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Abstract Nowadays “live” content, such as weblog,
wikipedia, and news, is ubiquitous in the Internet. Provid-
ing users with relevant content in a timely manner becomes
a challenging problem. Differing from Web search technolo-
gies and RSS feeds/reader applications, this paper envisions a
personalized full-text content filtering and dissemination sys-
tem in a highly distributed environment such as a Distributed
Hash Table (DHT) based Peer-to-Peer (P2P) Network. Users
subscribe to their interested content by specifying input key-
words and thresholds as filters. Then, content is disseminated
to those users having interest in it. In the literature, full-text
document publishing in DHTs has suffered for a long time
from the high cost of forwarding a document to home nodes
of all distinct terms. It is aggravated by the fact that a doc-
ument contains a large number of distinct terms (typically
tens or thousands of terms per document). In this paper, we
propose a set of novel techniques to overcome such a high
forwarding cost by carefully selecting a very small number
of meaningful terms (or key features) among candidate terms
inside each document. Next, to reduce the average hop count
per forwarding, we further prune irrelevant documents dur-
ing the forwarding path. Experiments based on two real query
logs and two real data sets demonstrate the effectiveness of
our solution.
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1 Introduction

The amount of live content in the Internet such as web-
log, Wikipedia, and news is growing at an amazing speed.
For example, in July 2006, there were over 1.6 million
blog postings every day; the number of blogs worldwide
was reported to be 50 million and has doubled every
6 months [30]; in Wikipedia, which has 2,163,836 arti-
cles in the English version, the increase in average addi-
tions per day during the period from 2002-01-01 to 2007-
01-01 was from 54 to 1,822 [2]. These staggering num-
bers suggest a significant shift in the nature of Web con-
tent from static pages to continuously created and updated
documents.

With such “live” content, providing users with their inter-
ested content in a timely manner becomes a very helpful but
challenging task. Web search technologies retrieve Web doc-
uments for input queries; however, they are ill-suited to notify
users of rapidly changing content [16]. Besides, alert services
(like Google Alerts [3] and Microsoft Live Alerts [1]) allow
end users to input keywords and receive relevant Web con-
tent. However, it is believed that alert services are still based
on batch processing through search engines [16]. Thus, they
cannot offer timely dissemination services.

Specially, we use the recently popular RSS technology as
a motivation example. With help of RSS URLs, end users
subscribe to their favorite content. RSS readers periodically
download RSS feeds containing a summary of new articles
that are recently posted to the websites of URLs. Then, sub-
scribers are notified of these new articles. However, the RSS
technology suffers from the following two issues.
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– The scalability issue due to the high bandwidth consump-
tion: RSS readers adopt a periodic polling mechanism to
detect new articles. Given a Web server subscribed by
a large number of RSS readers, the network bandwidth
consumption by the periodical polling mechanism is illus-
trated by the following examples [34]. In the New York
Times, the total network bandwidth is around 3.5 GB/day,
for RSS polling the front page every 30 min. For web-
sites wishing to provide RSS readers with deeper content
and faster polling frequency, the problem becomes worse.
For example, Boing Boing, having 11,500 subscribers
who subscribe to the provided RSS and Atom with com-
plete HTML stories (40 KB for each RSS request), has to
accommodate 22 GB/day of RSS traffic alone. Assuming
that the BBC News Web site is truly “updated every min-
ute”, the RSS polling (given 18,000 RSS subscribers to
its various feeds on Bloglines [34]) demands a virtually
impractical bandwidth of 989 GB/day.

– The second issue of the RSS technology is that it provides
limited filtering semantics. By entering URL addresses of
RSS feeds, RSS readers download articles posted to the
Web servers associated with those URLs. Now, the prob-
lem is, all posted articles, though some of them are totally
irrelevant to subscribers, are downloaded by RSS read-
ers which then alter subscribers. Following the example
above, due to a large number of articles posted to the front
page of New York Times, if without any filtering mech-
anism, subscribers could be overwhelmed and annoyed
by the amount of useful and useless content. Therefore,
a content filtering mechanism is quite necessary to filter
out useless content.

In view of the shortcomings of previous approaches, such
as no timely dissemination, no content-based filtering mech-
anism, and scalability issue, we aim to develop a personalized
full-text filtering and dissemination system in a large distrib-
uted environment, such as a Peer-to-Peer (P2P) network. In
such a system, end users subscribe to their interested con-
tent by entering input keywords as filtering conditions (i.e.,
subscription filters). The system then disseminates relevant
content that matches filters to subscribers who want such con-
tent. Building this system in a P2P network aims to save the
network bandwidth consumption with help of a large num-
ber of decentralized peer nodes. Thus, this system overcomes
the limited scalability issue as shown in the RSS architecture.
Note that such a system is not designed to totally replace RSS
technique or Google-like search engines, but instead serve
as a complementary service (just like Google Alert Service),
and it can even benefit from the RSS technology, for exam-
ple, customizing the widely familiar RSS reader interface to
enter input keywords [24].

For the content-based filtering mechanism, we employ the
standard Vector Space Model (VSM) [5] model by using a

score function such as term frequency * inverse document
frequency (tf*idf) scheme to measure the relevance score
between a publication document and a subscription filter.
Only those documents having relevance scores higher than
a threshold are disseminated to users. In this paper, both
input keywords and thresholds are used as filtering condi-
tions, based on two observations: (i) term input has become
the de facto standard for end users to retrieve their interested
documents; (ii) the whole content space is extremely huge,
whereas input queries are usually composed of several terms
(on average smaller than 3 terms as shown by real data sets
in our experiments). Therefore, if only query terms are used
as filtering conditions, without setting a threshold, matching
results will be very large. Moreover, end users are usually
interested in documents that are of interest to them. Thus, it
is quite important for end users to set thresholds to filter out
useless documents and only receive relevant documents.

1.1 Data model

In this paper, we consider two data models: a simple model
and an extended model.

Simple model: We assume that each document is represented
by a set d consisting of |d| pairs of 〈ti , s(ti , d)〉, where ti is
a term, and s(ti , d) represents the score or importance of ti
in the document. s(ti , d) can be pre-computed, e.g., using
the tf*idf scheme. For simplicity, we use the notation of d
to indicate both a document and a set of the aforementioned
pairs associated with this document.

Each subscription filter is represented by a predefined
threshold and a set of | f | terms {t1, .., t| f |}. Similar to d,
the notation f is used to indicate both a filter and a set of
query terms associated with this filter. The predefined thres-
hold, denoted by T( f ), can be specified with either a default
value T or a personalized value. Document d is disseminated
to the subscriber specifying filter f , provided that

S( f, d) =
| f |∑

i=1

s(ti , d) ≥ T( f ) (1)

In the above equation, S( f, d) computes the relevance
score between f and d. If a subscriber does not specify a
threshold, the system assumes that the associated filter uses
a default threshold T (that works well for general users). The
personalized threshold indicates the strength of the desired
relevance between input keywords and a document to be
received. A higher value of T( f ) indicates the expectation
of more relevant documents, and vice versa. S( f, d) = 0.0
means that there is no term appearing in both f and d. By
default, all algorithms and statements in this paper will refer
to this simple model.
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STAIRS: Toward efficient full-text filtering and dissemination 795

Extended model: In this model, each term ti ∈ f is associ-
ated with a weight, w(ti , f ), to indicate a subscriber’s pref-
erence of ti . Then, Eq. 1 is extended as follows.

S( f, d) =∑| f |
i=1 [nw(ti , f ) · ns(ti , d)] ≥ T( f ) (2)

In the above equation, nw(ti , f ) = w(ti , f )√∑| f |
i ′=1
[w2(ti ′ , f )]

and

ns(ti , d) = s(ti ,d)√∑|d|
i ′=1
[s2(ti ′ ,d)]

indicate the normalized weight

of ti in f and normalized score of ti in d, respectively. Thus,
S( f, d) above is a normalized value within [0.0, 1.0]. Based
on this model, S( f, d) = 1.0 indicates that document d is
exactly the same as filter f , including the same terms inside
both d and f , and term scores s(ti , d) equal to correspond-
ing weights w(ti , f ). In addition, S( f, d) = 0.0 indicates
the same situation as the simple model. For simplicity, we
assume that w(ti , f ) > 0 is satisfied for each term ti in
filter f .

1.2 Problem statement and challenges

Problem statement: Given two data models above, we want
to design a full-text filtering and dissemination scheme in a
distributed hash table (DHT) based P2P network, satisfying
the following requirements:

User requirements include (i) no or low false dismissals
(i.e., subscribers should correctly receive expected docu-
ments satisfying either of two data models); and (ii) a timely
manner (i.e., subscribers expect to timely receive fresh doc-
uments).
Efficiency requirement indicates a low document publish-
ing cost. The publishing cost is measured by the overall
number of hops to forward every document to all satisfied
subscribers.

Challenges: The challenge is designing a desirable scheme
that satisfies all above requirements.

If we relax either of the user requirements, we achieve
a useless, though efficient, scheme. For example, if a high
false dismissal ratio is allowed, we can heuristically forward
document d to some randomly chosen nodes. This heuris-
tic scheme consumes a low forwarding cost, but subscribers
may not receive useful documents. Or if the timely require-
ment is not emphasized, we can adopt the full-text search
scheme [48], where documents are pre-stored in a DHT. After
that, searching documents only involves the communication
between the query initiator and home nodes of the query
terms appearing in filter f . However, this scheme only finds
outdated documents, instead of those documents as fresh as
possible.

Now, the challenges of designing an efficient scheme
meanwhile satisfying user requirements are illustrated as fol-
lows. First, naively broadcasting document d to all nodes in
a DHT incurs the lowest efficiency. Next, an improvement
over such a naive solution is to forward document d only to
the home node of every distinct term inside d [48,17,22].
However, this approach still suffers from a high publishing
cost. For example, it has been shown that the bandwidth con-
sumption of full-text document publishing in the DHT is
six times of the super-peer system [48]. The high publish-
ing cost depends on two factors: (i) the cost of forwarding
document d to one destination home node (called the unit-
publishing cost), typically equal to O(log N ) hops, where N
is the total number of nodes in a DHT; (ii) a large number of
distinct terms per document (called the publishing amount).
For example, in a data set of our experiments, there are thou-
sands of terms per document. In particular, [48,17,22] store
document d (more precisely, the pointer of a raw document d)
to home nodes of all distinct terms inside this document. As a
result, the total publishing cost, related to the multiplication
of two aforementioned factors, is very high.

In addition, the approach, by which every node in a DHT
stores the details of all filters, incurs a non-trivial mainte-
nance cost. For example, if a subscriber adjusts his/her per-
sonalized threshold T( f ), all N nodes in the DHT have to
maintain a consistent value of T( f ). Otherwise, the sub-
scriber receives either more or less documents than expected.
Moreover, because the details of all filters are available in
each node, this approach easily leaks private subscription
filters defined by subscribers [35,36,27].

1.3 Our approach

First, we propose to register filter f to the home node of
every term in f , called full registration. It avoids the high
maintenance cost of registering f to all N nodes.

Consider a node which wants to publish document d.
When filter f is not registered to this node, the exact value
of S( f, d) is unknown to this node. Without such an exact
value, we instead propose a set of techniques to approxi-
mate S( f, d) via various filter information. After that, via
the approximated value of S( f, d), we select a small num-
ber of meaningful terms. Thus, document d is forwarded to
a few home nodes, called partial forwarding. Due to par-
tial forwarding, we reduce the publishing amount. We call
the threshold-based full-text filtering and dissemination sys-
tem that is enabled by full registration and partial-forwarding
STAIRS.

Next, to reduce the unit-publishing cost, STAIRS discards
irrelevant documents during their forwarding paths toward
destination home nodes. When both the unit-publishing cost
and the publishing amount are reduced, the overall publish-
ing cost is significantly low.
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Fig. 1 Overall logic flow chart

In STAIRS, though filter f is fully registered to | f | home
nodes, we design a stateless mechanism to avoid dupli-
cate document notification. By such a stateless mechanism,
there is no need to remember the history of those already-
notified documents. In summary, the contributions of this
paper include:

– Full-text document publishing for a long time has suffered
from a high publishing cost [48,17,22]. In this paper, we
propose a set of novel techniques to overcome the prob-
lem of the high publishing cost by carefully selecting
a small number of meaningful terms (or key features)
among tens or thousands of candidate terms.

