the attacker is non-trivial.

1.3 Contributions
In this paper, we formalize the notion of correspondence

attacks and present an approach to prevent such attacks.
We focus on answering several key questions:
• Given that there are many possible ways of assigning cor-

responding pairs, and each may lead to a different infer-
ence, what should the attacker assume while cracking a
record? We present a model of correspondence attacks
to address this issue and show that the continuous data
publishing problem subsumes the case with multiple col-
luding recipients (Section 3).

265

• What are exactly the records that can be cracked based on
R1 and R2? We systematically characterize the set of
cracked records by correspondence attacks and propose
the notion of BCF-anonymity to measure anonymity as-
suming this power of the attacker (Section 4).

• Can R2 be anonymized such that R2 satisfies BCF-anonymity
yet remains useful? We show that the optimal BCF-
anonymization is NP-hard. Then, we develop a practi-
cally efficient algorithm to determine a BCF-anonymized
R2 (Section 5), study its data quality (Section 6), and
extend the proposed approach to deal with more than
two releases and other privacy notions (Section 7).

2. RELATED WORK
Anonymizing continuous data is a challenging problem be-

cause the attacker has increasingly more knowledge about
the previously published data. Some anonymization meth-
ods [2, 10, 14, 17] have been proposed recently.

[2] is an early study which investigates the continuous data
publishing scenario, but the anonymization method relies on
delaying records release and the delay can be unbounded.
Consequently, records could not be released in a timely fash-
ion. In our method, records collected at timestamp Ti are
always published in the corresponding release Ri without
delay. Moreover, [2] guarantees a relatively weak privacy
notion, which requires each equivalence class to contain at
least ` distinct sensitive values. This privacy notion is not
safe if some sensitive values dominate an equivalence class.
In contrast, our proposed approach can achieve anonymity,
confidence bounding [15], (α,k)-anonymity [16], and other
safer notions of `-diversity [8].

[17] presents the first study to address both record inser-
tions and deletions in data re-publication. It proposes a new
privacy notion called m-invariance: if a record r has been
published in releases Ri, · · · , Rj where i < j, then all QID
groups containing r must have the same set of sensitive val-
ues, called the signature [17]. This will ensure the intersec-
tion of sensitive values over all such groups does not reduce
the set of sensitive values. To maintain m-invariance, their
method adds “counterfeit records” corresponding to infre-
quent sensitive values to make those equivalence classes have
the same signature. Counterfeits, however, may not be ac-
ceptable in some cases. Suppose a pharmaceutical company
wants to analyze patient reaction to certain drugs. Infre-
quent sensitive values such as the negative reactions are the
most interesting ones and the target for research. However,
with many counterfeit negative reactions which correspond
to no real-life entities, it is difficult to deploy the results
obtained from such data. Note that, even in the “insertion
only” case, adding counterfeits is still necessary, for exam-
ple, when a record with a new sensitive value is added. In
contrast, our method guarantees data truthfulness at record
level: each published record corresponds to a real-life entity.

Our previous work [14] studies the problem of anonymiz-
ing sequential releases where each subsequent release pub-
lishes a different subset of attributes for the same set of
records. In contrast, this paper considers each release that
combines new records with previously collected records over
the same set of attributes. The attack and prevention mech-
anisms are very different in these two publishing models.

[10] considers the scenario that the Case-ID of records
must be published. In our work, we consider the scenario
that the data holder has removed the Case-ID of records, so

the attack based on Case-ID [10] does not occur. Instead,
we deal with a new type of attacks even if no Case-ID is
published. [5] proposes an efficient index structure to incre-
mentally k-anonymize each individual release, but it does
not address the correspondence attacks studied in this pa-
per.

3. PROBLEM STATEMENTS
Every attribute has a finite set of domain values. Nu-

meric values are pre-discretized into intervals. A raw record
contains only domain values. Every attribute in QID has a
taxonomy (tree) in which leaf nodes represent domain values
and high level values generalize low level values. To gener-
alize a table, we employ the global recoding scheme, i.e.,
globally replace all instances of some domain values with
their ancestor value in the taxonomy of some attributes Aj

in QID. A generalized attribute Aj can be represented by a
“cut” through its taxonomy tree. A cut of a tree is a subset
of values in the tree which contains exactly one value on each
root-to-leaf path [4]. R1 and R2 in Tables 1-2 are examples.

There are some other generalization schemes, such as mul-
tidimensional [7] and local recoding [10, 16, 17], that cause
less data distortion, but these schemes make data analysis
difficult. In local recoding, for example, some instances of
Lawyer can be generalized to Professional while some in-
stances of Lawyer remain ungeneralized. As a result, count-
ing the number of lawyers becomes impossible because some
lawyers are represented by professionals. Furthermore, many
standard data mining methods, e.g., decision tree analysis,
treat Lawyer and Professional as two independent values.
Consequently, the decision tree may contain two branches,
(Lawyer → class1) and (Professional → class2). It is unclear
which branch should be used to classify a new lawyer.

In a k-anonymized table, records are partitioned into equiv-
alence classes of size (i.e., the number of records) at least k.
Each equivalence class contains all records having the same
value on QID. We use qid to denote both a value on QID
and the corresponding equivalence class. |qid| denotes the
size of the equivalence class. A group g in an equivalence
class qid consists of the records in qid that have the same
value on the sensitive attribute. In other words, a group
contains all records in the table that are indistinguishable
wrt QID and the sensitive attribute. A person matches a
(generalized) record in a table if her QID is either equal to
or more specific than the record on every attribute in QID.

3.1 Correspondence Attacks
The data holder previously collected some data D1 times-

tamped T1 and published a k-anonymized version of D1,
called release R1. Then the data holder collects new data
D2 timestamped T2 and publishes a k-anonymized version
of D1 ∪ D2, called release R2. An attacker, one of the re-
cipients of R1 and R2, attempts to identify the record of
some target person, denoted by P , from R1 or R2. We as-
sume that the attacker is aware of P ’s QID and timestamp.
In addition, the attacker has the following correspondence
knowledge: (1) Every record timestamped T1 (i.e., from D1)
has a record in R1 and a record in R2, called corresponding
records. (2) Every record timestamped T2 (i.e., from D2)
has a record in R2, but not in R1. Below is an intuition of
the three possible attacks based on such knowledge.

Forward-attack, denoted by F-attack(R1, R2). P has
timestamp T1 and the attacker tries to identify P ’s record

266

in the cracking release R1 using the background release R2.
Since P has a record in R1 and a record in R2, if a matching
record r1 in R1 represents P , there must be a corresponding
record in R2 that matches P ’s QID and agrees with r1 on
the sensitive attribute. If r1 fails to have such a correspond-
ing record in R2, then r1 does not originate from P ’s QID,
and therefore, r1 can be excluded from the possibility of P ’s
record. Scenario I is an example.

Cross-attack, denoted by C-attack(R1, R2). P has times-
tamp T1 and the attacker tries to identify P ’s record in the
cracking release R2 using the background release R1. Simi-
lar to F-attack, if a matching record r2 in R2 represents P ,
there must be a corresponding record in R1 that matches
P ’s QID and agrees with r2 on the sensitive attribute. If r2

fails to have such a corresponding record in R1, then r2 ei-
ther has timestamp T2 or does not originate from P ’s QID,
and therefore, r2 can be excluded from the possibility of P ’s
record. Scenario II is an example.

Backward-attack, denoted by B-attack(R1, R2). P has
timestamp T2 and the attacker tries to identify P ’s record
in the cracking release R2 using the background release R1.
In this case, P has a record in R2, but not in R1. Therefore,
if a matching record r2 in R2 has to be the corresponding
record of some record in R1, then r2 has timestamp T1,
and therefore, r2 can be excluded from the possibility of
P ’s record. Scenario III is an example. Note that it is
impossible to single out the matching records in R2 that
have timestamp T2 but do not originate from P ’s QID since
all records at T2 have no corresponding record in R1.

