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Abstract Clustering text data streams is an important issue in data mining community and has a number of applica-
tions such as news group filtering, text crawling, document organization and topic detection and tracing etc. However,
most methods are similarity-based approaches and only use the TF∗IDF scheme to represent the semantics of text data
and often lead to poor clustering quality. Recently, researchers argue that semantic smoothing model is more efficient
than the existing TF∗IDF scheme for improving text clustering quality. However, the existing semantic smoothing model
is not suitable for dynamic text data context. In this paper, we extend the semantic smoothing model into text data
streams context firstly. Based on the extended model, we then present two online clustering algorithms OCTS and
OCTSM for the clustering of massive text data streams. In both algorithms, we also present a new cluster statistics
structure named cluster profile which can capture the semantics of text data streams dynamically and at the same time
speed up the clustering process. Some efficient implementations for our algorithms are also given. Finally, we present a
series of experimental results illustrating the effectiveness of our technique.
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1 Introduction

Clustering text data streams is an important issue
in data mining community and has a number of ap-
plications such as news group filtering, text crawling,
document organization and topic detection and trac-
ing etc.

Can you imagine you check the mails in different
categories when you open the email box? Text data
streams clustering approach can easily implement such
a system. For example, a part of the text streams is
given in Fig.1, where four emails continuously arrive
in a twenty minutes interval. From Fig.1, we can see
that Email1 and Email3 are about the working busi-
ness that are urgent and need to be handled immedi-
ately, whereas Email2 and Email4 are about the enter-
tainment such as gathering and dating. When Kevin
checks his mails at 10:30 pm, it would be more conve-
nient for him to reply the emails if the emails can be
automatically classified into different categories. An-
other example of text data streams clustering is the
thread detection in text streams in which the Instant

· · ·
Email1 arrives at 10:00 pm. Jan. 18th, 2007:

hello Kevin,

Can you send me the project proposal before 24th this

month? Thank you.

Tom.

Email2 arrives at 10:05 pm. Jan. 18th, 2007:

Long time no see Kevin; we have a gathering at 20th,

would you like to join us. Reply the mail no matter

whether you would come.

Jack.

Email3 arrives at 10:15 pm. Jan. 18th, 2007:

hello Kevin,

The codes of the project have some bugs; we would

have an online meeting tomorrow. Please attend on time.

Mr. Robinson.

Email4 arrives at 10:17 pm. Jan. 18th, 2007:

Shall we go to see a movie this weekend?

Marry.

· · ·

Fig.1. Example of text data streams.
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Messaging (IM) and Internet Relay Chat (IRC) text
message streams are classified[1]. In such text data
stream applications, text data comes as a continuous
stream and this presents many challenges to tradi-
tional static text clustering. For example, the whole
text data cannot be fit into memory at once and multi-
ple scans of the data kept in secondary storage are not
possible due to real-time response requirements etc.[2]

Actually, the clustering problem has recently been
studied in the context of numeric data streams and
categorical data streams[3−5]. However, the clustering
of text data streams is still in early stage. In [6], an
online algorithm framework based on traditional nu-
meric data streams clustering is presented for categor-
ical and text data streams. In [7], the single pass clus-
tering method for online event detection of text data
streams is presented. This method is also an extension
of traditional numeric data streams clustering. In [8],
several methods based on three batch topic models are
presented for the clustering of text data streams.

Recently, [9] argues that a text document is often
full of class-independent “general” words (such as stop
words that may be shared by different classes of two
documents) and short of class-specific “core” words
(such as the related topic words occur in the docu-
ment), which often leads to poor document clustering
quality. The model-based clustering approaches based
on semantic smoothing, which is widely used in infor-
mation retrieval (IR)[10−12], are presented for static
text data clustering.

Actually, most existing clustering algorithms for
text data streams are similarity-based approaches and
often employ the heuristic TF∗IDF scheme to discount
the effect of “general” words. As shown in [9], semantic
smoothing model is often better than TF∗IDF scheme
in improving the clustering quality. However, the ex-
isting semantic model is not suitable for the dynamic
text context.

In this paper, we extend the semantic smoothing
model into text data streams context and try to im-
prove the clustering quality by the semantic smooth-
ing model. To the best of our knowledge, there are no
works on this problem. The key contributions of this
paper are as follows.

1) We analyze the characteristics of text data
streams and point out the existing semantic smooth-
ing model is not suitable for the text data streams con-
text. Then we present an extended semantic smooth-
ing model for the text data streams (please see Section
2).

2) Based on the extended semantic smoothing

model, we present two online clustering algorithms
OCTS (stands for online clustering of text streams)
and OCTSM (stands for online clustering of text
streams with merge) for the clustering of massive text
data streams. In both algorithms, we also present a
new cluster statistics structure named cluster profile,
which can capture the semantics of text data streams
dynamically and at the same time speed up the clus-
tering process. Some efficient implementations for our
algorithms are also given.

3) We have performed a series of experiments to
compare our technique with some existing algorithms
on the 20ng-newsgroups (20NG) corpus dataset, which
is widely used in the text data clustering. The ex-
perimental results illustrate the effectiveness of our
technique①.