– We propose techniques to reduce the average routing hop
count per forwarding, which is smaller than O(log N ),
by discarding irrelevant documents during the forwarding
path toward destination nodes.

– With real query logs and document corpus, our experi-
mental results verify our analytical findings.

The rest of this paper is organized as follows: Sect. 2
shows the basic framework. As the main techniques, Sect. 3
(assuming every filter adopts a default threshold) and Sect. 4
(allowing every filter uses a personalized threshold) design
algorithms to reduce the publishing amount, and Sect. 5 pro-
poses the scheme to reduce the unit-publishing cost. Sec-
tion 6 analyzes proposed algorithms. Next, Sect. 7 focuses
on the extended data model (The logic flow chart of Sects. 2–
7 is shown in Fig. 1). After that, Sect. 8 investigates related
works, and Sect. 9 evaluates our algorithms. Finally, Sect. 10
concludes this paper.

2 Basic framework

In this section, we first review DHT-based P2P Networks and
then give the framework of STAIRS.

2.1 Overview of DHT-based P2P networks

A number of structured P2P routing protocols have been
recently proposed, including Chord [37], Pastry [31],

Tapestry [49], etc. These P2P systems provide the function-
ality of a scalable distributed hash table (DHT), by reliably
mapping a given object key (e.g., a term with the string
type) to a unique live node in the network. For simplic-
ity, in this paper, we call the node, which is responsible for
the object key, the home node of this key. These DHT sys-
tems have the desirable properties of high scalability, fault
tolerance, and efficient routing of queries. Typically, each
node is assigned with O(log N ) links, and the average num-
ber of routing hops (in short hop count) is guaranteed with
O(log N ).

2.2 Filter registration

Each end user subscribes to his/her interested documents by
a filter f consisting of | f | terms {t1, ..., t| f |} and a threshold
T( f ). Here, we define the size of filter f by the number of
terms in f , i.e., | f |.

When a subscriber sends a subscription request contain-
ing filter f to STAIRS, f is registered in the home node of
every term ti ∈ f . Thus, f is registered to | f | home nodes.
We call this “full registration”. In Fig. 2, filter f2 is registered
to three home nodes respectively for B, D, and E ; f3 is to
three home nodes respectively for C, E , and F .

2.3 Document publication

First, we show the basic idea of publishing documents.
In the simple model of Sect. 1.2, only those terms, com-
monly appearing in both filter f and document d, contrib-
ute to S( f, d). That is, if a term ti ∈ f does not appear
in d, s(ti , d) makes no contribution to S( f, d). Therefore,
after filter f is registered to | f | home nodes, the home node
of such a common term can act as the rendezvous node
for the matching between registered filters and forwarded
documents. In particular, to publish a document d contain-
ing |d| pairs of 〈ti , s(ti , d)〉 (1 ≤ i ≤ |d|), two steps are
required:

f2
BDE

f3
CEF

f1
A

D 0.5

C 0.7

B 0.9

A 1.0

Fig. 2 Basic STAIRS Framework
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– Forwarding: d is forwarded to home nodes of some
selected (meaningful) terms in d;

– Notification: if the condition S( f, d) ≥ T( f ) is satisfied,
the subscriber specifying f is notified.

In the first step, the forwarding cost mainly depends on two
factors: the number of selected terms and the cost to forward
a document to the home node of a selected term. A simple
approach is to select all |d| distinct terms from document d
and forward d to |d| home nodes. However, the cost of this
approach is very expensive, because (i) the number of dis-
tinct terms in d, i.e., |d|, is large; and (ii) the average hop
count of forwarding d to the home node of a selected term
is O(log N ). In the second step, filter f satisfying the con-
dition S( f, d) ≥ T( f ) is called a “qualified filter”. Given a
document d, there could exist multiple qualified filters. All
subscribers specifying these qualified filters are notified. It
is obvious that the notification cost mainly depends on the
number of qualified filters. In this case, the application-level
multicast helps save the network bandwidth [33].

2.4 Notification without duplicates

Though this paper focuses on the forwarding phase, an impor-
tant issue in the notification phase is to avoid duplicate noti-
fications. This subsection presents the technique of notifica-
tion without duplicates. When document d reaches the home
node of a selected term, for every filter f locally registered
in this node, S( f, d) is computed to check whether or not
S( f, d) ≥ T( f ) holds. If true, the subscriber specifying f is
notified of d. However, we notice that, by “full registration”,
f is registered in | f | home nodes, which may cause duplicate
notifications of d to the subscriber specifying f . For exam-
ple, in Fig. 2, f2 is registered in home nodes of three query
terms {B, D, E}. When d is forwarded to three home nodes
of {B, D, E}, these home nodes could duplicately notify the
subscriber specifying f2 of d.

To avoid the duplicate notification above, we introduce
the significant term t f,d as follows. Given document d and
filter f , among those terms which commonly appear in both
f and d, we call the term with the highest value of s(ti , d)

the significant term (STerm) of f and d, denoted by t f,d .
Such a significant term makes sense, because its term score
s(t f,d , d) contributes most significantly to S( f, d). In case
of a tie in the highest score, we can break the tie by some
rule such as choosing the term that appears the earliest in
the document. With the definition of STerm t f,d , we give the
following notification rule:

Notification rule : Given a qualified filter f,
the subscriber specifying f is notified of document
donly by the home node of the STerm t f,d .

To illustrate this notification rule, we use Fig. 2 as
an example, where document d contains the pairs of
terms {A, B, C, D} and associated term scores. Also for
simplicity, we assume that all 3 filters of Fig. 2 are speci-
fied with the same threshold 1.0. Consider that document d
is forwarded to home nodes of 4 terms {A, B, C, D}. When
d reaches the home node of B, it can be observed that, among
3 query terms in the locally registered filter f2, term B con-
tributes most significantly to S( f2, d), and thus it is the sig-
nificant term t f2,d . Therefore, via the home node of B, the
subscriber specifying f2 is notified of d. Meanwhile, when d
reaches the home node of D, by the notification rule, the home
node of D will not notify the subscriber specifying f2 of d,
because term D is not a significant term t f2,d . Similarly, terms
A and C are significant terms of t f1,d and t f3,d , respectively.
Thus, those subscribers specifying f1 and f3 are uniquely
notified of d, via home nodes of A and C , respectively.

Based on the notification rule, no nodes are required to
remember the history information of those already-notified
documents. Instead, in Sieve [14], proxy nodes of subscribers
have to remember the entire history information and then fil-
ter out duplicate publications. Clearly, the cost used to main-
tain the entire history information is non-trivial.

Before continuing the following sections to present main
algorithms, we first use Fig. 3 to highlight their relations.
First, we consider the simple data model. Among two selec-
tion algorithms (Algorithms 1–2) used to select meaningful
terms, Algorithm 1 targets at a simple case that every filter
f uses the default threshold T, and f contains at most | f |s
query terms; and Algorithm 2 considers a general scenario
that filters have personalized thresholds and different num-
bers of query terms. Algorithms 1 and 2 are used to select
a very small number of meaningful terms (called TTerms)
to reduce the publishing amount. Next, the refinement algo-
rithm (i.e., Algorithm 3) reduces the unit-publishing cost
by pruning a document d if d is irrelevant to filters regis-
tered to the home node of a selected TTerm. This algorithm
calls a subfunction related to the document pruning algo-
rithm (given by Algorithm 4). Finally, for the extended data
model, Algorithm 5 demonstrates the steps of insertion and

Simple
Model

Extended
Model

Fig. 3 Relationships of proposed algorithms
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lookup operations over a proposed structure, named a value-
based bloom filter (in short VBF), which summarizes filter
weights. After that, Algorithm 6 extends Algorithm 2 with
the help of VBF.

3 Default forwarding

In this section, we assume that every subscriber has an equal
(default) threshold T( f ) = T.

3.1 Default selection algorithm

Recall that, only if the condition S( f, d) ≥ T holds, doc-
ument d is forwarded to the subscriber specifying f . We
show how to use such a condition for document forwarding.
If sorting all terms in d in descending order of s(ti , d), we
can position the threshold T in the sorted list, as illustrated by
the following example. In Fig. 4a, all term scores are sorted
in descending order, the sum of term scores from M to E is
0.68, and the sum from M to D is 1.18. Then, the threshold
T = 1.0 is positioned between D and E . Since the sum of
term scores from M to E is less than T = 1.0, we call the
terms from M to E Below Threshold Terms (BTerms), and
the remaining terms in d (i.e., terms from D to A) Threshold
Terms (TTerms).

Normally, BTerms and TTerms are defined as follows.
Given a sorted list of term scores in document d with s(t1, d)

≥ · · · ≥ s(t|d|, d), for any term th with 1 ≤ h ≤ |d|, if∑|d|
i=h s(ti , d) < T holds, then any term ti with h ≤ i ≤ |d|

is a BTerm, and term ti with 1 ≤ i < h is a TTerm. With

(a) (b)

Fig. 4 Default Forwarding: a using a default threshold T = 1.0;
b improved for short filters with | f |s = 3

BTerms and TTerms, we can find the following results with
respect to document d and threshold T.

Claim 1 By the definition of BTerms, the sum of term scores
for any subset of BTerms in document d is less than T.

The correctness of Claim 1 is obvious. For example, in
Fig. 4a, for the full combination of BTerms from M to E , the
sum of term scores, 0.68, is less than the threshold 1.0. Then,
for a partial combination for BTerms (e.g., {E, F, G}), the
sum of their term scores is further less than T = 1.0.

Theorem 1 Given document d with S( f, d) ≥ T, a qualified
filter f contains at least one TTerm of d.

Proof By contradiction: if no TTerm appears in f, f is only
composed of BTerms. By Claim 1, we find that the sum of
term scores for all query terms in f must be less than T, con-
tradicting the assumption of Theorem 1. Hence, Theorem 1
holds. �	

Given a filter f2 : {B, D, E} (in Fig. 2) satisfying S( f2, d)

≥ 1.0, two TTerms {B, D} appear in f2.
By Theorem 1, we can find that a qualified filter f con-

tains at least one TTerm, which is selected from document d.
Meanwhile, Sect. 2.2 states that filter f is “fully registered”
in the home node of each term in f . Thus, any term in fil-
ter f is either a TTerm of d, or a BTerm of d, or not inside
d. Hence, “full registration” guarantees that a qualified fil-
ter f satisfying S( f, d) ≥ T must be registered in the home
node of a TTerm of d. Consequently, when document d is
published, we can only require that d be forwarded to home
nodes of TTerms in d, without causing false dismissals. We
call this approach partial forwarding.

Compared with the full-forwarding approach that for-
wards d to the home node of each distinct term ti ∈ d,
partial forwarding reduces the forwarding cost. For exam-
ple, when document d of Fig. 4a is published, d is only for-
warded to home nodes of 4 TTerms {A, B, C, D}. Instead,
full-forwarding forwards d to home nodes of 13 terms from
A to M .

3.2 Optimization for short filters

Based on real query logs collected from two search engines
(See Sect. 9), we find that the major input queries are com-
posed of only several (e.g., 3) terms. In this section, we will
show that we can further reduce the forwarding cost by select-
ing a smaller number of TTerms.

Recall that the definitions of TTerms and BTerms in
Sect. 3.1 implicitly assume that a filter is composed of an
arbitrary number of terms. Now suppose | f |s is the largest
length among all filters. Given | f |s , we redefine TTerms as
follows: in the sorted list of term scores s(ti , d), the sum of
| f |s consecutive term scores should be less than T. Then,
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among these | f |s consecutive term scores, we use the term
th with the highest one to indicate a term in d is either a
TTerm or a BTerm: any term in d having a higher term score
than s(th, d) is a TTerm; otherwise, it is a BTerm.

For example, in Fig. 4b, | f |s is equal to 3. Since the sum
of 3 term scores related to F, E and D is only 0.98, we
determine that any term ti with s(ti , d) ≤ 0.5 is a BTerm;
and the remaining terms as TTerms. Compared with Fig. 4a
where the sum of term scores starts from the bottom line,
now we only require the sum of | f |s consecutive term scores
to be less than T. Obviously, with a smaller value of | f |s ,
we boost BTerms to a higher position in the sorted list and
select a smaller number of TTerms. Thus, forwarding d to
home nodes of a smaller number of TTerms consumes less
forwarding cost.