Table 3 summarizes all four possible combinations of crack-
ing release (R1 or R2) and target P ’s timestamp (T1 or T2).
Note that if a target P has timestamp T2, P does not have
a record in R1, so it is impossible to crack P ’s record in R1

in such a case and there are only three types of attacks.
All these attacks are based on making some inferences

about corresponding records. There are many possible as-
signments of corresponding records and each assignment im-
plies a possibly different underlying data (D′

1, D
′
2), not nec-

essarily the underlying data (D1, D2) collected by the data
holder. Since all such underlying data (D′

1, D
′
2) generate the

same published R1 and R2, they are all possible to the at-
tacker who knows about the data only through the published
R1 and R2. This observation motivates us to consider only
the inferences that do not depend on a particular choice of
a candidate (D′

1, D
′
2). First, let us define the space of such

candidates underlying data for the published R1 and R2.
Consider a record r in R1 or R2. An instantiation of

r is a raw record that agrees with r on the sensitive at-
tribute and specializes r or agrees with r on QID. A gen-
erator of (R1, R2) is an assignment, denoted by I, from the
records in R1∪R2 to their instantiations such that: for each
record r1 in R1, there is a distinct record r2 in R2 such that
I(r1) = I(r2); (r1, r2) is called buddies under I. Duplicate
records are treated as distinct records. The buddy relation-
ship is injective: no two records have the same buddy. Every
record in R1 has a buddy in R2 and exactly |R1| records in
R2 have a buddy in R1. If r2 in R2 has a buddy in R1,
I(r2) has timestamp T1; otherwise I(r2) has timestamp T2.
Intuitively, a generator represents an underlying data for
(R1, R2) and each pair of buddies represent corresponding
records in the generator.

Example 3.1. Refer to R1 and R2 in Tables 1-2. One
generator has the buddies:

Table 3: Types of correspondence attacks
Target P ’s Cracking Background
timestamp release release

F-attack T1 R1 R2

C-attack T1 R2 R1

B-attack T2 R2 R1

No attack T2 R1 R2

(a1, b1), assigned to [UK, Lawyer, Flu]
(a2, b2), assigned to [UK, Lawyer, Flu]
(a3, b3), assigned to [UK, Lawyer, Flu]
(a4, b4), assigned to [France, Lawyer, HIV]
(a5, b5), assigned to [France, Lawyer, HIV].

I(b1)-I(b5) have timestamp T1. b6-b10 can be assigned to
any instantiation. Another generator has the buddies:

(a1, b7), assigned to [France, Lawyer, Flu]
(a2, b2), assigned to [UK, Lawyer, Flu]
(a3, b8), assigned to [France, Lawyer, Flu]
(a4, b6), assigned to [France, Lawyer, HIV]
(a5, b9), assigned to [UK, Lawyer, HIV].

I(b2), I(b6)-I(b9) have timestamp T1. Note that these gen-
erators give different underlying data.

Consider a record r in R1 or R2. Suppose that for some
generator I, the instantiation I(r) matches P ’s QID and
timestamp. In this case, excluding r means information loss
for the purpose of attack because there is some underlying
data for (R1, R2) (given by I) in which r is P ’s record. On
the other hand, suppose that for no generator I the instan-
tiation I(r) can match P ’s QID and timestamp. Then r
definitely cannot be P ’s record, so excluding r losses no in-
formation to the attacker. Our attack model is based on
excluding such non-representing records.

For a target P with timestamp T1, if P has a record in
R1, P must match some qid1 in R1 and some qid2 in R2.
Therefore, we assume such a matching pair (qid1, qid2) for
P . Recall that a group gi in an equivalence class qidi con-
sists of the records in qidi that agree on the sensitive at-
tribute. For a generator I, I(gi) denotes the set of records
{I(ri) | ri ∈ gi}. Below, we present the formal definition for
each type of attacks. ri, gi, qidi refer to records, groups and
equivalence classes from Ri, i = 1, 2.

3.1.1 F-attack
The F-attack seeks to identify as many as possible records

in an equivalence class qid1 that do not represent P in any
choice of the generator. Such cracked records definitely can-
not be P ’s record, and therefore, can be excluded. Since all
records in a group are identical, the choice of cracked records
in a group does not make a difference and determining the
number of cracked records (i.e., the crack size) is sufficient
to define the attack.

Definition 3.1 (Crack size). Assume that a target
P has timestamp T1 and matches (qid1, qid2). A group g1

in qid1 has crack size c wrt P if c is maximal such that for
every generator I, at least c records in I(g1) do not match
P ’s QID.

If g1 has crack size c, at least c records in g1 can be ex-
cluded from the possibility of P ’s record. On the other hand,
with c being maximal, excluding more than c records will
result in excluding some record that can possibly be P ’s
record. Therefore, the crack size is both the minimum and

267

the maximum number of records that can be excluded from
g1 without any information loss for the purpose of attack.

Example 3.2. Consider Scenario I in Example 1.1. Alice
has QID=[France, Lawyer] and matches (qid1, qid2), where

qid1 = [Europe, Lawyer] = {a1, a2, a3, a4, a5}
qid2 = [France, Professional] = {b4, b5, b6, b7, b8}.

qid1 has two groups: g1 = {a1, a2, a3} for Flu and g′1 =
{a4, a5} for HIV. g1 has crack size 1 wrt Alice because, for
any generator I, at least one of I(a1),I(a2),I(a3) does not
match Alice’s QID: if all of I(a1),I(a2),I(a3) match Alice’s
QID, R2 would have contained three buddies of the form
[France, Professional, Flu]. The crack size is maximal since
the second generator I in Example 3.1 shows that only one of
I(a1),I(a2),I(a3) (i.e., I(a2)) does not match Alice’s QID.

Definition 3.1 does not explain how to effectively deter-
mine the crack size, which is the topic in Section 4. For
now, assuming that the crack size is known, we want to
measure the anonymity after excluding the cracked records
from each equivalence class. The F-anonymity below mea-
sures the minimum size of an equivalence class in R1 after
excluding all records cracked by F-attack.

Definition 3.2 (F-anonymity). Let F (P, qid1, qid2) be
the sum of the crack sizes for all groups in qid1 wrt P .
F (qid1, qid2) denotes the maximum F (P, qid1, qid2) for any
target P that matches (qid1, qid2). F (qid1) denotes the
maximum F (qid1, qid2) for all qid2 in R2. The F-anonymity
of (R1, R2), denoted by FA(R1, R2) or FA, is the minimum
(|qid1| − F (qid1)) for all qid1 in R1.

3.1.2 C-attack

Definition 3.3 (Crack size). Assume that a target
P has timestamp T1 and matches (qid1, qid2). A group g2

in qid2 has crack size c wrt P if c is maximal such that for
every generator I, at least c records in I(g2) do not match
either P ’s timestamp or P ’s QID.

Example 3.3. Consider Scenario II in Example 1.1. Al-
ice has QID=[France, Lawyer] and matches (qid1,qid2) where

qid1 = [Europe, Lawyer] = {a1, a2, a3, a4, a5}
qid2 = [France, Professional] = {b4, b5, b6, b7, b8}.

qid2 has two groups: g2 = {b7, b8} for Flu, and g′2 = {b4, b5, b6}
for HIV. g′2 has crack size 1 wrt Alice since, for any gener-
ator I at least one of I(b4),I(b5),I(b6) does not match Al-
ice’s timestamp or QID; otherwise, R1 would have contained
three buddies of the form [Europe, Lawyer, HIV]. The crack
size is maximal since the first generator I in Example 3.1
shows that I(b4) and I(b5) match Alice’s timestamp and
QID.

Definition 3.4 (C-anonymity). Let C(P, qid1, qid2) be
the sum of crack sizes of all groups in qid2 wrt P . C(qid1, qid2)
denotes the maximum C(P, qid1, qid2) for any target P that
matches (qid1, qid2). C(qid2) denotes the maximum C(qid1, qid2)
for all qid1 in R1. The C-anonymity of (R1, R2), denoted by
CA(R1, R2) or CA, is the minimum (|qid2| − C(qid2)) for
all qid2 in R2.

3.1.3 B-attack
A target P for B-attack has timestamp T2, thus, does not

have to match any qid1 in R1.

Definition 3.5 (Crack size). Assume that a target
P has timestamp T2 and matches qid2 in R2. A group g2 in
qid2 has crack size c wrt P if c is maximal such that for every
generator I, at least c records in I(g2) have timestamp T1.

Example 3.4. Consider Scenario III in Example 1.1. Al-
ice has timestamp T2 and QID=[UK, Lawyer]. qid2=[UK,
Professional] consists of g2 = {b1, b2, b3} for Flu and g′2 =
{b9, b10} for HIV. g2 has crack size 1 wrt Alice. For every
generator I, at least one of I(b1),I(b2),I(b3) has timestamp
T1; otherwise, one of a1,a2,a3 would have no buddy in R2.
The crack size is maximal since the second generator I in
Example 3.1 shows that only I(b2), among I(b1),I(b2),I(b3),
has timestamp T1.