1.1 Related Work

There are some related works on our problem. The
existing static text clustering methods (or referred to
as batch text clustering) are related to our work in-
cluding the spherical k-means, the bisecting k-means,
and the documents model-based clustering etc.[14,15]

Those methods are the basis of our work.
The data streams clustering methods are also re-

lated. In [5, 16], based on the traditional k-means, S.
Guha et al. firstly propose the data streams clustering
algorithm named STREAM. In STREAM, the cen-
troid is used to represent the clusters, and a layered
clustering strategy is used to enhance the algorithm
efficiency. Different from STREAM, we use cluster
profile, which is a kind of statistics structure, to rep-
resent the clusters. In [3], Aggrawal et al. propose
a novel data stream clustering framework called as
CluStream, which views the data streams clustering
as an evolutionary process with time. This frame-
work includes two sub-processes, that is, the online
process and offline process. That is similar to our al-
gorithms in which the online process and offline pro-
cess are also included. But, our algorithms aim to
handle text data streams that consist of more compli-
cated semantics than the general data streams. Sim-
ilar to [3], a projected data stream clustering algo-
rithm called HPStream is presented for the clustering
of high dimensional numeric data stream. In [6], the
concept of cluster droplet is used to store the real-
time condensed cluster statistics information. When a
document comes, it would be assigned to the suitable
cluster and then the corresponding cluster droplet is
updated. In clustering process, they utilize the online

①The initial results on OCTS also appear in [13].
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version of the traditional TF∗IDF scheme called incre-
mental TF∗IDF to dynamically represent the stream-
ing documents. Similar to [6], our cluster profile is also
a kind of statistics information structure. However,
in cluster profile, our extended semantic smoothing
model, which is not used in the cluster droplet, cap-
tures the semantics. The incremental TF∗IDF stra-
tegy is also used in [7]. Different from [6], the time
window is used to describe the changes of text data
streams in [7]. Similar to [6], the fading functions are
also used in our algorithms. Different from [6, 7], the
static spherical k-means text clustering method is ex-
tended for online text data streams clustering[17], and
it only keeps cluster centers instead of cluster droplets.
When a document comes, it would not be clustered at
once. Instead, it is accumulated as a portion of a seg-
ment. When a segment (a fixed number of documents)
forms, the online spherical k-means algorithm would
be employed and then the cluster centers are updated.

In [18], a feature-pivot clustering technique is pre-
sented for the detection of a set of bursty events from
a text stream. They fully utilize the time information
to determine a set of bursty features, which may occur
in different time windows based on the feature distri-
butions. Based on [18], a dynamical document repre-
sentation method based on bursty features is applied
in the text streams environment[19]. But both assume
the text stream is a finite process, which contains a
fixed number of documents. Different from [18, 19],
our algorithms are used to classify the document top-
ics but the bursty features from the text data streams
in which the documents continuously come.

Recently, [8] proposed a practical heuristic for hy-
brid topic modeling, which learns online topic models
on streaming text and intermittently runs batch topic
models on aggregated documents offline. Compared to
the semantic smoothing model, the hybrid topic mod-
els including vMF, LDA and DCM are more compli-
cated. In addition, the time window is used to describe
the changes of text data streams, which is also differ-
ent from our work in which the fading function is used.
In [20], an efficient extraction algorithm is presented
for the text data streams with noise.

There are also some other related works. The work
in [21–23] focuses on the problem of concept drift of
data streams. In [24], a new mining problem called
temporal text mining is studied, whose purpose is to
discover and summarize the evolutionary theme pat-
terns in text data streams context. In [25–29], some
interesting problems on data stream mining such as
the approximate querying, frequent itemsets mining
etc. are discussed. In [30, 31], the multi-dimensional

data stream processing is discussed as the problem of
stream cube. In [32], we also present an extended se-
mantic smoothing model for the static text data clus-
tering.

1.2 Paper Organization

The rest of this paper is organized as follows. The
existing semantic smoothing model and its extension
are given in Section 2. In Section 3, we present the
clustering algorithms OCTS and OCTSM based on the
extended semantic smoothing model. Some efficient
implementations for our algorithms are also given in
this section. The experimental results are reported in
Section 4. The conclusions are drawn in Section 5.

2 Semantic Smoothing Model

Many previous approaches use word extraction
method and single word vector as the document
features. However, they suffer from the context-
insensitivity problem. The terms in these models may
have ambiguous meanings. In contrast, the semantic
smoothing model uses the multiword phrases as topic
signatures (document features). For example, the mul-
tiword phrase “fixed star” (denotes a celestial body)
has clearer meaning than the single word “star” (de-
notes either a celestial body or a pop star).

After phrase extraction, the training process deter-
mines the probability of translating the given multi-
word phrase to terms in the vocabulary. For example,
if the word “planet” frequently appears in the docu-
ments whose topic contains “fixed star”, then “fixed
star” and “planet” must have some specific relation-
ship. The translation model finds out such relation-
ship and assigns a degree to describe it. In the follow-
ing process (e.g., clustering), if we encounter a doc-
ument contains the topic signature “fixed star” (but
not “planet”), we can also assign a rational probabil-
ity count to the word “planet” for the document.

For each phrase tk, it would have a set of docu-
ments (Dk) containing that phrase. Since not all words
in Dk center on the topic signature tk, we assume
Dk is generated by a mixture language model (i.e.,
all terms in the document set are either translated
by the given topic signature model p(w|tk) or gen-
erated by the background collection model p(w|C)).
(1)∼(3) are used to iteratively compute the transla-
tion probabilities[9,10].

p(w|Dk) = (1− β)p(w|tk) + βp(w|C), (1)

p̂(n)(w) =
(1− β)p(n)(w|tk)

(1− β)p(n)(w|tk) + βp(w|C)
, (2)
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p(n+1)(w|tk) =
c(w, Dk)p̂(n)(w)∑
i c(wi, Dk)p(n)(wi)

. (3)

Here, β is a coefficient accounting for the back-
ground noise, p(w|tk) denotes the translation model
for topic signature tk, c(w, Dk) is the frequency count
of term w in document set Dk (means the number of
appearance of w in Dk), n is the number of iterations,
and C denotes the background collection, which is the
set of all word occurrences in the corpus. In practice,
the EM algorithm is used to estimate the translation
model in (2) and (3).