Similar to Claim 1 and Theorem 1, we derive the following
results for the newly defined BTerm and TTerm:

Claim 2 The sum of term scores by any combination of | f |s
BTerms in document d is less than T.

Theorem 2 Given a document d with S( f, d) ≥ T, a quali-
fied filter f composed of at most | f |s terms contains at least
one TTerm of d.

Algorithm 1 lists the pseudocode to utilize short filters to
select TTerms. During the loop from step 8 to step 13, S is
re-initiated to aggregate at most | f |s term score. If S ≥ T is
met, the remaining terms from t1 to t j are returned as TTerms.

Algorithm 1 Default_Selection (threshold T, doc d, size | f |s )

Require: |d| term scores s(ti , d) of document d are reverse sorted with s(t1, d) ≥
· · · ≥ s(t|d|, d);

1: for i = |d| to 1 do
2: S← 0;
3: if i − | f |s > 0 then
4: jU pper ← i − | f |s ;
5: else
6: jU pper ← 1;
7: end if
8: for j = i to jU pper do
9: S← S+ s(t j )

10: if S ≥ T then
11: return t1, ...t j as selected TTerms;
12: end if
13: end for
14: end for
15: return null;

3.3 Summary

Full registration is the key of STAIRS to enable partial for-
warding with less forwarding cost. Documents d1 and d2,
even with the same term membership, may produce different
sorted lists of term scores. A term ti may be a TTerm in d1, but
it may be a BTerm in d2. Full registration guarantees that d
is forwarded only to home nodes of selected TTerms. More-
over, when d reaches home nodes of the selected TTerms,

the notification rule given in Sect. 2.4 can avoid maintaining
the entire history information of already-notified documents.

4 Adaptive forwarding

So far, Sect. 3 assumes that every filter f is specified with
an equal threshold T. In this section, we first show that
the default selection algorithm (i.e., Algorithm 1) incurs a
high forwarding cost or high false dismissal ratio for filters
specified with personalized thresholds. Then, we describe
how STAIRS can utilize a filter summary structure to select
TTerms.

4.1 Challenges to specify personalized thresholds

As shown in the following scenarios, the default selection
algorithm may cause a high forwarding cost or high false
dismissal ratio:

– There can be problems when the value of T in Algorithm 1
is either too high or too low compared to a specific per-
sonalized threshold. If T is too low, it will produce many
unwanted documents since selected TTerms by T are
excessive; if too high, false dismissals become another
issue.

– Not all terms in d must appear in the registered filters.
For example, in Fig. 5a, terms C and E do not appear in
9 filters f1, ..., f9. Since E does not appear in these fil-
ters, we should skip the term score of E during the TTerm
selection. Next, when term E is excluded, the sum of term
scores from D to M becomes 0.78, less than T = 1.0.
Thus, three remaining terms A, B and C are chosen as
TTerms. Similarly, since term C does not appear in 9
filters, we discard C , and only select A and B as TTerms.

– Suppose that we set | f |s = 6 in Algorithm 5. However,
among all terms appearing in filter f , some of them do
not appear in d. For example, filters f5 and f7 in Fig. 5b
contain at least 6 terms; however, only 3 terms of f5 (i.e.,
G, I , and K ) appear in d, and 3 terms of f7 (i.e., B, H ,
and J ) appear in d. Thus, | f |s = 3, instead of | f |s = 6,
is enough to correctly select TTerms without false dis-
missals.

As a summary, enough filter information (including
thresholds, filter sizes, and query terms) is important for a
selection algorithm to reduce a high false dismissal ratio and
a high forwarding cost. In the following subsections, by using
a filter summary structure, we show how the proposed algo-
rithm can correctly select a small number of TTerms to reduce
the forwarding cost.
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5

7

(a) (b)

Fig. 5 Adaptive Forwarding: a Issues of Default Selection Algorithm;
b Personalized Filters.

4.2 Selecting TTerms by HiBloom

We use a hybrid structure of histogram and bloom filters,
named HiBloom, to summarize filters. The histogram is used
to capture filter thresholds, and bloom filters are used to
encode query terms. For simplicity, we only consider equi-
width histograms, but our approach could be easily general-
ized to more sophisticated histogram variants [15] (at higher
run-time costs, however). Given b buckets, the whole range
of filter thresholds are divided into b even intervals. Suppose
the k-th bucket (1 ≤ k ≤ b) is associated with a range of
(lbk, ubk] where lbk and ubk are the lower/upper bound of
this bucket. For any filter f with a threshold inside (lbk, ubk],
query terms in f are encoded by a compact synopsis, repre-
sented by a bloom filter, denoted by b fk ; moreover, among all
filters inside such a bucket, we maintain the minimal thresh-
old, denoted by Tk . Therefore, each bucket is uniquely asso-
ciated with a bloom filter b fk and a threshold Tk .

Note that the HiBloom structure is similar to Histogram-
Blooms [19]. However, HiBloom is used for summarizing
filters, whereas HistogramBlooms are for documents. More-
over, Sect. 4.3 will improve the precision of HiBloom to
summarize queries by tuning the number of bits used by a
bloom filter, and Sect. 7 will extend HiBloom to summarize
queries associated with term weights.

After receiving the request to publish document d, a peer
node in the DHT selects TTerms via HiBloom, shown as fol-
lows. For each bloom filter associated with a minimal thresh-
old Tk , we follow Algorithm 2 to select TTerms by the filter
size | f |s (we consider the lower bound Tk as the threshold).
In the process of selecting TTerms, we check whether or not
term ti ∈ d also appears in the bloom filter. If the answer is
true, s(ti , d) contributes to S( f, d). Otherwise, we directly

Algorithm 2 Selection_BF (bloom filter b fk , threshold Tk , size | f |s , document
d)

Require: |d| term scores s(ti , d) of document d are decreasingly sorted with s(t1, d) ≥
... ≥ s(t|d|, d);

1: d ′ ← null;
2: for i = 1 to |d| do
3: if b fk .lookup(ti ) is true then
4: add 〈ti , s(ti , d)〉 to d ′
5: end if
6: end for
7: return Default_Selection(Tk , | f |s , d ′);

consider this term as a BTerm. With HiBloom, the selection
algorithm can select a small number of TTerms and achieve a
low forwarding cost. Moreover, the term membership check-
ing of bloom filters does not produce false negatives.

Algorithm 2 shows the pseudocode to select TTerms. First,
lines 1–6 initiate a document d ′ with null, and then add
〈ti , s(ti , d)〉 to d ′, where ti ∈ d also appears in the bloom
filter. Since s(ti , d) is in decreasing order inside the original
document d, s(ti , d ′) is also decreasingly sorted in d ′. After
that, we call the function Default_Selection in Algorithm 1
to select TTerms.

4.3 Maintaining HiBloom structure

Due to a large number of filters to be summarized, the pre-
cision of HiBloom is important to reduce the false positive
ratio. First, an easy approach to improve the precision is to
increase the number of buckets in HiBloom, but incurring
a higher space cost. In this subsection, we mainly focus on
how to improve bloom filters used by HiBloom.

Suppose each bloom filter in the HiBloom structure uses
k hash functions and a vector of m bits. For n terms sum-
marized by the bloom filter, we have the following Eq. [13],
involving m, n and k, to minimize the false positive ratio:

(1/2)k ≈ (0.6185)m/n (3)

Based on Eq. 3, we can find an optimal number n that
minimizes the false positive ratio produced by a bloom filter.
With b buckets, the HiBloom structure can summarize a total
number of n ∗ b terms.

To improve HiBloom, we give the following observation:
given lower thresholds Tk , Algorithm 2 selects more TTerms,
and vice versa. On the other hand, HiBloom contains b buck-
ets. Each bucket is associated with a specific threshold Tk .
Thus, if each bloom filter is assigned with the same number,
m, of bits, due to the false positive issue of bloom filters,
those bloom filters associated with lower thresholds could
falsely select more TTerms than those with higher thresh-
olds. Therefore, the ratio of falsely selected TTerms by the
whole HiBloom structure is larger than the standard false
positive ratio [13].

From the above observation, instead of assigning an equal
number of bits to every bloom filter of HiBloom, for the
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bloom filter associated with a lower threshold Tk , we assign
it with a larger number of bits, and vice versa. Consequently,
by this biased assignment of the number of bits, the overall
false positive ratio of the whole HiBloom structure can be
smaller than the standard false positive ratio.

Our experiment shows that using the biased assignment
of bits can spend less space cost to achieve the same false
positive ratio as the standard bloom filter. In the experiment,
we implement four kinds of bloom filters respectively with
m = 220, 216, 212 and 28. All b buckets of HiBloom are
divided into 4 groups by the bucket sequence ID: [1, b ∗
0.05], (b ∗ 0.05, b ∗ 0.2], (b ∗ 0.2, b ∗ 0.5], and (b ∗ 0.5, b].
For the first group of buckets associated with the smallest
thresholds, we assign the largest number, m = 220 of bits, for
the second one, m = 216 of bits, for the third one, m = 212 of
bits, and the last group of buckets with the largest thresholds,
we assign it with the least number, m = 28 of bits.

To build a global HiBloom in a DHT-based P2P net-
work, we leverage the scalable aggregation tree [46] to sum-
marize registered filters. Each node in the aggregation tree
propagates the local HiBloom up to its parent. The parent
merges received HiBlooms, together with the local one. That
is, inside the same buckets of multiple received HiBlooms,
bloom filters are merged by the union operation. Next, the
merged HiBloom continues the propagation until the root
builds the global HiBloom. Finally, the global HiBloom is
propagated down across the whole aggregation tree until each
node receives this global HiBloom.

5 Document refinement

Sections 3 and 4 have presented algorithms to reduce the
number of publications. In this section, we present a scheme
to reduce the unit-publishing cost.

After term ti is selected as a TTerm, document d is for-
warded to the home node of ti . However, there still exists the
case where S( f, d) < T( f ) holds for every filter f that is
locally registered in the home node of ti . In this case, for-
warding d to this home node is unnecessary.

Based on the observation above, we need to refine the doc-
ument forwarding. That is, along the forwarding path toward
the home node of ti , document d, if irrelevant to all filters reg-
istered in the home node of ti , should be discarded before its
arrival at the destination. Clearly, the document refinement
can reduce the unit-publishing cost.

5.1 Refinement structure

To enable the document refinement, we first introduce a
lightweighted refinement structure, by which an irrelevant
document can be pruned. For each selected TTerm ti , there
is an associated refinement structure, denoted by Rti . The

Fig. 6 An example of using the document refinement structure RB in
N3 to prune an irrelevant document d2

refinement structure Rti , initially built in the home node of
ti , consists of a bloom filter and a lower bound threshold. The
bloom filter encodes the query terms of all filters containing
ti . The lower bound threshold is the minimal threshold among
all filters containing ti .

In Fig. 6, N1 is the home node of term B, and regis-
ters 5 filters containing term B (i.e. f2, f3, f4, f6 and f7

of Fig. 5). The refinement structure of term B,RB , consists
of the bloom filter encoding all query terms in these filters
and the lower bound threshold 0.18.

5.2 Refinement scheme

Given Rti , the refinement scheme is shown as follows. In
each intermediately visited node toward the home node of ti ,
an incoming document d checks whether or not Rti is locally
available. If none intermediate node has locally maintained
Rti , d finally reaches the destination (i.e., the home node of
ti ). Then, document d is matched with all locally registered
filters. If the condition S( f, d) ≥ T ( f ) holds, following
the proposed notification rule, the subscriber specifying f
is notified of d. Meanwhile, since Rti is unavailable in all
previously visited intermediate nodes, the home node of ti
copies Rti to these intermediate nodes.

Next, another document d ′ toward the home node of ti
may meet an immediate node having Rti . Via Rti , the doc-
ument pruning algorithm in Sect. 5.3 determines whether or
not d ′ continues its remaining forwarding. If d ′ is not pruned
by Rti , d ′ continues the remaining forwarding. Otherwise, d ′
is discarded. Similar as before, Rti will be copied to previ-
ously visited intermediate nodes, which do not locally main-
tain Rti .

