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Abstract— Existing approaches on privacy-preserving data
publishing rely on the assumption that data can be divided into
quasi-identifier attributes (QI) and sensitive attribute (SA). This
assumption does not hold when an attribute has both sensitive
values and identifying values, which is typically the case. In
this paper, we study how such attributes would impact the
privacy model and data anonymization. We identify a new form
of attacks, called ”freeform attacks”, that occur on such data
without explicit QI attributes and SA attributes. We present a
framework for modeling identifying/sensitive information at the
value level, define a problem to eliminate freeform attacks, and
outline an efficient solution.

I. INTRODUCTION

Privacy-preserving data publishing (PPDP) focuses on pub-
lishing person-specific data (also called microdata) for the
benefit of research. Previous works have considered microdata
of the form T (A1, ..., Am, SA). Each record corresponds to an
individual. SA is the sensitive attribute. QI={A1, · · · , Am},
called the quasi-identifier, is a set of attributes that can be
linked with an external source such as a voter list. In a
linking attack, the adversary knows that some individual has
a record in T , and observes the information qi on QI about
the individual from an external source. The adversary’s goal
is to find the SA value of the individual. If the records in T
that match qi are predominantly associated with a common
SA value, the adversary could infer the individual’s SA value
with a high probability.

A. Abandoning the QI/SA paradigm

A fundamental assumption in previous works is that T can
be split (vertically) into QI and the sensitive attribute SA. In
this paper, the term QI/SA paradigm refers to this assumption
and the works based on it. k-anonymity [1], l-diversity [2] and
recent works all fall into this QI/SA paradigm. A common
approach in the QI/SA paradigm is hiding the association
between QI and SA. To this end, the generalization approach
[1] partitions records into equivalence classes according to
QI, and the bucketization approach [3] split records into
sub-records according to the partition of QI and SA. Our
insight is that determining QI and SA can be tricky and even
undesirable. To explain this point, let us consider an example.

Example 1.1: Consider the table T1 on (Sex, Income, Dis-
ease) in Figure 1(a). Income and Disease have a hierarchical
domain given by the taxonomies on the top of the figure. In
our discussion, we use V I for ”Viral Infectious”, BI for
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Fig. 1. A motivating example

”Bacterial Infectious”, E.Coli for ”Escherichia coli”, and
TB for ”Tubercle bacillus”. Suppose that the following holds:

A1 Disease: Flu and E.Coli are non-sensitive and can
be observed on an individual; AIDS and TB are
sensitive and cannot be observed.

A2 Income: an exact income is sensitive and cannot
be observed, but an income bracket such as High,
Middle, and Low is non-sensitive and can be ob-
served.

A3 Sex: F and M are non-sensitive and can be ob-
served.

We also assume that, if a value is non-sensitive, so are
more generalized values. In a taxonomy, a non-sensitive value
is denoted by a shaded node. The terms “non-sensitive”,
“observable” and “public” are interchangeable.

Within the QI/SA paradigm, since Income and Disease
contain sensitive values, they can only be modeled as the
sensitive attribute SA. The following are two possible ways
of modeling:
• Case 1: QI={Sex} and SA=Disease, and
• Case 2: QI={Sex} and SA=Income.

Suppose that we consider 2-diversity [2] as our privacy goal.
It is easy to see that T1 satisfies 2-diversity in both Case 1 and
Case 2: no single SA value occurs in more than 1/2 percent



of the records sharing a common value on QI. Therefore, the
probability of linking an individual to SA via QI is no more
than 50%.

However, publishing T1 is not safe under our assumptions
A1, A2 and A3. Consider an adversary who tries to find the
individual’s sensitive value. First, with M and High being ob-
servable (i.e., A2 and A3), the adversary can link an individual
P1 via M and High to the two records (M, 190K,AIDS)
and (M, 160K, AIDS) and infer AIDS with 100% certainty.
Note that this linking does not require observing the exact
income of the individual. Let us denote this attack by

{M,High} → AIDS.
Second, with F and Flu being observable (i.e., A1 and A3),
the adversary can link an individual P2 to the first record
via F and Flu, thus, to the exact income 190K, with 100%
certainty. Let us denote this attack by

{F, F lu} → 190K.
These attacks exist even though T1 is 2-diverse in both Case
1 and Case 2. Note that in these attacks, Disease acts as both
an identifying attribute (in {F, F lu} → 190K) and SA (in
{M,High} → AIDS). To prevent such attacks, new solutions
are required.