The cluster model with semantic smoothing (or re-
ferred to as semantic smoothing model) is estimated
using a composite model pbt(w|cj), which means the
likelihood of each vocabulary word w generated by a
given document cluster cj after smoothing. It has two
components: a simple language model pb(w|cj) and a
topic signature (multiword phrase) translation model
pt(w|cj). The influence of two components is con-
trolled by the translation coefficient (λ) in the mixture
model.

pbt(w|cj) = (1− λ)pb(w|cj) + λpt(w|cj), (4)

pb(w|cj) = (1− α)pml(w|cj) + αp(w|C), (5)

pt(w|cj) =
∑

k

p(w|tk)pml(tk|cj). (6)

In simple language model (5), α is a coefficient
controlling the influence of the background collection
model p(w|C) and pml(w|cj) is a maximum likelihood
estimator cluster model. They can be computed using
(7) and (8). In translation model (6), tk denotes the
topic signatures (multiword phrases) extracted from
documents in cluster cj . The probability of translat-
ing tk to individual term (word) is estimated using
(1)∼(3). The maximum likelihood estimator of tk in
cluster cj can be estimated with (9). In (7), (8), and
(9), c(w, cj) denotes the frequency count of word w
in cluster cj , c(w, C) is the frequency count of word
w in the background corpus, and c(tk, cj) is the fre-
quency count of topic signature tk (multiword phrase)
in cluster cj . The function of the translation model
is to assign reasonable probability to an unseen core
word in a given cluster.

pml(w|cj) =
c(w, cj)∑

wi∈cj
c(wi, cj)

, (7)

p(w|C) =
c(w, C)∑

wi∈C c(wi, C)
, (8)

pml(tk|cj) =
c(tk, cj)∑

ti∈cj
c(ti, cj)

. (9)

Due to the likelihood of word w generated by a
given cluster p(w|cj) can be obtained by the cluster
model with semantic smoothing, the remaining prob-
lem for the clustering of text document is how to es-
timate the likelihood of a document d generated by a
cluster. The log likelihood of document d generated by
the j-th multinomial cluster model is described in (10),
where c(w, d) denotes the frequency count of word w
in document d and V denotes the vocabulary.

log p(d|cj) =
∑

w∈V

c(w, d) log p(w|cj). (10)

Compared to semantic smoothing model, tradi-
tional similarity-based approaches just use the tech-
nique of frequency count of words (which is similar
to the simple language model pb(w|cj)) and does not
take into account the translation model pt(w|cj)). As
shown in [9], semantic smoothing model is efficient
to improve the clustering quality for traditional static
text document clustering. However, it cannot be di-
rectly used in the dynamical text data streams envi-
ronment. The key reason is that, in text data streams,
the text data comes as a continuous stream and it is
hard to get the background collection model of all doc-
ument of text data streams in advance. That is, it is
hard to determine p(w|C) in pb(w|cj).

In this paper, we present an extended semantic
smoothing model in which the background model is
not included and set coefficient α as zero. Then we
define the semantic smoothing model as follows.

pbt(w|cj) = (1− λ)pml(w|cj) + λpt(w|cj). (11)

From (11), we can see that the extended seman-
tic smoothing model also consists of two components,
one is pml(w|cj) (which consists of frequency count of
words) and the other is

pt(w|cj) =
∑

k

p(w|tk)pml(tk|cj).

3 Proposed Online Clustering Algorithms

3.1 Basic Concepts

In text data streams environment, text document
comes as a continuous stream. In order to account for
the evolution of the data stream, we assign a time-
sensitive weight to each document. It is assumed that
each data point has a time-dependent weight defined
by the function f(t). The function f(t) is also referred
to as the fading function. The fading function f(t) is a
monotonic decreasing function which decays uniformly
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with time t. In order to formalize this concept, we will
define the half-life of a point in the data stream.

Definition 1 (Half Life). The half life t0 of a
point is defined as the time at which f(t0) = (1/2)f(0).

The aim of defining a half life is to define the rate
of decay of the weight associated with each data point
in the stream. The decay-rate is defined as the inverse
of the half life of the data stream.

Similar to [6], we denote the decay rate by ζ = 1/t0
and the fading function is defined as follows.

Definition 2 (Fading Function). Consider the
time point t, the fading function value is defined as
f(t) = 2−ζt, where ζ = 1/t0 and t0 is the half life of
the stream.

3.2 Cluster Statistics Structure

In order to achieve greater accuracy in the cluster-
ing process, we also maintain a high level of granular-
ity in the underlying data structures. We refer to such
cluster statistic structure as cluster profile in which
the semantics are captured by the extended semantic
smoothing model. In cluster profile, considering the
evolution characteristics of text data streams, we as-
sociate the components pml(w|cj) and pt(w|cj) in (11)
with weighted factor f(t− Td), where Tdis the arrival
time of document d and t is the current time. Then
we get the following formula.

p′bt(w|cj) = (1− λ)
∑

d∈cj

f(t− Td)pml(w|cj)

+ λ
∑

d∈cj

f(t− Td)pt(w|cj)

= (1− λ)

∑
d∈cj

f(t− Td)c(w, d)∑
wi∈cj

∑
d∈cj

f(t− Td)c(wi, d)

+ λ
∑

k

p(w|tk)

·
∑

d∈cj
f(t− Td)c(tk, d)∑

ti∈cj

∑
d∈cj

f(t− Td)c(ti, d)

(using (6), (7) and (9))

= (1− λ)

∑
d∈cj

f(t− Td)c(w, d)∑
wi∈cj

∑
d∈cj

f(t− Td)c(wi, d)

+ λ

∑
k p(w|tk)

∑
d∈cj

f(t− Td)c(tk, d)∑
ti∈cj

∑
d∈cj

f(t− Td)c(ti, d)
.