We use Fig. 6 to illustrate the scheme above. First, d1 is for-
warded to the home node of term B, i.e., N1. Since no inter-
mediate node maintains RB, d1 finally reaches N1, which
then copies the local RB to 3 intermediate nodes (N2, N3,
and N4). Next, d2 meets RB at N3. Then, N3 determines
whether or not d2 is pruned.

Algorithm 3 gives the pseudocode of the refinement
scheme. The publication message msg contains three parts:
(i) document d; (ii) TTerm ti (so that msg is forwarded to the
home node of ti ), and (iii) a list of previously visited node
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Algorithm 3 REFINE_SCHEME(publication message msg)

1: if the local refinement structure Rti is unavailable then
2: add local_ip to msg.lnodes;
3: return true;
4: end if
5: let isPruned = DOC_PRUNE(Rti , msg.doc, msg.ti );
6: if isPruned == false then
7: return true;
8: else
9: send the local Rti to each member in msg.lnodes;
10: return false;
11: end if

addresses, denoted by lnodes. Along the document forward-
ing path, each intermediate node processes msg by a docu-
ment pruning algorithm, which will be given by Sect. 5.3.

As shown in Algorithm 3, if Rti is not available in an
intermediate node, the local address is added to lnodes of
msg, and msg continues its forwarding (lines 2–3).

If Rti is locally available, the intermediate node conducts
the document pruning operation (line 5). If not pruned, msg
continues its forwarding (line 7). Otherwise, if msg is pruned,
given lnodes of msg, the local Rti is copied and sent back
to each member in lnodes (line 9). Since msg is pruned, the
forwarding is terminated (line 10).

There are two properties pertaining to Algorithm 3:

– If msg is pruned, the remaining forwarding is terminated
before its arrival at the home node of ti . Therefore, the
routing hop count of msg is smaller than the original hop
count O(log N ). Section 6 will analyze the performance
of Algorithm 3.

– Only when msg is not pruned, the intermediate node adds
its local address to msg.lnodes and expects Rti from the
home node which can prune msg successfully. Since the
number of nodes in lnodes is at most O(log N ) and the
data size of Rti is significantly smaller than that of d, the
communication cost consumed by sending Rti (line 9) is
trivial.

5.3 Pruning algorithm

In this section, we show the details of the pruning algorithm,
which is used by Algorithm 3. The pseudocode of the pruning
algorithm is given by Algorithm 4.

We first highlight the basic idea. To enable this pruning
algorithm, we ensure that term scores in document d are
sorted in descending order with s(t1, d) ≥ · · · ≥ s(t|d|, d).
Similar to previous selection algorithms, we compute the
sum of | f |s term scores for those terms commonly appear-
ing in both d and the bloom filter (lines 2–12). If the sum S
is smaller than the minimal threshold of Rti , i.e., Rti .lb (in
line 14), we safely discard document d without continuing
the remaining forwarding (line 15). Otherwise, d continues
its remaining forwarding (line 17).

Algorithm 4 DOC_PRUNE (refinement structure Rti ,doc d, TTerm ti , filter
size | f |s )

Require: s(t1, d) ≥ · · · ≥ s(t|d|, d);
1: m ⇐ 0; S⇐ 0.0;
2: for j = 1 to |d| do
3: if (the document term t j ∈ d is the just the TTerm ti ) then
4: m ⇐ 1; S⇐ s(t j , d);
5: for k = j + 1 to |d| do
6: if (term tk ∈ d is found in b f ) then
7: m ⇐ m + 1; S⇐ S+ s(tk , d);
8: if (m == | f |s ) then breaks both for loops and jumps to line 14;
9: end if
10: end for
11: end if
12: end for
13:
14: if S < Rti .lb then
15: return true;
16: else
17: return false;
18: end if

Note that though Algorithm 4 processes terms in d in a
top-down manner from t1 to t|d|, lines 3–11 compute the
sum of term scores starting from the TTerm ti , instead of
t1. It is because along the forwarding path to the home node
of TTerm ti , every qualified filter registered in this home
node must contain ti . Therefore, we treat ti as the signifi-
cant term of those filters and calculate S( f, d) by the sum of
term scores from s(ti , d) to other smaller term scores s(tk, d)

(lines 5–10). Clearly, the fact that ti is the significant term
can help precisely approximate S( f, d).

5.4 Maintenance

Consider new filters are registered to STAIRS and existing
ones are deregistered. The maintenance of filters requires that
Rti in those intermediate nodes be consistent with the one
in the home node of ti . To support this requirement, an over-
lay tree is maintained to connect those nodes having Rti . In
detail, the home node of ti is the root of this tree, and all
intermediate nodes having Rti form subtrees of the root. For
example in Fig. 6, the overlay tree is rooted at node N1. After
Rti is copied to node N5, N5 will join the tree, and the whole
tree contains 5 nodes (N1...N5). This tree structure is similar
to the DHT prefix tree [24].

The cost to maintain the tree structure is low because all
edges, based on existing connections in the DHT, have been
optimized (e.g., by the network proximity [32]). Then, if Rti
in the home node of term ti is updated, this updated Rti is
propagated across the whole tree. This propagation can be
further optimized by the multicast message [33].

6 Analysis

In this section, we analyze the cost of previously proposed
algorithms.
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6.1 Analysis of selection and pruning algorithms

The key of a selection algorithm is to approximate S( f, d)

with the help of various filter information. For example, via
the filter size | f |s , Algorithm 1 approximates S( f, d) by
the sum of at most | f |s term scores. Via HiBloom, Algo-
rithm 2 approximates S( f, d) by the sum of at most | f |s
term scores of those terms appearing in both d and bloom
filters of HiBloom. Besides, the pruning algorithm (Algo-
rithm 4) approximates S( f, d) via the refinement structure
Rti .

Clearly, the goodness of the proposed algorithms depends
upon how S( f, d) is precisely approximated. Therefore, we
are interested in approximation bounds. The analysis is given
as follows.

For the two selection algorithms, Algorithm 2 is the gen-
eral one by considering the personalized thresholds. Thus,
we focus on the analysis of Algorithm 2.

Theorem 3 The approximated value of S( f, d) in Algo-
rithm 2 is at most | f |s times of its real value, and at least
1/| f |s of its real value.

Proof Algorithm 2 only processes those terms commonly
appearing in both d and bloom filters (by the term member-
ship checking in line 6 of Algorithm 2). It means that after
line 3, filter f contains at least one term ti commonly appear-
ing in both d and bloom filters (with a false positive ratio).
After that, S( f, d) is approximated by the sum of s(ti , d)

and at most (| f |s − 1) remaining term scores (lines 8–13 of
Algorithm 1).

Because term scores in d are sorted in descending order,
s(ti , d) is no smaller than the remaining (| f |s − 1) terms
cores. Then, in the best case where all of the (| f |s − 1)

remaining terms appear in both d and f , the approximate
value of S( f, d) is just equal to its real value. In the worst
case where only one term ti (except the (| f |s −1) remaining
terms) commonly appears in both d and f , the real value of
S( f, d) is s(ti , d), and Algorithm 2 approximates S( f, d) by
the sum of s(ti , d) and the (| f |s − 1) remaining term scores.
Due to the descending order of term scores in d, s(ti , d) must
be no smaller than the (| f |s−1) remaining term scores. Thus,
the approximated value of S( f, d) is at most | f |s times of its
real value. Meanwhile, considering the case where all | f |s
term scores are equal, the approximated value of S( f, d) (no
smaller than s(ti , d)), is at least 1/| f |s of its real value. �	

For all filters having | f | = 1, Algorithm 2 optimally
approximates S( f, d) just equal to its real value. However,
a large | f | produces a loose approximation of S( f, d). Real
data sets in our experiment show that end users prefer short
queries, on average with | f | ≈ 3.0. Those short queries
obviously favor our algorithm with a tight approximation
of S( f, d).

The pruning algorithm, i.e., Algorithm 4, also follows
Theorem 3. However, it can more tightly approximate S( f, d)

than Algorithm 2, because Rti only encodes query terms in
those filters containing ti .

6.2 Analysis of refinement scheme

In this section, we analyze the refinement algorithm (Algo-
rithm 3). We assume that, among D documents, totally M
terms are selected as TTerms. Among these M terms, some
terms are selected as TTerms more frequently than others.
Hence, among M terms, there could be only I distinct terms
with 0 ≤ I ≤ M . For 1 ≤ i ≤ I , term ti is selected as a
TTerm by a ratio ri with

∑I
i=1 ri = 1. That is, among M

documents, ti is selected as a TTerm from ri ·M documents.
Intuitively, ri indicates the popularity of ti in terms of how
ti is frequently selected as a TTerm.

For the sake of fairness, we assume all publication sources
are randomly distributed across the DHT. Thus, the publica-
tion sources of those ri · M documents can form the overlay
tree (given in Sect. 5.4). The height of such an overlay tree
is at least log (ri · M) (by treating those log (ri · M) publi-
cation sources as intermediate nodes of the overlay tree). If
more other nodes join the overlay tree, the height is larger
than log (ri · M).

Along the forwarding path to the home node of ti , the
refinement structure Rti in each intermediate node might
prune document d successfully. Suppose d is successfully
pruned by Rti with probability ρi , the average hop count of
forwarding message msg to the home node of ti , denoted by
Hi , is:

Hi = log N − ρi · log(ri · M). (4)

Given I distinct TTerms, the average hop count is:

H =
I∑

i=1

ri · Hi =
I∑

i=1

ri ·
[
log N − ρi · log(ri · M)

]
. (5)

Due to
∑I

i=1 ri = 1, the equation above becomes:

H = log N −
I∑

i=1

[
ρi ri log (ri · M)

]
. (6)

For Eq. 6, we give the following discussions:

– The first subitem log N is related to the original hop count
offered by the DHT. The reduction of the hop count H is
mainly decided by parameters ri and ρi (we assume that
both M and N are given variables).

– In the second subitem
∑I

i=1

[
ρi ri log (ri · M)

]
, a higher

punning ratio ρi leads to a smaller hop count H (the
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value of ρi directly depends on how the pruning algo-
rithm approximates S( f, d), which has been analyzed in
Sect. 6.1).

– If ρi is removed, the second subitem above becomes∑I
i=1

[
ri log (ri · M)

]
, which can be further transformed

to
∑I

i=1

[
ri log (ri )

]+ log M . The value of
∑I

i=1

[
ri log

(ri )], i.e., the entropy of ri , depends on the distribution
of ri . A skewed distribution of ri leads to a large value
of this subitem, correspondingly a small value of H . It
makes sense because given a skewed distribution of ri , a
large number of Rti are propagated across intermediate
nodes. These intermediate nodes then have more chances
to prune d.

7 Extended data model

In this section, we adapt the aforementioned data structures
and algorithms to the extended data model, where term ti ∈ f
is associated with a normalized weight nw(ti , f ).

7.1 Adapting selection algorithms

Among two selection algorithms (Algorithms 1 and 2),
Algorithm 2 generally considers the personalized thresholds.
Thus, we focus on adapting Algorithm 2 to the extended data
model, and the proposed technique can be similarly adapted
to Algorithm 1.

7.1.1 Adapting HiBloom to extended model

Recall that in Sect. 4, HiBloom uses the standard bloom filter
to encode query terms. However, HiBloom does not cover the
weight information. In particular, each term ti in f is asso-
ciated with a normalized weight nw(ti , f ). Moreover, given
the same term ti , the value of nw(ti , f ) varies with respect
to filters.

We improve HiBloom to summarize the filter informa-
tion containing the weight information. Instead of standard
bloom filters, we utilize the counter bloom filter [6] (in short
CBF), where each entry in the bit vector is a counter (e.g.,
consisting of 4 bits to represent the counter). Note that the
entry of the standard bloom filter is a single bit, either 0 or 1.