Definition 3.6 (B-anonymity). Let B(P, qid2) be the
sum of the crack sizes of all groups in qid2 wrt P . B(qid2) de-
notes the maximum B(P, qid2) for any target P that matches
qid2. The B-anonymity of (R1, R2), denoted by BA(R1, R2)
or BA, is the minimum (|qid2|−B(qid2)) for all qid2 in R2.

3.2 Two Problems
A BCF-anonymity requirement states that all of BA, CA

and FA are equal to or larger than some data-holder-specified
threshold. We study two problems. The first problem checks
whether a BCF-anonymity requirement is satisfied, assum-
ing the input (i.e., R1 and R2) as viewed by the attacker.

Definition 3.7 (Detection). Given R1 and R2, as
described above, the BCF-detection problem is to determine
whether a BCF-anonymity requirement is satisfied.

The second problem is to produce a generalized R2 that
satisfies a given BCF-anonymity requirement and remains
useful. This problem assumes the input as viewed by the
data holder, that is, R1, D1 and D2, and uses an informa-
tion metric to measure the usefulness of the generalized R2.
Examples are discernibility cost [12] and data distortion [11].

Definition 3.8 (Anonymization). Given R1, D1 and
D2, as described above, the BCF-anonymization problem is
to generalize R2 = D1∪D2 so that R2 satisfies a given BCF-
anonymity requirement and remains as useful as possible wrt
a specified information metric.

In the special case of empty D1, F-attack and C-attack do
not happen and B-anonymity coincides with k-anonymity
of R2 for D2. Since the optimal k-anonymization is NP-
hard [9], the optimal BCF-anonymization is NP-hard.

So far, we have assumed that both R1 and R2 are received
by one recipient. In the special case of empty D2, R1 and R2

are two different generalized versions of the same data D1 to
serve different information requirements or different recipi-
ents. In this case, there are potentially multiple attackers.
What happens if the attackers collude together? The collu-
sion problem may seem to be very different. Indeed, Defini-
tions 3.7-3.8 subsume the collusion problem. Consider the
worst-case collusion scenario in which all recipients collude
together by sharing all of their received data. This scenario
is equivalent to publishing all releases to one attacker.

4. DETECTION
The key to the BCF-detection problem is computing the

crack size in Definitions 3.1, 3.3, 3.5. We present a method

268

for computing the crack size of a group. Our insight is that
if a record r represents the target P for some generator, its
buddy in the other release (i.e., the corresponding record)
must satisfy some conditions. If such conditions fail, r does
not represent P for that generator. One of the conditions is
the following “comparable” relationship.

Definition 4.1. For qid1 in R1 and qid2 in R2, (qid1, qid2)
are comparable if for every attribute A in QID, qid1[A] and
qid2[A] are on the same path in the taxonomy of A. For a
record in r1 (or a group) in qid1 and a record r2 (or a group)
in qid2, (r1, r2) are comparable if they agree on the sensitive
attribute and (qid1, qid2) are comparable. For comparable
(qid1, qid2), CG(qid1, qid2) denotes the set of group pairs
{(g1, g2)}, where g1 and g2 are groups in qid1 and qid2 for
the same sensitive value and there is one pair (g1, g2) for
each sensitive value (unless both g1 and g2 are empty).

Essentially, being comparable means sharing a common
instantiation. For example, qid1 = [Europe, Lawyer] and
qid2 = [UK, Professional] are comparable, but qid1 = [Eu-
rope, Lawyer] and qid2 = [Canada, Professional] are not.
It is easy to see that if a target P matches (qid1, qid2),
(qid1, qid2) are comparable; if (r1, r2) are buddies (for some
generator), (r1, r2) are comparable; comparable (r1, r2) can
be assigned to be buddies (because of sharing a common
instantiation). The following fact can be verified:

Theorem 4.1. Suppose that P matches (qid1, qid2) and
that (r1, r2) are buddies for a generator I. If I(r1) and I(r2)
match P ’s QID, then r1 is in g1 if and only if r2 is in g2,
where (g1, g2) is in CG(qid1, qid2).

Theorem 4.1 follows becuase buddies agree on the sensi-
tive attribute and I(r1) and I(r2) matching P ’s QID implies
that r1 is in qid1 and r2 is in qid2. The next two lem-
mas are used to derive an upper bound on crack size. The
first states some transitivity of the “comparable” relation-
ship, which will be used to construct a required generator in
the upper bound proof.

Lemma 4.1 (3-hop transitivity). Let r1, r
′
1 be in R1

and r2, r
′
2 be in R2. If each of (r′1, r2), (r2, r1) and (r1, r

′
2)

is comparable, (r′1, r
′
2) is comparable.

Proof. The three comparable pairs imply that r′1 and
r′2 agree on the sensitive attribute. We show that r′1[A]
and r′2[A] are on the same path of the taxonomy for every
attribute A in QID. Recall that the generalization in A
forms a cut of the taxonomy of A. Therefore, with both r1

and r′1 being comparable to r2, either r1[A] = r′1[A] or both
are more specific than r2[A]. Similarly, either r2[A] = r′2[A]
or both are more specific than r1[A]. At least one of these
equalities must hold; otherwise r1[A] is both more general
than and more specific than r2[A], which is impossible. If
r1[A] = r′1[A] holds, the proof is done because r1[A] and
r′2[A] are on the same path. If r2[A] = r′2[A] holds, the proof
is done because r′1[A] and r2[A] are on the same path.

The following is the key lemma for proving the upper
bound of crack size.

Lemma 4.2. Let (g1, g2) be in CG(qid1, qid2). There ex-
ists a generator in which exactly min(|g1|, |g2|) records in g1

have a buddy in g2.

Proof. Consider any generator I. Since the buddy re-
lationship is injective, at most min(|g1|, |g2|) records in g1

have a buddy in g2. Let X contain all such records and pos-
sibly other records in g1 so that |X| = min(|g1|, |g2|). For
each r1 in X that has a buddy r′2 not in g2, we create a new
buddy r2 that is in g2. Since less than min(|g1|, |g2|) records
in g1 have a buddy in g2, some record r2 in g2 does not have
a buddy in g1. If r2 has no buddy, let r2 be the new buddy
of r1. Assume that r2 has a buddy r′1. Note that r′1 is not in
g1. Each of (r′1, r2), (r2, r1) and (r1, r

′
2) is comparable (be-

cause buddies are comparable). From Lemma 4.1, (r′1, r
′
2) is

comparable. Therefore, we can swap the buddies of r1 and
r′1, that is, make (r1, r2) and (r′1, r

′
2) the new buddies. Note

that every record in X that previously has a buddy in g2 is
not affected by the swapping.

Now we determine the crack size for each type of attack.

4.1 F-attack
Assume that P matches (qid1, qid2). Consider a group

pair (g1, g2) in CG(qid1, qid2). Since the buddy relation-
ship is injective, if g1 contains more records than g2, i.e.,
|g1| > min(|g1|, |g2|), at least |g1| − min(|g1|, |g2|) records
in g1 do not have a buddy in g2 for any generator. Ac-
cording to Theorem 4.1, these records do not originate from
P ’s QID for any generator. Thus the crack size of g1 is
at least |g1| − min(|g1|, |g2|) (i.e., a lower bound). On the
other hand, according to Lemma 4.2, there exists some gen-
erator in which exactly |g1|−min(|g1|, |g2|) records in g1 do
not have a buddy in g2; according to Theorem 4.1, these
records do not originate from P ’s QID for any generator.
By Definition 3.1, |g1|−min(|g1|, |g2|) is the crack size of g1.

Theorem 4.2. Suppose that a target P matches (qid1, qid2).
Let (g1, g2) be in CG(qid1, qid2). (1) g1 has crack size c wrt
P , where c = |g1| −min(|g1|, |g2|). (2) F (qid1, qid2) =

∑
c,

where
∑

is over (g1, g2) in CG(qid1, qid2) and g1 has the
crack size c determined in (1).

Remarks. F (P, qid1, qid2) is the same for all targets P
that match (qid1, qid2), i.e., F (qid1, qid2) computed by The-
orem 4.2. To compute FA, we compute F (qid1, qid2) for
all comparable (qid1, qid2). This requires partitioning the
records into equivalence classes and groups, which can be
done by sorting the records on all attributes. The F-attack
happens when |g1| > min(|g1|, |g2|), that is, g1 contains too
many records for their buddies to be contained in g2. This
could be the case if R2 has less generalization due to addi-
tional records at timestamp T2.