Based on this result, we introduce the following def-
initions.

Definition 3 (Weighted Sum of Frequency
Count). The weighted sum of frequency count for

word wi in cluster c is defined as w c(wi, c) =∑
d∈c f(t− Td)c(wi, d). Here, c(wi, d) denotes the fre-

quency count of wi in document d, Td is the arrival
time of document d and f(t − Td) is the weight for
word wi in document d. Similarly, the weighted sum
of frequency count for topic signature tk in the cluster c
is defined as w c(tk, c) =

∑
d∈c f(t−Td)c(tk, d), where

c(tk, d) denotes the frequency count of tk in document
d.

Definition 4 (Weighted Sum of Translation).
The weighted sum of topic signature translation prob-
ability in cluster c for word wi is defined as

w t(wi, c) =
∑

k

p(wi|tk)w c(tk, c)

=
∑

k

p(wi|tk)
( ∑

d∈c

f(t− Td)c(tk, d)
)
.

Here, c(tk, d) denotes the frequency count of topic sig-
nature tk in document d, p(wi|tk) denotes the proba-
bility of translating topic signature tk to word wi, Td

is the arrival time of document d and f(t− Td) is the
weight for topic signature tk in document d.

Based on the Definition 3 and Definition 4, we give
the following definition of cluster profile.

Definition 5 (Cluster Profile, CP). A cluster
profile D(t, c) for a document cluster c at time t is de-
fined as a quadruple (DF2, DF1, s, l), and consider
wb denotes the number of distinct words in the dictio-
nary V , and each vector is defined as follows.
• The vector DF2 contains wb entries and the i-th

entry DF2i is defined as w c(wi, c), 1 6 i 6 wb.
• The vector DF1 contains wb entries and the i-th

entry DF1i is defined as w t(wi, c), 1 6 i 6 wb.
• s =

∑
k w c(tk, c) denotes the summation of

w c(tk, c) for all the topic signature tk in the cluster c.
• The entry l denotes the last time when cluster c

is updated (i.e., add some documents into c).
Then we can estimate the cluster model with se-

mantic smoothing using (12) in which DF2i/
∑

i DF2i

and DF1i/s denote the weighted form of the compo-
nents pml(w|cj) and pt(w|cj) respectively.

p′bt(wi|cj) = (1− λ)
DF2i∑
i DF2i

+ λ
DF1i

s
. (12)

Interestingly, we find that CP structure also has
some similar properties for clustering process as the
cluster droplet[6].

Property 1 (Additivity). Additivity describes
the variation of cluster profile after two clusters c1

and c2 are merged as c1 ∪ c2. Suppose two cluster
profiles are D(t, c1) = (DF2(c1), DF1(c1), sc1 , lc1)
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and D(t, c2) = (DF2(c2),DF1(c2), sc2 , lc2). Then
D(t, c1 ∪ c2) = (DF2(c12),DF1(c12), sc12 , lc12) can
be defined by tuple (DF2(c1) + DF2(c2),DF1(c1) +
DF1(c2), sc1 + sc2 ,max(lc1 , lc2)).

Property 2 (Updatability). Updatability de-
scribes the variation of cluster profile after a new doc-
ument is added into the clusters. Suppose a new docu-
ment d is merged into a cluster c, the current clus-
ter profile Db(t, cb) = (DF2(cb),DF1(cb), scb, lcb).
Then the updated cluster profile is denoted as
Da(t, ca) = (DF2(ca),DF1(ca), sca , lca). Here
DF2(ca)i = DF2(cb)i + c(wi, d),DF1(ca)i =
DF1(cb)i +

∑
k p(wi|tk)c(tk, d), sca

= scb
+

∑
k c(tk, d)

and lca = t.
Actually, Property 2 can also be viewed as the spe-

cial case of Property 1, in which one of the two clusters
to be merged only consists of one document.

Property 3 (Fading Property). Fading Prop-
erty describes the variation of cluster profile with
time. Consider the cluster profile at the time t1
is D(t1, ct1) = (DF2(ct1),DF1(ct1), sct1 , lct1) and
there is no document added to the cluster ct1 during
[t1, t2]. Then the cluster profile at the time t2 is de-
fined as D(t2, ct2) = (DF2(ct2), DF1(ct2), sct2 , lct2),
where ct2 = ct1, DF2(ct2) = DF2(ct1) × 2−ζ(t2−t1),
DF1(ct2) = DF1(ct1) × 2−ζ(t2−t1), sct2 = sct1 ×
2−ζ(t2−t1) and lct2 = lct1 .

3.3 Online Clustering Algorithm OCTS

Our online clustering algorithm OCTS includes two
phases: 1) offline initialization process, 2) online clus-
tering process. The detailed description of OCTS al-
gorithm framework is given in Fig.2.

