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Data publishing generates much concern over the protection of individual privacy. Recent studies
consider cases where the adversary may possess different kinds of knowledge about the data.
In this article, we show that knowledge of the mechanism or algorithm of anonymization for data
publication can also lead to extra information that assists the adversary and jeopardizes individual
privacy. In particular, all known mechanisms try to minimize information loss and such an attempt
provides a loophole for attacks. We call such an attack a minimality attack. In this article, we
introduce a model called m-confidentiality which deals with minimality attacks, and propose a
feasible solution. Our experiments show that minimality attacks are practical concerns on real
datasets and that our algorithm can prevent such attacks with very little overhead and information
loss.
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1. INTRODUCTION

Although data mining is potentially useful, many data holders are reluctant
to provide their data for data mining for fear of violating individual privacy.
In recent years, study has been made to ensure that the sensitive informa-
tion of individuals cannot be identified easily [Samarati 2001; Sweeney 2002a,
2002b; LeFevre et al. 2006, 2005; Meyerson and Williams 2004]. One well-
studied approach is the k-anonymity model [Ciriani et al. 2007] which in turn
led to other models such as confidence bounding [Wang et al. 2006], l -diversity
[Machanavajjhala et al. 2006], (α, k)-anonymity [Wong et al. 2006], t-closeness
[Li and Li 2007], (k, e)-anonymity [Zhang et al. 2007], and (c, k)-safety [Martin
et al. 2007]. These models assume that the data or table T contains: (1) a quasi-
identifer (QID), which is a set of attributes (e.g., a QID may be {Date of birth,
Zipcode, Sex}) in T which can be used to identify an individual, and (2) sensitive
attributes, attributes in T which may contain some sensitive values (e.g., HIV
of attribute Disease) of individuals. Often, it is also assumed that each tuple
in T corresponds to an individual and no two tuples refer to the same indi-
vidual. All tuples with the same QID value form an equivalence class, which
we call QID-EC. The table T is said to satisfy k-anonymity if the size of every
equivalence class is greater than or equal to k. The intuition of k-anonymity
is to make sure that each individual is indistinguishable from other k − 1
individuals.

In this article, we study the case where the adversary has some additional
knowledge about the mechanism involved in the anonymization and launches
an attack based on this knowledge. We focus on the protection of the relationship
between the quasi-identifier and a single sensitive attribute. In a simplified
setting of l -diversity model [Machanavajjhala et al. 2006], a QID-EC is said to
be l -diverse or satisfy l -diversity if the proportion of each sensitive value is at
most 1/l . A table satisfies l -diversity (or it is l -diverse) if all QID-EC’s in it
are l -diverse. The intended objective is to make sure that an adversary cannot
deduce with a probability above 1/l that an individual is linked to any sensitive
value. In the following discussion, when we refer to l -diversity, we refer to this
simplified setting.1 The complex l -diversity model is discussed in Section 5,
in which we show that our results can be extended to other anonymization
models.

1This simplified model is a special case of the confidence bounding in Wang et al. [2006] and is the
same as (α, k)-anonymity [Wong et al. 2006] when k = 1 and α = 1/l .

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 8, Publication date: June 2009.



Anonymization-Based Attacks in Privacy-Preserving Data Publishing • 8:3

Table I. 2-Diversity: Global and Local Recoding

QID Disease
q1 HIV
q1 non-sensitive
q2 HIV
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive

QID Disease
q1 HIV
q1 HIV
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive

QID Disease
Q HIV
Q HIV
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive

QID Disease
Q HIV
Q HIV
Q non-sensitive
Q non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive

(a) good table (b) bad table (c) global (d) local

1.1 Minimality Attack

In Table I(a), assume that the QID values of q1 and q2 can be generalized
to Q and assume only one sensitive attribute “disease”, in which HIV is a
sensitive value. For example, q1 may be {Nov 1930, Z 3972, M }, q2 may be
{Dec 1930, Z 3972, M } and Q is {Nov/Dec 1930, Z 3972, M }. (Note that q1 and
q2 may also be generalized values.) A tuple associated with HIV is said to be
a sensitive tuple. For each equivalence class, at most half of the tuples are
sensitive. Hence, the table satisfies 2-diversity.

As observed in LeFevre et al. [2005], existing approaches of anonymization
for data publishing have an implicit principle:

“For any anonymization mechanism, it is desirable to define some notion of minimal-
ity. Intuitively, a k-anonymization should not generalize, suppress, or distort the data
more than it is necessary to achieve k-anonymity.”

Based on this minimality principle, Table I(a) will not be generalized.2 In
fact the aforesaid notion of minimality is too strong since almost all known
anonymization problems for data publishing are NP-hard, many existing al-
gorithms are heuristical and only attain local minima. We shall later give a
more relaxed notion of the minimality principle in order to cover both the opti-
mal as well as the heuristical algorithms. For now, we assume that mimimality
principle means that a QID-EC will not be generalized unnecessarily.

Next, consider a slightly different table, Table I(b). Here, the set of tuples for
q1 violates 2-diversity because the proportion of the sensitive tuples is greater
than 1/2. Thus, this table will be anonymized to a generalized table by gen-
eralizing the QID values as shown in Table I(c) by global recoding [Xiao and
Tao 2006b; Wang and Fung 2006]. In global recoding, all occurrences of an at-
tribute value are recoded to the same value. If local recoding [Sweeney 2002a;
Aggarwal et al. 2005a, 2005b] is adopted, occurrences of the same value of
an attribute may be recoded to different values. Such an anonymization is
shown in Table I(d). These anonymized tables satisfy 2-diversity. The ques-
tion we are interested in is whether these tables really protect individual
privacy.

In most previous works [Sweeney 2002b; LeFevre et al. 2006, 2005; Xiao
and Tao 2006b], the knowledge of the adversary involves an external table T e

2This is the case for each of the anonymization algorithms in Machanavajjhala et al. [2006], Wang
et al. [2006], and Wong et al. [2006].
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Table II. T e: External Table Available to the Adversary

Name QID
Andre q1
Kim q1

Jeremy q2
Victoria q2

Ellen q2
Sally q2
Ben q2

QID
q1
q1
q2
q2
q2
q2
q2

Name QID
Andre q1
Kim q1

Jeremy q2
Victoria q2

Ellen q2
Sally q2
Ben q2
Tim q4

Joseph q4

QID
q1
q1
q2
q2
q2
q2
q2
q4
q4

(a) individual QID (b) multiset (c) individual QID (d) multiset

such as a voter registration list that maps QIDs to individuals.3 As in many
previous works, we assume that each tuple in T e maps to one individual and no
two tuples map to the same individual. The same is also assumed in the table
T to be published. Let us first consider the case when T and T e are mapped to
the same set of individuals. Table II(a) is an example of T e.

Assume further that the adversary knows the goal of 2-diversity, s/he also
knows whether it is a global or local recoding, and Table II(a) is available as
the external table T e. With the notion of minimality in anonymization, the ad-
versary reasons as follows: From the published Table I(c), there are 2 sensitive
tuples in total. From T e, there are 2 tuples with QID = q1 and 5 tuples with
QID = q2. Hence, the equivalence class for q2 in the original table must al-
ready satisfy 2-diversity, because even if both sensitive tuples have QID = q2,
the proportion of sensitive values in the class for q2 is only 2/5. Since general-
ization has taken place, at least one equivalence class in the original table T
must have violated 2-diversity, because otherwise no generalization will take
place according to minimality. The adversary concludes that q1 has violated
2-diversity, and that is possible only if both tuples with QID = q1 have a dis-
ease value of “HIV”. The adversary therefore discovers that Andre and Kim are
linked to “HIV”.

In some previous works, it is assumed that the set of individuals in the
external table T e can be a superset of that for the published table. Table II(c)
shows such a case, where there is no tuple for Tim and Joseph in Table I(a) and
Table I(b). If it is known that q4 cannot be generalized to Q (e.g., q4 = {Nov
1930, Z 3972, F } and Q = {Jan/Feb 1990, Z 3972, M }), then the adversary can
be certain that the tuples with QID = q4 are not in the original table. Thus, the
tuples with QID = q4 in T e do not have any effect on the previous reasoning of
the adversary and, therefore, the same conclusion can be drawn. We call such
an attack based on the minimality principle a minimality attack.

3There are many sources of such an external table T e. Most municipalities sell population registers
that include the identifiers of individuals along with basic demographics; examples include local
census data, voter lists, city directories, and information from motor vehicle agencies, tax assessors,
and real estate agencies [Samarati and Sweeney 1998]. In the voter list, 97% of the voters were
identifiable with just the full postal code and birth date [Sweeney 1997]. From Sweeney [2002b], it
is reported that a city’s voter list in two diskettes was purchased for twenty dollars, and was used
to reidentify medical records.
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Table III. 2-Diversity (where all values in Disease are sensitive): Global and Local Recoding

QID Disease
q1 HIV
q1 Lung Cancer
q2 Gallstones
q2 HIV
q2 Ulcer
q2 Alzheimer
q2 Diabetes
q4 Ulcer
q4 Alzheimer

QID Disease
q1 HIV
q1 HIV
q2 Gallstones
q2 Lung Cancer
q2 Ulcer
q2 Alzheimer
q2 Diabetes
q4 Ulcer
q4 Alzheimer

QID Disease
Q HIV
Q HIV
Q Gallstones
Q Lung Cancer
Q Ulcer
Q Alzheimer
Q Diabetes
q4 Ulcer
q4 Alzheimer

QID Disease
Q HIV
Q HIV
Q Gallstones
Q Lung Cancer
q2 Ulcer
q2 Alzheimer
q2 Diabetes
q4 Ulcer
q4 Alzheimer

(a) good table (b) bad table (c) global (d) local

Observation 1. If a table T is anonymized to T ∗ which satisfies l -diversity,
it can suffer from a minimality attack. This is true for both global and local
recoding and for the cases when the set of individuals related to T e is a superset
of that related to T .

In the preceding example, some values in the sensitive attribute Disease are
not sensitive. Would it help if all values in the sensitive attributes are sensitive?
In the tables in Table III, we assume that all values for Disease are sensitive.
Table III(a) satisfies 2-diversity but Table III(b) does not. Suppose anonymiza-
tion of Table III(b) results in Table III(c) by global recoding and Table III(d) by
local recoding. The adversary is armed with the external table Table II(c) and
the knowledge of the goal of 2-diversity, s/he can launch an attack by reasoning
as follows: With 5 tuples for QID = q2 and each sensitive value appearing at
most twice, there cannot be any violation of 2-diversity for the tuples with QID
= q2. There must have been a violation for QID = q1. For a violation to take
place, both tuples with QID = q1 must be linked to the same disease. Since HIV
is the only disease that appears twice, Andre and Kim must have contracted
HIV.

Observation 2. Minimality attack is possible whether the sensitive at-
tribute contains nonsensitive values or not.

Recall that the intended objective of 2-diversity is to make sure that an ad-
versary cannot deduce with a probability above 1/2 that an individual is linked
to any sensitive value. Thus, the published tables violate this objective.

The previous attacks to Andre would also be successful if the knowledge
of the external table Table II(a) is replaced by that of a multiset of the QID
values as shown in Table II(b) plus the QID value of Andre; or if Table II(c) is
replaced by the multiset in Table II(d) plus the QID value of Andre. Note that
the multisets in Tables II(b) and (d) are inherently available in the published
data if the bucketization technique as in Xiao and Tao [2006a], Zhang et al.
[2007], or Martin et al. [2007] is used.

Observation 3. The minimality attacks to an individual t would also be
successful if the knowledge of the external table T e (which is either a superset
of individuals of the published table or not) is replaced by that of a multiset of
the QID values of the external table T e plus the QID value of t.
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Table IV. Illustration of Near to Minimality Principle

QID Disease
q1 HIV
q1 non-sensitive
q1 non-sensitive
q2 HIV
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive

QID Disease
q1 HIV
q1 HIV
q1 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive

QID Disease
Q HIV
Q HIV
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive

QID Disease
Q HIV
Q HIV
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive

(a) good table (b) bad table (c) global (d) local

A strong requirement of 3-diversity is used to achieve the original intended requirement of 2-diversity.

It is natural to ask whether there is a privacy breach if the data publisher
generalizes the table a little more than minimal. In this case, we say that the
anonymization algorithm follows a near to minimality principle. Suppose the
intended objective is to generate a table which satisfies a privacy requirement
of 2-diversity. Under the near to minimality principle, the publisher generates
a table which satisfies a stronger privacy requirement of 3-diversity. Again we
assume that the adversary knows that the algorithm adopted guarantees 3-
diversity while minimizing the information loss. Does a published table which
satisfies 3-diversity guarantee that the probability that an individual is linked
to a sensitive value is at most 1/2? The answer is interestingly no.

Consider Table IV. Suppose our original intended privacy requirement is 2-
diversity because we want to guarantee that the probability that an individual
is linked to a sensitive value is at most 1/2. Based on the near to minimality prin-
ciple, a stronger 3-diversity is attained instead. Table IV(a) satisfies 3-diversity
but Table IV(b) does not. Thus, Table IV(c) and Table IV(d) are generated by
global recoding and local recoding, respectively. By similar arguments, with the
knowledge of a strong requirement 3-diversity and Table IV(c), the adversary
can also deduce that the probability that an individual with QID value = q1 is
equal to 2/3 which is greater than the intended maximum disclosure probability
of 1/2. This is because the two HIV values must be linked to the tuples with
QID = q1. Otherwise, there will be no violation of 3-diversity and there is no
need for generalization. Similar arguments can be made to Table IV(d). We call
this kind of attack the near-to-minimality attack.

Observation 4. Near-to-minimality attack is possible when the anonymiza-
tion algorithm follows the near to minimality principle.

From the preceding discussion, we described the attack by minimality and
the attack by near-to-minimality are successful under the principles of mini-
mality principle and near-to-minimality principles used in the anonymization
algorithm. Both are based on some knowledge about the algorithm, let us call
an attack based on such knowledge an attack by mechanism. Hence minimality
or near-minimality attack are under this bigger class of attack.
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1.2 Contributions

In this article, we introduce the problem of minimality attacks in privacy preser-
vation for data publishing. Our contributions include the following.

First, to the best of our knowledge, we are the first to study the anony-
mization-based attack, including the attack by minimality, the attack by
near-to-minimality, and the attack by mechanism, in privacy-preserving data
publishing. A preliminary version of this article was published in Wong et al.
[2007]. Wong et al. [2007] focuses on the study about the attack by minimality
but does not study the attack by near-to-minimality and the attack by mecha-
nism. We propose an m-confidentiality model to capture the privacy-preserving
requirement under the additional adversary knowledge of the minimality (or
the near-to-minimality) of the anonymization mechanisms. Zhang et al. [2007]
also considers a privacy model under the consideration of the mechanism based
on some minimality principle. However, as we will show in Section 2, our model
is more general than Zhang et al. [2007].

Second, since almost all known anonymization methods for data publishing
attempt to minimize information loss, we show in Section 5 how minimality
attack can be successful in a variety of known anonymization models. We also
show that the attack by mechanism is also possible in a well-known recog-
nized algorithms, Incognito-like algorithm [LeFevre et al. 2005; Samarati 2001;
Machanavajjhala et al. 2006; Li and Li 2007; Wong et al. 2006], Mondrian-like
algorithm [LeFevre et al. 2006], and Zhang’s algorithm [Zhang et al. 2007], in
this section.

Third, we propose a solution to generate a published dataset which satis-
fies m-confidentiality. Our method makes use of the existing mechanisms for
k-anonymity with additional precaution steps. The existing mechanisms can
adopt either the bucketization technique or the generalization technique over
the QID attributes while the additional precaution steps are to distort some
values in the sensitive attribute for m-confidentiality. Interestingly, although it
has been discovered by recent research works that k-anonymity is incapable of
handling sensitive values in some cases, it is precisely this feature that makes it
a useful component in our method to counter attacks by minimality and attacks
by near-to-minimality for protecting sensitive data. Since k-anonymization does
not consider the sensitive values, its result is not related to whether some tuples
need to be anonymized due to the sensitive values. Without this relationship, an
attack by minimality (and an attack by near-to-minimality) becomes infeasible.

Fourth, we have conducted a comprehensive empirical study on both the
problem and our method. We show how such a minimality attack can succeed
on a real dataset in our experiment. Compared to the most competent existing
algorithms for k-anonymity, our method introduces very minor computation
overhead. The information loss generated by our method is also comparable to
those resulting from known algorithms for k-anonymity.

The rest of the article is organized as follows. In Section 2, we review the
related work. We formulate the problem in Section 3, and characterize the
nature of minimality attacks in Section 4. We show that the attacks by mini-
mality and mechanism are practical concerns in various anonymization models
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in Section 5. We give a simple yet effective solution in Section 6. An empirical
study is reported in Section 7. The work is concluded in Section 8.