One solution is suppressing the sensitive AIDS, TB and all
exact incomes, as in T2 in Figure 1(b). This solution loses too
much information since sensitive values usually are important
for data analysis. A preferred solution is generalizing Flu
and AIDS to V I , as in Figure 1(c), and the result table T3
is safe for release. For example, {F, V I} → 190K has only
50% certainty and {M, High} → V I is no longer a threat
because V I is non-sensitive.

This example illustrates several interesting points.
First, information on sensitive attributes may be observed

on an individual. The QI/SA paradigm assumes that no
information on SA can be observed on an individual. In the
above example, Flu for Disease and High for Income can be
observed. Both Disease and Income are considered sensitive
attributes. This example shows that, even for such attributes,
a less sensitive value or a higher level value can be easily
observed.

Second, ”public” and ”sensitive” information often is
distinguished at the value level. The QI/SA paradigm assumes
that for each attribute, either all values are public or all values
are sensitive. In the above example, Income and Disease have
both types of values. The QI/SA paradigm is handicapped
in dealing with such attributes: treating them as SA would
under-protect the data because observable values (such as Flu
and High)) are mistakenly treated as non-observable, whereas
treating them as QI attributes would over-protect because some
sensitive values (such as 190K and AIDS) may not be easily
observed.

Third, a linking attack may be through observing a
different set of attributes for a different individual. The attack
{M,High} → AIDS on the individual P1 is by observing
values on Sex and Income, whereas the attack {F, F lu} →
190K on the individual P2 is by observing values on Sex
and Disease. The QI/SA paradigm essentially assumes that

all individuals have the same set of observable attributes and
the same sensitive attribute. This is not reasonable because the
adversary will not confine herself to any pre-determined QI.

B. Challenges and contributions

We consider a table T (A1, ..., Am) where each attribute
Ai has both observable values and sensitive values. To our
knowledge, this is the first work that addresses the linking
attacks under this setting. The following summarizes the
challenges and our contributions.

Challenge/Contribution 1: The first challenge is modeling
observability and sensitivity ”at the value level”. Requiring
the publisher to specify this information for all domain and
generalized values is neither feasible nor scalable. We present
a framework for these specifications, with an focus on general
principles so that new instantiations can be adapted.

Challenge/Contribution 2: We identify a class of freeform
attacks of the form X → a, where a and the values in X
can be at any level of any attributes. X → a is a privacy
breach if X is observable, a is sensitive, and X is associated
with a. As shown in Example 1.1, a unique challenge posed
by freeform attacks is that they may occur at a general level
without occurring at a special level. We propose the notion of
FF-anonymity (F reeForm-anonymity) to eliminate freeform
attacks.

Challenge/Contribution 3: We show that finding an op-
timal FF-anonymization is NP-hard and present an efficient
solution for finding a ”minimally generalized”, not necessarily
optimal, FF-anonymization.

II. MODELING SENSITIVITY AND OBSERVABILITY

A. Terminology

Consider a set of attributes U = {A1, ..., Am}. Each Aj

has a taxonomy (tree) arranged from general values at high
levels to specific values at low levels. “Nodes” and “values”
are interchangeable. ANYj denotes the root of the taxonomy
for Aj , Subtr(a) denotes the subtree under a node a, and
Leaf(a) denotes the set of all leaf nodes in Subtr(a). For
two values a and a′, a′ º a means that either a′ = a or a′ is
an ancestor of a.

A base table over U , denoted T , contains only leaf values. A
generalized table over U , denoted T ∗, is produced by applying
zero or more generalization to T . Each generalization replaces
all child values v1, · · · , vp with their parent v in all records
containing v1, · · · , vp. T ∗ can also be produced by applying
a sequence of specializations to T>, where T> denotes the
most generalized table containing ANYi for every attribute Ai.
Each specialization replaces a parent value v in every record
containing v with the child value that generalizes the original
value in the record. For two generalized tables T ∗2 and T ∗1 , we
say that T ∗2 is more general than T ∗1 if T ∗2 is obtained from
T ∗1 by zero or more generalization.