The offline initialization process corresponds to
lines 1∼2. In detail, OCTS first reads in the retro-
spective documents stored in disk as the training text
dataset. From the training document set, OCTS gen-
erates the topic signature translation model. In our
algorithm implementation, the topic signature trans-
lation model is estimated by matrix M(wb×tb), where
wb denotes the number of vocabulary words and tb de-
notes the number of topic signatures, and the data
element Mik of matrix represents p(wi|tk). The ex-
traction process of words and phrase are similar to [9],
that is, we use Xtract to identify phrases in documents.
Xtract is a kind of statistical extraction tool with some
syntactic constraints. Then OCTS reads in the first k
documents from the text data streams and build the
initial cluster profiles CPs (each for one cluster) using
Definition 5.

The online clustering process corresponds to lines
3∼21. In this process, as a new text document arrives,

firstly all the CPs would be updated using Property 3.
Next, the probability p′bt(wi|cj) is computed by (12).
Then the similarity between document d and each clus-
ter is estimated using (10). Then if the similarity be-
tween document d and its most similar cluster is less
than specified threshold MinFactor, the most inactive
cluster is deleted, and a new cluster is created. We as-
sociate the new cluster with the ID same to the deleted
cluster’s ID. Then the document d is assigned to the
new cluster using Property 2. Otherwise, document
d would be assigned to the most similar cluster using
Property 2. In detail, Steps 5∼6 are to update all CP
using the fading property, and Steps 7∼9 are the on-
line building of the cluster model. Steps 11∼13 are
to find the most similar cluster to document d, Steps
15∼18 are to delete the most inactive cluster and cre-
ate a new cluster (Step 15 is to get the most inactive
cluster’s ID, if there are more than one inactive clu-

Algorithm. OCTS

Inputs: A stream of text data, D, k is the number of

clusters, MinFactor is the threshold.

Output: A set of k cluster profiles (D(t, c1), . . . , D(t, ck))

Method:

1. Extract words and multiword phrases, and build the

translation model for the training data set D.

2. Read in the first k documents and generate k cluster

profiles (D(t, c1), . . . , D(t, ck));

3. While (the stream is not empty) do

4. Begin

5. t = GetCurrentTimestamp ();

6. Update all cluster profiles with t;

7. For each cluster j do

8. For each word wi do

9. The cluster model with semantic smoothing

p′bt(wi|cj) is estimated;

10. Read in the next document d and extract words and

multiword phrases from d;

11. For each cluster j do

12. The similarity p(d|cj) between d and cj is esti-

mated;

13. AssignID = argmaxjp(d|cj);

14. If (p(d|cassignID ) < MinFactor) then {
15. NID = argminjD(t, cj).l;

16. Delete the most inactive cluster cNID ;

17. Create a new empty cluster with ID = NID and

build its cluster profile;

18. Assign document d to the new cluster profile; }
19. Else

20. Assign document d to cluster profile with ID =

AssignID;

21. End

Fig.2. Description of OCTS algorithm.
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sters then we randomly choose one). Step 20 is to
assign document d to its most similar cluster.

3.4 Further Improvements of OCTS

As shown in our experiments, OCTS algorithm
can achieve the good clustering quality. However, we
also find that the clustering accuracy of OCTS varies
largely with the evolution of the text data streams.
We attribute this phenomenon to the frequent deletion
of the most inactive cluster (i.e., the historical data)
when a new cluster needs to be created. Although the
historical data is less important for the dynamic text
data streams, it does not mean they are completely
useless. Intuitively, if the historical data are very sim-
ilar to the most recent data, they should not be imme-
diately deleted. Based on this observation, we propose
another extended algorithm OCTSM, which is showed
in Fig.3.

Algorithm. OCTSM (The inputs and outputs are the same

to OCTS with an additional input argument MergeFactor)

Method:

1. Extract words and multiword phrases, and build the

translation model for the training data set D.

2. Read in the first k documents and generate k cluster

profiles (D(t, c1), . . . , D(t, ck));

3. While (the stream is not empty) do

4. Begin

5. t = GetCurrentTimestamp ();

6. Update all cluster profiles with t;

7. For each cluster j do

8. For each word wi do

9. The cluster model with semantic smoothing

p′bt(wi|cj) is estimated;

10. If Merge(MergeFactor) then goto Step 22.

11. Read in the next document d and extract words

and multiword phrases from d;

12. For each cluster j do

13. The similarity p(d|cj) between d and cj is

estimated;

14. AssignID = argmaxjp(d|cj);

15. If (p(d|cassignID ) < MinFactor) then {
16. NID = argminjD(t, cj).l;

17. Delete the most inactive cluster cNID ;

18. Create a new empty cluster with ID = NID

and build its cluster profile;

19. Assign document d to the new cluster profile; }
20. Else

21. Assign document d to cluster profile with ID

= AssignID;

22. End

Fig.3. Description of OCTSM algorithm.

The key framework of OCTSM is similar to that
of OCTS. The key difference is that, in OCTSM, we
introduce a new Merge process with a new argument
MergeFactor (Step 10 in Fig.3) and use this process to
determine the similar clusters. In detail, before assign-
ment, the similarity between each existing cluster pairs
is calculated. If there exist two highly similar clusters,
i and j, they would be merged as a new cluster i using
Property 1 and document d would be classified into a
new created cluster with the ID = j using Property 2
(see the description of Merge process in Fig.4). After
that, the OCTSM algorithm restarts a new loop since
the new document has been assigned. The purpose
of the merge process is to give the inactive cluster a
second chance. If an inactive cluster is highly similar
to a recent cluster, it means the inactive cluster is not
useless and should not be ignored.

In this situation, the merge operation help the in-
active cluster to update its time stamp, which actually
reactivates the historical data. With the introduction
of the merge operation, the clustering process would
become more stable and the clustering accuracy is fur-
ther enhanced since in most text streams the historical
text can help the recent clustering process to deter-
mine the cluster more effectively.