Following the idea of CBF, we propose a value-based
bloom filter (in short VBF) as follows. To summarize both
query terms and normalized weights, each entry in VBF is
associated with a weight value. Due to the k hash functions
in VBF, ti is mapped to r entries. After query terms and
associated weights are summarized by VBF, the entries of ti
might be reset with different weights, called a hash collusion.
When a hash collusion occurs, a smaller weight replaces the
original one, called the minor policy. The rationale of this

policy is that, given a selection algorithm, the minor thresh-
old selects more TTerms than the bigger one. Otherwise, if
using a bigger threshold, the selection algorithm will falsely
miss the TTerms that are required by the minor one.

After filters are summarized to a VBF by insert opera-
tions, a lookup of term ti returns the biggest weight among
r entries associated with ti . Returning the biggest weight
is essentially consistent with the minor policy. Algorithm 5
shows the pseudocodes for insert and lookup operations,
respectively. Line 4 of the insert operation is related to the
minor policy, and line 6 of the lookup operation finds the
biggest weight among r entries associated with ti .

Algorithm 5 Operations of Value_Bloom_Filter

1: INSERT (term t , weight value v);
2: /* there are k hash functions */
3: for i = 1 to k do
4: if entr y(hashi (t)) is null || entr y(hashi (t)) > v then
5: entr y(hashi (t)) = v;
6: end if
7: end for

1: LOOKUP (term t);
2: v← 0.0
3: for i = 1 to k do
4: if entr y(hashi (t)) is null then
5: return null;
6: else if entr y(hashi (t)) > v then
7: v = entr y(hashi (t));
8: end if
9: end for
10: return v;

We use Fig. 7a to illustrate insert and lookup operations of
VBF. Among three filters, term A in f1 has nw(A, f1) = 1.0;
term B in f2 has nw(B, f2) = 0.2. The weights of other
terms are also shown in this figure. To summarize these fil-
ters, we maintain a VBF with k = 2 hash functions and a
vector with m = 10 bits. We use term A as an example. By
k = 2 hash functions, term A is mapped to 2 entries respec-
tively with IDs 0 and 3, and nw(A, f1) = 1.0 is stored in both
entries. Due to the hash collusion, term D is also mapped to

(a)

(b)

Fig. 7 VBF and s-bit Encoding scheme
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the entry with ID 3. By the minor policy, the entry with ID
3 is reset by the minor one, nw(D, f2) = 0.4. To lookup
the weight of A, among two weights (i.e., 1.0 and 0.4) in the
associated entries with IDs 0 and 3, the bigger weight 1.0 is
returned. For term A, if and only if the entries of IDs 0 and 3
are both reset by minor weights (due to the hash collusion),
the lookup operation falsely returns a value that is smaller
than its real weight. Note that for term F appearing in both
f2 and f3, nw(F, f3) = 0.5 in the entries with IDs 4 and 8
is reset by the minor nw(F, f2) = 0.4. It differs from the
aforementioned case caused by the hash collusion.

Though the solution above works, an issue is the high
space cost caused by directly storing weights in entries of
the VBF. For example, considering the data size of a numeric
weight (for example, a float data type typically needs 4
bytes), the overall space of VBF, e.g., having 210 entries,
is non-trivial.

To save the space cost, we approximate the exact value of
nw(ti , f ) by using an encoding approach and then store the
encoded bits into VBF since the normalized value nw(ti , f )

is always inside (0.0,1.0]. In detail, the whole range (0.0, 1.0]
can be divided into 2b (even) intervals. The width of each
divided interval is 1.0/2b. Then, given an exact value of
nw(ti , f ), we can locate the interval I with lbI < nw(ti , f )

≤ ubI , where lbI and ubI are the lower/upper bound of I ,
respectively. For each of 2s intervals, we encode the inter-
val by s bits. That is, the first interval with the range of
(0.0, 1.0/2s] is encoded by s bits of 0, and the second interval
with (1.0/2s, 2.0/2s] by the first (s−1) bits of 0 and the last
bit of 1. Similarly, the last interval with ((2s −1)/2s, 1.0] by
s bits of 1.

We use Fig. 7b to illustrate the encoding scheme above.
Given s = 2, the range (0.0, 1.0] is divided into 2s = 4
intervals, where interval (0.0, 0.25] is represented by 00, and
interval [0.75, 1.0] is represented by 11. Then, the weight 1.0
in the entry of ID 0 is replaced by 11, and the weight 0.4 is
replaced by 01, etc.

The encoding approach above approximates the exact
value of nw(ti , f ) by s encoded bits. The approximation
precision depends on two factors:

– The number of bits s: when the number s grows, the
approximation precision increases. However, it incurs
higher space cost.

– The precision of the VBF itself. Recall that in Algo-
rithm 5, the lookup of term ti ∈ f might falsely return
a value that is smaller than nw(ti , f ). This occurs if and
only if all of r entries associated with ti are reset by
smaller weights. Obviously, the probability of returning
a smaller value is equal to the false positive ratio of the
standard bloom filter [6]: 1− (e−kn/m)k .

Note that though other approaches to divide intervals
(e.g., similar to the equi-depth histogram) can be used,
they incur more complicated protocols to merge VBFs (see
Sect. 4.3).

7.1.2 Adapting algorithm 2 to the extended model

We adapt Algorithm 2 to the extended data model via the
proposed VBF. The pseudocode is shown in Algorithm 6.
As before, we make sure that only those terms commonly
appearing in d and VBF are useful (lines 3–5). If the returned
result of VBF is not null (line 4), it indicates that ti ∈ d
also appears inside the VBF (though with the false positive
issue). In line 5, S( f, d) is based on the normalized score
function of Eq. 2. After that, Algorithm 6 sorts term scores
of d ′ in descending order (line 8), and then calls function
Default_Selection given by Algorithm 1.

Algorithm 6 Select_VBF (value bloom filter vb f , threshold T, size | f |, document
d)

1: d ′ ← null;
2: for i = 1 to |d| do
3: nw(ti )← vb f.lookup(ti );
4: if nw(ti ) is not null then
5: add 〈ti , ns(ti , d) · nw(ti )〉 to d ′
6: end if
7: end for
8: sort term scores in d ′ with s(t1, d ′) ≥ ... ≥ s(t|d′|, d ′);
9: return Default_Selection(T, | f |, d ′);

7.2 Extended document pruning algorithms

First, we adapt the refinement structure Rti to the extended
model. Similar to Sect. 7.1.1, we replace the standard
bloom filter in Rti by the proposed VBF. In the extended
model, no change is needed in the refinement algorithm (i.e.,
Algorithm 3).

To adapt the pruning algorithm (given in Algorithm 4)
to the extended model, we can recompute term scores by
nw(ti , f ) · ns(ti , d) (in lines 4 and 7 of Algorithm 4). Also,
in line 6 of Algorithm 4, it is required to decide whether or
not the value returned by lookup(ti ) of the VBF is null. If
the returned value is not null, we treat that ti is encoded by
the VBF. Except for those above, no other change is needed
in Algorithm 4.

8 Related work

We review the literature in the following two areas.
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8.1 Distributed information retrieval

In DHT-based distributed IR systems [48,19,39,38,51], doc-
ument d is indexed in home nodes of all terms in d, incurring
a high maintenance cost. To retrieve interested documents,
an end user enters a query f composed of | f | terms, and then
the DHT routes f to the home node of every term ti ∈ f .
The returned results1 from | f | home nodes are intersected to
determine final results. If we directly adopt this idea to our
problem in Sect. 1.2, filter f is first registered to | f | home
nodes, then d is forwarded to |d| home nodes, and finally d is
matched with f in home nodes of those terms that commonly
appear in both d and f . Two issues are related to this scheme:

– The cost of forwarding d to |d| home nodes is high,
because the number of terms in d, |d|, is typically large.
For example, one data set used in our experiment contains
on average 6,000 terms per document.

– Since f is registered at | f | home nodes, forwarding doc-
ument d to home nodes of all terms in d will duplicately
disseminate d to the subscriber specifying f , unless the
proposed notification rule is used, or the history of all
the disseminated publications is maintained in subscriber
proxies so that duplicate documents are avoided [14].

KLEE [19] vertically stores the document information to
the home node of each term in the document and uses a
thresholding approach to answer distributed top-k queries.
Similar to the scheme above, KLEE still spends a high pub-
lishing cost of storing the document in home nodes of |d|
terms.

pSearch [41], a P2P IR system, utilizes CAN [29] to map
latent semantic indexing (LSI) [11] features to peer nodes.
After that, queries and documents are mapped into this LSI
space, and correspondingly to peer nodes. Considering the
dimensionality mismatch between (the high dimensional)
LSI and (low dimensional) CAN, pSearch proposes to use
multiple CAN instances, mapped to high dimensional LSI
space.

In addition, many works have been proposed to study key-
word search in unstructured P2P networks. For example, [8,
18,50] focus on the random walk-based search mechanism.
BubbleStorm [43] proposes a simple yet efficient probabi-
listic search approach by reasonably replicating both queries
and data objects. All these works are based on probabilistic
solutions, with no guarantee to find the expected documents,
even if those documents are really stored in P2P networks.

1 For clarification, the home node of term ti ∈ d could only store the
pointer or meta-data of a raw document d.

8.2 Information filtering, and Pub/Sub

Those works in Sect. 8.1 are typically related to the pull pro-
cessing where users pull the expected documents. Instead, in
the area of information filter (IF) and pub/sub, documents (or
events) are pushed so that users are notified of the expected
documents. Intuitively, pull and push can be treated as the
models of query-to-data, and data-to-query (here, data is
either raw data, meta-data, or pointer of raw data), respec-
tively.

SIFT [47] is the prominent example of IF. This system
considers Usenet News as data sources and collects user pro-
files in form of queries. In the proposed query index (QI), for
every term ti in a query condition, this query is inserted in
the inverted list pointing to ti . It shares the idea of full regis-
tration. During the process of document matching, for every
term ti ∈ d, SIFT needs to process the inverted list pointing
to ti . This idea is similar to full-forwarding. InRoute [7] is
another centralized online filtering system, with help of infer-
ence networks to decide whether or not a document matches
a query. Different from these works, STAIRS targets at the
distributed environments and is based on the idea of full reg-
istration and partial-forwarding.

To overcome RSS scalability issues, FeedTree [34] utilizes
P2P networks to cooperatively serve the RSS dissemination.
Corona [24] goes a step further via smart distributed poll-
ing and client push messages to inform users of new items.
As the topic-based pub/sub, FeedTree and Corona use RSS
URLs as topics to filter documents. To overcome the high
maintenance cost caused by a large number of topics (i.e.,
RSS feeds), [20] develops a very nice cost model to dynam-
ically cluster RSS feeds. Instead, the proposed fine-grained
content filtering model is free from the topic maintenance.

Tryfonopoulos et al. [44] studies the problem of offering a
pub/sub functionality on top of structured overlay networks
using data models and languages from IR. Different from
[44] with the attribute-value model, our work focuses on full-
text filtering semantics. Rose et al. [30] utilizes the search
engine technology to provide the content filtering function
targeting at a cluster environment. Based on the tf*idf model,
[45] involves the semantic content distribution over a DHT,
with some heuristic optimization techniques (e.g., heuristi-
cally selecting terms with top term scores, which is consistent
with [39]).

Fabret et al. [12], as the classic work of the content-
based pub/sub, proposes centralized matching algorithms.
The basic idea of these algorithms is to index subscription
filters based on attributes with the most selective predicates
and then propagate publication events to those indexed sub-
scription filters. Essentially, the idea of [12] is an example of
single registration and full publishing. Ganguly et al. [14],
a distributed content-based pub/sub system, suffers from a
high latency problem, due to the counting algorithm used
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in subscription clients to wait for the matching results of
distributed predicates. Banavar et al. [4], Fabret et al. [12],
Ganguly et al. [14] and other content-based pub/sub sys-
tems typically focus on the selectively-based content filter-
ing. Instead, our work handles the problem of an aggregation
score-based threshold filtering.