Let Cut(Ai, T
∗) denote the set of values in T ∗ on Ai, and

Cut+(Ai, T
∗) denote the set of values in Cut(Ai, T

∗) plus all
ancestors. For a set of attributes Attset, Cut+(Attset, T ∗) de-
notes the cross product ×Ai∈AttsetCut+(Ai, T

∗). A valueset



in Cut+(Attset, T ∗) is a tuple containing exactly one value
from Cut+(Ai, T

∗) for each attribute Ai in Attset. For two
valuesets X and X ′ in Cut+(Attset, T ∗), X ′ º X means
that for every Ai in Attset, X ′[Ai] º X[Ai], where X[Ai]
denotes the value in X on Ai. For a record r in T ∗, we say that
r matches X if X º r[Attset]. sup(X) denotes the number
of records in T ∗ that match X .

B. Sensitivity model

Consider a value a for some attribute Ai. The sensitivity of
a, denoted s(a), measures the degree to which the publisher
considers a sensitive. We assume that the publisher is able to
specify each leaf node a as either sensitive or non-sensitive,
i.e., s(a) = 1 or s(a) = 0, respectively. This can be done by
specifying a set of highest possible nodes to cover all sensitive
leaf nodes, called a guarding set. A leaf node a is sensitive if
and only if a is in Leaf(g) for some node g in the guarding
set. Let sLeaf(a) denote the set of sensitive leaf nodes in
Leaf(a).

Example 2.1: Consider the taxonomy for Disease in Figure
1. The guarding set GS1 = {AIDS, TB} specifies the
sensitive leaf nodes AIDS and TB. GS2 = {AIDS, BI}
specifies the sensitive leaf nodes AIDS, E.Coli and TB.

The publisher does not need to specify s(a) for non-
leaf nodes a because this will be specified automatically
by our model. For a non-leaf node a, s(a) depends on
what a generalizes, i.e., the leaf nodes in Leaf(a). For
instance, ANY Disease is more sensitive if most leaf nodes
in Leaf(ANY Disease) are sensitive. This motivates the
following principle.

Definition 2.1 (Sensitivity Principle): The sensitivity of a,
s(a), conveys the probability that a originates from sensitive
leaf values in Leaf(a). This probability is the publisher’s
interpretation of the sensitivity of a.

The exact interpretation of probability depends on the
instantiation for “a originates from sensitive leaf values in
Leaf(a)”. We leave this instantiation open so that a new
instantiation can be “plugged in” through s(a). Below, we
demonstrate this flexibility by considering two instantiations.

The aggregate instantiation. In this instantiation, s(a)
measures the probability that a comes from any sensitive leaf
node in Leaf(a), defined as:

s(a) = |sLeaf(a)|/|Leaf(a)|. (1)

That is, s(a) is the fraction of sensitive leaf nodes in Leaf(a).
In particular, this instantiation makes no distinction among
individual sensitive leaf nodes and the publisher considers it
sensitive to infer that a comes from any sensitive leaf node
sLeaf(a).

Example 2.2: Continue with the guarding set GS1 =
{AIDS, TB}. AIDS and TB are sensitive leaf nodes and
Flu and E.Coli are non-sensitive leaf nodes. s(AIDS) =
s(TB) = 1, s(Flu) = s(E.Coli) = 0. s(a) = 1/2 for
V I,BI, ANY Disease. For example, s(ANY Disease) =
1/2 because 50% of leaf nodes are sensitive.

The non-aggregate instantiation. In many cases, sensitiv-
ity arises from the specificity of a property. Location privacy is
such an example. This notion of sensitivity s(a) can be mea-
sured by the probability that a comes from a particular sensi-
tive leaf node in Leaf(a). Unlike the aggregate instantiation,
this instantiation distinguishes among sensitive leaf nodes.
Under the uniform distribution, the probability that a comes
from a particular leaf node in Leaf(a) is 1/|Leaf(a)| and
the probability that a given leaf node in Leaf(a) is sensitive
is |sLeaf(a)|/|Leaf(a)|. Therefore, under the independence
assumption, the probability that a comes from a particular
sensitive leaf node is

s(a) = |sLeaf(a)|/|Leaf(a)|2. (2)

There is no requirement that the same instantiation be used
for all attributes. The choice of instantiation should be based
on what probabilistic interpretation is desired for an attribute.