Algorithm. Merge (MergeFactor)

Method:

1. Calculate the similarity between cluster i and cluster

j (1 6 i 6= j 6 k) using the following formula

(∆(ci, cj) ≡
∑

w∈V p(w|ci) log [p(w|ci)/p(w|cj)] and

∆(cj , ci) ≡
∑

w∈V p(w|cj) log [p(w|cj)/p(w|ci)];

2. If (1/min(∆(ci, cj), ∆(cj , ci)) > MergeFactor) {
3. Clusters i and j are merged as new cluster i using

Property 1;

4. A new empty cluster with ID = j is created using

Definition 5 and d is assigned to cluster j using

Property 2;

5. Update cluster i and j with Property 3;

6. Return true;}
7. Return false;

Fig.4. Description of OCTSM algorithm.

3.5 Efficient Implementation for Clustering
Algorithms

The main difficulty for our proposed methods comes
from the storage and access of the translation matrix
M . It is impossible to store the whole topic signature
translation probability matrix M as a hard disk file
in advance. In addition, in the text data streams con-
text, frequency hard disk accesses are infeasible and
that would lead to the delayed response.
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We observe that for the corpus, especially for the
corpus that has the similar topics in different single
documents, the visited items in the matrix would prob-
ably be visited again soon. Inspired by the principle
of the associate memory in operating system, we pro-
pose an effective solution for our algorithm implemen-
tations.

The solution consists of three layers: associate
memory (stored in cache), main memory and a text file
(stored in hard disk). The most frequently used phrase
and word pairs are stored in the associate memory, and
the other parts are stored in main memory and hard
disk (as a text data file) respectively. Initially, we ran-
domly select the frequent and non-frequent items from
the data dictionary. We apply the bisearch method for
the fast access of the main memory.

The mapping process is used to access the different
layers and described as follows. When we need to use
a word and phrase pair 〈wi, tk〉, we first try to match
it with the pairs in the associate memory using hash
mapping method. If matched, the translation prob-
ability is returned. If not, we would further search
in the main memory using the bisearch method. If
matched, the translation probability is returned and it
would replace the item in the associate memory using
the FIFO (first in first out) strategy. If we cannot find
any matched pair in the associate memory and main
memory, we would search in the disk file. If matched,
the translation probability is returned and it would
replace the item in the main memory using the FIFO
strategy. If not found, it means we encounter a new
multiword phrase. Then we would update the matrix.
In detail, we simply get all the words from the phrase
and add the phrase and word pairs into the part of
matrix in associate memory. For example, if “fixed
star” is a new phrase, then the pairs 〈fixed star, fixed〉
and 〈fixed star, star〉 with an initial translation proba-
bility (in order to emphasize the added phrase we can
set the probability as a constant “1”) would be added
into the associate memory.

4 Experimental Results

In the experimental studies, we compare our text
streams clustering method with the framework pro-
posed in [6] (denoted as Ostc) and the single pass
clustering method in [7] (denoted as SPstc) in terms
of clustering accuracy, stability and efficiency. All
clustering algorithms are implemented by Java 1.4.
Our experiment is performed on AMD 1.60GHz CPU,
240MB memory, 40GB hard disk and Window XP
OS. The normalized mutual information (NMI) evalu-
ation function is used to evaluate the clustering qual-

ity, and 20ng-newsgroups (20NG) (20 000 documents)
corpus[9] is used as the test dataset. To simulate the
real stream environment, we randomly give every doc-
ument an arrival timestamp and create three different
text data streams with different document sequence
(denoted as Stream 1, Stream 2 and Stream 3). By
default, in our experiments, we randomly choose 500
documents as the training set and set the translation
coefficient λ = 0.6, cluster number k = 20, stream
speed is 100doc/s, half life = 1s and MinFactor = 0.05,
MergeFactor = 0.4.

4.1 Results of Clustering Accuracy

The first set of experiments is about the clustering
quality with different streams and the results are given
in Figs. 5∼10. In this set of experiments, there are
two kinds of results with different test granularities.

Fig.5. Clustering quality comparison of Stream 1 (fine granu-

larity).

Fig.6. Clustering quality comparison of Stream 1 (coarse gran-

ularity).
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Fig.7. Clustering quality comparison of Stream 2 (fine granu-

larity).

Fig.8. Clustering quality comparison of Stream 2 (coarse gran-

ularity).

Fig.9. Clustering quality comparison of Stream 3 (fine granu-

larity).

In Figs. 5, 7 and 9, the NMI value temporal variance
is set as fine granularity, that is, the NMI values are
compared by every 1 second interval. In Figs. 6, 8 and
10, we compare the NMI value in coarser granularity,
and the NMI value is estimated by every 50 seconds
interval.

Fig.10. Clustering quality comparison of Stream 3 (coarse gran-

ularity).

From the above results, it is easy to know our
proposed method OCTS obviously outperforms Ostc
and SPstc in which both TF[6] and incremental IDF[7]

schemes are used. The results show the effectiveness
of semantic smoothing model for improving the clus-
tering quality. For the results, it is also known that
OCTSM can yield higher clustering accuracy and is
more stable than OCTS, which shows the merge pro-
cess in OCTSM is effective.