Due to many common techniques, we will compare
STAIRS with Ferry [52] in our experiments. As a content-
based pub/sub system in a DHT, Ferry utilizes the home node
of an attribute as the rendezvous node (RN for short) to match
publications with those subscription filters registered to such
a RN. Each subscriber in Ferry is associated with a home
node. If he/she wishes to subscribe interested events via a
filter f , then f is registered to a (actually only one) RN, e.g.,
r . After that, Ferry manages all filters registered to r by an
embedding tree (EMTree for short) associated with r . Such
an embedding tree consists of all intermediate nodes from r
to home nodes of those filters registered to r . Intuitively, for
each rendezvous node r , there is an associated embedding
tree rooted at r , and the 1-hop nodes in the finger table of r
are direct children of r . The main purpose of the embedding
tree is to move the workload of r to its finger table nodes
for load balancing. After an event message is published, this
message is first forwarded to all rendezvous nodes, which
then utilize embedding trees for event delivery. In addition,
a RN builds a summary filter to represent filters in the asso-
ciated embedding tree. Such a summary filter helps filter out
useless events. Based on the schema S consisting of a attri-
butes, the number of rendezvous nodes is proportional to a.
Many common ideas are shared between STAIRS and Ferry,
including using rendezvous nodes based on home nodes of
attributes (and home nodes of terms in STAIRS), embedding
trees (and overlay trees in STAIRS), and summary filters (and
HiBloom in STAIRS).

In addition, the conference version [28] of this paper
targets on the simple data model. It mainly focuses on
term selection algorithms to reduce the number of mes-
sages. Instead, this paper extensively studies both the sim-
ple model and the extended model, and proposed the tech-
niques of reducing both the number of messages and the
unit-forwarding cost.

As a summary, Fig. 9 compares STAIRS with some (par-
tial) works in the area of content-based pub/sub and distrib-
uted IF. First, we consider that STAIRS and distributed IF
differ from content-based pub/sub in the form of content:
most of content-based pub/sub focus on structured informa-
tion, which follows predefined schemas; while STAIRS and
distributed IF (e.g., SIFT [47], etc.) target at unstructured
web articles (or summary articles like RSS feeds, or pre-
processed with if*idf scores). Next, due to the content of
different forms, filters in the content-based pub/sub systems
typically consist of selective predicates, while distributed
IF either adopts a simple topic-based filtering model (e.g.,

FeedTree [34], Corona [24], [20], etc.) or full-text like fil-
tering semantics (e.g., STAIRS, SIFT [47], etc.). Finally, for
the matching approach, most content-based pub/sub systems
explore filter relationships (like covering, overlapping, etc.)
to build various kinds of filter indexing structures. Some IF
solutions (e.g., SIFT [47]) build IR-like indexes (for example,
inverted lists), and some full-text distributed IF solutions [40]
directly map a document to the whole semantic space (e.g.,
LSI). Instead, STAIRS focuses on carefully selecting those
terms (or key features) which can contribute significantly to
S( f, d). Finally, from the overall policy, the content-based
pub/sub [12] adopts the sing-registration and full-matching
policy, distributed IF (e.g., SIFT) adopts the full-registration
and full-matching policy. Instead, STAIRS is based on the
full-registration and partial-forwarding policy.

9 Experiments

In this section, we first show the methodology (Sect. 9.1),
and extensively study the performance of the proposed algo-
rithms (Sects. 9.2– 9.5), and compare STAIRS with Ferry
(Sect. 9.6). Finally, we summarize experimental results and
give discussions (Sect. 9.7).

9.1 Methodology

We evaluate STAIRS in a DHT environment by using Free-
Pastry (http://www.freepastry.org) as the simulator with a
default 10,000 nodes, where filter f is registered to home
nodes of | f | query terms, and document d is forwarded to
the home node of each selected TTerm.

(1) Subscription filters: Though Google Alerts and Micro-
soft Live Alters provide input interfaces, by which end users
subscribe to favorable documents via input keywords, there
is no publicly available real data set about using keywords
as subscription filters. Instead, we use real data sets of tradi-
tional query logs as subscription filters. These logs truly show
behaviors of end users to use keywords. We use two real query
logs. The first trace log is an 81.3 MB input query history
file collected within four months from a popular commercial
search engine (“commercial SE” in short), which is quite rep-
resentative for behaviors of end users in the real world. The

Table 1 Statistics of two query logs

Query parameter Search.com Commercial SE

Number of queries 81,497 4,000,000

Avg. num. of terms per query 2.085 2.843

Max. num. of terms per query 11 29

Min. num. of terms per query 1 1
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(a) (b) (c)

Fig. 8 a Two Query Logs consisting of short terms; b TREC AP with large articles; c TREC WT10G with short articles

second trace is a similar query history file from www.search.
com with size 1.27 MB. Table 1 summaries parameters of
both query logs. On average, the number of terms per query
is 2.085 in search.com, and 2.843 in the commercial SE; the
largest number of terms per query in search.com is 11, and
that number in the commercial SE is 29. Furthermore, Fig. 8a
plots the number of terms in two query logs, where the x-
axis represents the number of terms per query, and the y-axis
represents the percentage of queries with the corresponding
number of terms. For example, for the search.com trace, the
percentages of filters containing 1, 2, 3, and 4 terms are 38.13,
33.09, 17.56, and 7.05, respectively; for the commercial SE
trace, the percentages of filters containing 1, 2, 3 and 4 terms
are 31.33, 36.42, 17.56, and 7.39, respectively. For both data
sets, the standard deviation values over the overall average
filter size are 1.908 and 2.043, respectively. Both deviation
values indicate that most queries contain around 2–3 terms.
Clearly, Table 1 and Fig. 8a indicate that input queries in
both trace files are typically composed of only several terms.
Hence, if these input queries are used as subscription filters,
there are opportunities for our solution to save the forwarding
cost, meanwhile achieving fewer false dismissals.

(2) Content document: We use two data sets:

– one based on Text Retrieval Conference (TREC) WT10G
web corpus: a large test set widely used in web retrieval
research. The data set contains around 10 Gigabyte, 1.69

Fig. 9 Comparison of Existing Works and STAIRS

million Web page documents and a set of queries (we
mean the “title” field of a TREC topic as a query). The
WT10g data was divided into 11,680 collections based on
document URLs. Each collection on average has 144 doc-
uments with the smallest one having only 5 documents.
The average size of each document is 5.91 KB. The data
set was stemmed with the Porter algorithm and common
stop words such as “the”, “and”, etc. were removed from
the data set.

– one based on TREC AP: a text categorization task based
on the Associated Press articles used in the NIST TREC
evaluations. Compared with TREC WT10G data set, the
TRACE AP data set is composed of fewer (only 1,050)
articles but with a larger number of terms, on average
6054.9 per article. Table 2 summarizes statistics for the
test data sets.

By formula s(ti , d) = f reqi,d
Maxl ( f reql,d )

· log D
Di

, we com-
pute the score of each term in both data sets. In this for-
mula, f reqi,d

Maxl ( f reql,d )
represents the value of term frequencies

(t f ), and log D
Di

the inverse document frequencies (id f ). In
detail, f reqi,d is the frequency of term ti in document d;
Maxl( f reql,d) is the maximal term frequency in d; Di is
the number of documents containing ti across the whole data
set; and D is the total number of documents.

Table 2 Statistics of the TREC data sets

Document parameter TREC WT10G TREC AP

Total num. of docs 1,692,096 1,050

Avg. num. of terms per doc 64.808 6,054.9

Max. num. of terms per doc 331 7,320

Min. num. of terms per doc 2 1,303

Total num. of terms 16,382 48,788

Avg. term frequency 130.31 619.48

Max. term frequency 210,089 1,050

Min. term frequency 1 1
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Though our experiments pre-compute s(ti , d) by the
approach above, it has shown that in DHT-based distributed
IR scenarios it is enough to have an approximation of id f
values [9]. By a set of randomly chosen peers to collect and
merge statistics, [42] creates an approximation of a global
id f . Though it is an open problem to approximate id f in
pub/sub scenario [44], one possible solution is to use the
approximate solution [42] to compute id f . After the value
of id f is ready, we then compute s(ti , d).

We plot term scores of 4 randomly chosen documents in
TREC AP and TREC WT10G in Figs. 8b and c, respec-
tively. From both figures, the term score of TREC WT10G
is relatively larger than that of TREC AP due to the effect
of f reqi,d

Maxl ( f reql,d )
. Though 4 sampled documents might not be

enough to represent the entire data set, they are helpful to
give an intuition of the distribution of term scores in these
documents. Clearly, the skewed distribution of term scores
in both figures is useful for our solution: with a given thresh-
old, the skewed distribution helps select fewer TTerms, thus
reducing the forwarding cost.

With no real thresholds available for filters, we randomly
generate thresholds through the uniform distribution and
the exponential distribution with a given mean value. The
purpose of using exponential distribution is to study how
HiBloom can summarize relatively low thresholds. The gen-
erated values are used as personalized thresholds.

(3) Performance metric: We use two metrics to measure the
performance:

– Forwarding cost saving ratio: the saving ratio is 1.0 minus
the ratio between the forwarding cost of STAIRS and the
cost of the full-forwarding. The higher a saving ratio is,
the less forwarding cost is used.

– Document false dismissal ratio: the ratio is 1.0 minus the
ratio between the number of documents that subscribers
actually receive by using STAIRS and that of documents
that subscribers should receive. The higher a false dis-
missal ratio is, the more documents are missed.

9.2 Performance study of default forwarding

First, we conduct experiments to study the forwarding cost
saved by default thresholds. In these experiments, we use
TREC AP (and TREC WT10G) as documents, and each entry
in the search.com query log (and the commercial SE query
log) as a filter. During the document forwarding, we set up the
number of terms in subscription filters as a system parameter
| f |s equal to 10, 5, 3, and 1. By | f |s , Algorithm 1 optimizes
the selection algorithm by computing the sum of | f |s con-
secutive term scores. Instead, if setting | f |s with an arbitrary
number, Algorithm 1 has to compute the sum of an arbi-
trary number of term scores (See Sect. 3.1). In addition, we
compute the optimal forwarding cost saving ratios.

With the search.com query log as filters, Fig. 10a and c
respectively plot the forwarding cost saving ratios for TREC
AP and TREC WT10G document corpus; and Fig. 10b and
d report the cost saving ratios with the commercial SE trace
log as filters. Figure 10 gives the following four findings.
(i) Algorithm 1, optimized for short filters, can save the for-
warding cost. For example, in Fig. 10a for threshold 2.0,
setting | f |s = 10 can achieve 4.26 folds of the forward-
ing cost saving compared to the default selection algorithm
with an arbitrary number of term scores; for threshold 0.1,
setting | f |s = 1 can achieve 7.96 folds of the forwarding
cost saving. (ii) When the default threshold value in the x-
axis grows larger, the forwarding cost saving ratio of y-axis
also increases. This is because when a larger default thresh-
old value is used, a smaller number of TTerms are selected
by higher default thresholds. (iii) Since documents in TREC
WT10G are relatively short articles composed by a smaller
number of terms than TREC AP, the cost saving of TREC
WG10G is lower than that of TREC AP. (iv) On the overall,
both optimal cost savings and the cost savings by the default
selection algorithm are increased with default thresholds,
because given larger default thresholds, the default algorithm
always selects a smaller number of terms with top scores.

Meanwhile, we measure false dismissal ratios. Using the
search.com query log as filters, Fig. 11a and c respectively
plot false dismissal ratios for TREC AP and TREC WT10g;
with the commercial SE query log as filters, Fig. 11b and
d plot false dismissal ratios for two aforementioned corpus.

(d)(a) (b) (c)

Fig. 10 Forwarding Cost Saving of Default Selection Algorithms: larger thresholds and smaller | f |s lead to more cost savings.
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(d)(a) (b) (c)

Fig. 11 False dismissal ratio of Default Selection Algorithms: larger thresholds and smaller | f |s lead to more false dismissals.

From Fig. 11, we find the following two results. (i) Setting
| f |s = 10 or | f |s = 5 produces a very low false dismissal
ratio; even in Fig. 11c and d, when the default threshold value
is unreasonably set with a large value 8.0, the false dismissal
ratio is less than 0.0812. This result indicates that with larger
threshold values, STAIRS can reduce the forwarding cost
with a small false dismissal ratio as confirmed in Fig. 10. (ii)
A relatively higher false dismissal ratio is produced when the
number of short terms | f |s is smaller like 3, 2 or 1.