Example 4.1. Continue with Example 3.2. Alice matches
qid1=[Europe, Lawyer] and qid2=[France, Professional]. qid1

consists of g1 = {a1, a2, a3} for Flu and g′1 = {a4, a5} for
HIV. qid2 consists of g2 = {b7, b8} for Flu and g′2 = {b4, b5, b6}
for HIV. CG(qid1, qid2) = {(g1, g2), (g

′
1, g

′
2)}. |g1| = 3,

|g2| = 2, |g′1| = 2 and |g′2| = 3. So g1 has crack size 1
and g′1 has crack size 0.

4.2 C-attack
By a similar argument, at least |g2|−min(|g1|, |g2|) records

in g2 do not have a buddy in g1 in any generator, so the
crack size of g2 is at least |g2| − min(|g1|, |g2|). Accord-
ing to Lemma 4.2, for some generator exactly min(|g1|, |g2|)
records in g1 have a buddy in g2, therefore, exactly min(|g1|, |g2|)

269

records in g2 have a buddy in g1 due to the injective buddy
relationship. So, exactly |g2| −min(|g1|, |g2|) records in g2

do not have a buddy in g1. According to Theorem 4.1, these
records in g2 do not represent P . By Definition 3.3, we have

Theorem 4.3. Suppose that a target P matches (qid1, qid2).
Let (g1, g2) be in CG(qid1, qid2). (1) g2 has crack size c wrt
P , where c = |g2| −min(|g1|, |g2|). (2) C(qid1, qid2) =

∑
c,

where
∑

is over (g1, g2) in CG(qid1, qid2) and g2 has the
crack size c determined in (1).

The condition |g2| > min(|g1|, |g2|) says that g2 contains
too many records even if all the records in g1 have a buddy
in g2. In this case, some record in g2 either comes from D2

or has a buddy not in g1. Such records either do not match
P ’s timestamp (i.e., T1) or do not originate from P ’s QID.
It is interesting to note the condition |g1|−min(|g1|, |g2|) >
0 for F-attack and the condition |g2| − min(|g1|, |g2|) > 0
for B-attack are exactly opposite. More interestingly, in
Section 4.4 we will show that FA ≥ k is violated exactly
when CA ≥ k is violated.

Example 4.2. Continue with Example 3.3. Alice matches
qid1=[Europe, Lawyer] and qid2=[France, Professional]. qid1

consists of g1 = {a1, a2, a3} and g′1 = {a4, a5}. qid2 con-
sists of g2 = {b7, b8} and g′2 = {b4, b5, b6}. CG(qid1, qid2)
= {(g1, g2), (g

′
1, g

′
2)}. |g2| = 2, |g1| = 3, |g′2| = 3 and

|g′1| = 2. Thus g2 has crack size 0 and g′2 has crack size 1.

4.3 B-attack
Suppose that P matches some qid2 in R2. Let g2 be a

group in qid2. The crack size of g2 is related to the number
of records in g2 that have a buddy in R1 (thus timestamp
T1). Let G1 denote the set of records in R1 comparable to g2.
So G1 contains all the records in R1 that can have a buddy
in g2. Let G2 denote the set of records in R2 comparable to
some record in G1. The next lemma implies that all records
in G1 can have a buddy in G2 − g2.

Lemma 4.3. Every record in G2 is comparable to all records
in G1 and only those records in G1.

Proof. Each record r2 in G2 is comparable to some record
r′1 in G1 and both r′1 and r1 are comparable to g2, where
r1 is any record in G1. It then follows from Lemma 4.1
that (r1, r2) are comparable. For the second part, suppose
that a record r2 in G2 is comparable to some record r1 in
R1. Note that r2 is comparable to some record r′1 in G1,
which is comparable to g2. Lemma 4.1 then implies that r1

is comparable to g2. By the definition of G1, r1 is in G1.

From Lemma 4.3, all records in G1 and only those records
in G1 can have a buddy in G2. Each record in G1 has its
buddy either in g2 or in G2 − g2, but not in both. If |G1| >
|G2| − |g2|, the remaining c = |G1| − (|G2| − |g2|) records in
G1 must have their buddies in g2, or equivalently, c records
in g2 must have their buddies in R1 (therefore, timestamp
T1). The next theorem follows from this observation. Note
that for multisets, |G2| − |g2| = |G2 − g2|. Also, c ≤ |g2|
because |G1| ≤ |G2| and all records in G1 must have its
buddy in G2 due to the injective buddy relationship.

Theorem 4.4. Suppose that a target P has timestamp
T2 and matches qid2 in R2. Let g2 in qid2. (1) If |G2| <
|g2|, g2 has crack size 0 wrt P . (2) If |G2| ≥ |g2|, g2 has

crack size c, where c = max(0, |G1| − (|G2| − |g2|)). (3)
B(qid2) =

∑
c, where

∑
is over g2 in qid2 and g2 has the

crack size c determined in (1) and (2).

Proof. (3) follows from Definition 3.6. For (1), |G2| <
|g2| implies |G1| = 0 (otherwise G2 contains at least all
the records in g2 and |G2| ≥ |g2|). This means that the
records in g2 have no buddy (for any generator), thus, have
timestamp T2. In this case, g2 has crack size 0 wrt P . We
prove (2): From the discussion above, at least c (as in the
theorem) records in g2 have timestamp T1 (for any genera-
tor). To show that c is also an upper bound, we construct a
generator in which exactly c records in g2 have timestamp
T1. In this generator, exactly c records in G1 have their
buddies in g2 and the remaining |G1| − c records in G1 have
their buddies in G2 − g2. According to Lemma 4.3, any
record in G2 can be the buddy of any record in G1. So we
only need to show that g2 contains at least c records and
that G2 − g2 contains at least |G1| − c records. The first
part follows from |G1| ≤ |G2|. For the second part, if c > 0,
c = |G1| − (|G2| − |g2|), so |G1| − c = |G2| − |g2|; if c = 0,
|G1| − (|G2| − |g2|) ≤ 0, so |G2| − |g2| ≥ |G1| = |G1| − c. In
both cases, G2 − g2 contains at least |G1| − c records.

|G1| − (|G2| − |g2|) > 0 occurs if G2 − g2 is so small that
some records in G1 have to find their buddies in g2. This
condition is likely to occur for a small D2 where most records
in R2 have timestamp T1, thus, are buddies of the records in
G1. Our experiments also confirmed this observation. In the
special case of an empty D2, all records in g2 have timestamp
T1 and g2 has crack size |g2|. This can be derived from
Theorem 4.4(2). In this special case, |G1| = |G2| because
every record in G2 has a buddy in R1, in particular, in G1,
according to Lemma 4.3.

Example 4.3. Continue with Example 3.4. Alice has
[UK, Lawyer] and timestamp T2. qid2 = [UK, Professional]
has g2 for Flu and g′2 for HIV:

g2 = {b1, b2, b3}, G1 = {a1, a2, a3}, G2 = {b1, b2, b3, b7, b8}
|G1| − (|G2| − |g2|) = 3− (5− 3) = 1

g′2 = {b9, b10}, G1 = {a4, a5}, G2 = {b4, b5, b6, b9, b10}
|G1| − (|G2| − |g′2|) = 2− (5− 2) = −1

Thus g2 has crack size 1 and g′2 has crack size 0.

4.4 Equivalence of F-attack and C-attack
F-attack and C-attack are motivated under different sce-

narios and have a different characterization of crack size.
Despite such differences, we show that these attacks are not
independent of each other at all; in fact, FA = CA. First,
we show the following lemma as a stepping stone.

Lemma 4.4. For comparable (qid1, qid2), where qidi is in
Ri, |qid1| − F (qid1, qid2) = |qid2| − C(qid1, qid2).

Proof. F (qid1, qid2) =
∑

(|g1| −min(|g1|, |g2|)), follow-
ing Theorem 4.2, where

∑
is over (g1, g2) in CG(qid1, qid2).

For any (g1, g2), if |g1| > |g2|, let (ga
1 , ga

2) denote the pair; if
|g1| ≤ |g2|, let (gb

1, g
b
2) denote the pair. Note that

∑
(|g1| −

min(|g1|, |g2|)) =
∑

(|ga
1 | − |ga

2 |), and |qid1| =
∑ |ga

1 | +∑ |gb
1|. So we have:

|qid1| − F (qid1, qid2)
= |qid1|−

∑
(|g1|−min(|g1|, |g2|)) = |qid1|−

∑
(|ga

1 |−|ga
2 |)

=
∑ |ga

1 |+
∑ |gb

1| −
∑ |ga

1 |+
∑ |ga

2 | =
∑ |gb

1|+
∑ |ga

2 |.
From Theorem 4.3, C(qid1, qid2) =

∑
(|g2|−min(|g1|, |g2|)),

where
∑

is over (g1, g2) in CG(qid1, qid2). By a similar
rewriting, we have |qid2|−C(qid1, qid2) =

∑ |ga
2 |+

∑ |gb
1|.