C. Observability model

For a valueset X in Cut+(Attset, T ∗), the observability of
X , denoted o(X), measures the degree to which the publisher
considers X as observable to the adversary. Our observation
is that, for two valuesets X and X ′ with X ′ º X , whenever
X is observed on some individual, X ′ is observed on the
same individual because X is an instance of X ′. For exam-
ple, observing the exact income 170K implies observing the
income bracket High. This observation leads to the following
principle.

Definition 2.2 (Observability Principle): The observability
of a valueset X , denoted o(X), conveys some notion of the
degree that X may be observed on an individual with the
following property: for X ′ º X , o(X ′) ≥ o(X); in other
words, a general valueset is as observed as a special one.

Since observing a valueset X entails observing every value
in X , the “bottleneck” is the least observed value in X . So we
define o(X) by min{o(a) | a ∈ X}. For a given threshold σo,
we say that X is observable if o(X) ≥ σo. Below, we consider
two instantiations for specifying o(a) for a single value a on
some attribute.

The sensitivity based instantiation. The first instantiation
is based on the intuition that a sensitive value is hard to observe
and a non-sensitive value is easy to observe. Therefore, if all
the leaf nodes in Leaf(a) are sensitive, it is hard to observe
a, so o(a) = 0; if some leaf node in Leaf(a) is non-sensitive,
such leaf nodes can be observed, and a can be observed
following Observability Principle, so o(a) = 1.

Example 2.3: Continue with the guarding set GS1 =
{AIDS, TB} in Example 2.1. o(AIDS) = o(TB) =
0 because these nodes are sensitive. o(a) = 1 for
Flu,E.Coli, V I,BI, ANY Disease because these nodes
have some non-sensitive leaf nodes.

The belief based instantiation. Sometimes the publisher
wants to specify o(a), in the range [0..1], according to her
own belief. Suppose that the publisher has specified o(a) for
all leaf nodes a. For a non-leaf node a, Observability Principle
requires o(a) ≥ o(ai) for all child nodes ai of a. A valid



specification is o(a) = min{1, α + maxio(ai)}, where α is
a “boost” of observability when going from the child level to
the parent. For example, o(ai) = 0 and α = 1 specifies that
exact incomes ai cannot be observed but the income bracket a
can be observed. However, the specification o(a) = avgio(ai)
violates Observability Principle because avgio(ai) may be
smaller than o(ai).

Corollary 2.1: The sensitivity based and belief based in-
stantiations satisfy Observability Principle.

Our approach does not depend on the exact instantiation
for o(X) and s(a). The only requirement is that they follow
Observability Principle and Sensitivity Principle. Therefore, a
new instantiation for o(X) and s(a) can be easily incorporated
into our approach.

III. PROBLEM STATEMENTS

A. Privacy breaches

Consider a published table T ∗. The adversary attempts to
infer some value a in Cut(A, T ∗) for some attribute A by
observing a valueset X in Cut+(U−A, T ∗). In the following
discussion, we assume that X is observable (otherwise, X
cannot be linked to any individual) and a is non-observable
(otherwise, there is no need to infer a).

Definition 3.1 (Attacks): Given a threshold σo on observ-
ability, a freeform attack wrt T ∗ has the form X → a, where
a is a non-observable value in Cut(A, T ∗) for some attribute
A and X is an observable valueset in Cut+(U −A, T ∗).