2. RELATED WORK

Since the introduction of k-anonymity, there have been a number of en-
hanced models such as confidence bounding [Wang et al. 2006], l -diversity
[Machanavajjhala et al. 2006], (α, k)-anonymity [Wong et al. 2006], t-closeness
[Li and Li 2007], (k, e)-anonymity [Zhang et al. 2007], personalized privacy
[Xiao and Tao 2006b], and workload-aware anonymization model [LeFevre et al.
2008], which additionally consider the privacy issue of disclosure of the rela-
tionship between the quasi-identifier and the sensitive attributes. Confidence
bounding is to bound the confidence by which a QID can be associated with a
sensitive value. T is said to satisfy (α, k)-anonymity if T is k-anonymous and
the proportion of each sensitive value in every equivalence class is at most α,
where α ∈ [0, 1] is a user parameter. If we set α = 1

l and k = 1, then the
(α, k)-anonymity model becomes the simplified model of l -diversity.

An adversary may also have some additional knowledge about the individu-
als in the dataset or some knowledge about the data involved [Machanavajjhala
et al. 2006; Kifer and Gehrke 2006; Martin et al. 2007; Li and Li 2008].
Machanavajjhala et al. [2006] considers the possibility that the adversary can
exclude some sensitive values. For example, Japanese have an extremely low
incidence of heart disease. Thus, the adversary can exclude heart disease in
a QID-EC for a Japanese individual. Kifer and Gehrke [2006] considers that
additional information may be available in terms of some statistics on some of
the attributes, such as age statistics and zip code statistics. Martin et al. [2007]
tries to protect sensitive data against background knowledge in the form of im-
plications, for example, if an individual A has HIV then another individual B
also has HIV, and proposes a model called (c, k)-safety to protect against such
attacks. However, none of the aforesaid works consider the knowledge of the
anonymization mechanism discussed in this article and a preliminary version
of this article published in Wong et al. [2007]. In Section 5 we shall show that
the aforesaid previous works are vulnerable to minimality attacks. Other than
generalization, more general distortion can be applied to data before publish-
ing. The use of distortion has been proposed in earlier works such as Agrawal
and Srikant [2000] and Evfimievski et al. [2002].

The idea of attack by minimality has been known for some time in crypto-
graphic attack where the adversary makes use of the knowledge of the under-
lying cryptographic algorithm. In particular, a timing attack [Kocher 1996] in
a public-key encryption system, such as RSA, DSS, and SSL, is a practical and
powerful attack that exploits the timing factor of the implemented algorithm,
with the assumption that the algorithm will not take more time than neces-
sary. Measuring response time for a specific query might give away relatively
large amounts of information. To defend timing attacks, the same algorithm
can be implemented in such a way that every execution returns in exactly x
seconds, where x is the maximum time it ever takes to execute the routine. In
this extreme case, timing does not give an attacker any helpful information.
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In 2003, Brumley and Boneh [2003] demonstrated a practical network-based
timing attack on SSL-enabled Web servers which recovered a server private
key in a matter of hours. This led to the widespread deployment and use of
blinding techniques in SSL implementations.

Recently, Wong et al. [2007] and Zhang et al. [2007] pointed out that a privacy
breach is possible when the nature of the anonymization process is considered,
where Wong et al. [2007] is a preliminary version of this article.

Zhang et al. [2007] proposes a privacy model which considers the underlying
anonymization process. Consider a privacy requirement R such as l -diversity.
Suppose the adversary knows the external table T e containing the QID at-
tribute of all individuals in the original table T . In the model proposed by Zhang
et al. [2007], according to T e, the adversary lists all possible tables generalized
from T e and orders them in a table sequence sorted by the ascending order of
the information loss of the tables (after generalization), namely T1, T2, . . . , TN ,
where N is the total number of possible tables generalized from T e. If the pub-
lished table T ∗ is equal to Ti in the table sequence, the adversary deduces that
T1, T2, . . . , Ti−1 must violate the privacy requirement R. According to this ob-
servation, the adversary can trigger an attack to deduce that an individual is
linked to a sensitive value. However, Zhang et al. [2007] is different from our
work as follows.

Our model is much more general than Zhang et al. [2007] and covers the
model proposed by Zhang et al. [2007]. In this article, we consider any mech-
anism that follows the minimality principle. Zhang et al. [2007] considers one
particular global recoding anonymization mechanism that follows the minimal-
ity principle. The sequence of tables considered in Zhang et al. [2007] is based
on the information loss of the tables. However, an anonymization algorithm in
general is not restricted to the direct consideration of information loss. Since
the problem is in general NP-hard, other heuristics are often used. Our model
is very general and does not assume a specific criterion used in the algorithm.
Most existing algorithms arrive at a local minima as defined in our model. De-
tailed analysis about this can be found in Section 5.2. In addition, we consider
the near-to-minimality principle but Zhang et al. [2007] does not contain this
study.

Zhang et al. [2007] studies the attack on the published table which is gen-
eralized by a global-recoding algorithm. It is not clear how their model can be
adapted to the local-recoding case. Zhang et al. [2007] proposes an algorithm
resistant to attacks when the target is l -diversity. However, there is no formal
analysis of this attack. The attack is exemplified by a single scenario in the In-
troduction of Zhang et al. [2007]. The analysis for k-anonymity is not trivially
extended to that with l -diversity. In comparison, our work gives a comprehen-
sive analysis of the attack with both local recoding and global recoding when
l -diversity is considered. The algorithm of evaluating the attack can be com-
puted in polynomial time in the total number of tuples and the total number of
QID attributes.

Since the proposed algorithm in Zhang et al. [2007] is a global-recoding al-
gorithm, in general it incurs more information loss and its utility is lower. Fur-
thermore, its complexity increases exponentially with the number of domains
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Fig. 1. Generalization taxonomy of “Education” in the “Adult” dataset.

of QID attributes. In comparison, we propose an algorithm which is resistant to
minimality attacks and the algorithm can be either a local recoding or a global
recoding. The complexity of our proposed algorithm is roughly equal to the
complexity of any existing algorithm for k-anonymity. If we adopt a polynomial-
time algorithm for k-anonymity in our algorithm MASK, MASK also computes
in polynomial time. While there is no experimental result reported in Zhang
et al. [2007], in this article, we have conducted empirical studies to show the
practicality of the attack and the feasibility of our proposed algorithm.

Finally there are some problems with the proposed methods in Zhang et al.
[2007]. (1) The major focus of Zhang et al. [2007] is finding the privacy breach
for k-anonymity. A basic assumption is that the adversary knows the QID at-
tributes of all individuals in the table. However, the analysis in Zhang et al.
[2007] is on the risk of disclosure of the QID values of some individuals, and
this contradicts the assumption of the QID knowledge. (2) Zhang et al. [2007]
claims that their proposed algorithm is resistant to attack when l -diversity is
considered. However, it still suffers from the minimality attack. Details can be
found in Section 5.2.

3. PROBLEM DEFINITION

Let T be a table. We assume that one of the attributes is a sensitive attribute
where some values in this attribute should not be linkable to any individual. A
quasi-identifier (QID) is a set of attributes of T that may serve as identifications
for some individuals.

Assumption 1. Each tuple in the table T is related to one individual and
no two tuples are related to the same individual.

We assume that each attribute has a corresponding conceptual taxonomy T .
A lower-level domain in the taxonomy T provides more details than a higher-
level domain. For example, Figure 1 shows a generalization taxonomy of “Edu-
cation” in the “Adult” dataset [Blake and Merz 1998]. Values “undergrad” and
“postgrad” can be generalized to “university”.4 Generalization replaces lower-
level domain values in the taxonomy with higher-level domain values.

Some previous studies consider taxonomies only for QID attributes while
some others also consider taxonomies for the sensitive attributes. In some ear-
lier studies on anonymization, the taxonomy for an attribute in the QID or the

4Such taxonomies can also be created for numerical attributes by generalizing values to value
range and to wider value ranges. The ranges can be determined by users or a machine learning
algorithm [Fayyad and Irani 1993].
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sensitive attribute is a tree. However, in general, a taxonomy may be a Directed
Acyclic Graph (DAG). For example, “day” can be generalized to “week”, or via
“month” to “year”, or via “season” to “year”. Therefore, we extend the meaning
of a taxonomy to any partially ordered set with a partial order. An attribute
may have more than one taxonomy, where a certain value can belong to two or
more taxonomies.5

Let T be a taxonomy for an attribute in QID. We call the leaf nodes of the
taxonomy T the ground values.

In Figure 1, values “1st–4th”, “undergrad”, and “vocational” are some ground
values in T . As “university” is an ancestor of “undergrad”, we obtain “under-
grad” ≺ “university”.

When a record contains the sensitive value of “lung cancer”, it can be gen-
eralized to either “respiratory disease” or “cancer”. While “cancer” and “lung
cancer” are sensitive, “respiratory disease” as a category in general may not be.
Therefore, we can assume the following property.

Assumption 2 (Taxonomy Property). In a taxonomy for a sensitive at-
tribute, the ancestor nodes of a nonsensitive node are also nonsensitive. The
ancestor of a sensitive node may be either sensitive or nonsensitive.

In a faithful anonymization, a value can be generalized to any ancestor. For
example, “lung cancer” may be generalized to “cancer” or “respiratory disease”.
With the preceding assumption, if a node is sensitive, all ground values in its
descendants are sensitive.

With a taxonomy for the sensitive attribute, such as the one in Figure 1, in
general, the protection is not targeting on a single ground value. In Figure 1, all
the values under “elementary” may be sensitive in the sense that there should
not be linkage between an individual and the set of values {1st–4th, 5th–6th,
7th–8th}; that is, the adversary must not be able to deduce with confidence that
an individual has education between 1st to 8th grade. In general, a group of
sensitive values may not be under one subtree. For example, for diseases, it is
possible that cancer and HIV are both considered sensitive. So, a user should
not be linked to the set {HIV, cancer} with a high probability. However, HIV and
Cancer are not under the same category in the taxonomy. For this more general
case, we introduce the sensitive value set, which is a set of ground values in the
taxonomy for the sensitive attribute. In such a taxonomy, there can be multiple
sensitive value sets.

A major technique used in the previous studies is to recode the QID values
in such a way that a set of individuals will be matched to the same generalized
QID value and, in the set, the occurrence of values in any sensitive value set
is not frequent. Hence, the records with the same QID value (which could be a
generalized value) is of interest. In a table T , the equality of the QID values
determines an equivalence relation on the set of tuples in T . A QID equivalence
class, or simply QID-EC, is a set of tuples in T with identical QID value. For
simplicity, we also refer to a QID-EC by the identical QID value.

5Note that a taxonomy may not be a lattice. For example, consider attribute disease. “Nasal cancer”
and “lung cancer” may both be under two parents of “cancer” and “respiratory disease”.
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Definition 1 (Anonymization). Anonymization is a one-to-one mapping
function f from a table T to an anonymized table T ∗, such that f maps each
tuple t in T to a tuple f (t) = t∗ in T ∗. Let t∗. A (or f (t).A) be the value of
attribute A of tuple t∗ (or f (t)). Given a set of taxonomies τ = {T1, . . . , Tu}, an
anonymization defined by f conforms to τ iff t.A � f (t).A holds for any t and A.

For instance, Table I(b) is anonymized to Table I(c). The mapping function f
maps the tuples with q1 and q2 to Q .

Let Kad be the knowledge of the adversary. In most previous works [Sweeney
2002b; LeFevre et al. 2006, 2005; Xiao and Tao 2006b], in addition to the pub-
lished dataset T ∗, Kad involves an external table T e such as a voter registration
list that maps QIDs to individuals. In the literature, two possible cases of T e

have been considered: (1) worst case: The set of individuals in the external ta-
ble T e is equal to the set of individuals in the original table T ; (2) ssuperset
case: The set of individuals in the external table T e is a proper superset of the
set of individuals in the original table T . Assuming the worst-case scenario is
the safest stance and it has been the assumption in most previous studies. We
have shown in our first two examples that, in either of the aforesaid two cases,
minimality attacks are possible.

The objective of privacy preservation is to limit the probability of the linkage
from any individual to any sensitive value set s in the sensitive attribute. We
define this probability or credibility as follows [Wong et al. 2007].

Definition 2 (Credibility). Let T ∗ be a published table which is generated
from T . Consider an individual o ∈ O and a sensitive value set s in the sensitive
attribute. Credibility(o, s, Kad ) is the probability that an adversary can infer
from T ∗ and background knowledge Kad that o is associated with s.

The background knowledge particularly addressed here is about the mini-
mality principle as formulated next [Wong et al. 2007].

Definition 3 (Minimality Principle). Suppose A is an anonymization algo-
rithm for a privacy requirement R. Let table T ∗ be a table generated by A and
T ∗ satisfies R. A is said to satisfy the minimality principle if, for any QID-EC
X in T ∗, there is no specialization (reverse of generalization) of the QID’s in X
which results in another table T ′ which also satisfies R.

Note that this minimality principle holds for both global recoding and lo-
cal recoding. If A is for global recoding (local recoding), both T ∗ and T ′ are
global recoding (local recoding). So far we focus on the privacy requirement
of l -diversity. However, in Section 5, we shall consider cases where R can be
another requirement.

It is also noted that the minimality principle applies to not only the tradi-
tional taxonomies but also any arbitrary acyclic graphs because the principle
only requires specialization steps which both traditional taxonomies and arbi-
trary acyclic graphs can uniquely provide.

The minimality principle can be extended to the near-to-minimality principle
as described in Section 1. The near-to-minimality principle is formally defined
as follows.
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Definition 4 (Near-to-Minimality Principle). Suppose A is an anonymiza-
tion algorithm for a privacy requirement R. Let the intended privacy require-
ment be R. Let table T ∗ be a table generated by A and T ∗ satisfies a stronger
privacy requirement R′. A is said to satisfy the near-to-minimality principle if,
for any QID-EC X in T ∗, there is no specialization (reverse of generalization)
of the QID’s in X which results in another table T ′ which also satisfies R′.

For example, if the intended privacy requirement R considered is 2-diversity,
algorithm A may generate a table T ∗ which satisfies 3-diversity. This is an
example of near-to-minimality principle. The attack based on this principle is
called near-to-minimality attack.

For the sake of illustration, we focus on the minimality attack only. However,
it should be noted that the proposed algorithm in Section 6 can handle both the
minimality attack and the near-to-minimality attack.

Assumption 3 (Adversary Knowledge K min
ad ). For Credibility(o, s, Kad ), we

consider the cases where Kad includes T ∗, the multiset T q containing all QID
occurrences in the table T , the QID values of a target individual in T , a set of
taxonomies τ and whether the anonymization A conforms to the taxonomies
τ , the target privacy requirement R, and whether A follows the minimality
principle. We refer to this knowledge as K min

ad .

If Table I(a) is the result generated from an anonymization mechanism
(e.g., the adapted Incognito algorithm in Machanavajjhala et al. [2006]) for
l -diversity that follows the minimality principle, suppose the multiset in
Table II(b) is known and the QID value of individual o is known to be q1,
then Credibility(o, {H IV }, K min

ad ) = 1/2. For Table I(c), Credibility(o, {H IV },
K min

ad ) = 1.
Section 4 will describe how to compute Credibility(o, s, K min

ad ) when A, the
anonymization algorithm, adopts the minimality principle.

The aforesaid minimality principle is very general and does not demand
that A achieves a global minima in terms of the information loss, nor does it
depend on how the information loss is defined. Almost all known anonymiza-
tion algorithms (including Incognito-based methods [LeFevre et al. 2005;
Machanavajjhala et al. 2006; Martin et al. 2007; Li and Li 2007] and top-down
approaches [Fung et al. 2005; Xiao and Tao 2006b; Wong et al. 2006; Wang
and Fung 2006]) try to reduce information loss of one form (like Definition 7 to
be described later) or another, and they all follow the previous principle. It is
important to define the problem based on local minima rather than global min-
ima since most problems of optimal anonymization are shown to be NP-hard
and many heuristical methods are therefore proposed which may not jump out
of a local minima. For example, algorithms such as Fung et al. [2005], Xiao
and Tao [2006b], and Wang and Fung [2006] may not minimize the informa-
tion loss globally. Instead, such an algorithm may return a locally-optimized
table.

One key observation is that as long as the data anonymization algorithm is
deterministic, an adversary can perform minimality attacks. This is because
from the output, s/he can exclude certain output possibilities since different
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inputs give different outputs. However, probabilistic algorithms like Anatomy
[Xiao and Tao 2006a] do not suffer from the minimality attack.

In the examples in Section 1, the value of l (for l -diversity) is used by the
adversary. However, l is not included in K min

ad . This is because, in many cases, it
can be deduced from the published table T ∗. For example, for the anonymization
in Table I(d), the adversary can deduce that l must be 2.

Definition 5 (m-Confidentiality). A table T is said to satisfy m-
confidentiality (or T is m-confidential) if, for any individual o and any
sensitive value set s, Credibility(o, s, Kad ) does not exceed 1/m.

For example, Table I(a) satisfies 2-confidentiality. This is because since there
is no need to generalize Table I(a), we know that every QID-EC in Table I(a)
must satisfy 2-diversity. As we mentioned before, an exclusion of some pos-
sibilities occurs when there are some QID-EC which satisfy 2-diversity but
some which do not satisfy 2-diversity. In this table, since all QID-EC’s satisfy
2-diversity, there is no exclusion of any certain output possibilities. Thus, we
deduce that Credibility(o, s, Kad ) is at most 1/2.