9.3 Performance study of adaptive forwarding

Considering that the results of various combinations of two
query logs and two document corpus follow similar trends,
in the rest of this section, we report experimental results by
choosing one example combination (search.com as filters and
TREC AP as documents). Also, we focus on the study of
adaptive forwarding as it is the most general solution. In
addition, the experimental results of default forwarding indi-
cate that the forwarding cost heavily depends on the speci-
fied thresholds. If the threshold is lower, the forwarding cost
is higher. Hence, we conduct experiments to study how the
adaptive forwarding utilizes HiBloom to summarize filters.

9.3.1 Comparison of adaptive and default algorithms

In this experiment, thresholds are generated by the exponen-
tial distribution with a mean 0.1. To implement HiBloom, we

set k = 4 hash functions. Note that to set a reasonable (or
optimal) number of k for bloom filters, [13] gives an analytic
study. Here, following Sect. 4.3, for the bloom filter inside
HiBloom, we vary the number of bits based on the associ-
ated threshold. Next, we set b = 100 buckets by default (we
will study the effect of the number of buckets in Fig. 12c).
Finally, we set | f |s = 3, according to the average number of
terms per query in our query trace logs.

In Fig. 12a, the adaptive algorithm achieves the highest
forwarding cost saving ratio 0.92353, and the lowest false
dismissal ratio 0.00378 (except the optimal result). Instead,
the default algorithm consumes the highest forwarding cost
(i.e., least forwarding cost saving ratio) and the largest false
dismissal ratio. From this experiment, we find that summa-
rizing the filter information (i.e., query terms, filter thresh-
olds and filter sizes) is critical to reduce the forwarding cost
and false dismissal ratio. Besides, compared with the opti-
mal result with the cost saving ratio and false dismissal ratio
equal to 0.97564 and 0.0, respectively, the adaptive algorithm
achieves only 5.34% less forwarding saving and 0.378%
more false dismissals.

In addition, in this experiment, we compare the perfor-
mance of HiBloom with biased assignment of bits (see
Sect. 4.3) with HiBloom using standard bloom filters (i.e.,
the bloom filter of each bucket uses 220 bits). Though both
implementations achieve the same false dismissal ratio equal
to 0.00378, the HiBloom using biased assignment of bits uses
only 921 KB space cost; the HiBloom with standard bloom
filters spends 11.2 MB data size. It validates the superiority

(a) (b) (c)

Fig. 12 Performance Study of Adaptive Algorithm, achieving largest cost savings, least false dismissals, and balanced workload
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of HiBloom with biased assignment of bits over that with
standard bloom filters.

9.3.2 Workload distribution

Figure 12b plots the workload distribution of the experiment
above, where the x-axis represents the workload per node
(measured by the number of received documents per node),
inside the range of two neighbor values shown in the x-axis
(e.g., from 100 to 200), and the y-axis represents the node
count inside the load range of the x-axis. For comparison,
we plot the load distribution of the default algorithm with
arbitrary terms, default forwarding with | f |s = 10, and the
adaptive forwarding. For the load distribution, we are inter-
ested in the overloading issue: we consider that one node is
overloaded when this node receives more than 2 times of the
average load.

By the default algorithm for arbitrary terms, the average
load is equal to 664 documents per node, and 1.58% nodes
(i.e., 158 nodes) receives more than 1.200 documents. For
| f |s = 10, the average load is 581 documents per node, and
only 0.35% nodes (35 nodes) receives more than 1.000 doc-
uments. By the adaptive algorithm, the average workload is
132 document per node, and no node receives more than 264
documents.

These results are explained as follows. In the document
corpus, some terms frequently appear in documents, yet some
terms rarely appear. Thus, frequent terms produce low idf val-
ues, and correspondingly small s(ti , d). By the default algo-
rithm with arbitrary terms, a low selection ratio means that
still some frequent terms are selected as TTerms (though the
most frequent terms are excluded). Thus, a large number of
documents (containing these frequent terms) are forwarded
to home nodes of these frequent terms, suffering from the
overloading problem. By the adaptive algorithm, more num-
ber of frequent terms are excluded, and their home nodes are
free of the overloading issue. Obviously, the full-forwarding,
which select all terms as TTerms, suffers from the most seri-
ous overloading issue.

9.3.3 Effect of HiBloom and maintenance cost

Figure 12c studies the effect of b, i.e., the number of buckets
in HiBloom. When b grows from 10 to 400, the forward-
ing cost saving ratio is increased from 0.731 to 0.945. For
b = 60, the saving ratio reaches 0.902; after that, the growth
trend of the saving ratio is relatively smooth. Meanwhile,
when b becomes further larger, the false dismissal ratio keep
stable, around 0.00381. Note that a larger number of b leads
to a higher cost saving ratio, but incurring a larger space cost.
For example, when b grows from 40 to 400, the data size of
HiBloom is linearly increased by around 10 times.

Finally, we measure the maintenance cost to propagate
HiBloom across the DHT. We compare our approach with
the one to broadcast the details of all filters (including query
terms and filter thresholds) to every node in the DHT, where
the broadcast message contains query terms, thresholds and
unique filter IDs. For fair comparisons, both propagations are
based on the scalable aggregation tree [46] (See Sect. 4.3),
and we use the Zip compression technique to reduce the pack-
age size. In these settings, the overall cost of our approach
is 285 KB/Msg · 10,000 Msgs = 2.72 GB; the overall cost
of the broadcast approach is 2,187 KB/Msg · 10,000 Msgs
= 20.87 GB. Considering that subscribers may tune thresh-
olds and even change query terms, more maintenance cost
is required by the broadcast approach. When the number of
filters is very large, HiBloom, as a summary structure, con-
sumes less space cost than broadcasting the details of all
filters.

9.4 Performance study of the refinement algorithm

In this section, we study the performance of the refinement
algorithm. Given the parameters listed in Table 3, we measure
the number of selected TTerms, pruning ratio, maintenance
cost, and the average hop count of forwarding documents.
We implement the refinement structure with m = 212 bits
and k = 4 hash functions for bloom filters in the refinement
structure.

9.4.1 Effect of the number of documents

First, we study the effect of the number of documents, ranging
from 10 to 1,000. Figure 13a plots the number of TTerms per
document, selected by (i) the adaptive forwarding without
the refinement algorithm (ii) the adaptive forwarding hav-
ing the refinement, and (iii) the optimal number of TTerms.
Since we use the same TTerm selection algorithm (i.e., Algo-
rithm 2), the approaches with and without refinement obvi-
ously have the same number of TTerms. From this figure, we
find that more documents first lead to more TTerms; however,
the growth of TTerms becomes smooth, when the number of
documents becomes larger. This trend is explored as follows.

Table 3 Parameters used in Sect. 9.4

Parameter Range Default

N : Node count in DHT 100–10,000 10,000

D: Num. of documents 100–1,050 4,00

F : Num. of filters 100–81,497 81,497

| f |: Filter size 1–10 3

k: # of hash functions in bloom filters 4

m: # of bits in refinement structure 212
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(a) (b) (c)

Fig. 13 Effect of the Num. of Documents: more documents lead to more TTerms, higher pruning ratio, and lower avg. hop count

When more documents are published, more document terms
commonly appear in filters, leading to more selected TTerms.
However, when the number of documents is large enough,
the number of selected TTerms reaches its maximal value
(i.e., the total number of query terms). It is because the num-
ber of filters does not change in this experiment. This trend
is consistent with the optimal number of TTerms.

Figure 13b plots the average pruning ratio and mainte-
nance cost (measured by the number of propagated refine-
ment structures). The average pruning ratio remains 0.413.
Meanwhile, due to the propagation of refinement structures,
the maintenance cost increases with more documents. On
average, 1312.47 refinement messages are propagated per
document.

Figure 13c plots the average hop count. Because a doc-
ument can be pruned before its arrival at a destination
home node, the average hop count of the approach with
refinement is smaller than that without refinement. For exam-
ple, when the number of documents is 1,000, the aver-
age hop count of the approach with refinement is 2.719,
yet for the approach without refinement, the average hop
count is 3.613. Considering the trade-off between the paid
maintenance cost and the gain of the reduced average hop
count, we believe that the reduced average hop count is
still beneficial to save the overall network traffic. The saved
publication cost per document is 334 KB · 485,498/1,000

· (3.613−2.719)/1,024 = 141.57 MB, where 334 KB is the
average size per publication, and 485,498 is the total number
of the selected TTerms to publish 1,000 documents. Yet, the
maintenance cost per document is only 1312.47 · 1.02 KB =
1.307 MB, where 1.02 KB is the average size of a refinement
structure.

9.4.2 Effect of the number of filters

In this experiment, we study the effect of the number of reg-
istered filters. For the selected TTerms, Fig. 14a shows the
results that are similar to Fig. 13a. However, when the num-
ber of filters is increased from 1,000 to 80,000, the ratio
between the number of selected by the adaptive selection
algorithm and the number by the optimal algorithm is also
increased from 1.035 to 1.246. It means that more filters
result in selecting more TTerms, thus incurring more for-
warding cost. This is because more filters contain more query
terms, and the corresponding HiBloom is less precise to select
TTerms.

For the pruning ratio shown in Fig. 14b, more filters do
not necessarily result in smaller pruning ratios. Actually,
more selected TTerms (due to more filters, already shown
in Fig. 14a) lead to propagating more refinement structures
to intermediate nodes toward home nodes of the selected

(a) (b) (c)

Fig. 14 Effect of the Num. of Filters: more filters lead to more TTerms, but unnecessarily less pruning ratio or higher avg. hop count
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TTerms. Therefore, the pruning algorithm (i.e., Algorithm 4)
prunes more documents, leading to a higher pruning ratio.
Meanwhile, more filters incur less precision of the refine-
ment structure and finally decrease the pruning ratio.

Due to the effect of the pruning ratio, the average hop
count in Fig. 14c is first decreased to 2.554 at the point with
10,000 filters and increased smoothly to 3.135 at the point
with 80,000 filters.

9.4.3 Effect of node count

Figure 15 shows the effect of the node count. Since the term
selection algorithm (Algorithm 2) is independent upon the
node count, there is no effect of the number of selected
TTerms as shown in Fig. 15a.

Next, because the number of selected TTerms and the
number of filters are not changed, the pruning ratio in Fig. 15b
remains unchanged.

In Fig. 15c, for the approach without refinement, the aver-
age hop count is increased with the growth of the node count.
Also, the average hop count of the approach with refine-
ment is increased with the growth of the node count, because
the pruning ratio keeps unchanged. For the maintenance
cost, when the average hop count is increased, more refine-
ment structures are correspondingly propagated, as shown in
Fig. 15b.

9.4.4 Effect of filter size

To study the effect of the filter size | f |s , in Fig. 16, we change
| f |s from 1 to 10. In particular, we are interested in the effect
of | f |s in Algorithm 4. Therefore, during the term selection,
we fix the filter size | f |s = 2 of Algorithm 2 for fairness. As
shown in Fig. 16a, the number of selected terms keeps stable
for both approaches with and without refinement.

In Fig. 16b, the pruning ratio is decreased, and the mainte-
nance cost is increased when the value of | f |s grows. For the
false dismissal ratio, though without plotting in the figure,
for | f |s = 1, 2, 5 and 10, the false dismissal ratio is 0.163%,
0.0299%, 0.0281% and 0.0285%, respectively. This experi-
ment indicates that | f |s = 2 is enough for Algorithm 4 to
achieve a high pruning ratio and low maintenance cost ratio,
without sacrificing the false dismissal ratio.

In Fig. 16c, for the approach with refinement, due to less
pruning ratio, the average number of routing hop count is
increased from 2.65 to 3.28, when | f |s is changed from 1 to
10. Instead, the average hop count of the approach without
refinement keeps stable, equal to around 3.63.

9.5 Performance study of the extended data model

During the implementation, we set s = 10, so that the rang
of (0.0, 1.0] is divided by 2s = 1024 (even) intervals. The
space size of a value-based bloom filter (VBF) with s = 10

(a) (b) (c)

Fig. 15 Effect of Node Count: more nodes lead to more maintenance cost and higher avg. hop count

(a) (b) (c)

Fig. 16 Effect of Filter Size | f |s : larger | f |s decreases the pruning ratio and increases the avg. hop count
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is around 10 folds of the size of a standard bloom filter. For
example, for k = 4 and the number of bits m = 216, the
space size of a standard bloom filter is 8.08 KB, and the
space cost of the VBF with s = 10 is 88 KB. To gener-
ate weight w(ti , f ) of term ti ∈ f , we randomly produce
a numeric value within (0.0, 1.0]. The TREC AP is used as
publication documents, and the search.com as subscription
filters. We also use Table 3 to set up parameters (except for
D = 1, 050). Given these settings, we measure the perfor-
mance of the extended selection algorithm (Algorithm 6) and
extended pruning algorithm (given by Sect. 7.2).