Definition 3.2 (Threat): Given T ∗ and the taxonomies for
all attributes, the threat of X → a wrt T ∗, denoted t(X →
a), is the probability with which the adversary can infer that
a record in T ∗ matching X ”originates” from sensitive leaf
nodes in Leaf(a).

t(X → a) depends on two probabilities. The first is the
probability that a record in T ∗ matching X matches a, i.e.,
P (a|X) = sup(Xa)

sup(X) . The second is the probability that a

originates from a sensitive leaf node in Leaf(a), i.e., s(a).
Theorem 3.1: For an attack X → a wrt T ∗, under the

independence assumption of P (a|X) and s(a),

t(X → a) = P (a|X) ∗ s(a). (3)
With the aggregate instantiation of s(a), t(X → a) is the

probability that a record in T ∗ matching X is associated with
any sensitive leaf node in Leaf(a); with the non-aggregate
instantiation of s(a), t(X → a) is the probability that a record
in T ∗ matching X is associated with a particular sensitive leaf
node in Leaf(a). We consider X → a to be a privacy breach
if t(X → a) is large enough.

Definition 3.3 (Breaches): Given thresholds σo and σt on
observability and threat, any attack X → a wrt T ∗ is said to
be a breach if t(X → a) > σt. BR(T ∗) denotes the set of all
breaches wrt T ∗.

We are interested in finding a minimally generalized T ∗

with BR(T ∗) = ∅. The difficulty is that BR(T ∗) is not
monotone wrt generalization: BR(T ∗2 ) is not necessarily a
subset of BR(T ∗1 ), where T ∗2 is more general than T ∗1 ,
because a generalization may increase the threat of an attack.

Consider generalizing leaf nodes a1 and a2 into the parent
a, where s(a1) = 1 and s(a2) = 0. Suppose that, before
the generalization, all matching records of X have a2. So
t(X → a1) = t(X → a2) = 0. After the generalization,
t(X → a) = 1/2 because s(a) = 1/2 (assuming the aggregate
instantiation) and P (a|X) = P (a2|X) = 1. To address this
issue, we extend BR(T ∗) to X → a, where a can be more
general than the values in T ∗. This is defined below.

Definition 3.4 (Extended Breaches): Any attack X → a wrt
T ∗, with a being to a non-observable value in Cut+(A, T ∗)
for some attribute A, is said to be a breach if t(X → a) > σt.
BR(T ∗) denotes the set of all breaches wrt T ∗.

Note the difference between Definition 3.3 and 3.4: the latter
includes those X → a with a being more general than the
values in T ∗. With this extended BR(T ∗), it follows from the
definition that, if T ∗2 is more general than T ∗1 , BR(T ∗2 ) is a
subset of BR(T ∗1 ).

Corollary 3.1: For BR(T ∗) in Definition 3.4, if T ∗2 is more
general than T ∗1 , BR(T ∗2 ) ⊆ BR(T ∗1 ).

Several remarks are in place. First, by considering the
extended BR(T ∗), Corollary 3.1 allows a top-down search for
a maximally specialized T ∗ with BR(T ∗) = ∅: starting with
the most generalized table T ∗ = T>, we iteratively specialize
it on some attribute as long as BR(T ∗) = ∅. Second, the
extended BR(T ∗) is a superset of the breaches defined in
Definition 3.3; therefore, BR(T ∗) = ∅ is a sufficient condition
for eliminating all the breaches in Definition 3.3. In the rest
of the paper, BR(T ∗) refers to the extended BR(T ∗) in
Definition 3.4. Finally, Corollary 3.1 does not depend on the
instantiation of s(a), therefore, the top-down approach remains
applicable if a new instantiation of s(a) is adapted.

B. Anonymization problems

Let IL(T ∗, T ) denote a chosen metric for information loss
of generalizing T to T ∗.

Definition 3.5: We say that T ∗ is an FF-anonymization of T
if BR(T ∗) = ∅. Problem I: find an optimal FF-anonymization
T ∗, that is, for every FF-anonymization T ∗2 , IL(T ∗, T ) ≤
IL(T ∗2 , T ). Problem II: find a minimal FF-anonymization T ∗,
that is, no specialization on T ∗ leads to an FF-anonymization.

We can show that Problem I is NP-hard by a reduction from
the optimal k-anonymity problem to Problem I. With Corollary
3.1, we can find a solution to Problem II, i.e., a minimal FF-
anonymization, following a top-down specialization process
starting with the most generalized table T ∗ = T>. Corollary
3.1 implies that further specialization leads to no solution. The
detailed algorithm and evaluation will be presented in the full
version of this paper.
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