When a table T is anonymized to a more generalized table T ∗, it is of interest
to measure the information loss that is incurred. There are different ways to
define information loss. Since we shall measure the effectiveness of our method
based on the method in Xiao and Tao [2006b], we also adopt a similar measure
of information loss. The idea is similar to the normalized certainty penalty [Xu
et al. 2006].

Definition 6 (Coverage and Base). Let T be the taxonomy for an attribute
in QID. The coverage of a generalized QID value v∗, denoted by coverage[v∗],
is given by the number of ground values v′ in T such that v′ ≺ v∗. The base
of the taxonomy T , denoted by base(T ), is the number of ground values in the
taxonomy.

For example, in Figure 1, coverage[“university”] = 2 since “undergrad” and
“postgrad” can be generalized to “university”, base(T ) = 9.

A weighting can be assigned for each attribute A, denoted by weight(A), to
reflect the users’ opinion on the significance of information loss in different
attributes. Let t.A denote the value of A in tuple t.

Definition 7 (Information Loss). Let table T ∗ be an anonymization of table
T by means of a mapping function f . Let TA be the taxonomy for attribute A
which is used in the mapping and v∗

A be the nearest common ancestor of t.A
and f (t).A in TA. The information loss of a tuple t∗ in T ∗ introduced by f is
given by,

IL(t∗) =
∑

A∈Q I D

{IL(t∗, A) × weight(A)}

where

IL(t∗, A) =
⎧⎨
⎩

coverage[v∗
A] − 1

base(TA) − 1
if base(TA) > 1

0 if base(TA) = 1

The information loss is given by Dist(T, T ∗) =
∑

t∗∈T∗ IL(t∗)
|T ∗| .
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If f (t).A = t.A, then f (t).A is a ground value, the nearest common ancestor
v∗

A = t.A, and coverage[v∗
A] = 1. If this is true for all A’s in QID, then IL(t∗)

is equal to 0, which means there is no information loss. If t.A is generalized to
the root of taxonomy TA, then the nearest common ancestor v∗

A = the root of TA.
Thus, coverage[v∗

A] = base(TA) and, if this is the case for all A’s in QID, then
IL(t∗) = 1. Note that we have modified the definition in Xiao and Tao [2006b]
in order to achieve the range of [0,1] for IL(t∗) = 1 and also for Dist(T, T ∗).

Although minimizing information loss poses a loophole for attack by min-
imality, it is not possible to completely ignore information loss since, without
such a notion, we allow for complete distortion of the data which will also render
the published data useless.

Definition 8 (Problem). Optimal m-Confidentiality. Given a table T , gen-
erate an anonymized table T ∗ from T which satisfies m-confidentiality where
the information loss Dist(T, T ∗) is minimized.

4. CREDIBILITY: SOURCE OF ATTACK

In this section, we characterize the nature of minimality attack. Minimality
attack is successful if the adversary can compute the credibility values and
find a violation of m-confidentiality when the privacy requirement is l -diversity.
This computation depends on a combinatorial analysis on the possibilities given
the knowledge of K min

ad . In particular, the adversary attacks by excluding some
possible scenarios, tilting the probabilistic balance towards privacy disclosure.
We first describe the derivation of the formula of credibility for global recoding
in Section 4.1. Then, we describe the derivation for local recoding, which is more
complicated, in Section 4.2.

4.1 Global Recoding

In this section, we consider the evaluation of the credibility for global recoding.
First we give an example to illustrate the main intuitive ideas in Section 4.1.1.
Next we shall describe the general formulation in Section 4.1.2.

4.1.1 An Example. The derivation of credibility for global recoding is better
illustrated with the example as shown in Table VI which is a global recoding of
Table V to achieve 2-diversity. In Table VI containing 14 tuples with QID = Q ,
{HIV} is the only sensitive value set and the goal is 2-diversity. Assume that
T ∗ and T e have matching cardinality on Q .

Definition 9. Let Q be a QID-EC in T ∗. Tables T ∗ and T e have matching
cardinality on Q if the number of tuples in T e with QID that can be generalized
to Q is the same as that in T ∗.

From T e, the adversary can determine that there are two tuples in q1, two
tuples in q2, and 10 tuples in q3. Suppose q1, q2, and q3 can be generalized to
Q . The total number of tuples in T e with QID that can be generalized to Q is
equal to 14 (which is the total number of tuples with QID = Q in T ∗). Thus, T ∗

and T e have matching cardinality on Q .
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Table V. A Table which Violates
2-Diversity

QID Disease
q1 HIV
q1 HIV
q2 HIV
q2 non-sensitive
q3 HIV
q3 HIV
q3 non-sensitive
q3 non-sensitive
q3 non-sensitive
. . . . . .

q3 non-sensitive

Table VI. A 2-Diverse Table by
Global Recoding of Table V

QID Disease
Q HIV
Q HIV
Q HIV
Q non-sensitive
Q HIV
Q HIV
Q non-sensitive
Q non-sensitive
Q non-sensitive
. . . . . .

Q non-sensitive

Since there are 10 tuples with a QID value of q3, and there are in total 5
sensitive tuples, q3 trivially satisfies 2-diversity. As T ∗ (Table VI) is generalized,
the adversary decides that at least one of the QID-EC’s q1 and q2 contains
two sensitive tuples. With this in mind, the adversary lists all the possible
combinations of the number of sensitive tuples among the three classes q1, q2,
and q3 in which either q1 or q2 or both contain 2 sensitive tuples as shown
in Table VII. There are only five possible combinations as shown. We call this
table the sensitive tuple distribution table for Q .

Definition 10 (Sensitive Tuple Distribution Table). Let Q be a QID value
in T ∗ and C be a set of classes in T e which can be generalized to Q . Suppose
C is equal to {C1, C2, . . . , Cu}. Let ni be the total number of tuples in Ci for
i = 1, 2, . . . , u and ns be the total number of tuples with values in sensitive
value set s in the data set T ∗.

A possible combination of the number of sensitive tuples among all classes
in C is defined to be represented by u-tuple (m1, m2, . . . , mu) where mi ∈ [1, ns]
for i = 1, 2, . . . , u such that:

(1)
∑u

i=1 mi = ns,
(2) mi ≤ ni for i = 1, 2, . . . , u, and
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Table VII. Possible Combinations of Number of Sensitive Tuples

Number of sensitive tuples
q1 q2 q3

Total number of cases

(a) 2 0 3 120
(b) 2 1 2 90
(c) 2 2 1 10
(d) 1 2 2 90
(e) 0 2 3 120

(3) there exists one Ci ∈ C such that mi/ni > 1/l (i.e., Ci violates l -diversity in
this combination).

A sensitive tuple distribution table for Q contains a number of rows, each of
which corresponds to a possible combination of the number of sensitive tuples
among all classes in C associated with a constant which is the total number of
cases (or assignments) to denote the total number of possible assignments for
this corresponding possible combination (which will be defined next).

Consider a possible combination (m1, m2, . . . , mu). Intuitively, given the total
number of tuples with values in sensitive value set s in the dataset T ∗ denoted
by ns, we distribute these ns sensitive values into u different classes in C where
mi corresponds to the total number of sensitive values distributed to Ci. A
possible combination can be regarded as one of the possible ways of the distri-
bution. The first condition corresponds to that the sum of all sensitive values
distributed to all classes in C is equal to the total number of sensitive tuples
for Q in T ∗. The second condition means that, for each class Ci in C, the total
number of sensitive values in Ci is at most the size of the class Ci. The third
condition means that some of the classes in C must violate l -diversity.

For example, the first row in Table VII corresponds to the fact that there are
two sensitive tuples in q1, no sensitive tuple in q2, and three sensitive tuples
in q3 (which is denoted by 3-tuple (2, 0, 3)) where q1 violates 2-diversity.

In scenario (a), there are C2
2 ×C2

0 ×C10
3 = 120 different possible ways to assign

the sensitive values to the tuples. In scenario (b), there are C2
2 × C2

1 × C10
2 = 90

different assignments or cases.6 Similarly, there are 10 cases, 90 cases, and 120
cases in scenarios (c), (d), and (e), respectively. The total number of cases is
equal to 120 + 90 + 10 + 90 + 120 = 430. Without any additional knowledge
about the assignments, we must assume that each of these cases occurs with
the same probability 1/430. Consider the credibility that an individual o with
value q1 is linked to HIV given K min

ad . There are two possible cases.

—Case 1. There are two sensitive tuples in q1. The total number of cases where
there are two sensitive tuples in q1 is equal to 120 + 90 + 10 = 220. The
probability that Case 1 occurs given K min

ad is equal to 220/430 = 0.5116.
—Case 2. There is one sensitive tuple in q1. The total number of cases where

there is one sensitive tuple in q1 is equal to 90. The probability that Case 2
occurs given K min

ad is equal to 90/430 = 0.2093.

6In the following, we refer assignments as cases.
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In the following, we use Prob(E) to stand for the probability that event E
occurs.

Thus, the credibility that an individual o with QID value q1 is linked to HIV
given K min

ad is equal to

Prob(Case 1)×Prob( q1 is linked to HIV in Case 1)
+ Prob(Case 2) ×Prob( q1 is linked to HIV in Case 2)

Prob( q1 is linked to HIV in Case 1) is equal to 2/2 = 1.

Prob( q1 is linked to HIV in Case 2) is equal to 1/2 = 0.5. we have

Credibility
(
o, {HIV}, K min

ad

) = 0.5116 × 1 + 0.2093 × 0.5 = 0.616,

which is greater than 0.5. This result shows that the published table violates
2-confidentiality.

4.1.2 General Formula. The general formula of the computation of the
credibility is based on the idea illustrated before. We have a probability space
(�, F , P ), where � is the set of all possible assignments of the sensitive values
to the tuples. F is the power set of �, and P is a probability mass function from
F to the real numbers in [0,1] which gives the probability for each element in
F . Given K min

ad , there will be a set of assignments G in � which are impossible or
P (G) = 0 and if x ∈ G then P ({x}) = 0. Without any other additional knowledge,
we assume that the probability of the remaining assignments are equal; that
is, G ′ = � − G, P (G ′) = 1 and for x ∈ G ′, P ({x}) = 1/|G ′|.

Let X be a maximal set of QID-EC’s in T which are generalized to the same
QID-EC Q in the published table T ∗. Suppose T ∗ and T e have matching cardi-
nality on Q . Let C1, C2, . . . Cu be the QID-EC’s in X sorted in ascending order
of the size of the QID-EC’s. Let ni be the number of tuples in class Ci. Hence
n1 ≤ n2 ≤ · · · ≤ nu. Let ns be the total number of tuples with values in sensitive
value set s in the dataset.

In Table V, there are three classes, namely q1, q2, and q3. Thus u = 3.
C1 corresponds to q1, C2 corresponds to q2, and C3 corresponds to q3. Also,
n1 = 2, n2 = 2, and n3 = 10.

Suppose the published table is generalized in order to satisfy the l -diversity
requirement.

If ns ≤ 	ni
l 
, then Ci in the original dataset must satisfy the l -diversity

requirement without any generalization. Class Ci may violate the l -diversity
requirement only if ns > 	ni

l 
. Let C be the set of all classes Ci where ns > 	ni
l 
.

Let C ′ be the set of the remaining classes. Let p be the total number of classes
in C. Since the classes are sorted, C = {C1, C2, . . . , Cp} and C ′ = {Cp+1, Cp+1,
. . . , Cu}.

LEMMA 1. If the classesX = {C1, . . . Cu} have been generalized to their parent
class in T , the adversary can deduce that at least one class (in the original table)
violates l -diversity among C and all classes in C ′ (in the original table) do not
violate l -diversity.
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Obviously, the credibility of individuals in a class in C ′ is smaller than or equal
to 1

l . However, the credibility of individuals in a class in C may be greater than
1
l . Thus, the adversary tries to compute Credibility(o, s, K min

ad ), where o ∈ Ci,
for i = 1, 2, . . . , p. Suppose there are j tuples with the sensitive value set s in
Ci. Let |Ci(s)| denote the number of occurrences of the tuples with s in Ci. The
probability that o is linked to a sensitive value set is j

ni
, where ni is the class

size of Ci. Let Prob(|Ci(s)| = j |K min
ad ) be the probability that there are exactly

j occurrences of tuples with s in Ci given K min
ad . By considering all possible

number j of occurrences of tuples with s from 1 to ni in Ci, the general formula
for credibility is given by

Credibility(o, s, K min
ad ), where o ∈ Ci, 1 ≤ i ≤ p

= Prob(o is linked to s in Ci | K min
ad )

=
ni∑

j=1

Prob(|Ci(s)| = j | K min
ad ) × j

ni
.

In the preceding formula, Prob(|Ci(s)| = j |K min
ad ) can be calculated by con-

sidering all possible cases. Conceptually, a table such as Table VII will be
constructed, in which some possible combinations will be excluded due to the
minimality notion in K min

ad .
However, constructing the table like Table VII directly is inefficient. Sup-

pose the size of each QID-EC in T is known. It is easy to verify that the maxi-
mum number of rows (or scenarios) in such a table is O((np)p) where np is the
number of tuples in class Cp (which has the greatest size in C). Besides, com-
puting the credibility by using the techniques discussed in Section 4.1.1 takes
O((np)p) time. In Appendix A, we propose a dynamic programming method
which is much more efficient and takes only O(p2ns + pn3

s l ) time. The gen-
eral principle used in Section 4.1.1 is still kept in the dynamic programming
approach. However, since the dynamic programming approach reuses the re-
sults of many subproblems during the computation of larger problems, a lot
of redundant computations can be saved. For example, imagine that Table VII
(currently representing three QID-EC’s, namely q1, q2, and q3) is extended
to the table representing four QID-EC’s, namely q0, q1, q2, and q3. Suppose
there are five tuples with values in sensitive value set s. The extended ta-
ble is shown in Table VIII. It is easy to see that the computation of the total
number of cases for each of the first three scenarios (or rows) involves the
same computation for the number of all possible combinations for q0 and q1
only. This is true also for the scenarios (d), (e), and (f). It is inefficient if these
redundant computations are computed from scratch each time. Thus, we pro-
pose a dynamic programming approach to keep track of the results of these
(redundant) computations so that these kinds of redundant computations can
be avoided. Details of the dynamic programming approach can be found in
Appendix A in the ACM Digital Library.

Summary. Let us summarize the derivation of the general formula as follows.
In the published table T ∗, consider a QID-EC P . Suppose we have u classes in
the original dataset T , namely C1, C2, . . . , Cu, which can be generalized to P .
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Table VIII. Possible Combinations of Number of Sensitive Tuples

Number of sensitive tuples
q0 q1 q2 q3

Total number of cases

(a) 0 2 0 3 . . .

(b) 0 2 1 2 . . .

(c) 0 2 2 1 . . .

(d) 1 1 0 3 . . .

(e) 1 1 1 2 . . .

(f) 1 1 2 1 . . .

. . . . . . . . . . . . . . . . . .

Fig. 2. Generalization taxonomy of classes C1, C2, . . . , Cu.

Fig. 3. Function V .

The number of tuples in QID-EC Ci is equal to ni (see Figure 2). The adversary
possesses the following information.

nP the number of tuples in P
ns the number of sensitive tuples in P
ni the number of tuples in class Ci (which is a child of P )

The credibility for each class Ci, denoted by pi, can be computed according
to the formula we derived in the last section. We call the computation of the
credibility in this simple scenario function V (see Figure 3). Note that, with a
dynamic programming approach described in Appendix A, function V also runs
in polynomial time in p, ns, and l .

4.2 Local Recoding

In this section, we will describe the formula for local recoding. The major idea is
also similar to the case for global recoding described in Section 4.1. Specifically,
given a QID-EC Q in T ∗, we find all QID-EC’s in T e which can be generalized to
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Table IX. Another Table which
Violates 2-Diversity

QID Disease
q1 HIV
q1 HIV
q1 non-sensitive
q1 non-sensitive
q1 HIV
q2 non-sensitive
q2 non-sensitive
. . . . . .

q2 non-sensitive
q2 HIV

Q . Then, we generate the sensitive tuple distribution table, among these QID-
EC’s, which involves all possible combinations of the number of sensitive tuples.
It is noted that some combinations are excluded because they cannot occur
according to the minimality principle. According to this table, we calculate the
total number of cases or assignments for each combination. Finally, according
to these calculated values, we compute the probability that an individual is
linked to a sensitive value.

However, due to the different natures between local recoding and global re-
coding, there are some differences in the derivation of the formula. Specifically,
since occurrences of the same value such as q1 of an attribute may be recoded
to different values such as the original value q1 and a generalized value Q in
local recoding, we have to consider two cases. Case 1: The tuples for q1 do not
undergo any generalization. Case 2: The tuples for q1 are generalized to Q . By
considering these two different cases, we compute the credibility accordingly.
In the following, we illustrate this idea with a simple example first to give an
intuition of the derivation of the formula in Section 4.2.1. Next, we describe
how we generalize the formula in Section 4.2.2.