For Algorithm 6, the selection ratio is 0.08633, and the
forwarding cost saving ratio is 0.91377. Compared with the
result of the simple data model (See Fig. 12a), more than
12.76% TTerms are selected. It is due to the fact that the
extended selection algorithm utilizes the upper bounds of
divided intervals as the exact weight values and selects more
TTerms. Though with a higher selection ratio, a benefit is a
smaller false dismissal ratio equal to 0.03182.

For the extended refinement scheme in Sect. 7.2, the
pruning ratio is 0.368, the average hop count is 2.863, and
the maintenance message number is 1558.21 per document.
Since the refinement structure also utilizes VBF, the extended
refinement scheme has smaller pruning ratio, larger hop
count, and more maintenance messages than the simple data
model. Clearly, if we increase s to a larger value, the extended
refinement scheme in Sect. 7.2 can achieve a smaller selec-
tion ratio, and prune more irrelevant documents, but with the
cost of a higher space cost.

9.6 Comparison with Ferry

In this section, as a complete solution to offer the full-text
content filtering and dissemination, we compare STAIRS
with Ferry [52]. For fairness, we implement the PredRP algo-
rithm of Ferry on top of FreePastry. To ensure that Ferry can
support the full-text document filtering and dissemination,
we implement 3 variants of Ferry to set up R, i.e., the num-
ber of rendezvous nodes (RNs for short): (i) R = 1, i.e., only
1 RN, by considering that the schema s of Ferry contains

only one attribute; (ii) R = T RNs (where T is the total
number of distinct query terms in all registered filters), by
treating each distinct term as an attribute, and if T is larger
than N (i.e., the total number of nodes in the DHT), then we
reset T = N ; (iii) R = 0.01 · N RNs. For any variant of
Ferry with R RNs, T query terms are evenly distributed to R
RNs, which on average manages T/R query terms per RN.
Following the load balancing policy of Ferry, each node in
the DHT is, on average, responsible for T/N query terms. In
detail, if a rendezvous node r is responsible for term ti , then
all filters containing ti are registered to r . If the number of
extra filters is larger than T/N , those 1-hop nodes in the fin-
ger table of r (i.e., the direct neighbor set in FreePastry) will
manage those filters. If r and all of those 1-hop nodes still can-
not satisfy the load balancing requirement, then 2-hop nodes
int the finger table of r , and even multiple-hop finger table
nodes, cooperatively manage those filters. In addition, in all
embedding trees (EMTrees for short), each non-leaf node
utilizes HiBloom (i.e., equal to the summary filter in Ferry)
to summarize all filters registered to the subtree rooted at this
non-leaf node. Given these settings, following Ferry, filter f
is registered to only one RN (i.e., actually to one EMTree),
and document d is forwarded to all RNs. After arriving at
a RN, d traverses the EMTree until all satisfied filters are
found.

Still using Table 3 to set up parameters, based on the sim-
ple data model, we conduct experiments to compare STAIRS
with Ferry and measure the overall hop count of forwarding
a document to all satisfied filters (this metric covers both the
publishing amount and unit-publishing cost). In Fig. 17a, we
vary the number of filters from 1,000 to 80,000. When the
number of filters grows, the hop counts of both STAIRS and
Ferry are increased (except the case for Ferry with R = N ).
However, STAIRS consumes less hop count than Ferry vari-
ants. The reason is explored as follows.

– For Ferry with R = 1, only a single copy of document
d is forwarded to the unique RN. However, the EMTree
consists of O(N ) nodes. Though HiBloom can avoid tra-
versing the whole EMTree, due to the high number of

(a) (b) (c)

Fig. 17 Comparison between STAIRS and Ferry: STAIRS typically consumes less hop count per document
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terms per document (without using any selection algo-
rithm as STAIRS), Ferry has to traverse the majority of
branches in the EMTree, incurring 5.863 times of higher
hop count than STAIRS;

– For Ferry with R = N , each EMTree consists of only
one node (i.e., RN). Thus, no traversal of the EMTree is
needed. However, Ferry has to forward each document to
R = T RNs (reset by R = N ). Since each forwarding
needs O(log N ) hops, the overall hop count per docu-
ment2 is N log N , and this is the largest cost among all
approaches shown in Fig. 17a;

– For Ferry with R = (0.01 · N ) = 100, document d is
forwarded to 100 RNs, and thus (100 · log N ) hops are
consumed. When arriving at each RN, d still needs to tra-
verse the associated EMTree. Thus, the overall hop count
per document is the hop count used for forwarding the
document to RNs, plus the hop count used for the tra-
versals of embedding trees;

– Compared with Ferry, STAIRS can prune irrelevant doc-
uments before arriving at the home node of a TTerm.
Instead, the EMTree traversal occurs after d arrives at
a RN. Thus, STAIRS requires less hop count than Ferry
does (for all 3 variants). In addition, in STAIRS, the home
node of each TTerm is used as a RN to match incom-
ing documents with locally registered filters. Due to the
DHT hash function, the hashing ID of each TTerm is
evenly mapped to home nodes across the whole DHT.
Thus, there is no need3 to form EMTrees to avoid unbal-
anced workloads. The benefit is no need to build an EM-
Tree as required by Ferry, without traversing EMTrees.

Next, in Fig. 17b, we vary the number of documents from
10 to 1,000. For Ferry variants, no matter the number of doc-
uments, Ferry forwards each document to all RNs and then
traverses EMTrees. Thus, the hop count per document is not
affected by the number of published documents. Instead, in
STAIRS, due to more available documents, the number of
selected TTerms is increased (see Fig. 13a); meanwhile, the
pruning ratio is decreased (See Fig. 13b). As a result, the hop
count per document is first increase until the number of doc-
uments reaches 100; after that, such hop count is decreased.
This experiment indicates that more number of published
documents will finally helps STAIRS achieve a less forward-
ing cost.

Finally, in Fig. 17c, we vary the node count N from
1,000 to 10,000. As before, STAIRS consumes the least hop

2 In this case, an improvement might be directly broadcast d to all
nodes, incurring N hops, instead of (N log N ) hops.
3 The workload refers to the number of query terms per node. In terms
of the number of filters per node as the workload, it could need to build
an EMTree because the number of filters containing a query term could
be uneven.

count among 4 approaches except N = 1, 000, where Ferry
with R = 1 consumes less hop count than STAIRS. This
is because, for N = 1000, the traversal of EMTrees con-
sumes at most N = 1, 000 hop count per document; yet, for
STAIRS, the overall hop count per document, related to the
publication amount and unit-publishing hop count, is larger
than a small N .

9.7 Summary and discussions

9.7.1 Summary of experimental results

(1) Patterns of filters and documents: First, the pattern of fil-
ters directly decides the performance of STAIRS. For exam-
ple, if each filter contains a large number of query terms
(instead of short filters), the experimental results in Sect. 9.2
indicate that using a larger filter size incurs a larger forward-
ing cost. Also, in Sect. 9.2, it is obvious that lower thresholds
defined in filters lead to a higher cost due to more selected
TTerms. In addition, Sect. 9.4 also shows that more filters
also incur a higher forwarding cost.

In addition, for publication documents, Sect. 9.2 shows
that STAIRS can achieve a high forwarding cost saving ratio
for those articles composed by a large number of distinct
terms (e.g., TREC AP); Sect. 9.4.1 shows that more publi-
cation documents help achieve less unit-publishing cost, due
to more propagated refinement structures.

(2) P2P environments: We use the node count N to indicate
the scalability of P2P networks. For example, Sect. 9.4.3
shows that a larger N leads to a higher unit-publishing cost,
thus a higher overall forwarding cost; Sect. 9.6 further shows
that a larger N leads to a larger overall hop count per docu-
ment.

(3) Algorithms offered by STAIRS: Algorithms offered by
STAIRS are important to the performance of STAIRS. Sec-
tion 9.3 shows that the adaptive algorithm can help achieve
the lowest forwarding cost, meanwhile with the lowest false
dismissals. In addition, for the filter summary structure like
HiBloom, Sect. 9.3 shows that a larger number of buckets
obviously leads to a higher precision of HiBloom to sum-
marize filters, but incurring a larger space cost. Similarly, in
the refinement structure, more bits in bloom filters can also
increase the precision, but with a higher space cost. Finally,
setting smaller value of | f |s can reduce the forwarding cost,
but incurring more false dismissals. Typically, using the aver-
age filter size (e.g., | f |s=3) is enough to reduce both the
forwarding cost and false dismissals.

9.7.2 Discussions

(1) Setting desirable filters: To assist subscribers with set-
ting up favorable thresholds T( f ), STAIRS can archive
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published documents and provide a test run facility based
on the archived documents. By input query terms, subscrib-
ers run initial tests [47] with an initial threshold. Then, they
interactively adjust thresholds to the desired level. When sat-
isfied with the performance of this filtering, subscribers then
set T( f ) with the selected settings. This test facility helps
subscribers further tune desirable thresholds even after the
filter registration.

Besides setting desirable thresholds, a useful function to
help subscribers specify desirable keywords is to recommend
a subscriber with recently popular keywords that are used by
other subscribers, keywords that appear in recently popular
documents, and those keywords highly correlated with the
current keywords specified in the defined filter.

Finally, to set up a default threshold, STAIRS can use
the average value of all personalized thresholds. More com-
plicated approaches consider the real values of S( f, d), the
number of documents disseminated to subscribers, etc.

(2) Subscription privacy issue: Among all published docu-
ments, some of them are related to sensitive information (e.g.,
corporation or military) or political/religious affiliations. If
a subscriber subscribes to these documents, it could indicate
that the subscriber might be particularly interested in these
documents. Besides providing the fine-grained content filter-
ing and dissemination function, STAIRS is expected to pro-
tect the private subscription information. That is, subscribers
expect that their private interest should not be exposed. Most
existing works [23,36,21,35] on the privacy study of pub/sub
systems focus on the access control, data confidentiality,
and secure (and anonymous) routing (using cryptographic
techniques), yet little has been conducted on the protec-
tion of subscription privacy. Our recent technical report [27]
considers an attack model where some curious subscribers
are compromised and colluded together with an untrusted
broker. To defend against this attack, [27] proposes the k-
subscription-anonymity model and optimally considers the
trade-off between the privacy requirement and efficiency
goal. Though [27] targets at a topic-based pub/sub system,
the basic idea of [27] can be extended to the content-based
pub/sub (it is our ongoing work) and can be further extended
to STAIRS.

(3) Trade-off between usability and redundancy: A common
issue of P2P networks is that a node can arbitrarily join or
leave. As a result, filters and other information (e.g., the
stored filter summary information, etc.), which are stored
at such a node, will be lost. To handle this issue, a frequently
used technique is to replicate stored objects (i.e., registered
filters) to multiple nodes for redundancy. Among many pro-
posed techniques [26,25,10,32,24], our previous work [26]
derives an optimal solution which can trade-off the number
of replicas and the average hop count. No matter what kinds

of techniques are used, STAIRS, as an application over DHT-
based P2P networks, can leverage them for better usability.

10 Conclusion and future work

In this paper, we propose a novel and simple content fil-
tering and dissemination framework in DHT-based P2P
networks, STAIRS. Different from previous works includ-
ing distributed IF and the content-based pub/sub, STAIRS
can effectively reduce the forwarding cost by the scheme of
full registration and partial forwarding, and subscribers can
receive the satisfying content with no duplicates.

For future work, we expect that STAIRS will be inte-
grated with the existing RSS feed approaches [34] for real-
istic deployment and better usability. Also, we consider the
top-k model, by which users subscribe to documents with the
top-k highest values of S( f, d). Compared with the thresh-
old model, the top-k model can avoid efforts to specify rea-
sonable thresholds. Nevertheless, a benefit of the threshold
model is that it can return quality-guaranteed documents.
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