4.2 Results of Clustering Accuracy with
Translation Coefficient

The second set of experiments about the clustering
quality of OCTS with different translation coefficient
(λ) and different text data streams is also studied. The
results for OCTS are given in Figs. 11∼14. The results
for OCTSM are given in Figs. 15∼18. From the re-
sults, it is easy to know that the NMI values of OCTS
and OCTSM with different λ are also better than the
NMI values of Ostc and SPstc (referred to Figs. 6, 8
and 10). In general, from these results, we can also
know that NMI values of OCTS and OCTSM will in-
crease with the increase of the translation coefficient
till the peak point (between 0.2 and 0.6) and then go
downward. That is, our method is most effective as λ
is between 0.2 and 0.6.
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Fig.11. Change of clustering quality with λ of OCTS (test in-

terval: 50 seconds).

Fig.12. Change of clustering quality with λ of OCTS (test in-

terval: 100 seconds).

Fig.13. Change of clustering quality with λ of OCTS (test in-

terval: 150 seconds).

Fig.14. Change of clustering quality with λ of OCTS (test in-

terval: 200 seconds).

Fig.15. Change of clustering quality λ of OCTSM (test interval:

50 seconds).

Fig.16. Change of clustering quality with λ of OCTSM (test

interval: 100 seconds).
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Fig.17. Change of clustering quality with λ of OCTSM (test

interval: 150 seconds).

Fig.18. Change of clustering quality with λ of OCTSM (test

interval: 200 seconds).

4.3 Results of Algorithm Runtimes

The third set of experiments is about the runtimes
of OCTS and OCTSM with different documents. In
this set of experiments, the documents in the text data
streams do not come as a fixed speed but come af-
ter one document is clustered. The results are given
in Figs. 19∼21. From the results, we can see that
the runtimes of OCTS and OCTSM are increased
with the increment of documents in different text data
streams. In general, the runtimes quickly increase be-
tween 10 000 and 15 000 documents. This is because
there are more historical cluster deletions and new
cluster creations whose costs are more expensive than
the simple cluster assignment operation. Besides, the
runtime of the algorithms with the efficient impleme-

Fig.19. Runtime comparison of Stream 1.

Fig.20. Runtime comparison of Stream 2.

Fig.21. Runtime comparison of Stream 3.
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ntation in Subsection 3.5 (denoted as OCTS(E) and
OCTSM(E)), is smaller than that of the original
OCTS and OCTSM, which shows the effectiveness of
the three-layer implementation strategy. Specially, the
runtime of the OCTS(E) is comparable with the sim-
ple Ostc framework.

4.4 Results of OCTS with MinFactor

We study the clustering quality of OCTS with
threshold MinFactor. The results are showed in Figs.
22∼25. From the results, the curve goes upward first
and soon reaches the peak point (around 0.05∼0.1).
Then it would go downward all through until to a very

Fig.22. Change of clustering quality with MinFactor of OCTS

(test interval: 50 seconds).

Fig.23. Change of clustering quality with MinFactor of OCTS

(test interval: 100 seconds).

Fig.24. Change of clustering quality with MinFactor of OCTS

(test interval: 150 seconds).

Fig.25. Change of the clustering quality with MinFactor of

OCTS (test interval: 200 seconds).

poor point. The reason for this is that when MinFactor
is too small (extremely equal 0), there are very few new
clusters created, which makes some documents have to
be added into the dissimilar cluster. Conversely, when
MinFactor is very large, too many new clusters are
created and too many historical clusters are deleted,
which largely influences the cluster quality.

The results in Figs. 26, 27 are the runtimes with
different values of MinFactor when the number of the
documents reaches 15 000 and 20 000 at each stream.
From the curves, we can see that the runtimes first in-
crease as the value of MinFactor increases till a point
(around 0.2∼0.3). Then the variance of the runtimes
becomes subtle (or nearly no change). This is because
as the value of MinFactor increases, there are more
and more historical cluster deletions and new cluster
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Fig.26. Runtimes with different values of MinFactor of OCTS

(test point: 15 000 documents).

Fig.27. Runtimes with different values of MinFactor of OCTS

(test point: 20 000 documents).

creations. Then when the MinFactor becomes large
enough, nearly all the operations are historical cluster
deletions and new cluster creations in the whole clus-
tering process. So the variation of runtimes becomes
nearly the same.

4.5 Results of OCTSM with MergeFactor

The fifth set of experiments is to test the cluster
quality with different MergeFactor in OCTSM. In this
set of experiments, the documents in the text data
streams do not come as a fixed speed but come after
one document is clustered. The results are reported in
Figs. 28∼31. The experimental results show the clus-
tering results of OCTSM are the best when MergeFac-
tor = 0.3∼0.45. In general, NMI values will increase

Fig.28. Change of clustering quality with MergeFactor of

OCTSM (test interval: 50 seconds).

Fig.29. Change of clustering quality with MergeFactor of

OCTSM (test interval: 100 seconds).

with the increase of MergeFactor till the peak point
(MergeFactor = 0.3∼0.45) and then decrease until a
specified stable point (MergeFactor = 0.6∼0.65) after
which the value do not vary and that equals the re-
sult of OCTS. The reason for this variation is, when
MergeFactor is too small, many useless historical clus-
ters are merged, which reduce the clustering accuracy.
Conversely, when MergeFactor is too large, very few
historical clusters can be merged and the merge op-
eration becomes useless. Specially, when MergeFactor
is large enough, OCTSM is equal to OCTS since no
clusters would be merged.

4.6 Results on Algorithm Memory Costs

The last set of experiments is to study the memory
cost of our proposed clustering methods. The result of
OCTS is showed in Fig.32 and the result of OCTSM
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Fig.30. Change of clustering quality with MergeFactor of

OCTSM (test interval: 150 seconds).

Fig.31. Change of clustering quality with MergeFactor of

OCTSM (test interval: 200 seconds).

Fig.32. Memory cost of OCTS.