4.2.1 An Example. An example is shown in Table IX to illustrate the
derivation of the credibility with local recoding for l -diversity. For the QID,
assume that only q1 and q2 can be generalized to Q . Assume that Table IX and
the corresponding T e have matching cardinality on Q . The proportion of the
sensitive tuples in the set of tuples with q1 is equal to 3/5 > 1/2. Thus, the set
of tuples with q1 does not satisfy 2-diversity. Table IX is generalized to Table X,
which satisfies 2-diversity, while the distortion is minimized.

Assume the adversary has knowledge of K min
ad . From the external table T e,

there are 5 tuples with q1 and 8 tuples with q2. These are the only tuples with
QID that can be generalized to Q . The adversary reasons in this way. There are
four sensitive tuples in T ∗. Suppose they all appear in the tuples containing
q2, q2 still satisfies 2-diversity. The generalization in T ∗ must be caused by
the set of tuples in q1. In T ∗, the QID-EC for Q contains one sensitive tuple
and one nonsensitive tuple. The sensitive tuple should come from q1 because
if this sensitive tuple does not come from q1, there will have been no need for
the generalization.
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Table X. A 2-Diverse Table of
Table IX by Local Recoding

QID Disease
q1 HIV
q1 HIV
q1 non-sensitive
q1 non-sensitive
Q HIV
Q non-sensitive
q2 non-sensitive
. . . . . .

q2 non-sensitive
q2 HIV

Consider the credibility that an individual o with QID q1 is linked to HIV
given K min

ad . There are two cases.

—Case 1. The tuple of o appears in the QID-EC of q1 in T ∗. There are four tuples
with value q1 in T ∗. From T e, there are five tuples with q1. The probability
that Case 1 occurs is 4/5.

—Case 2. The tuple of o appears in the QID-EC of Q in T ∗. There are totally
five tuples with q1 and there are four tuples with value q1 in T ∗. Hence, one
such tuple must have been generalized and is now in the QID-EC of Q in T ∗.
The probability of Case 2 is 1/5.

Credibility(o, {HIV}, K min
ad ) is equal to

= Prob(Case 1)× Prob(o is linked to HIV in Case 1 |K min
ad )

+ Prob(Case 2)×Prob(o is linked to HIV in Case 2 |K min
ad ).

Since 2 out of 4 tuples in the QID-EC of q1 in T ∗ contain HIV, and the HIV
tuple in the QID-EC of Q in T ∗ must be from q1, Thus,

Prob(o is linked to HIV in Case 1 | K min
ad ) = 2

4 = 1
2 .

Prob(o is linked to HIV in Case 2 | K min
ad ) = 1.

Credibility(o, {HIV}, K min
ad ) = 4

5 × 1
2 + 1

5 × 1 = 3
5 ,

which is greater than 0.5. Thus, the anonymized table violates 2-confidentiality.

4.2.2 General Formula. The previous example shows the basic idea of the
derivation of the general formula.

Suppose there are u QID-EC’s in the original dataset, namely C1, C2, . . . , Cu,
which can be generalzied to the same value CG . After the generalization, some
tuples in some Ci are generalized to CG while some are not. We define the fol-
lowing symbols which will be used in the derivation of the credibility.

ni number of tuples with class Ci in T e

ni, g number of generalized tuples in T ∗ whose original QID is Ci

ni,u number of ungeneralized tuples in T ∗ with QID = Ci

ni,u(s) number of sensitive ungeneralized tuples in T ∗ with QID = Ci
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The value of ni,u can be easily obtained by scanning the tuples in T ∗. ni, g
can be obtained by subtracting ni,u from ni. Similarly, it is easy to find ni,u(s).
For example, in Table X, Ci corresponds to q1 and CG corresponds to Q . Thus,
ni,u = 4, ni = 5, ni, g = 1 and ni,u(s) = 2.

In order to calculate Credibility(o, s, K min
ad ), where o has QID of Ci, the ad-

versary needs to consider two cases. The first case is that the tuple of o is
generalized to CG . The second case is that the tuple of o is not generalized in
T ∗. Let t∗(o) be the tuple of individual o in T ∗. By considering these two cases,
we have the following.

Credibility(o, s, K min
ad ), where o ∈ Ci

= Prob(o is linked to s in T ∗|K min
ad )

= Prob(t∗(o) ∈ CG in T ∗)× Prob(o is linked to s in CG in T ∗|K min
ad )

+ Prob(t∗(o) ∈ Ci in T ∗)× Prob(o is linked to s in Ci in T ∗|K min
ad )

= ni, g

ni
× Prob(o is linked to s in CG in T ∗|K min

ad ) + ni,u

ni
× ni,u(s)

ni,u

The term Prob(o is linked to s in CG in T ∗|K min
ad ) can be computed by using

the formula in global recoding, which takes into account of the minimality of
the anonymization.

For the case when a set of QID-EC’s are generalized to more than one value,
the preceding analysis is extended to include more possible combinations of
outcomes. However, the basic ideas remain similar.

More specifically, the question is how to compute Prob(o is linked to s in CG in
T ∗|Kad ). We can also make use of function V . We can regard this generalized
dataset as follows. We just consider CG but do not consider Ci in T ∗.

As CG has the same generalized value in the published dataset for different
values of i, P (in V ) is mapped to CG , and nP (in V ) is mapped to the total
number of generalized tuples in T ∗ (i.e.,

∑u
i=1 ni, g ). ns is mapped to the total

number of sensitive tuples in P in T ∗. Then, n1 in V is mapped to n1, g , n2 in V
is mapped to n2, g and so on. Thus, we have the following mapping.

Parameter Mapping Value
nP

∑u
i=1 ni, g

ns total number of sensitive tuples in P in T ∗

n1, n2, . . . , nu n1, g , n2, g , . . . , nu, g

Then, we can use function V to obtain the credibility.
Similarly, the computation of credibility for local recoding also runs in poly-

nomial time in |T |, p, ns, and l . This is because the computation of the term
Prob(o is linked to s in CG in T ∗|Kad ) runs in polynomial time in |T |, p, ns, and
l (by Theorem 6) and evaluating ni, g , ni,u, ni,u(s), and ni only requires one scan
of database.

4.3 Attack Conditions

We have seen previously that a minimality attack is always accompanied by
some exclusion of some possibilities by the adversary because of the minimality
notion. We can characterize this attack criterion in the following.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 8, Publication date: June 2009.



8:24 • R. C.-W. Wong et al.

Table XI. Anonymization for (3,3)-Diversity

QID Disease
q1 Diabetics
q1 HIV
q1 Lung Cancer
q2 HIV
q2 Ulcer
q2 Alzhema
q2 Gallstones

QID Disease
q1 Diabetics
q1 HIV
q1 HIV
q2 Lung Cancer
q2 Ulcer
q2 Alzhema
q2 Gallstones

QID Disease
Q Diabetics
Q HIV
Q HIV
Q Lung Cancer
Q Ulcer
Q Alzhema
Q Gallstones

QID Disease
Q Diabetics
Q HIV
Q HIV
Q Lung Cancer
q2 Ulcer
q2 Alzhema
q2 Gallstones

(a) good table (b) bad table (c) global (d) local

THEOREM 1. If there is no exclusion of any scenario from the table, then the
credibility as computed by the formulae for credibility is exactly the ratio of the
sensitive tuples to the total number of tuples in the generalized QID-EC; that is,
an attack by minimality is not possible.

From the preceding theorem, it is interesting to know whether it is a must
that the a minimality attack occurs when there are some excluded combina-
tions(s) in the sensitive tuple distribution table. The answer is an interesting
“no.”

LEMMA 2. An attack by minimality is not always successful even when there
are some excluded combination(s) in the sensitive tuple distribution table based
on K min

ad .

5. GENERAL MODEL

In Section 5.1, we show that the minimality attack is possible in a variety of
privacy models. We will describe an attack which is based on the process of
anonymization in Section 5.2.

5.1 Minimality Attack

In this subsection, we show that the minimality attack can be successful on a
variety of anonymization models. In Tables XI to XV, we show good tables that
satisfy the corresponding privacy requirements in different models, bad tables
that do not, and global and local recodings of the bad tables which follow the
minimality principle and unfortunately suffer from minimality attacks.

The major idea of minimality attacks is similar to the case for l -diversity dis-
cussed previously. Given a published table T ∗ satisfying a privacy requirement
R, the adversary tries to “guess” the original table. Without having any knowl-
edge of the minimality principle, s/he generates all possible tables by enumerat-
ing all possible combinations of sensitive tuples among the QID-EC’s. However,
in fact, with the knowledge the minimality principle used in the anonymiza-
tion algorithm, by excluding some possibilities, s/he lists all possible original
tables which only violate R and can be generalized to T ∗ by the anonymization
algorithm. From the remaining possible tables, it is possible for the adversary
to breach individual privacy. In the following, we describe how the attacks are
possible in a variety of models.
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Table XII. 0.5-Closeness Anonymization

QID Disease
q1 HIV
q1 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 HIV
q2 HIV

QID Disease
q1 HIV
q1 HIV
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 HIV

QID Disease
Q HIV
Q HIV
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q HIV

QID Disease
Q HIV
Q HIV
Q non-sensitive
Q non-sensitive
Q non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 HIV

(a) good table (b) bad table (c) global (d) local

Table XIII. (k, e)-Anonymity for k = 2 and e = 5k

QID Income
q1 30k
q1 20k
q2 30k
q2 20k
q2 40k

QID Income
q1 30k
q1 30k
q2 20k
q2 10k
q2 40k

QID Income
Q 30k
Q 30k
Q 20k
Q 10k
Q 40k

QID Income
Q 30k
Q 30k
Q 20k
q2 10k
q2 40k

(a) good table (b) bad table (c) global (d) local

Table XIV. Anonymization for (0.6, 2)-Safety

QID Disease
q1 HIV
q1 non-sensitive
q1 non-sensitive
q2 HIV
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive

QID Disease
q1 HIV
q1 HIV
q1 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive

QID Disease
Q HIV
Q HIV
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive

QID Disease
Q HIV
Q HIV
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive

(a) good table (b) bad table (c) global (d) local

Table XV. Anonymization for Personalized Anonymity

QID Education Guarding
Node

q1 1st-4th elementary
q2 undergrad none
q2 undergrad none

QID Education
Q 1st-4th
Q undergrad
Q undergrad

QID Education
Q 1st-4th
Q undergrad
q2 undergrad

(a) bad table (b) global (c) local
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In general, similar to l -diversity, the minimality attack in each of the fol-
lowing models can also be achieved in polynomial time in terms of |T |, p, ns,
and θ where p is the total number of QID-EC’s which may violate the privacy
requirement R, ns is the total number of tuples with sensitive value set s and θ

is a parameter of some privacy requirements R. Thus, it is not difficult for the
adversary to breach individual privacy in the following models.

5.1.1 Recursive (c, l )-Diversity. With recursive (c, l )-diversity [Machana-
vajjhala et al. 2006], in each QID-EC, let v be the most frequent sensitive
value, and if we remove the next l − 2 most frequent sensitive values, the fre-
quency of v must be less than c times the total count of the remaining values.
Table XI(c) is a global recoding for Table XI(b). With the knowledge of minimal-
ity in the anonymization, the adversary deduces that the QID-EC for q2 must
satisfy (3,3)-diversity and that the QID-EC for q1 must contain two HIV values.
Thus, the intended obligation that an individual should be linked to at least
3 different sensitive values is breached. Similar arguments can be applied to
Table XI(d).

5.1.2 t-Closeness. Recently, t-closeness [Li and Li 2007] was proposed. If
table T satisfies t-closeness, the distribution P of each equivalence class in T
is roughly equal to the distribution Q of the whole table T with respect to the
sensitive attribute. More specifically, the difference between the distribution of
each equivalence class in T and the distribution of the whole table T , denoted
by D[P, Q], is at most t. Let us use the definition in Li and Li [2007].

D[P, Q] = 1/2
m∑

i=1

|pi − qi|

Consider Table XII(c). For each possible sensitive value distribution P for
QID-EC q2, the adversary computes D[P, Q]. S/he finds that D[P, Q] is always
smaller than 0.5. Hence the anonymization is due to q1. S/he concludes that
both tuples with QID = q1 are sensitive. Similar arguments can also be made
to Table XII(d).

5.1.3 (k, e)-Anonymity. The model of (k, e)-anonymity [Zhang et al. 2007]
considers the anonymization of tables with numeric sensitive attributes. It gen-
erates a table where each equivalence class is of size at least k and has a range
of the sensitive values at least e. Consider the tables in Table XIII (where
Income is a sensitive numeric attribute). From Table XIII(c), the adversary de-
duces that the tuples with QID = q1 must violate (k, e)-anonymity and must be
linked with two 30k incomes. We obtain a similar conclusion from Table XIII(d)
for local recoding.

5.1.4 (c, k)-Safety. (c, k)-safety [Martin et al. 2007] considers the worst-
case background knowledge. The background knowledge defined in Martin et al.
[2007] is a set of k implications whose simplest form is: If individual p1 is linked
to sensitive value v1, then individual p2 is linked to sensitive value v2, where
v1 may equal v2. This model requires that the probability that any individual is
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linked to a sensitive value given a background knowledge containing any k im-
plications is at most c. Consider the tables in Table XIV. Table XIV(c) is a global
recoding of Table XIV(b). From Table (c), the adversary can eliminiate the cases
where there is 0 or 1 HIV value in the bucket q1, since in such cases Table XIV(b)
would have been (0.6,2)-safe. Since Table XIV(b) is anonymized to Table XIV(c),
there must be 2 HIV occurrences in the bucket for q1 in Table XIV(b). Hence
an individual with q1 is linked to HIV with a probability of 2/3, higher than
the intended threshold of 0.6. Similar attacks can be launched against the local
recoding in Table XIV(d).

5.1.5 Personalized Privacy. Xiao and Tao [2006b] proposed a personalized
privacy model where each individual can provide his/her preference on the pro-
tection of his/her sensitive value, denoted by a guarding node. For example, an
individual o with a value “1st–4th” may specify “elementary” as a guarding node
in order that any QID-EC that may contain o should contain at most 1/l tuples
with “elementary” values. For l = 2, in the tables in Table XV, Tables XV(b) and
XV(c) are global and local recodings for Table XV(a), respectively. Suppose the
adversary knows that everyone with an undergraduate degree does not mind to
disclose his/her education. Based on the minimality principle, if the “1st–4th”
belongs to a q2 tuple, then Table XV(a) will not be anonymized, so the tuple
with QID = q1 must be linked to “1st–4th”. Similar attack will be successful
on Table XV(c).

5.1.6 Sequential Release. Wang and Fung [2006], Xiao and Tao [2007],
and Bu et al. [2008] proposed sequential releases of the table. Since the models
of sequential releases also require a privacy requirement R and the released
tables are anonymized based on the principle of minimality, the minimality
attack is still possible. For the interest of space, we skip the details here.

5.1.7 General Attack by Minimality. In the proposed anonymization mech-
anism for each of the aforesaid cases in the respective references, the minimal-
ity principle in Definition 3 holds if we set R to the objective at hand, such
as recursive (c, l )-diversity, t-closeness, and (k, e)-anonymity. By including the
knowledge related to minimality attack to the background knowledge, the ad-
versary can derive the probabilistic formulae for computing the corresponding
credibility in each case, where the idea of eliminating impossible cases as shown
in Section 4 is a key to the attack.

5.2 Attack by Mechanism

In this section, we consider that the adversary knows the process of anonymiza-
tion. We shall see that with this additional knowledge, s/he can breach privacy
of individuals. We call this kind of attack an attack by mechanism. In the fol-
lowing, we study three well-known frameworks, namely the Incognito-like al-
gorithm [LeFevre et al. 2005; Samarati 2001; Machanavajjhala et al. 2006; Li
and Li 2007; Wong et al. 2006], Mondrian-like algorithm [LeFevre et al. 2006],
and Zhang’s algorithm [Zhang et al. 2007].
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Table XVI. A Dataset Illustrating the Attack
by Mechanism

Gender Education Disease
Male postgraduate HIV

Female undergraduate HIV
Female postgraduate non-sensitive
Female undergraduate non-sensitive
Female undergraduate non-sensitive

The common major idea of the attacks for these kinds of algorithms is based
on the following. Suppose the adversary is given a published table T ∗. S/he
tries to enumerate all possible tables generalized from the correspondence ex-
ternal table T e and sort them in a certain ordering which is dependent on
the anonymization algorithm. One of the ordering criteria is the information
loss of the generalized table, which is used in the Incognito-like algorithm and
Zhang’s algorithm. Another ordering criterion is the heuristic used in the algo-
rithm. For example, the Mondrian-like algorithm uses a heuristic to determine
the ordering of choosing dimensions for partitioning the data. With this or-
dering assumed in the anonymization algorithm, all tables ordered before the
published table T ∗ must violate the privacy requirement. (Note: if the privacy
requirement satisfies the generalization property described in Section 5.2.1
or the monotonicity property and the anonymization algorithm performs this
process in the reverse ordering, the adversary can deduce that, conversely, all
tables ordered after T ∗ must satisfy the privacy requirement.) The adversary
makes use of this information to breach individual privacy.