270

Theorem 4.5. FA = CA.

Proof. Refer to Definition 3.2 of FA and Definition 3.4
of CA. Let qid′1 and qid′2 be such that FA = |qid′1| −
F (qid′1, qid

′
2). From Lemma 4.4, FA = |qid′2|−C(qid′1, qid

′
2).

By the definition of CA, CA ≥ |qid′2| −C(qid′1, qid
′
2) = FA.

Let qid∗1 and qid∗2 be such that CA = |qid∗2| −C(qid∗1, qid
∗
2).

From Lemma 4.4, CA = |qid∗1| − F (qid∗1, qid
∗
2). By the def-

inition of FA, FA ≥ |qid∗1| − F (qid∗1, qid
∗
2) = CA. Thus

FA = CA.

At first glance, FA = CA seems contradicting Theorem
4.2 and Theorem 4.3 that suggest exactly opposite condi-
tions for F-attack and C-attack, that is, (1) |g1| − |g2| >
0 for F-attack and (2) |g2| − |g1| > 0 for C-attack. A
closer look tells that there is no contradiction. Consider
how condition (1) affects FA and CA. Recall that FA is
the minimum (|qid1| − F (qid1, qid2)) and CA is the mini-
mum (|qid2| − C(qid1, qid2)). The occurrence of condition
(1) decreases FA by increasing F (qid1, qid2). However, the
occurrence of condition (1) also decreases |qid2|, thus CA.
So condition (1) causes both FA and CA to decrease. Simi-
larly, condition (2) causes both FA and CA to decrease. In
fact, from the proof of Lemma 4.4, both FA and CA are
contributed by the same source, i.e.,

∑ |ga
2 |+

∑ |gb
1|.

5. ANONYMIZATION
We now present an algorithm for anonymizing R2 for

D1 ∪ D2 to satisfy all of FA ≥ k, CA ≥ k, BA ≥ k. Our
approach iteratively specializes R2 starting from the most
generalized state of R2. In the most generalized state, all val-
ues for each attribute Aj ∈ QID are generalized to the top
most value in the taxonomy. Each specialization, for some
attribute in QID, replaces a parent value with an appropri-
ate child value in every record containing the parent value.
Section 5.1 shows that FA, CA, and BA are non-increasing
in this specialization process. Therefore, all further special-
izations can be pruned once any of the above requirements
is violated. Section 5.2 presents an efficient algorithm for
producing such a maximally specialized R2.

5.1 Anti-Monotonicity of BCF-Anonymity

Theorem 5.1. Each of FA, CA and BA is non-increasing
with respect to a specialization on R2.

Proof. From Theorem 4.5, FA = CA, so we show the
theorem only for FA and BA. Consider a specialization
on R2 in which qid2 is specialized into qid1

2, · · · , qidz
2, each

corresponding to a child value. Each group g2 in qid2 is
also specialized into g1

2 , . . . , gz
2 , thus, gj

2 ≤ g2. Note that the
specialization does not affect |qid1| for any qid1 in R1.

FA: Recall that FA is the minimum (|qid1| − F (qid1))
over all qid1 in R1. F (qid1) = max(F (qid1, qid2)) over all
qid2 comparable to qid1. F (qid1, qid2) =

∑
c, where

∑
is

over (g1, g2) in CG(qid1, qid2) and c = |g1| −min(|g1|, |g2|)
given by Theorem 4.2. We show that F (qid1) is non-decreasing
wrt the above specialization. If qid2 is not comparable
to qid1, qidi

2’s remain not comparable to qid1. Assume
that qid2 is comparable to qid1. In this case, the term
F (qid1, qid2) in max(F (qid1, qid2)) is replaced with the terms
F (qid1, qid

i
2) for those qidi

2 comparable to qid1. For each
such qidi

2, F (qid1, qid2) ≤ F (qid1, qid
i
2) since |g1|−min(|g1|, |g2|)

≤ |g1| − min(|g1|, |gi
2|), where (g1, g2) is in CG(qid1, qid2)

and (g1, g
i
2) is in CG(qid1, qid

i
2). Therefore, F (qid1) is non-

decreasing wrt the specialization.
BA: Recall that BA is the minimum (|qid2| − B(qid2))

over all qid2 in R2. B(qid2) =
∑

c, where
∑

is over the
groups g2 in qid2 and c is the crack size of g2. Unlike FA,
the specialization on R2 decreases both |qid2| and B(qid2).
We show that the decrease of |qid2| is at least as much as the
decrease of B(qid2), which implies that |qidi

2| − B(qidi
2) ≤

|qid2| −B(qid2). Consider obtaining the specialized equiva-
lence class qidi

2 from qid2 by discarding all groups gj
2 of qidj

2,

j 6= i. Discarding gj
2 decreases |qid2| by |gj

2| and decreases

B(qid2) by at most cj , where cj is the crack size of gj
2. Note

that cj ≤ |gj
2|. Therefore, the decrease of |qid2| is at least

as much as that of B(qid2).

Corollary 5.1. For a given requirement on BCF-anonymity,
there exists a generalized R2 that satisfies the requirement
if and only if the most generalized R2 does.

5.2 Algorithm
Finding an optimal BCF-anonymized R2 is NP-hard. Our

approach BCF-anonymizer, summarized in Algorithm 1, aims
at producing a maximally specialized (suboptimal) BCF-
anonymized R2 which any further specialization leads to a
violation. It starts with the most generalized R2. At any
time, R2 contains the generalized records of D1 ∪ D2 and
Cut2j gives the generalization cut for Aj ∈ QID. Each
equivalence class qid2 in R2 is associated with a set of groups
g2 with stored |g2|. Each group g2 is associated with the set
of raw records in D1∪D2 generalized to the group. R1 is rep-
resented similarly with |qid1| and |g1| stored, except that no
raw record is kept for g1. Cut1j contains the generalization
cut Aj ∈ QID in R1. Cut1j never change once created.

Initially, ∪Cut2j and the candidate list contain the most
general value ANYj for every Aj ∈ QID (Lines 1-3). In each
iteration, we examine the first valid candidate specialization
ranked by a criterion Score. If the candidate w is valid, that
is, not violating the BCF-anonymity after its specialization,
we specialize w on R2 (Lines 6-10); otherwise, we remove w
from the candidate list (Line 12). This iteration is repeated
until there is no more candidate. From Theorem 5.1, the re-
turned R2 is maximal (suboptimal). Score ranks the candi-
dates by their “information worth.” We employ the discerni-
bility cost [12] which charges a penalty to each record for
being indistinguishable from other records. For each record

Algorithm 1 BCF-anonymizer

Input: R1, R2 = D1∪D2, k, taxonomy for each Aj ∈ QID.
Output: a BCF-anonymized R2.
1: generalize every value for Aj ∈ QID in R2 to ANYj ;
2: let candidate list = ∪Cut2j containing all ANYj ;
3: sort candidate list by Score in descending order;
4: while the candidate list is not empty do
5: if the first candidate w in candidate list is valid then
6: specialize w into w1, · · · , wz in R2;
7: compute Score for all wi;
8: remove w from ∪Cut2j and the candidate list;
9: add w1, · · · , wz to ∪Cut2j and the candidate list;
10: sort the candidate list by Score in descending order;
11: else
12: remove w from the candidate list;
13: end if
14: end while
15: output R2 and ∪Cut2j ;

271

in an equivalence class qid2, this penalty is |qid2|. To min-
imize the discernibility cost, we choose the specialization w
that maximizes Score(w), where Score(w) =

∑
qidw

|qidw|2
over all qidw containing w.

In general, Lines 5-7 require scanning all pairs (qid1, qid2)
and all records in R2, which is highly inefficient for a large
data set. We present an incremental computation of FA,
CA, and BA that examines only comparable pairs (qid1, qid2)
and raw records in R2 that are involved in the current spe-
cialization. Let {w1, · · · , wz} be the set of child values of
the winning candidate w on Line 6. Let qidw be a qid2 con-
taining w and let qidw1 , . . . , qidwz be the new qids resulting
from specializing qidw. Let gw be a group in qidw and gwi

be a group in qidwi .
Line 6: To perform the specialization of w efficiently, for

each value v in ∪Cut2j , we create Link[v] to link up all qid2

containing v. Link[w] provides a direct access to all equiv-
alence classes qidw and associated records to be specialized.
After the specialization, we create new Link[wi] to link up
new qidwi containing wi. In addition, we add qidwi to every
existing Link[v] to which qidw was previously linked, ex-
cept for Link[w]. The overhead for maintaining these links
is negligible. [4] shows that the time complexity of this spe-
cialization procedure is linear in |R2|.