Fig.33. Memory cost of OCTSM.

is in Fig.33. In all figures, the maximal memory usage
cost does not exceed 12MB. From this experimental
results, the memory cost increases between 50∼100s,
and then decreases between 100∼150s, and increases
again between 150∼200s. This can be attributed to
the variations of the number of the operations of his-
torical cluster deletion, new cluster creation, and as-
signment operation on different text data streams.

5 Conclusion

In this paper, we extend semantic smoothing model
into the text data streams context and present an ex-
tended semantic smoothing model. Based on the ex-
tended model, two online clustering algorithms OCTS
and OCTSM are presented for the clustering of mas-
sive text data streams. In our algorithms, we present a
new cluster statistics structure named cluster profile,
which can capture the real-time semantics of text data
streams and speed up the clustering process at the
same time. We also present a series of experimental re-
sults illustrating the effectiveness of our technique. In
particular, the clustering quality of our algorithms ob-
viously outperforms the existing clustering algorithms
based on the TF∗IDF scheme, the runtime is close to
the existing Ostc algorithm, and the memory cost can
satisfy the requirements of real time clustering of text
data streams. Integrating further our clustering algo-
rithms into the real applications, such as the real email
clustering application, is our future work.
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Appendix. Proofs of the Properties

1. Proof for Property 1
1) For the i-th entry of DF2(c12),

DF2(c12)i = w c(wi, c1 ∪ c2)

=
∑

d∈c1∪c2

f(t− Td)c(wi, d)

=
∑

d∈c1

f(t− Td)c(wi, d) +
∑

d∈c2

f(t− Td)c(wi, d)

=w c(wi, c1) + w c(wi, c2) = DF2(c1)i + DF2(c2)i.

2) For the i-th entry of DF1(c12),

DF1(c12)i = w t(wi, c1 ∪ c2)

=
∑

k

p(w|tk)w c(tk, c1 ∪ c2)

=
∑

k

p(wi|tk)
( ∑

d∈c1∪c2

f(t− Td)c(tk, d)
)

=
∑

k

p(wi|tk)
( ∑

d∈c1

f(t− Td)c(tk, d)

+
∑

d∈c2

f(t− Td)c(tk, d)
)

=
∑

k

p(w|tk)(w c(tk, c1) + w c(tk, c2))

=
∑

k

p(w|tk)w c(tk, c1) +
∑

k

p(w|tk)w c(tk, c2)

=wt(wi, c1) + wt(wi, c2)

=DF1(c1)i + DF1(c2)i.

3) For sc12 ,

sc12 =
∑

k

w c(tk, c1 ∪ c2)

=
∑

k

∑

d∈c1∪c2

f(t− Td)c(tk, d)

=
∑

k

( ∑

d∈c1

f(t− Td)c(tk, d) +
∑

d∈c2

f(t− Td)c(tk, d)
)

=
∑

k

w c(tk, c1) +
∑

k

w c(tk, c2)

= sc1 + sc2 .

4) For lc12 , the proof is trivial since the last updated
time of the merged cluster is the later of the original
two. ¤

2. Proof for Property 2
1) For the i-th entry of DF2(ca),

DF2(ca)i =DF2(cb)i + f(t− t)c(wi, d)

=DF2(cb)i + c(wi, d)

2) For the i-th entry of DF1(ca),

DF1(ca)i =DF1(cb)i +
∑

k

p(wi|tk)f(t− t)c(tk, d)

=DF1(cb)i +
∑

k

p(wi|tk)c(tk, d)

3) For sca
,

sca = scb
+

∑

k

f(t− t)c(tk, d)

= scb
+

∑

k

c(tk, d).
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4) For lca
, the proof is trivial since the current time

is the last updated time. ¤

3. Proof for Property 3
1) For the i-th entry of DF2(ct2),

DF2(ct2)i =w c(wi, ct2)

=
∑

d∈ct2

f(t2 − Td)c(wi, d)

=
∑

d∈ct2

f(t2 − t1 + t1 − Td)c(wi, d)

=
∑

d∈ct1

2−ζ(t2−t1+t1−Td) × c(wi, d)

=
∑

d∈ct1

2−ζ(t2−t1) × 2−ζ(t1−Td) × c(wi, d)

= 2−ζ(t2−t1) ×
∑

d∈ct1

2−ζ(t1−Td) × c(wi, d)

=DF2(ct1)i × 2−(t2−t1).

2) For the i-th entry of DF1(ct2),

DF1(ct2)i = wt(wi, ct2)

=
∑

k

p(w|tk)w c(tk, ct2)

=
∑

k

p(wi|tk)
( ∑

d∈ct2

f(t2 − Td)c(tk, d)
)

=
∑

k

p(wi|tk)
( ∑

d∈ct2

f(t2 − t1 + t1 − Td)c(tk, d)
)

=
∑

k

p(wi|tk)
∑

d∈ct1

2−ζ(t2−t1) × 2−ζ(t1−Td) × c(wi, d)

=DF1(ct1)i × 2−ζ(t2−t1).

3) For sct2
,

sct2
=

∑

k

w c(tk, ct2)

=
∑

k

∑

d∈ct2

f(t2 − Td)c(tk, d)

=
∑

k

∑

d∈ct1

f(t2 − t1 + t1 − Td)c(tk, d)

=
∑

k

∑

d∈ct1

2−ζ(t2−t1) × 2−ζ(t1−Td) × c(tk, d)

= sct1
× 2−ζ(t2−t1).

4) For lct2
, the proof is trivial since no document is

added to cluster ct1 during [t1, t2]. ¤