It is noted that, with respect to attack by mechanism, our work is much more
general compared with Zhang’s algorithm [Zhang et al. 2007]. Firstly, Zhang’s
algorithm assumes only one particular model of anonymization algorithms.
However, we do not assume any particular model for privacy breaches. Secondly,
Zhang’s algorithm makes use of the information loss to sort all possible tables.
However, our model covers not only the ordering according to the information
loss but also the ordering according to other criteria including some heuristics
used in the anonymization algorithm.

5.2.1 Incognito-Like Algorithm. We first consider a well-known generali-
zation-based framework which is adopted by algorithm Incognito [LeFevre
et al. 2005] and Samarati’s algorithm [Samarati 2001]. Algorithm Incog-
nito has been applied for handling many other privacy models such as l -
diversity [Machanavajjhala et al. 2006], t-closeness [Li and Li 2007], and (α, k)-
anonymity [Wong et al. 2006]. Let us focus on l -diversity on the privacy re-
quirement R for illustration. We first illustrate the anonymization process of
the framework.

Table XVI shows a dataset containing two attributes (Gender and Educa-
tion) and one sensitive attribute Disease, where HIV is the sensitive value.
Figures 4(a) and 4(b) show the generalization taxonomies of attributes Gen-
der and Education, respectively. Each node in a generalization taxonomy of
attribute A corresponds to a generalization domain with respect to A. The gen-
eralization domain in the lower level has more detailed information than the
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Fig. 4. Generalization taxonomy.

Table XVII. < G0, E1 >

Gender Education Disease
Male university HIV

Female university HIV
Female university non-sensitive
Female university non-sensitive
Female university non-sensitive

Table XVIII. Illustration of Generalization Property

Gender Education Disease
Person postgraduate HIV
Person undergraduate HIV
Person postgraduate non-sensitive
Person undergraduate non-sensitive
Person undergraduate non-sensitive

Gender Education Disease
Person university HIV
Person university HIV
Person university non-sensitive
Person university non-sensitive
Person university non-sensitive

(a) < G1, E0 > (b) < G1, E1 >

higher level. For example, in Figure 4(a), generalization domain G0 (with re-
spect to Gender) has more detailed information than G1. Domains of multiple
attributes can be combined to more complex generalization domains such as
< G0, E1 >.

(GENERALIZATION PROPERTY). Let T be a table and let Q be an attribute set in
T. Let G and G ′ be generalization domains with respect to Q, where G ′ is more
general than G. If the table T generalized with the generalization domain G
with respect to Q is l -diverse, then the table T generalized with G ′ with respect
to Q is also l -diverse.

For example, consider generalization of the dataset in Table XVI, let us set l =
2. Table XVIII(a), the table generalized with < G1, E0 >, satisfies l -diversity.
As < G1, E1 > is more general than < G1, E0 >, the table generalized with
domain < G1, E1 > should also be l -diverse (Table XVIII(b)).

With the algorithm in the framework, first, all possible generalization do-
mains are generated. For example, Figure 5 shows a subset of all possible
generalization domains. Then, we test whether the table generalized with a
generalization domain G satisfies l -diversity from bottom to top. By the gener-
alization property, if G satisfies l -diversity, we do not need to test generaliza-
tion domains above it. This is because all generalization domains above it must
satisfy l -diversity. Finally, the algorithm chooses the table with the minimum
information loss among all tables satisfying l -diversity.
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Fig. 5. A subset of all possible generalization domains.

For example, suppose our privacy requirement is 2-diversity. We know that
< G0, E0 > and < G0, E1 > do not satisfy 2-diversity but < G1, E0 > and
< G1, E1 > satisfy 2-diversity. Since < G1, E0 > generates a table with the
least information loss, Table XVIII(a) will be published.

Suppose the adversary knows the anonymization mechanism (i.e., the afore-
said algorithm) including the formula of computation of the information loss.
Without loss of generality, we assume that the information loss used in the
algorithm is defined as Definition 7. If the table as shown in Table XVIII(a) is
released, the adversary will reason as follows.

From Table XVIII(a), the generalization domain < G1, E0 > is used for
publishing the table. According to Figure 5, < G1, E1 > must also satisfy 2-
diversity (by the generalization property). Since the algorithm chooses the table
with the least information loss, < G0, E0 > should violate 2-diversity. Besides,
< G0, E1 > must not satisfy 2-diversity. It is noted that the information loss
of the table generalized with < G0, E1 > (as shown in Table XVII) is equal to
0.0625 and the information loss of the table generalized with < G1, E0 > (as
shown in Table XVIII(a)) is equal to 0.5. Thus, suppose < G0, E1 > satisfies 2-
diversity, the table will be generalized with < G0, E1 > instead of < G1, E0 >.

Thus, the adversary knows that the table generalized with < G0, E1 > (i.e.,
Table XVII) must violate 2-diversity. In the published table XVIII(a), there are
two HIV values. Since Table XVII violates 2-diversity, one of the HIV values
must be linked to the set of tuples with QID values = (Male, university). Hence
if the attack target is an individual o with QID values = (Male, university), then
the adversary can confirm that o is linked to HIV.

In conclusion, attack by mechanism is possible. It is further noted that the
adversary cannot breach the privacy in this example if we just consider the
minimality attack defined in Definition 3 and regard the projected Table XVI
on attributes Gender and Education as the external table T e and Table XVIII(a)
as the published table.

Suppose we are given a published table T ∗. The adversary lists all possible
tables such that it can be generalized from the correspondence external table
T e and the information loss of these tables is less than that of T ∗. Let R be the
running time of the Incognito-like algorithm. It is easy to verify that the step of
enumerating all possible tables takes O(R). For each of these tables, the adver-
sary can also adopt similar techniques in Section 4 to breach individual privacy,
which requires O(p2ns + pn3

s l ). Thus, the total running time of performing such
attack is O((p2ns + pn3

s l )R).

5.2.2 Mondrian-Like Algorithm. Let us we first describe algorithm Mon-
drian [LeFevre et al. 2006] and analyze how attack by mechanism is feasible.
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Table XIX. A Generalized Table Illustrating Privacy Breaches from Algorithm Mondrian

Zipcode Age Disease
51102 36 HIV
51104 36 HIV
51101 31 non-sensitive
51102 31 non-sensitive
51104 31 non-sensitive
51105 31 non-sensitive

Zipcode Age Disease
[51101-51105] [31-36] HIV
[51101-51105] [31-36] HIV
[51101-51105] [31-36] non-sensitive
[51101-51105] [31-36] non-sensitive
[51101-51105] [31-36] non-sensitive
[51101-51105] [31-36] non-sensitive

(a) A raw table (b) A fully generalized table
Zipcode Age Disease

[51101-51105] [32-36] HIV
[51101-51105] [32-36] HIV
[51101-51105] 31 non-sensitive
[51101-51105] 31 non-sensitive
[51101-51105] 31 non-sensitive
[51101-51105] 31 non-sensitive

Zipcode Age Disease
[51101-51103] [31-36] HIV
[51104-51105] [31-36] HIV
[51101-51103] [31-36] non-sensitive
[51101-51103] [31-36] non-sensitive
[51104-51105] [31-36] non-sensitive
[51104-51105] [31-36] non-sensitive

(c) A table after the partition of Table (b) ac-
cording to attribute Age

(d) A table after the partition of Table (b) ac-
cording to attribute Zipcode

In LeFevre et al. [2006], algorithm Mondrian originally is designed for k-
anonymity. It is easy to extend the model to l -diversity, which will be described
next.

We illustrate the algorithm with Table XIX(a) where the QID attributes are
two numeric attributes, Zipcode and Age, and the sensitive attribute is Dis-
ease. Suppose the privacy requirement is 2-diversity. Algorithm Mondrian is
a kd-tree-based algorithm. Firstly, it fully generalizes the table as shown in
Table XIX(b) such that each tuple is in the same QID-EC. Then, it iteratively
chooses one dimension according to a simple heuristic for partitioning the data,
and the iterations continue until there is no feasible partitioning. In LeFevre
et al. [2006], the heuristic chooses the dimension with the widest (normalized)
range of values. In this example, without loss of generality, we assume the do-
main of attribute Zipcode is much larger than the domain of attribute Age. Ac-
cording to the heuristic, algorithm Mondrian chooses attribute Age as the first
dimension for partitioning. The median of attribute Age is equal to 31. Thus,
range [31-36] is partitioned into range [31-31] (or value 31) and range [32-36].
The resulting table is shown in Table XIX(c). However, it is easy to verify that
Table XIX(c) violates 2-diversity. So, the partitioning according to attribute Age
is infeasible. Then, algorithm Mondrian chooses the remaining attribute (i.e.,
attribute Zipcode) for partitioning. Since the median value of attribute Zipcode
is 51103, we obtain the resulting table as shown in Table XIX(d). It is also easy
to verify that Table XIX(d) satisfies 2-diversity. Thus, Table XIX(b) is parti-
tioned to Table XIX(d). Similarly, algorithm Mondrian performs similar steps
in each partition in Table XIX(d). However, there are no feasible partitionings.
Thus, Table XIX(d) is published as the final output.

Suppose the adversary knows the anonymization algorithm together with
the heuristic used. Since s/he knows the external table T e and the published
Table XIX(d) T ∗, s/he deduces that the partitioning from Table XIX(b) according
to attribute Age (i.e., Table XIX(c)) is infeasible. In other words, one of the
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Fig. 6. Generalization taxonomy illustrating privacy breaches from Zhang’s algorithm.

Table XX. A Generalized Table Illustrating Privacy Breaches from Zhang’s
Algorithm

QID Disease
Q HIV
Q HIV
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive
Q non-sensitive

QID Disease
* HIV
* HIV
* non-sensitive
* non-sensitive
* non-sensitive
* non-sensitive
* non-sensitive

(a) A table generalized with < D1 > (b) A table generalized with < D2 >

two partitions (or QID-ECs) in Table XIX(c) violates 2-diversity. By similar
arguments, s/he can deduce that the first two individuals in the table must
be linked to HIV. In conclusion, attack by mechanism is possible when the
published table is generated by algorithm Mondrian.

The complexity of performing the attack for Mondrian-like algorithm is also
similar to that for Incognito-like algorithm. Suppose there are N possible binary
partitions for Mondrian-like algorithm. The total running time is O((p2ns +
pn3

s l )N ).

5.2.3 Zhang’s Algorithm. First, we describe how Zhang’s algorithm7 gen-
erates a published table. We illustrate this by our motivating example as shown
in Table I(b). Suppose we are given the generalization taxonomy as shown in
Figure 6 where “Disclose Nothing” is a special node representing that the table
should not be disclosed in Zhang’s algorithm. Consider the privacy requirement
R is l -diversity. Zhang’s algorithm involves three phases. In the first phase,
Zhang’s algorithm lists a table sequence of all possible generalized tables in
the ascending order of information loss of the tables. In this example, the se-
quence is T0 : Table I(b) (the table generalized with < D0 >), T1 : Table XX(a)
(the table generalized with < D1 >), T2 : Table XX(b) (the table generalized
with < D2 >), and the table T3 denoting that nothing should be disclosed.
In the second phase, Zhang’s algorithm checks whether each table satisfies l -
diversity in the sequence order until it finds a table satisfying l -diversity. Since
T0 violates 2-diversity, it checks the next table T1 which satisfies 2-diversity.
After finding a table (i.e., T1) which satisfies 2-diversity, it switches to the third
phase where it checks whether each Tj of the remaining tables in the sequence

7For the sake of illustration, we skip some steps of Zhang’s algorithm, but this does not affect the
illustration of the attack by mechanism.
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has at least l possible specializations which violates l -diversity in the reverse
order of the table sequence. Once there is a table Tj which satisfies the afore-
said criteria, Tj is published. Otherwise, T1 is published. For instance, T3 is
first checked. Since there is only one possible specialization of T3 (i.e., T2) satis-
fying 2-diversity and no specialization violating 2-diversity, Zhang’s algorithm
switches to check the second last table T2. In this case, T2 has also only one
possible specialization (i.e., T1) satisfying 2-diversity and no specialization vio-
lating 2-diversity. Since all tables checked in the third phase do not satisfy the
criteria, T1 (i.e., Table XX(a)) is published.

Suppose the adversary knows the anonymization mechanism and the pub-
lished table T1. From the perspective of the adversary, T1 has only one special-
ization (i.e., Table I(b)) which violates 2-diversity. One interesting question is:
Will T1 still be generated if the original table like Table I(a) satisfies 2-diversity?
The answer is trivially no. Without loss of generality, we assume the original
table is Table I(a). The following analysis still holds in the other table which is
one of the specializations of T1 which satisfies 2-diversity. Consider Table I(a).
It is easy to follow Zhang’s algorithm with this table and generate the pub-
lished table as the original table (i.e., Table I(a)). In other words, among all
possible specializations which either satisfies 2-diversity or not, there is only
one specialization (i.e., Table I(b)) which triggers Zhang’s algorithm to generate
the published Table XX(a). Thus, the adversary deduces that the set of tuples
with QID = q1 is linked to HIV. In conclusion, Zhang’s algorithm suffers from
minimality attack defined in this article.

Similar to the Incognito-like algorithm, the running time of the attack for
Zhang’s algorithm is O((p2ns + pn3

s l )R) where R is the running time of Zhang’s
algorithm.

6. ALGORITHM

The problem of optimal m-confidentiality is a difficult problem. In most data
anonymization methods, if a generalization step does not reach the privacy goal,
further generalization can help. However, further generalizations will not solve
the problem of m-confidentiality. If we further generalize Q to ∗ in Table I(c)
or further generalize q2 to Q in Table I(d), it does not deter the minimality
attack. The result still reveals the linkage of q1 to HIV as before. We show later
that optimal m-confidentiality is NP-complete for both global recoding and local
recoding in Theorem 2 and Theorem 3, respectively.

Optimal global m-confidentiality: given a table T and a nonnegative cost e,
can we generate a table T ∗ from T by global recoding (local recoding) which
satisfies m-confidentiality and where the information loss of Dist(T, T ∗) is less
than or equal to e?

THEOREM 2. Optimal m-confidentiality under global recoding is NP-
complete.

THEOREM 3. Optimal m-confidentiality under local recoding is NP-complete.
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From the preceding, optimal m-confidentiality under both global and local
recoding are difficult problems, and known heuristical methods based on incre-
mental generalization may not help in defending the attack. However, as the
adversary relies on the minimality assumption, we can tackle the problem at its
source by removing the minimality notion from the anonymization. The main
idea is that, even if some QID-EC’s in a given table T originally do not violate
l -diversity, we can still generalize the QID. Since the anonymization does not
play according to the minimality rule, the adversary cannot launch the mini-
mality attack directly. However, a question is: How much shall we generalize
or anonymize? It is not desirable to lose on data utility.

A naive method to generalize or suppress everything in an excessive manner
would not work well, since the information loss will also be excessively large.
From the formula for information loss, if every QID attribute value must go at
least one level up the taxonomies, then for typical taxonomies, the information
loss will be a sizeable fraction.

Another naive method can be to generalize or suppress the table randomly
in order to avoid any minimality notion. Similarly, the information loss of this
published table is high.

Here we propose a feasible solution for the m-confidentiality problem which
can give low information loss. Although some problems are uncovered that
question privacy protection by k-anonymity [Machanavajjhala et al. 2006], k-
anonymity has been successful in some practical applications. This indicates
that when a dataset is k-anonymized for a given k, the chance of a large propor-
tion of a sensitive value set s in any QID-EC is very likely reduced to a safe level.
Since k-anonymity does not try to anonymize based on the sensitive value set, it
will anonymize a QID-EC even if it satisfies l -diversity. This is the blinding ef-
fect we are targeting for. However, there is no guarantee of m-confidentiality by
k-anonymity alone, where m = l . Hence, our solution is based on k-anonymity,
with additional precaution steps taken to ensure m-confidentiality.

In addition to the blinding effect for privacy protection, k-anonymity has
its advantage of giving low information loss of the published table. A typical
algorithm for k-anonymity tries to minimize the QID values within each QID-
EC and thus generate the published table with low information loss. It is noted
that this algorithm is not targeting for l -diversity (although it tries to minimize
the information loss).

Let us call our solution Algorithm MASK (Minimality Attack Safe K-
anonymity), which involves four steps as shown in Algorithm 1.

It is noted that Algorithm MASK is not limited to a particular anonymiza-
tion/recoding strategy. In step 1, any existing algorithm for k-anonymity can
be adopted. If the adopted algorithm is a global (local) recoding algorithm, then
Algorithm MASK generates the table by global (local) recoding.

After Step 1, some QID-EC’s may not satisfy l -diversity. Steps 2 to 4 in the
algorithm will ensure that all QID-EC’s in the result are l -diverse. In Step 2
as given, we select a QID-EC set L from T k . The purpose is to disguise the
distortion so that the adversary cannot tell the difference between a distorted
QID-EC and many undistorted QID-EC’s.
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Algorithm. 1 – MASK

1: From the given table T , generate a minimal k-anonymous table T k where k is a user
parameter.