Line 7: In the same scan of Link[wi], Score(wi) is com-
puted by

∑ |qidwi |2 for all qidwi on Link[wi].
Line 5: To check the validity of w, we introduce a data

structure, called GTree1, to index all comparable qid1 in R1

for a given qid2 in R2. GTree1 has one level per attribute
in QID followed by the leaf level for the sensitive attribute.
Each root-to-leaf path in GTree1 represents a group g1 in
R1. To find all qid1 in GTree1 that are comparable to qid2,
we traverse GTree1 in a depth-first manner. At the level
for an attribute A ∈ QID, if qid2[A] and qid1[A] are not
on the same path in the taxonomy of A, the entire subtree
below qid1[A] is pruned. On reaching a node on the level
|QID|, the qid1 at the node is comparable to qid2. GTree1
is static. Below, we update FA and BA using GTree1.

Procedure 2 Updating FA

1: for all new qidwi on Link(wi) do
2: for all comparable qid1 do
3: let F (qid1) = max(F (qid1), F (qid1, qidwi));
4: let FA = min(FA, |qid1| − F (qid1));
5: end for
6: end for

Updating FA: FA is the minimum (|qid1|−F (qid1)) over
all qid1 in R1, where F (qid1) = max(F (qid1, qid2)) over all
qid2 comparable to qid1. F (qid1, qid2) is a function of |g1|
and |g2| for (g1, g2) in CG(qid1, qid2). We maintain |g2|, FA,
and F (qid1) on performing each specialization. For each
qidwi on Link[wi], find all comparable qid1 (using GTree1)
and update F (qid1) and FA as shown in Procedure 2. The
update on Line 3 exploits the property that F (qid1) is non-
decreasing wrt a specialization on R2 (Theorem 5.1). The
computation is proportional to the number of comparable
(qid1, qidwi) for all new qidwi added in the current iteration.

Updating BA: BA is the minimum (|qid2| − B(qid2))
over all qid2 in R2, where B(qid2) is a function of |G1(g2)|,
|G2(g2)| and |g2| for the groups g2 in qid2. G1(g2) denotes
the set of groups in R1 comparable to g2, G2(g2) denotes
the set of groups in R2 comparable to any group in G1(g2).
We maintain |G1(g2)|, |G2(g2)| and |g2| on specializing qid2.

Procedure 3 Updating BA (Case 1)

1: for all new qidwi on Link[wi] do
2: let |G1(gwi)| = 0; let |G2(gwi)| = 0;
3: let compqid1 be the set of qid1 comparable to qidwi ;
4: for all qid1 in compqid1 do
5: let |G1(gwi)| = |G1(gwi)| + |g1|, where (g1, gwi) ∈

CG(qid1, qidwi);
6: end for
7: for all new qid′wi

on Link[wi] do

8: if qid′wi
is comparable to some qid1 in compqid1 then

9: let |G2(gwi)| = |G2(gwi)|+ |g′wi
|, where g′wi

of qid′wi
has the same sensitive value as gwi of qidwi ;

10: end if
11: end for
12: let BA = min(BA, |qidwi | −B(qidwi));
13: end for

We need to compute B(qidwi) only for new qidwi because
B(qid2) of unspecialized qid2 remains intact. To compute
B(qidwi), first we compute |G1(gwi)|, |G2(gwi)| and |gwi |
for the new gwi in qidwi . Let qid1 in R1 be comparable to
qidw. Assume w is from attribute Aj . There are two cases.

Case 1 : w is above the cut Cut1j . In this case, only
qidwi with wi being equal to or more general than qid1[Aj] is
comparable to qid1. This means that, to compute G2(gwi),
we only need to examine g′wi

of those qid′wi
on Link[wi].

Based on this observation, Procedure 3 updates B(qidwi)
and BA. Lines 3-6 computes |G1(gwi)| and Lines 8-12 com-
putes |G2(gwi)|. Each assignment involving a group applies
to all groups in an equivalence class.

Case 2 : w is on or below the cut Cut1j . In this case, every
new qidwi remains comparable to qid1. Therefore, for gwi

of qidwi , |G1(gwi)| = |G1(gw)| and |G2(gwi)| = |G2(gw)|,
where gw is the corresponding group of qidw. Note that
|G1(gw)| and |G2(gw)| were stored with gw.

6. EMPIRICAL STUDY
We studied the threat of correspondence attacks and the

usefulness of the BCF-anonymized R2. We employed a pub-
licly available census data set, Adult, previously used in [2,
4, 6, 8, 14, 15]. After removing all records with missing
values, there were 30,162 and 15,060 records in the training
and testing sets on 8 categorical attributes. Refer to [4] for
the properties and taxonomy of the attributes. We specified
D1 to contain all records in the testing set, and considered
the following three cases of D2 at timestamp T2:
• 200D2: D2 contains the first 200 records in the training

set, modelling a“small”set of new records at T2, typically
true if the new data is published in a timely manner.

• 2000D2: D2 contains the first 2000 records in the train-
ing set, modelling a “medium” set of new records at T2.

• allD2: D2 contains all 30,162 records in the training set,
modelling a “large” set of new records at T2.

We specified two choices of sensitive attributes. In Sen1,
the sensitive attribute is chosen to be the attribute having
the most number of distinct values, which is Native-country,
and QID contains the remaining 7 attributes. In Sen3, the
sensitive attribute is chosen to be the three attributes hav-
ing the most number of distinct values, which is {Native-
country, Education, Occupation}, and QID contains the re-
maining 5 attributes. Sen3 has a more restrictive buddy
relationship than Sen1.

Two sets of experiments were conducted. In the first set,

272

we studied the violation of BCF-anonymity when both R1

and R2 are k-anonymized individually as proposed in [5]. In
the second set, we anonymized R2 by the BCF-anonymizer
and evaluated its quality. All experiments were conducted
on Pentium IV 2.4GHz PC with 512MB of RAM. The BCF-
anonymizer took less than 7 seconds, including disk I/O op-
erations. This shows that the algorithm is highly effective.

6.1 Detecting Violations
For each pair of (D1, D2) described above, we generalized

D1 and D1 ∪ D2 into k-anonymized R1 and k-anonymized
R2 separately, by modifying the algorithm in Section 5 to
enforce the k-anonymity on a single table without concern-
ing correspondence attacks. We then measured FA, CA and
BA on the generalized R1 and R2. Since FA = CA (Theo-
rem 4.5), which was also confirmed by our experiments, we
present the results for F-attack and B-attack.

F-attack: Figures 1a-1b depict FA for 40 ≤ k ≤ 200
for Sen1 and Sen3 in 200D2, 2000D2, and allD2. k is the
threshold for k-anonymization. The dash line represents the
boundary for FA = k. A data point below the boundary
indicates FA < k, i.e., a violation of F-anonymity by k-
anonymized R1 and R2.

While FA generally increases as k increases, there is no
guarantee that FA ≥ k. Figure 1b shows that 4 out of
the 5 test cases have FA < k for Sen3 and allD2. The
most severe case occurs at k = 40 and FA = 21, where
the anonymity of some individuals has been decreased by
48% due to F-attack. Staying above the dash line does not
mean no cracked records; rather, it only means that the F-
anonymity stays above k. FA does not increase monoton-
ically as k increases. There are two reasons. First, with a
larger k, R1 was less specialized, which led to a larger crack
size in R1. Second, with a larger k, some specialization on
R2 valid for a smaller k became invalid and a different se-
quence of specializations on R2 was exploited.

A larger size |D2| has mixed effects on the crack size
|g1|−min(|g1|, |g2|): having more records at T2 means larger
|g2|, but also means less generalization in R2, thus, smaller
|g2|. For the more restrictive buddy relationship of Sen3,
violations occur more frequently in the case of allD2 where
the decrease of |g2| becomes the dominant factor due to less
generalization in R2. Comparing Figures 1a-1b, Sen3 suffers
more violations than Sen1. As the sensitive attribute gets
more restrictive for Sen3, both |g1| and |g2| become smaller.
For the larger number of new records in allD2, however, the
decrease of |g2| dominates, therefore causes more violations.