2: From T k , determine the set V containing all QID-EC’s which violate l -diversity in
T k , and a set L containing QID-EC’s which satisfy l -diversity in T k .
(a) We set the size of L, denoted by u, to (l −1)×|V|. If the total number of QID-EC’s

which satisfy l -diversity in T k is smaller than u(= (l − 1) × |V|), we report that
the table cannot be published. (Note: This case is rare because since typically
there are rare sensitive values in a table, there are a sufficient number of QID-
EC’s which satisfy l -diversity in T k .) Otherwise, we do the following: among all
the QID-EC’s in T k that satisfy l -diversity, we pick u QID-EC’s with the highest
proportions of the sensitive value set s and insert them into L.

(b) If V = ∅, then we can return T k as our published table. Otherwise, then we do
continue the following steps.

3: For each QID-EC Qi in L, find the proportion pi of tuples containing values in the
sensitive value set s. The distribution D of the pi values is determined.

4: For each QID-EC E ∈ V, randomly pick a value of pE from the distribution D. The
sensitive values in E are distorted in such a way that the resulting proportion of the
sensitive value set s in E is equal to pE . We name the QID-EC E in which sensitive
values are distorted as a distorted QID-EC.

Table XXI. An Illustration of Algorithm MASK

QID Disease
q1 HIV
q2 HIV
q3 HIV
q3 non-sensitive
q4 non-sensitive
q4 non-sensitive

QID Disease
Q HIV
Q HIV
q3 HIV
q3 non-sensitive
q4 non-sensitive
q4 non-sensitive

QID Disease
Q HIV
Q non-sensitive
q3 HIV
q3 non-sensitive
q4 non-sensitive
q4 non-sensitive

(a) A raw table T (b) 2-anonymous table of T (c) 2-confidential table of T

Example 1. We illustrate algorithm MASK with the raw table as shown
in Table XXI(a). Suppose we set k = 2 and m = 2. The first step is to gener-
ate a 2-anonymous table. Suppose q1 and q2 can be generalized to Q . Firstly,
we adopt an algorithm for k-anonymous which generates table T k as shown
in Table XXI(b) where all QID-EC’s are of size at least 2. Secondly, from Ta-
ble XXI(b), we obtain V = {Q}. This is because the set of tuples with QID = Q
violates 2-diversity. We also obtain L = {q3}. This is because both the set of
tuples with QID = q3 and the set of tuples with QID = q4 satisfy 2-diversity.
More specifically, the proportion of the tuples with QID = q3 is 0.5 and the
proportion of the tuples with QID = q4 is 0. Since we set the size of L to be
equal to (l − 1) × |V| = (2 − 1) × 1 = 1, we choose the QID-EC with QID = q3
for L because it has the greatest proportion of HIV among the QID-EC’s in T k

that satisfy 2-diversity. Thirdly, we determine the distribution D of the pi val-
ues. Since there is only one QID-EC (with HIV proportion equal to 0.5) in L,
we create a distribution D such that 0.5 must be returned whenever we draw
from distribution D. (Suppose L is equal to {q3, q4}. Since the proportions of
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the QID-EC with QID = q3 and the QID-EC with QID = q4 are equal to 0.5
and 0, respectively, D is the distribution where the probability that 0.5 is re-
turned is equal to 0.5 and the probability that 0 is returned is equal to 0.5.)
Fourthly, we randomly pick a value from distribution D. Suppose 0.5 is picked.
Since V contains the QID-EC E with QID = Q only, the sensitive values in E
are distorted such that the resulting proportion of HIV in E is equal to 0.5. For
example, we change one of the sensitive values in E to a nonsensitive value.
Finally, Table XXI(c) is generated and is ready to be published.

6.1 Analysis

We first prove that algorithm MASK generates an m-confidential table in Sec-
tion 6.1.1. Then, we show some possible attacks from the perspective of the
adversary in Section 6.1.2. The complexity of algorithm MASK is analyzed in
Section 6.1.3. Finally, Section 6.1.4 describes that algorithm MASK can also be
extended to other cases such as near-to-minimality attack easily.

6.1.1 m-confidentiality.

THEOREM 4. Algorithm MASK generates m-confidential datasets.

6.1.2 Possible Potential Attack. Let us analyze some possible potential at-
tacks if the adversary obtains the table generated from algorithm MASK. We
will show that the adversary cannot breach individual privacy from these pos-
sible attacks.

First, the adversary may breach individual privacy according to the fre-
quency of the tuples with a sensitive value set s in a QID-EC. Suppose individual
o is a target individual for the attack and o is in the QID-EC E in the published
table T ∗. Since the anonymization algorithm does not follow the minimality
principle, the adversary may deduce that the probability that o is linked to s
is equal to the frequency of the tuples with s in E. Since the published table is
l -diverse and thus E is also l -diverse, the probability is at most 1/l .

Second, s/he can deduce that the probability that an individual is linked to
a sensitive value set s is greater than 1/l according to the distribution of the
sensitive values among the QID-EC’s in the published table. Suppose the size
of L is equal to 1 only, instead of (l − 1) × |V|. We will show that s/he may
breach individual privacy with a higher chance. In this case, it is very likely
that algorithm MASK will distort each QID-EC E ∈ V such that the frequency
of the sensitive value set s is equal to 1/l . In other words, the published table T ∗

contains many repeated occurrences of the QID-EC’s which have 1/l tuples with
s. From the adversary’s perspective, it is likely that these QID-EC’s originally
violate l -diversity in the original table T . Thus, this may breach individual
privacy.

Thus, if we set the size ofL to be (l −1)×|V|, we can protect individual privacy.
More specifically, the use of L for the distortion of V is to make the distribution
of s proportions in V look indistinguishable from that of a large QID-EC set (L).
This is an extra safeguard for the algorithm in case the adversary knows the
mechanism of anonymization. If the QID-EC’s in V simply copy the s proportion
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from an l -diverse QID-EC in Tk with the greatest s proportion, the repeated
pattern may become a source of attack. In our setting the probability that some
QID-EC in V has the same s proportion as a QID-EC in L is 1/l . Therefore, for
l repeated occurrences of an s proportion, the probability that any one belongs
to a QID-EC in V is only 1/l (= 1/m).

6.1.3 Complexity. The first step of algorithm MASK takes O(R) where R
is the running time of an algorithm which generates a k-anonymous table. Since
the number of sensitive values is fixed, it is easy to verify that the second step
and the third step take O(|T |) where |T | is the number of tuples in table T . If
the number of QID-EC’s in V is |V|, the fourth step takes O(|V|). Thus, the total
running time of algorithm MASK is O(R + |T | + |V|) = O(R + |T |).

THEOREM 5. Algorithm MASK takes O(R +|T |) time where R is the running
time of the algorithm adopted for k-anonymity.

Suppose each QID attribute has a generalization taxonomy of height h. Let
|A| be the total number of QID attributes. If we adopt a global-recoding al-
gorithm, Incognito [LeFevre et al. 2005], in our first step to generate a k-
anonymous table, the total running time of algorithm MASK is O(|T | × h ×∑|A|×h

i=0 C|A|×h
i + |T |) = O(|T | × h × ∑|A|×h

i=0 C|A|×h
i ). If a local-recoding algorithm,

(α, k)-anonymity [Wong et al. 2006], is adopted, the total running time becomes
O(|T |2 × h + |T |) = O(|T |2 × h).

In our experiment, the first step of k-anonymization (which takes O(R) time)
occupies over 98% of the whole execution time of algorithm MASK. Thus, the
remaining steps are insignificant with respect to the whole execution time.

6.1.4 Extension. It is noted that algorithm MASK can also generate m-
confidential datasets when the near-to-minimality attack, instead of the min-
imality attack, is considered. This is because MASK does not follow the near-
to-minimality principle.

6.2 Generation of Two Tables—Bucketization

Conventional anonymization methods produce a single generalized table T as
shown in Table VI. Recently Xiao and Tao [2006a] proposed to generate two
separate tables from T with the introduction of an attribute called GID that is
shared by the two tables. The first table TQ I D contains the attributes of QID
and GID, and the second table Tsen contains GID and the sensitive attribute(s).
The two tables are created from T ∗ by assigning each QID-EC in T ∗ a unique
GID. The advantage is that we can keep the original values in T of the QID in
TQ I D and hence reduce information loss. However, the single table T has the
advantage of clarity and requiring no extra interpretation on the data receiver’s
part. In our experiments, we will try both the approach of generating a single
table T and the approach of generating two tables (also known as bucketization)
as in Xiao and Tao [2006a], Zhang et al. [2007], and Martin et al. [2007].

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 8, Publication date: June 2009.



8:38 • R. C.-W. Wong et al.

Table XXII. Description of Adult Dataset

Attribute Distinct Values Generalizations Height
1 Age 74 5-, 10-, 20-year ranges 4
2 Work Class 7 Taxonomy Tree 3
3 Martial Status 7 Taxonomy Tree 3
4 Occupation 14 Taxonomy Tree 2
5 Race 5 Taxonomy Tree 2
6 Sex 2 Suppression 1
7 Native Country 41 Taxonomy Tree 3
8 Salary Class 2 Suppression 1
9 Education 16 Taxonomy Tree 4

7. EMPIRICAL STUDY

A Pentium IV 2.2GHz PC with 1 GM RAM was used to conduct our experiment.
The algorithm was implemented in C/C++. In our experiment, we adopted
the publicly available dataset, Adult Database from the UCIrvine Machine
Learning Repository [Blake and Merz 1998]. This dataset (5.5 MB) was also
adopted by LeFevre et al. [2005], Machanavajjhala et al. [2006], Wang et al.
[2004], and Fung et al. [2005]. We used a configuration similar to LeFevre
et al. [2005], and Machanavajjhala et al. [2006]. The records with unknown
values were first eliminated resulting in a dataset with 45,222 tuples (5.4 MB).
Nine attributes were chosen in our experiment, as shown in Table XXII. By
default, we chose the first eight attributes and the last attribute in Table XXII
as the quasi-identifer and the sensitive attribute, respectively. As discussed
in the previous sections, attribute “Education” contains a sensitive value set
containing all values representing the education levels before “secondary” (or
“9th–10th”) such as “1st–4th”, “5th–6th” and “7th–8th”.

7.1 Analysis of the Minimality Attack

We are interested to know how successful the minimality attack can be in
a real dataset with existing minimality-based anonymization algorithms. We
adopted the Adult dataset and the selected algorithm was the (α, k)-anonymity
algorithm [Wong et al. 2006]. We set α = 1/l and k = 1, so that it corre-
sponds to the simplified l -diversity. We have implemented an algorithm based
on the general formulae in Section 4 to compute the credibility values. We found
that the minimality attack successfully uncovered QID-EC’s which violates m-
confidentiality, where m = l . We use m and l interchangeably in the following.
Let us call the tuples in such QID-EC’s the problematic tuples. Figure 7(a)
shows the proportion of problematic tuples among all sensitive tuples under
the variation of m, where the total number of sensitive tuples is 1,566. The
general trend is that the proportion increases when m increases. When m in-
creases, there is higher chance that problematic tuples are generalized with
more generalized tuples. Also, it is more likely that those generalized tuples
are easily uncovered for the minimality attack.

In Figure 7(b), when m increases, it is obvious that the average credibility
of problematic tuples decreases. When m increases, 1/m decreases. Thus, each
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Fig. 7. Proportion of problematic tuples and average credibility of problematic tuples against m
and QID size.

QID-EC contains at most 1/m occurrences of the sensitive value set. Thus, this
lowers the credibility of the tuples in QID-ECs.

Figure 7(c) shows that the proportion of problematic tuples increases with
QID size. This is because when QID size is larger, the size of each QID-EC is
smaller. It is more likely that a QID-EC violates the privacy requirement. Thus,
more tuples are vulnerable for the minimality attack. Figure 7(d) shows that
the average credibility of problematic tuples remains nearly unchanged when
the QID size increases. This is because the credibility is based on m. It is noted
that the average credibility in Figure 7(d) is about 0.9, which is greater than
0.5 (=1/2).

We also examined some cases obtained in the experiment. Suppose we adopt
the QID attributes as (age, workclass, martial status) with sensitive attribute
Education. The original table contains one tuple with QID=(80, self-emp-not-
inc, married-spouse-absent) and two tuples with QID=(80, private, married-
spouse-absent).

Age Workclass Martial Status Education
80 self-emp-not-inc married-spouse-absent 7th-8th
80 private married-spouse-absent HS-grad
80 private married-spouse-absent HS-grad

Suppose m = 2. Recall that 7th–8th is in the sensitive value set. Since the
first tuple violates 2-diversity, the Workclass of tuple 1 and tuple 2 are general-
ized to “with-pay” as follows. Thus, the published table contains the following
tuples.
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Age Workclass Martial Status Education
80 with-pay married-spouse-absent 7th-8th
80 with-pay married-spouse-absent HS-grad
80 private married-spouse-absent HS-grad

In this case, it is easy to check that the credibility for an individual with
QID= (80, self-emp-not-inc, married-spouse-absent) is equal to 1.

Another uncovered case involves more tuples. The original table contains one
tuple with QID=(33, self-emp-not-inc, married-spouse-absent) and 17 tuples
with QID=(33, private, married-spouse-absent).

Similarly, when m = 2, the first tuple violates 2-diversity. Thus, Workclass of
tuple 1 and tuple 2 are generalized to “with-pay” in the published table. Simi-
larly, the adversary can deduce that the individual with QID=(33, self-emp-not-
inc, married-spouse-absent) is linked with a low education (i.e. Education=“1st–
4th”) since this credibility is equal to 1.

Consider the default QID size = 8. When m = 2, the execution time of the
computation of the credibility of each QID-ECs in the original table is about
173s. When m = 10, the execution time is 239s. It is not costly for an adversary
to launch a minimality attack.

7.2 Analysis of the Proposed Algorithm

We compared our proposed algorithm with a local recoding algorithm for (α, k)-
anonymity [Wong et al. 2006] ((α, k)-A). Let us refer to our proposed algorithm
MASK described in Section 6 by m-conf .

Since we are the first to propose the privacy model with the consideration
of the minimality principle, there is no existing algorithm which can protect
individual privacy when the minimality principle is considered. As shown in
Section 5, all existing works which rely on the minimality principle are also
vulnerable to the minimality attack. For the sake of interest, we compare
our proposed algorithm with k-anonymity or l -diversity because our proposed
algorithm involves two components: (1) k-anonymity in step 1 (considering
QID attributes only) and (2) l -diversity in steps 2–4 (considering both QID
attributes and the sensitive attribute together). (α, k)-A does not guarantee
m-confidentiality, but it is suitable for comparison since it considers both k-
anonymity and l -diversity, where l = m. We are therefore interested to know
the overhead required in our approach in order to achieve m-confidentiality.
When we compared our algorithm with (α, k)-anonymity, we set α = 1/m and
the k value is the same as that use in our algorithm. We evaluated the al-
gorithms in terms of four measurements: execution time, relative error ratio,
information loss of QID attributes, and distortion of sensitive attribute. The
distortion of sensitive attribute is calculated by the information loss formula in
Definition 7. We give it a different name for the ease of reference. By default,
the weighting of each attribute used in the evaluation of information loss is
equal to 1/|Q I D|, where |Q I D| is the QID size. For each measurement, we
conducted the experiments 100 times and took the average.

We have implemented two different versions of Algorithm MARK: (A) one
generalized table is generated and (B) two tables are generated (see the last
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Fig. 8. Performance vs QID size (m = 2).

paragraph in Section 6.2). For Case (A), we may generalize the QID attributes
of the data and distort the sensitive attribute of the data. Thus, we measured
these by information loss and distortion, respectively. For Case (B), since the
resulting tables do not generalize QID, there is no information loss for QID.
The distortion of the sensitive attribute is the same as in Case (A). Hence in
the evaluation of information loss and distortion, we only report the results for
Case (A).

For case (B) with the generation of two ungeneralized tables, TQ I D and Tsen,
as in Xiao and Tao [2006a], we measure the error by the relative error ratio in
answering a aggregate query. We adopt both the form of the aggregate query
and the parameters of the query dimensionality qd and the expected query
selectivity s from Xiao and Tao [2006a]. For each evaluation in the case of two
anonymized tables, we performed 10,000 queries and then reported the average
relative error ratio. By default, we set s = 0.05 and qd to be the QID size.

We conducted the experiments by varying the following factors: (1) the QID
size, (2) m, (3) k, (4) query dimensionality qd (in the case of two anonyzmied
tables), and (5) selectivity s (in the case of two anonymized tables).

7.2.1 The Single Table Approach. The results for the single table case are
shown in Figure 8 and Figure 9. One important observation is that the results
are little affected by the values of k, which varies from 2 to 10 to 20, and this
is true for the execution time, the relative error, the information loss, and for
the distortion. This is important since k is a user parameter and the results
indicate that the performance is robust against different choices of the value
of k.

A second interesting observation is that the information loss of (α, k)-A is
greater than m-conf in some cases. This seems surprising since m-conf has
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Fig. 9. Performance vs. QID size (m = 10).

to fend off the minimality attack while (α, k)-A does not. The explanation is
that in some cases, more generalization is required in (α, k)-A to satisfy l -
diversity. However, the first step of m-conf only considers k-anonymity and
not l -diversity. Thus, the generalization in m-conf is less compared to (α, k)-A,
leading to less information loss. For compensation, the last two steps of m-conf
ensure l -diversity and incur distortion, while (α, k)-A has no such steps.

The execution times of the two algorithms are similar because the first step
of m-conf occupies over 98% of the execution time on average and the first step
is similar to (α, k)-A.

In Figure 8(a), the execution time increases with the QID size, since greater
QID size results in more QID-EC’s. When k is larger, the execution time is
smaller; this is because the number of QID-EC’s will be smaller.

Figures 8(b) and 8(d) show that the average relative error and the distortion
of the algorithms increase with the QID size. This is because the number of
QID-EC’s increases and the average size of each equivalence class decreases.
For m-conf , the probability that a QID-EC violates l -diversity (after the k-
anonymization step) will be higher. Thus, there is a higher chance for the dis-
tortion and higher average relative error. When k is larger, the average relative
error of the two algorithms increases. This is because the QID attribute will be
generalized more, giving rise to more querying errors. If k is larger, the QID-EC
size increases, the chance that a QID-EC violates l -diversity is smaller, so the
distortion will be less.

In Figure 8(c), when the QID size increases, the information loss of the QID
attributes increases, since the probability that the tuples in the original table
have different QID values is larger. Thus, there is a higher chance for QID
generalization leading to more information loss. Similarly, when k is larger, the
information loss is larger.
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Fig. 10. Two Tables case: effect of varying m and k.

7.2.2 The Two Tables Approach. Our next set of experiments analyze the
performance of the two table approach under various conditions.

Effect of k. Figure 10 shows the experimental results when k is varied. The
trends are similar to the single table case, and can be explained similarly.

Effect of Query Dimensionality qd. For m = 2, Figure 11(a) shows that the
average relative error increases when the query dimensionality increases. As
the query will match fewer tuples, fewer tuples in an equivalence class will
match the query, resulting in more relative error. If k is larger, the average
relative error is larger because we generalize more data with larger k. Similar
trends can also be observed when m = 10.

Effect of Selectivity s. In Figure 11(c), the average relative error decreases
when s increases. This is because if s is larger, more tuples will be matched
with a given query, and more tuples in an equivalence class are matched with
a given query. Similarly, when k is larger, there is more generalization, and
the average relative error is larger. We observe similar trends when m = 10.
Similarly, the average relative error is larger when m = 10.

In conclusion, we find that our algorithm creates very little overhead
and pays a very minimal price in information loss in the exchange for m-
confidentiality.

8. CONCLUSION

In existing privacy preservation methods for data publishing, minimality in
information loss is an underlying principle. In this article, we show how this
can be used by an adversary to launch an attack on the published data. We
call this a minimality attack. We also show that a near-to-minimality attack is
still possible. We propose the m-confidentiality model which deals with attack
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Fig. 11. Two tables case: effects of varying query dimensionality and selectivity.

by minimality and attack by near-to-minimality. We also propose an algorithm
which generates an m-confidential dataset. We conducted experiments to show
that our proposed algorithm requires little overhead both in terms of execution
time and information loss. For future work we are interested to determine any
other kinds of attack that can be related to the nature of the anonymization
process.
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A. DYNAMIC PROGRAMMING FOR EFFICIENT CREDIBILITY COMPUTATION

In this section, we will describe how we compute the credibility efficiently by
dynamic programming. Specifically, Prob(|Ci(s)| = j | K min

ad ) can be calculated
by a dynamic programming approach. Before describing how to make use of a
dynamic programming approach, we define the following events. Let Fi be the
event that 0 ≤ |Ci(s)| ≤ �ni

l �. Let Gi be the event that �ni
l � + 1 ≤ |Ci(s)| ≤ ni.

Let Hi be the event that 0 ≤ |Ci(s)| ≤ ni.
We illustrate the events in Figure 12. We can see that Fi ∪ Gi = Hi.
The aim is to evaluate Prob(|Ci(s)| = j | K min

ad ).

Prob(|Ci(s)| = j | K min
ad )

= Prob(|Ci(s)| = j | at least one Ck among C1, C2, . . . , Cp violates l -diversity)

Since the event that at least one Ck among C1, C2, . . . , Cp violates l -diversity is
equal to the event that at least one Gk occurs among G1, G2, . . . , G p, we have

Prob(|Ci(s)| = j | K min
ad )

= Prob(|Ci(s)| = j | at least one Gk occurs among G1, G2, . . . , G p)

= total no. of cases that |Ci(s)| = j and at least one Gk occurs among G1, . . . , G p

total no. of cases that at least one Gk occurs among G1, G2, . . . , G p
.

Let A be the numerator (i.e., total number of cases that |Ci(s)| = j and at
least one Gk occurs among G1, . . . , G p). Let B be the denominator (i.e., total
number of cases that at least one Gk occurs among G1, G2, . . . , G p).

In the following, we consider the number of cases in the records in
C1, C2, . . . , Cp only. Let there be x sensitive values in C1, C2, . . . , Cp. Suppose
that from dynamic programming, the total number of cases in the records in
C1, C2, . . . , Cp is equal to Q . We can easily obtain the total number of cases in
the records in all classes (i.e., C1, C2, . . . , Cp, Cp+1, . . . , Cu) by multiplying Q by
CN

ns−x , where N is the total number of records in Cp+1, Cp+2, . . . , Cu and ns is
the total number of sensitive values in the total dataset.
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Fig. 12. Illustration of some events.

Fig. 13. Illustration of n([a, b], x), m([a, b], x), and u([a, b], x).

For dynamic programming, we make use of three variables for the computa-
tion of A and B.

(1) n([a, b], x) is the number of cases where at least one Gk occurs among Ga,
Ga+1, . . . , Gb when there are x sensitive values in Ca, Ca+1, . . . , Cb, for
a, b = 1, 2, . . . , p and x = 1, 2, . . . , ns.

(2) m([a, b], x) is the number of cases where Ha, Ha+1, . . . . and Hb occur when
there are x sensitive values in Ca, Ca+1, . . . , Cb, for a, b = 1, 2, . . . , p and
x = 1, 2, . . . , ns.

(3) u([a, b], x) is the number of cases where Fa, Fa+1, . . . and Fb occur when
there are x sensitive values in Ca, Ca+1, . . . , Cb, for a, b = 1, 2, . . . , p and
x = 1, 2, . . . , ns.

Consider m([a, b], x). Among Ca, Ca+1, . . . , Cb, we divide the classes into two
parts, {Ca} and {Ca+1, . . . , Cb}. See Figure 13. Suppose we allocate r sensitive
values to Ca and x − r sensitive values to Ca+1, . . . , Cb. The number of cases
where there are r sensitive values in class Ca of size na is equal to Cna

r . The
number of cases where Ga+1, . . . , Gb occur when the number of sensitive values
allocated to them is equal to x − r is equal to m([a + 1, b], x − r). Thus, for a
given r, the total number of cases is equal to Cna

r × m([a + 1, b], x − r).

m([a, b], x) =
na∑

r=0

Cna
r × m([a + 1, b], x − r)

We define the base cases of m([a, b], x) as follows. The base case happens when
a = b. It is impossible that the number of sensitive values allocated to Ca is
greater than the class size of Ca or smaller than 0. Thus the term should be
set to 0 in both cases. If the number of sensitive values allocated to Ca ranges
from 0 to na, the term is the number of possible combinations where there are
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Fig. 14. Illustration of A(x).

x sensitive values in class Ca of size na (i.e., Cna
x ).

m([a, a], x) =

⎧⎪⎨
⎪⎩

0 if x > na

0 if x < 0
Cna

x if 0 ≤ x ≤ na

The term u([a, b], x) is the same as m([a, b], x) except that the upper boundary of
term Fi is equal to �na

l �, instead of na. Similarly, we have the following formula.

u([a, b], x) =
� na

l �∑
r=0

Cna
r × u([a + 1, b], x − r)

u([a, a], x) =

⎧⎪⎨
⎪⎩

0 if x ≥ �na
l � + 1

0 if x < 0
Cna

x if 0 ≤ x ≤ �na
l �

Next consider n([a, b], x). Let r be the number of tuples with s in Ca. We can also
derive n([a, b], x) as follows similarly by considering two cases: (1) �na

l � + 1 ≤
r ≤ na and (2) 0 ≤ r ≤ �na

l �.

n([a, b], x) =
na∑

r=� na
l �+1

Cna
r × m([a + 1, b], x − r) +

� na
l �∑

r=0

Cna
r × n([a + 1, b], x − r)

The base cases of n([a, b], x) can also be easily derived as follows.

n([a, a], x) =

⎧⎪⎨
⎪⎩

0 if x > na

0 if 0 ≤ x ≤ �na
l �

Cna
x if �na

l � + 1 ≤ x ≤ na

Now, consider A. Recall that A is the total number of cases that; (1) at least
one Gk occurs among G1, G2, . . . , G p and (2) there are j sensitive values in Ci.

Let A(x) be the total number of aforesaid cases provided that there are x
sensitive values in C1, C2, . . . , Cp.

We consider the number of cases involving all classes (i.e., C1, . . . , Cp,
Cp+1, . . . , Cu). Suppose we allocate x sensitive values in C1, C2, . . . , Cp and
ns − x sensitive values in Cp+1, Cp+2, . . . , Cu. Recall that Ci contains j sen-
sitive values. Within C1, C2, . . . , Cp, we further allocate: (1) r sensitive values
to C1, C2, . . . , Ci−1, (2) j sensitive values to Ci, and (3) x −r − j sensitive values
to Ci+1, Ci+2, . . . , Cp. See Figure 14.
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There are two cases.
Case 1. �ni

l � + 1 ≤ j ≤ ni, that is, Gi occurs. This means that the number
of sensitive values in a class Ck (|Ck(s)|) of C1, C2, . . . , Ci−1 or Ci+1, Ci+2, . . . , Cp
ranges from 0 to nk .

The number of cases that |Ck(s)| for a class Ck of C1, C2, . . . , Ci−1 ranges from
0 to nk is equal to m([1, i −1], r). Similarly, the number of cases that |Ck(s)| for a
class Ck of Ci+1, Ci+2, . . . , Cp ranges from 0 to nk is equal to m([i+1, p], x−r− j ).
Thus, if we consider all possible values of r from 0 to x − j , the total number of
these cases is equal to

∑x− j
r=0 m([1, i − 1], r) × m([i + 1, p], x − r − j ).

Note that the number of cases that there are j sensitive values in Ci of size
ni is equal to Cni

j . Also, the number of cases that there are ns − x sensitive
values in N tuples in classes Cp+1, Cp+2, . . . , Cu is equal to CN

ns−x . Thus, A(x) =
CN

ns−x × Cni
j × ∑x− j

r=0 m([1, i − 1], r) × m([i + 1, p], x − r − j ) in this case.
Case 2. 0 ≤ j ≤ �ni

l �, that is, Gi does not occur. There are the following
subcases.

Case 2(a). At least one Gk occurs among G1, G2, . . . , Gi−1, In this case, the
number of sensitive values in a class Ck of Ci+1, Ci+2, . . . , Cp ranges from 0 to nk .

The number of cases that at least one Gk occurs among G1, G2, . . . , Gi−1 is
equal to n([1, i −1], r). The number of cases that the number of sensitive values
in a class Ck of Ci+1, Ci+2, . . . , Cp ranges from 0 to nk is equal to m([i +1, p], x −
r − j ). Thus, the total number of these cases is equal to n([1, i − 1], r) × m([i +
1, p], x − r − j ).

Case 2(b). All Gk among G1, G2, . . . , Gi−1 does not occur. In other words, all
F1, F2, . . . , Fi−1 occur. Besides, we should also know that there is at least one
Gk occuring among Gi+1, Gi+2, . . . , G p.

The number of cases that all F1, F2, . . . , Fi−1 occur is equal to u([1, i − 1], r).
The number of cases that at least one Gk occurs among Gi+1, Gi+2, . . . , G p is
equal to n([i + 1, p], x − r − j )]. Thus, the total number of these cases is equal
to u([1, i − 1], r) × n([i + 1, p], x − r − j ).

By combining Case 2(a) and Case 2(b) and considering all possible values r
from 0 to x − j , we obtain the total number of cases equal to

∑x− j
r=0 [n([1, i −

1], r) × m([i + 1, p], x − r − j ) + u([1, i − 1], r) × n([i + 1, p], x − r − j ).
Similarly, the number of cases that there are j sensitive values in Ci of size ni

is equal to Cni
j . Also, the number of cases that there are ns−x sensitive values in

N tuples in classes Cp+1, Cp+2, . . . , Cu is equal to CN
ns−x . Thus, the total number

of cases in Case (2) is equal to CN
nx−x ×Cni

j ×∑x− j
r=0 [n([1, i−1], r)×m([i+1, p], x −

r − j ) + u([1, i − 1], r) × n([i + 1, p], x − r − j )].
We obtain A(x) as follows.
A(x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

CN
ns−x × Cni

j × ∑x− j
r=0 m([1, i − 1], r)

×m([i + 1, p], x − r − j ) if �ni
l � + 1 ≤ j ≤ ni

CN
ns−x × Cni

j × ∑x− j
r=0 [n([1, i − 1], r)

× m([i + 1, p], x − r − j ) if 0 ≤ j ≤ �ni
l �

+ u([1, i − 1], r) × n([i + 1, p], x − r − j )]
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By considering all possible values of x from �n1
l � + 1 to ns, A is equal to the

following. (Note that it is impossible that x < �n1
l � + 1 because it means that

there is no need for generalization.)

A =
ns∑

x=� n1
l �+1

A(x)

Consider B where B is the total number of cases where at least one Gk occurs
among G1, G2, . . . , G p. By considering all possible values x from �n1

l � + 1 to ns,
we obtain the following formula.

B =
ns∑

x=� n1
l �

n([1, p], x) × CN
ns−x

Algorithm. Algorithm 2 shows the computation of the credibility by dy-
namic programming. It involves two phases. In phase 1, we compute the
variables n([a, b], x), m([a, b], x) and u([a, b], x). In phase 2, we compute
Credibility(o, s, K min

ad ) where o ∈ Ci for i = 1, 2, . . . , p by using the variables
used in phase 1, namely n([a, b], x), m([a, b], x), and u([a, b], x).

Let |T | be the number of tuples in T . Algorithm 2 runs in polynomial time in
|T |, p, ns, and l . It is easy to verify that phase 1 takes O(|T | + p2ns). Consider
phase 2. Computing one instance of A and computing one instance of B take
O(n2

s ) and O(ns), respectively. Since there are O(pnp) iterations, phase 2 takes
O(pnpn2

s ). Since np = O(nsl ), the complexity of phase 2 becomes O(pn3
s l ). Thus,

the running time of Algorithm 2 is O(|T | + p2ns + pn3
s l ).

THEOREM 6. Algorithm 2 runs in O(|T | + p2ns + pn3
s l ) time.

The previous theorem means that computing the credibility of an individual
only takes polynomial time in |T |, p, nS , and l . In other words, this kind of
attack is highly feasible.

B. PROOF OF LEMMAS/THEOREMS

PROOF OF THEOREM 1. We will prove that the credibility as computed by the
formulae for credibility is exactly the ratio of the sensitive tuples to the total
number of tuples in the generalized QID-EC by first considering a class Q in
T ∗ where only two QID values in T e, namely q1 and q2, are generalized to Q .
Then, we relax the proof by considering a class Q where multiple QID values
are generalized to Q .

Consider a QID value Q in T ∗. Suppose q1 and q2 (in T e) are generalized to Q
in T ∗. Let n1 and n2 be the number of tuples with value q1 and q2, respectively.
Let x be the total number of sensitive tuples in Q .