B-attack: Figures 1c-1d depict BA for Sen1 and Sen3.
Unlike F-attack, with fewer new records in D2 (i.e., 200D2
and 2000D2), violations BA < k occur more frequently and
severely since many records in an equivalence class have
timestamp T1, which are deemed unrelated to the target
having timestamp T2. The most severe case occurs at k = 80
for Sen1 in 200D2 with BA = 1. In other words, some tar-
get was uniquely identified since all other matching records
in R2 were correctly identified as having timestamp T1. An-
other difference from F-attack is that violations BA < k
occur for both Sen1 and Sen3, and are more frequent and
more severe for 200D2 and 2000D2 than for allD2.

This experiment suggested that a small or medium D2 is
highly vulnerable to B-attack. As the increment D2 is typ-
ically small, the threat of B-attack is very real. A large D2

can be vulnerable to F-attack due to the reduced general-

Figure 1: Violations of BCF-anonymity

0

50
100

150
200

250
300

350
400

450

40 80 120 160 200

Threshold k

FA
 fo

r S
en

1

200D2 2000D2 allD2

0

50
100

150
200

250
300

350
400

450

40 80 120 160 200

Threshold k

FA
 fo

r S
en

3

200D2 2000D2 allD2

(a) FA for Sen1 (b) FA for Sen3

0

50
100

150
200

250

300

350
400

450

40 80 120 160 200

Threshold k

BA
 fo

r S
en

1

200D2 2000D2 allD2

0

50

100

150

200

250

40 80 120 160 200

Threshold k

BA
 fo

r S
en

3

200D2 2000D2 allD2

(c) BA for Sen1 (d) BA for Sen3

ization in R2. This is especially so for a restrictive sensitive
attribute. As a result, for neither small nor large D2 is the
k-anonymity safe from correspondence attacks.

6.2 Preventing Violations
This experiment evaluates the quality of BCF-anonymized

R2. The quality is measured by the discernibility cost [12]
for R2, which is defined as the square sum of the sizes of all
equivalence classes in R2, normalized by |R2|2. The normal-
ized cost has the range from 0 to 1, with 0 being the best
and 1 being the worst. For each run in the detection exper-
iment, if there is a violation, we compare the discernibility
cost of the following three alternatives.
• BCF-anonymized R2: R2 is generalized by our BCF-

anonymizer to satisfy all of FA ≥ k, CA ≥ k, BA ≥ k.

• k-anonymized R2: This is the k-anonymized R2 in the
detection experiment and in [5]. This is not safe from
correspondence attacks.

• k-anonymized D2: The records in D2 are anonymized
separately from those in D1. This alternative is safe be-
cause correspondence attacks cannot be applied to data
sets representing disjoint sets of individuals.

We evaluate the data quality of a BCF-anonymized R2

as follows. (1) We measure the penalty to achieve addi-
tional protection against all correspondence attacks, relative
to the unsafe k-anonymized R2. (2) We measure the benefit
to combine D1 and D2 into one release R2 for anonymiza-
tion, relative to the safe k-anonymized D2. Figure 2 depicts
the discernibility cost of the three alternatives. Note that
Sen3 has a cost higher than Sen1 since more attributes are
exactly preserved through the sensitive attribute and more
generalization on the remaining QID attributes is required
to achieve anonymity.

BCF-anonymized R2 vs k-anonymized D2. For a smaller
D2, i.e., 200D2 and 2000D2, BCF-anonymized R2 has a
cost lower than k-anonymized D2. For 200D2, the average
cost (over the five test cases) of BCF-anonymized R2 is 66%
and 32% lower than k-anonymized D2 for Sen1 and Sen3,
shown in Figures 2a-2b. This significant cost reduction ben-

273

efits from anonymizing a large D1 ∪D2. When D2 contains
a relatively large number of new records, i.e., allD2 in Fig-
ures 2e-2f, the two alternatives have a similar cost since they
tend to focus on new records. From this point of view, a sep-
arate anonymization of D2 makes sense if the new data is
abundant. Typically, however, the increment D2 is small.

BCF-anonymized R2 vs k-anonymized R2. BCF-anonymized
R2 generally has a higher cost than k-anonymized R2. The
cost increases mainly for 200D2 and 2000D2, as in Fig-
ures 2a-2d. A cross-examination of Figures 1c-1d reveals
that for 200D2 and 2000D2 there is a very severe violation
of BA ≥ k across all k. The violation was so severe that
some target individuals were uniquely identified by the B-
attack. To prevent such severe violations, for example, the
average increase of cost is 25% in Figure 2d. k-anonymized
R2 is completely unprotected although it has a lower cost.

In Figure 2c, BCF-anonymized R2 has a cost lower than
k-anonymized R2 at k = 40, though the requirement is more
restrictive. In this case, some top ranked specializations used
for k-anonymized R2 became invalid for BCF-anonymizer
due to the additional requirement BA ≥ k, and some lower
ranked specializations were selected, which actually resulted
in a smaller overall cost. This is possible since the solutions
are suboptimal. For a similar reason, a larger k could pos-
sibly produce a lower cost than a smaller k.

7. EXTENSIONS

7.1 Beyond Two Releases
We extend the two-release case to the general case in-

volving more than two releases. Consider the raw data
D1, · · · , Dn collected at timestamp T1, · · · , Tn. Let Ri de-
note the release for D1 ∪ · · · ∪Di, 1 ≤ i ≤ n. All records in
Ri have the special timestamp, denoted by T ∗i , that matches
any timestamp from T1, · · · , Ti. The correspondence knowl-
edge now has the form that every record in Ri (except the
last one) has a corresponding record in all releases Rj such
that j > i. The notion of “generators” can take this into
account. Given more releases, the attacker can conduct two
additional types of correspondence attacks described below.

Optimal micro attacks: The general idea is to choose
the “best” background release, yielding the largest possible
crack size, individually to crack each group. Consider the
F-attack on Ri as an example. The attacker now can choose
any Rj with j > i as the background release because the
correspondence knowledge holds for (Ri, Rj). Suppose that
the target P has timestamp Ti and matches (qidi, · · · , qidn)
and that (gi, · · · , gn) are the corresponding groups that have
the same sensitive value. Let cij be the crack size of a
group gi computed by Theorem 4.2 wrt (gi, gj) of (Ri, Rj)
instead of (g1, g2) of (R1, R2). To the attacker, the“optimal”
crack size of gi is maxj{cij} over all j > i. The number
of cracked records in an equivalence class qidi wrt P , i.e.,
F (P, qidi, · · · , qidn), is given by

∑
gi

ci, where gi is a group

in qidi and ci = maxj{cij} is the optimal crack size of gi.
Essentially, the threat of the F-attack on gi is determined

by the largest crack size cij contributed by a collection of
“micro attacks” at the group level that each involves (the
groups of) two releases at a time, i.e., (gi, gj). For such
micro attacks, the crack size cij can be computed by our
method for two releases. Our insight is that it suffices to
consider only micro attacks involving two releases. Suppose
that a micro attack on g1 employs the groups g2 and g3 from

Figure 2: Discernibility Cost

0.0

0.2

0.4

0.6

0.8

1.0

40 80 120 160 200

Threshold k

Di
sc

er
ni

bi
lit

y
Co

st

BCF-Anonymized R2
k-Anonymized R2
k-Anonymized D2

0.0

0.2

0.4

0.6

0.8

1.0

40 80 120 160 200

Threshold k

Di
sc

er
ni

bi
lit

y
Co

st

BCF-Anonymized R2
k-Anonymized R2
k-Anonymized D2

(a) Sen1 in 200D2 (b) Sen3 in 200D2

0.05

0.10

0.15

0.20

40 80 120 160 200

Threshold k

Di
sc

er
ni

bi
lit

y
Co

st

BCF-Anonymized R2
k-Anonymized R2
k-Anonymized D2

0.15

0.20

0.25

0.30

0.35

0.40

40 80 120 160 200

Threshold k

Di
sc

er
ni

bi
lit

y
Co

st

BCF-Anonymized R2
k-Anonymized R2
k-Anonymized D2

(c) Sen1 in 2000D2 (d) Sen3 in 2000D2

0.05

0.10

0.15

0.20

40 80 120 160 200
Threshold k

Di
sc

er
ni

bi
lit

y
Co

st

BCF-Anonymized R2
k-Anonymized R2
k-Anonymized D2

0.15

0.20

0.25

0.30

0.35

0.40

40 80 120 160 200

Threshold k

Di
sc

er
ni

bi
lit

y
Co

st

BCF-Anonymized R2
k-Anonymized R2
k-Anonymized D2

(e) Sen1 in allD2 (f) Sen3 in allD2
two background releases R2 and R3. Similar to Theorem
4.2, we can show that the crack size in this case is equal to
c = |g1| − min(|g1|, |g2|, |g3|). But c is exactly the above
optimal crack size of g1 because c = max(c12, c13), where
c12 = |g1| −min(|g1|, |g2|) is the crack size produced by the
micro attack using (g1, g2) and c13 = |g1| −min(|g1|, |g3|) is
the crack size produced by the micro attack using (g1, g3).