Consider four cases. Case 1: x ≤ n1 and x ≤ n2. Without loss of gener-
ality, we consider Credibility(o, s, K min

ad ) where o has a QID value on q1. We
further consider a number of subcases. Case (a): x = 1. We have the sensitive
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Algorithm. 2 Algorithm for Computing Credibility

1: // Phase 1(a): Initialization
2: obtain ni for all i
3: for a = 1 to p do
4: for x = 0 to ns do
5: initialize n([a, a], x), m([a, a], x) and u([a, a], x)
6: end for
7: end for
8: // Phase 1(b): Recursion
9: // Compute m([a, b], x) and u([a, b], x)

10: for x = 0 to ns do
11: for a = p downto 1 do
12: for b = a + 1 to p do
13: m([a, b], x) ← 0
14: for r = 0 to na do
15: if x − r ≥ 0 then
16: m([a, b], x) ← m([a, b], x) + Cna

r × m([a + 1, b], x − r)
17: end if
18: end for
19: u([a, b], x) ← 0
20: for r = 0 to 
na/l� do
21: if x − r ≥ 0 then
22: u([a, b], x) ← u([a, b], x) + Cna

r × u([a + 1, b], x − r)
23: end if
24: end for
25: end for
26: end for
27: end for
28: // Compute n([a, b], x)
29: for x = 0 to ns do
30: for a = p downto 1 do
31: for b = a + 1 to p do
32: n([a, b], x) ← 0
33: for r = �na/l� + 1 to na do
34: if x − r ≥ 0 then
35: n([a, b], x) ← n([a, b], x) + Cna

r × m([a + 1, b], x − r)
36: end if
37: end for
38: for r = 0 to �na/l� do
39: if x − r ≥ 0 then
40: n([a, b], x) ← n([a, b], x) + Cna

r × n([a + 1, b], x − r)
41: end if
42: end for
43: end for
44: end for
45: end for
46: // Phase 2: Computing credibility Credibility(o, s, K min

ad )
47: Let credi be Credibility(o, s, K min

ad ) where o ∈ Ci
48: for i = 1 to p do
49: credi ← 0
50: for j = 1 to ni do
51 calculate A and B according to n([a, b], x), m([a, b], x) and u([a, b], x)
52: credi ← credi + A

B × j
ni

53: end for
54: end for
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Table XXIII. Possible Combinations of Number of
Sensitive Tuples when x = 1

Number of sensitive tuples
q1 q2

Total number
of cases

(a) 0 1 Cn1
0 × Cn2

1
(b) 1 0 Cn1

1 × Cn2
0

Table XXIV. Possible Combinations of Number of
Sensitive Tuples when x = 2

Number of sensitive tuples
q1 q2

Total number
of cases

(a) 0 2 Cn1
0 × Cn2

2
(b) 1 1 Cn1

1 × Cn2
1

(c) 2 0 Cn1
2 × Cn2

0

tuple distribution table as shown in Table XXIII. It is easy to see that

Credibility(o, s, K min
ad ) = total number of cases for Scenario (b)

total number of all possible cases
× 1

n1

= Cn1
1 × Cn2

0

Cn1
0 × Cn2

1 + Cn1
1 × Cn2

0
× 1

n1

= n1

n2 + n1
× 1

n1

= 1
n1 + n2

which is equal to the ratio of the sensitive tuples to the total number of tuples
in the generalized QID-EC Q .

Case (b): x = 2. Similarly, we have the sensitive tuple distribution table as
shown in Table XXIV. We have

Credibility(o, s, K min
ad ) = total number of cases for Scenario (b)

total number of all possible cases
× 1

n1

+ total number of cases for Scenario (c)
total number of all possible cases

× 2
n1

= Cn1
1 × Cn2

1

Cn1
0 × Cn2

2 + Cn1
1 × Cn2

1 + Cn1
2 × Cn2

0
× 1

n1

+ Cn1
2 × Cn2

0

Cn1
0 × Cn2

2 + Cn1
1 × Cn2

1 + Cn1
2 × Cn2

0
× 2

n1

= n1n2
n2(n2−1)

2 + n1n2 + n1(n1−1)
2

× 1
n1

+
n1(n1−1)

2
n2(n2−1)

2 + n1n2 + n1(n1−1)
2

× 2
n1

= 2(n1 + n2 − 1)
n2

1 + n2
2 + 2n1n2 − n1 − n2
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= 2(n1 + n2 − 1)
(n1 + n2)(n1 + n2 − 1)

= 2
n1 + n2

which is equal to the ratio of the sensitive tuples to the total number of tuples
in the generalized QID-EC Q .

Case (c): x > 2. Inductively, we can also derive that

Credibility(o, s, K min
ad ) = x

n1 + n2

which is equal to the ratio of the sensitive tuples to the total number of tuples
in the generalized QID-EC Q .

We consider the other three cases. Case 2: x ≤ n1 and x > n2, Case 3: x > n1
and x ≤ n2, and Case 4: x > n1 and x > n2. With similar arguments, we also
conclude that

Credibility(o, s, K min
ad ) = x

n1 + n2
.

Now, we consider the class Q where multiple QID values are generalized to Q .
Since the idea is similar and the key idea is no exclusion of any scenarios in
the sensitive tuple distribution table, we obtain that the credibility is exactly
the ratio of the sensitive tuples to the total number of tuples in the generalized
QID-EC.

PROOF OF LEMMA 2. To prove this lemma, we give an example where 2 QID’s
q1 and q2 are generalized to Q . There are 4 tuples of q1 and 2 tuples of q2.
In total, there are 3 occurrences of the sensitive value set s in the 6 tuples. If
2-diversity is the goal, then we can exclude the case of 2 sensitive q1 tuple and
1 sensitive q2 tuple. After the exclusion, the credibility of any linkage between
any individual to s still does not exceed 0.5.

PROOF OF THEOREM 2. We shall transform the problem of Exact Cover by 3-
Sets (X3C) [Holyer 1981] to the m-confidentiality anonymization problem. X3C
is defined by: Given a set X with |X | = 3q and a collection C of 3-element
subsets of X . Does C contain an exact cover for X , namely a subcollection
C′ ⊆ C such that every element of X occurs in exactly one member of C′?

Given an instance of X3C, we transform it to an instance of optimal m-
confidentiality under global recoding as follows. Create a table T with two
attributes Q and S, where Q is a QID attribute and S is a sensitive attribute
that may contain sensitive values. For S, there is only one sensitive value sv
and one nonsensitive value sn. We set weight(Q) = 1. For each element x in X ,
create a tuple with Q = x and S = sv. Hence, each value of x appears in exactly
one tuple. Let the elements in C be c1, . . . , cN . For each element ci = (x, y , z) in
C, create a taxonomy Ti. Ti contains ground elements of x, y , z, ni1, ni2, and ni3,
which are children of a root node ri. Create 3 tuples with Q = nij and S = sn,
for j = 1, 2, 3.

The remaining of the proof is to show: C contains an exact cover for X
if and only if there is a solution T ∗ for the 2-confidentiality problem with

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 8, Publication date: June 2009.



Anonymization-Based Attacks in Privacy-Preserving Data Publishing • App-9

Dist(T, T ∗) = e where e = 2q
q+N . Firstly, we prove that if C contains an exact

cover for X , then there is a solution T ∗ for the 2-confidentiality problem with
Dist(T, T ∗) = 2q

q+N . Let C′ be the exact cover for X . We know that every ele-
ment of X occurs in exactly one member of C′. Then, for each ci = (x, y , z) ∈ C′,
the correspondence taxonomy Ti is used for the generalization of x, y , and z
together with ni1, ni2, and ni3 because with global recoding all occurrences of
an attribute value are recoded to the same value. Thus, for each generalization
from Ti, the information loss of these six tuples in T ∗ are 6. Since |C′| = q,
the total information loss among all tuples (i.e.,

∑
t∗∈T ∗ IL(t∗)) is equal to 6q.

Since Dist(T, T ∗) =
∑

t∗∈T∗ IL(t∗)
|T ∗| and the total number of tuples in T ∗ is equal to

3q +3N , we have Dist(T, T ∗) = 6q
3q+3N = 2q

q+N . Besides, note that the adversary
cannot launch a minimality attack since each QID value appears only in one
tuple in the set of tuples. The adversary cannot exclude any possible combina-
tion of the table of sensitive tuple distribution. From Theorem 1, minimality
attack is not possible. Besides, the frequency of each QID-EC with sv in T ∗ is
at most 0.5. Thus, there is a solution T ∗ for the 2-confidentiality problem with
Dist(T, T ∗) = 2q

q+N .
Now, we prove that if there is a solution T ∗ for the 2-confidentiality problem

with Dist(T, T ∗) = 2q
q+N , then C contains an exact cover for X . Similarly, since

each QID value appears only in one tuple, it is impossible for the adversary to
exclude any possible combination of the table of sensitive tuple distribution.
From Theorem 1, minimality attack is not possible. Since the frequency of each
QID-EC with sv in T ∗ is at most 0.5 and Dist(T, T ∗) = 2q

q+N , T ∗ is a result of
the generalizations by using exactly q taxonomies Ti containing disjoint ground
values. Otherwise, either the frequency of some QID-EC’s in T ∗ is greater than
0.5 or Dist(T, T ∗) >

2q
q+N , that is, each tuple with value s is generalized by ex-

actly one generalization taxonomy. In other words, each element in X occurs in
exactly one member of the set C′ ⊆ C such that |C′| = q and each c ∈ C′ corre-
sponds to Ti used for generalization. Thus, C contains an exact cover C′ for X .

Besides, it is easy to see that the reduction runs in polynomial time. From
Theorem 6 (in Section 4), we know that we can compute the credibility of
each individual in polynomial time. Thus, we can verify problem optimal m-
confidentiality in polynomial time. So, problem optimal m-confidentiality under
global recoding is NP-complete.

PROOF OF THEOREM 3. We shall transform the problem of Partition into 4-
Cliques [Holyer 1981] to the m-confidentiality anonymization problem. Par-
tition into 4-Cliques is defined by: Given a simple graph G = (V , E), with
|E| = 6k for some integer k, can the edges of G be partitioned into k edge-
disjoint 4-cliques?

Given an instance of Edge Partition into 4-Cliques. Set m = 6. For each ver-
tex v ∈ V , construct a QID attribute. For each edge e ∈ E, where e = (v1, v2),
create a record rv1,v2 in which the QID attribute values v1 and v2 are equal
to 1 and all other QID attribute values equal to 0. Besides, we associate each
record with a sensitive attribute S. We generate sensitive attribute values of all
records as follows. If two edges share a common vertex, the sensitive attribute
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values of their corresponding records are different. The aforesaid principle can
be accomplished with the following steps. Firstly, the sensitive values of all
records are set to 0. Then, we randomly find a record r where the correspond-
ing edge is e. Let A be the set of all records where the corresponding vertices
have a common vertex with e. Then, we can obtain a set A′ containing the sen-
sitive values of all records in A. Find the smallest positive value which does
not occur in A′. Assign this value as the sensitive attribute value of record r.
Repeat the previous steps for each of the remaining records with sensitive value
= 0. It is noted that the preceding process resembles a process of edge coloring.
However, since the aforesaid process does not require that the edges are col-
ored with a limited (or optimal) number of colors, it can be done in polynomial
time.

We define the cost in the 6-confidentiality problem to be the number of sup-
pressions applied in the dataset. We show that this cost is at most 24k if and
only if E can be partitioned into a collection of k edge-disjoint 4-cliques.

Suppose E can be partitioned into a collection of k disjoint 4-cliques. Con-
sider a 4-clique Q with vertices v1, v2, v3, and v4. If we suppress the attributes
v1, v2, v3, and v4 in the 6 records corresponding to the edges in Q , then a cluster
of these 6 records are formed where each modified record has four *’s. Note that
the the frequency of each sensitive value in this cluster is at most 1/6. Simi-
lar to Theorem 2, the adversary cannot launch a minimality attack since each
QID value appears only in one tuple in the cluster. Thus, the dataset satisfies
6-confidentiality. The cost of the 6-confidentiality is equal to 6 × 4 × k = 24k.

Suppose the cost for the 6-confidentiality problem is at most 24k. As G is
a simple graph, any six records should have at least four different attributes.
So each record should have at least four *’s in the solution of 6-confidentiality.
Then, the cost of 6-confidentiality is at least 6 × 4 × k = 24k. Combining with
the proposition that the cost is at most 24k, we find that the cost is exactly
equal to 24k and thus each record should have exactly four *’s in the solution.
Each cluster should have exactly 6 records (with different sensitive values).
Suppose the six modified records contain four *’s in attributes v1, v2, v3, and v4,
the records contain 0’s in all other nonsensitive attributes. This corresponds to
a 4-clique with vertices v1, v2, v3 and v4. Thus, we conclude that the solution
corresponds to a partition into a collection of k edge-disjoint 4-cliques.

Similar to Theorem 2, it is easy to see that the reduction runs in polyno-
mial time. From Theorem 6 (in Section 4), we know that we can compute the
credibility of each individual in polynomial time. Thus, we can verify prob-
lem optimal m-confidentiality in polynomial time. We conclude that optimal
m-confidentiality under local recoding is NP-complete.

PROOF OF THEOREM 4. In order to prove that T ∗ generated by algorithm MASK
is m-confidential, we analyze how the adversary performs an attack, given
that the adversary knowledge contains not only the knowledge described in
Assumption 3 but also the mechanism of algorithm MASK. In the following, we
show that the credibility computed is at most 1/m. Let the privacy require-
ment considered be R (i.e., m-confidentiality). Let the privacy requirement
for k-anonymity be Rk . From T ∗, the adversary knows that, in T ∗, for each
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QID-EC Qi, the size of Qi is at least k and the frequency of each sensitive
value (in fraction) is at most 1/m. We consider two cases.

Case 1. The published table T ∗ is equal to the minimal k-anonymous table T k

generated in step 1 of algorithm MASK; that is, |V| is equal to ∅. We know that
algorithm MASK generates T ∗ such that the information loss of T ∗ is minimal
with respect to the QID attributes. Note that T ∗ is a result of generalization for
privacy requirement Rk (instead of privacy requirement R). However, at the
same time, T ∗ also satisfies m-diversity.

We prove that T ∗ also satisfies R in the following. Similar to Section 4, we
can also compute the credibility by constructing the sensitive tuple distribution
table with condition (1) and condition (2) (but not condition (3)) of Definition 10
accordingly in this case. It is noted that we do not need to consider condition (3)
since the generalization step for generating T ∗ is caused by “unequal” QID val-
ues in the original table T (without the consideration of the sensitive attribute).
In other words, the generalization is performed for Rk (instead of m-diversity).
Since condition (3) is not considered, there is no exclusion of any combination
of the number of sensitive tuples in the sensitive tuple distribution table in
the adversary’s analysis of this case. (However, the existence of the exclusion
used in Section 4 is due to the fact that the generalization is caused by the
consideration of both QID attributes and the sensitive attribute; that is, the
generalization is performed for m-diversity instead of Rk where condition (3) is
involved during the generation of the sensitive tuple distribution table.)

Since there is no exclusion of any combination in the sensitive tuple dis-
tribution table in this case, by Theorem 1, the credibility as computed by the
formulae for credibility is exactly the ratio of the sensitive tuples to the total
number of tuples in the generalized QID-EC. Besides, in T ∗, for each QID-EC
Qi, the frequency of each sensitive value (in fraction) is at most 1/m. We deduce
that Credibility(o, s, K min

ad ) is at most 1/m for any individual o and any sensitive
value set s. So, T ∗ satisfies R.

Case 2. The published table T ∗ is not equal to T k ; that is, |V| is not equal to
∅. Then, the adversary knows that step 2(a) of algorithm MASK is performed.
We consider two subcases.

Subcase (a). The total number of QID-EC’s which satisfy m-diversity in T k

is smaller than u(= (m−1)×|V |). This case is impossible because T ∗ is already
published.

Subcase (b). The total number of QID-EC’s which satisfy m-diversity in T k is
equal to or greater than u. The analysis of the credibility in this case is different
from Case 1. This analysis involves two major steps. The first step is that the
adversary deduces that some of the nonsensitive values in T ∗ originally come
from sensitive values in T . This is because some sensitive values are distorted
or modified to become nonsensitive values in step 4 of algorithm MASK. The
second step is similar to Section 4 and Case (1). Specifically, according to the
sensitive values deduced in the first step, the adversary can compute the cred-
ibility by the sensitive tuple distribution table with condition (1) and condition
(2) but not condition (3) of Definition 10 accordingly. Again, it is noted that we
do not need to consider condition (3) since the generalization step for generating
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T ∗ is caused by “unequal” QID values in the original table T (without the con-
sideration of the sensitive attribute).

In the following, we will show that it is difficult for the adversary to achieve
the first step. Then, with this result, we assume that we only need to con-
sider the sensitive values in T ∗ to calculate the credibility in the second
step.

For the first step, it is infeasible for the adversary to figure out what are the
original sensitive values because the adversary does not have the knowledge
about: (1) the size of V, (2) the original frequency of the sensitive tuples in each
QID-EC ∈ V, and (3) which QID-EC’s in T ∗ come from V. It may be argued that
the adversary can first consider all possible choices of the aforesaid knowledge,
compute the credibility for each choice with the second step, and finally com-
pute the final credibility with all choices. This approach does not work because
without sufficient knowledge, we do not know the probability that each choice
occurs. Assuming a random world assumption (i.e., all such probabilities have
the same values) is also not reasonable. This is because, for example, the ad-
versary cannot tell whether the probability that |V| = 1 occurs is equal to the
probability that |V| = 2 occurs or not. With this reasoning, the deduction of the
original sensitive values is impossible.

For the second step, we assume that the sensitive values considered come
from T ∗. By similar arguments as Case 1, since there is no exclusion of any com-
bination, the credibility as computed by the formulae for credibility is exactly
the ratio of the sensitive tuples to the total number of tuples in the generalized
QID-EC. Besides, in T ∗, for each QID-EC Qi, the frequency of each sensitive
value (in fraction) is at most 1/m. Credibilityx(o, s, K min

ad ) is at most 1/m for
any individual o and any sensitive value set s. So, T ∗ satisfies R.
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