The micro attacks for the three types of attacks can be
represented as follows. Note that the crack size for these
micro attacks can be directly computed by the methods in
Section 4. Let gi be a group in Ri and gj be a group in Rj .
• F-attack(gi, gj), j > i: The target P has timestamp Ti

and the attacker tries to crack the records in gi using
gj of the background release Rj . In this case, a cracked
record does not originate from P ’s QID.

• C-attack(gi, gj), j > i: The target P has timestamp Ti

and the attacker tries to crack the records in gj using gi

of the background release Ri. A cracked record either
does not have timestamp T ∗i or does not originate from
P ’s QID. Note that if a record in gj does not have
timestamp T ∗i , it has a timestamp from Ti+1, · · · , Tj ,
therefore, does not match P ’s timestamp.

• B-attack(gi, gj), j > i: The target P has timestamp Tj

and the attacker tries to crack the records in gj using
gi of the background release Ri. Note that a cracked
record has timestamp T ∗i (because of coming from gi),
thus, does not match P ’s timestamp.

Composition of micro attacks: Another type of attack
is to “compose” multiple micro attacks together (apply one

274

after another) in order to increase the crack size of a group.
Composition is possible only if all the micro attacks in the
composition assume the same timestamp for the target and
the correspondence knowledge required for the next attack
holds after applying previous attacks. There are two and
only two possible cases of composition.

Case 1 : Apply B-attack(gi, gj) followed by F-attack(gj , gl),
l > j > i. Both attacks assume the target P at timestamp Tj

and crack records in gj wrt P . First, apply B-attack(gi, gj)
to crack gj . This excludes some records at timestamp T ∗i .
The crack size, xB , is computed by Theorem 4.4. Let g′j and
R′j denote the reduced gj and Rj without cracked records.
Note that the following correspondence knowledge holds: ev-
ery record in R′j has a buddy in Rl since R′j is a subset of Rj .
Hence, F-attack(g′j , gl) can be applied to crack g′j , which ex-
cludes some records from g′j that do not originate from P ’s
QID. The crack size, xF , is given by Theorem 4.2. Overall,
the crack size of gj is xB +xF . Note that if F-attack(gj , gl) is
applied first to crack gj , B-attack(gi, g

′
j) cannot be applied

since a record in Ri may not have a buddy in R′j .
Case 2 : Apply B-attack(gi, gj) followed by C-attack(gj , gl),

l > j > i. Both attacks assume a target P at timestamp
Tj . First, apply B-attack(gi, gj) to crack gj , which excludes
some records that do not have timestamp Tj (thus do not
represent P). Let g′j and R′j be the reduced gj and Rj . Since
every record in R′j has a buddy in Rl, C-attack(g′j , gl) can
be applied to crack gl. From Theorem 4.3, the crack size
of gl by this C-attack is |gl| −min(|g′j |, |gl|), which is larger
than |gl| −min(|gj |, |gl|) by applying C-attack(gj , gl) alone.

All other cases, however, cannot be composed. For exam-
ple, F-attack(gi, gj) and C-attack(gj , gl) cannot be applied
in sequence because the former assumes a target P at times-
tamp Ti whereas the latter assumes P at timestamp Tj .

We extend the anonymization algorithm as follows. (1)
The notion of BCF-anonymity should be defined based on
the optimal crack size of a group wrt micro attacks as well as
composed attacks on the group. (2) Each time we anonymize
the next release Rn for D1 ∪ · · · ∪ Dn, we assume that
R1, · · · , Rn−1 satisfy BCF-anonymity. Hence, the anonymiza-
tion of Rn only needs to ensure that BCF-anonymity is not
violated by any attack that involves Rn. (3) The anti-
monotonicity of BCF-anonymity, in the spirit of Theorem
5.1, remains valid in this general case. These observations
are crucial for maintaining the efficiency.

As the number of releases increases, the constraints im-
posed on the next release Rn become increasingly restrictive.
However, this does not necessarily require more distortion
because the new records Dn may help reduce the need of
distortion. In case that the distortion becomes too severe,
the data holder may consider starting a new chain of releases
without including previously published records.

7.2 Beyond Anonymity
The proposed approach can be extended to incorporate

with the requirement of entropy `-diversity and (c,`)-diversity
in [8], confidence bounding [15], and (α,k)-anonymity [16].
First, we modify these measures to take into account the ex-
clusion of cracked records. In this case, the crack size of each
group gives all the information needed to exclude sensitive
values from an equivalence class. To extend the anonymiza-
tion algorithm, we argue that anonymity is a necessary pri-
vacy property because identifying the exact record of an in-
dividual from a small set of records is too easy. Thus, BCF-

anonymity is required even if other privacy requirements are
desired. Under this assumption, we can still apply the pro-
posed approach to prune unpromising specializations based
on the anti-monotonicity of BCF-anonymity.

8. CONCLUSION
We considered the anonymity problem for a scenario where

the data are continuously collected and published. Each re-
lease contains the new data as well as previously collected
data. Even if each release is k-anonymized, the anonymity of
an individual can be compromised by cross-examining mul-
tiple releases. We formalized this notion of attacks and pre-
sented a detection method and an anonymization algorithm
to prevent such attacks. Finally, we showed that both the
detection and the anonymization methods are extendable to
deal with multiple releases and other privacy requirements.

9. REFERENCES
[1] L. Burnett, K. Barlow-Stewart, A. Pros, and H. Aizenberg.

The gene trustee: A universal identification system that
ensures privacy and confidentiality for human genetic
databases. Journal of Law and Medicine, 10:506–513, 2003.

[2] J.-W. Byun, Y. Sohn, E. Bertino, and N. Li. Secure
anonymization for incremental datasets. In VLDB
Workshop on Secure Data Management (SDM), 2006.

[3] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down
specialization for information and privacy preservation. In
ICDE, pages 205–216, April 2005.

[4] B. C. M. Fung, K. Wang, and P. S. Yu. Anonymizing
classification data for privacy preservation. TKDE,
19(5):711–725, May 2007.

[5] T. Iwuchukwu, D. J. DeWitt, A. Doan, and J. F.
Naughton. K-anonymization as spatial indexing: Toward
scalable and incremental anonymization. In ICDE, 2007.

[6] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan.
Incongnito: Efficient full-domain k-anonymity. In
SIGMOD, pages 49–60, June 2005.

[7] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan.
Mondrian multidimensional k-anonymity. In ICDE, 2006.

[8] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. `-diversity: Privacy beyond
k-anonymity. In ICDE, Atlanta, GA, April 2006.

[9] A. Meyerson and R. Williams. On the complexity of
optimal k-anonymity. In PODS, pages 223–228, 2004.

[10] J. Pei, J. Xu, Z. Wang, W. Wang, and K. Wang.
Maintaining k-anonymity against incremental updates. In
SSDBM, Banff, Canada, 2007.

[11] P. Samarati and L. Sweeney. Protecting privacy when
disclosing information: k-anonymity and its enforcement
through generalization and suppression. Technical report,
SRI International, March 1998.

[12] A. Skowron and C. Rauszer. Intelligent Decision Support:
Handbook of Applications and Advances of the Rough Set
Theory, chapter The discernibility matrices and functions
in information systems. 1992.

[13] L. Sweeney. k-anonymity: A model for protecting privacy.
International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5), 2002.

[14] K. Wang and B. C. M. Fung. Anonymizing sequential
releases. In SIGKDD, pages 414–423, August 2006.

[15] K. Wang, B. C. M. Fung, and P. S. Yu. Template-based
privacy preservation in classification problems. In ICDM,
pages 466–473, November 2005.

[16] R. C. W. Wong, J. Li, A. W. C. Fu, and K. Wang. (α,
k)-anonymity: An enhanced k-anonymity model for privacy
preserving data publishing. In SIGKDD, August 2006.

[17] X. Xiao and Y. Tao. m-invariance: Towards privacy
preserving re-publication of dynamic datasets. In SIGMOD,
June 2007.

275

