
The VLDB Journal (2009) 18:809–835
DOI 10.1007/s00778-008-0128-8

REGULAR PAPER

Top-k typicality queries and efficient query answering methods
on large databases

Ming Hua · Jian Pei · Ada W. C. Fu · Xuemin Lin ·
Ho-Fung Leung

Received: 15 October 2007 / Revised: 15 November 2008 / Accepted: 19 November 2008 / Published online: 15 January 2009
© Springer-Verlag 2009

Abstract Finding typical instances is an effective approach
to understand and analyze large data sets. In this paper, we
apply the idea of typicality analysis from psychology and
cognitive science to database query answering, and study
the novel problem of answering top-k typicality queries. We
model typicality in large data sets systematically. Three types

This paper is a substantial extension of the conference version [32].
The research of Ming Hua and Jian Pei is supported in part by an
NSERC Discovery grant and an NSERC Discovery Accelerator
Supplements grant. The research of Xuemin Lin is supported in part
by the Australian Research Council Discovery Grants DP0987557,
DP0881035 and DP0666428 and a Google research award. All
opinions, findings, conclusions and recommendations in this paper are
those of the authors and do not necessarily reflect the views of the
funding agencies. We are grateful to the anonymous reviewers and
Dr. Peter Haas, the associate editor, for their constructive comments
which help to improve the quality of the paper substantially.
Particularly, we thank them for their advice in improving the
mathematical exposition and their suggestions about some important
related work.

M. Hua (B) · J. Pei
Simon Fraser University, Burnaby, Canada
e-mail: mhua@cs.sfu.ca

J. Pei
e-mail: jpei@cs.sfu.ca

A. W. C. Fu · H.-F. Leung
The Chinese University of Hong Kong,
Shatin, NT, Hong Kong, China
e-mail: adafu@cse.cuhk.edu.hk

H.-F. Leung
e-mail: lhf@cse.cuhk.edu.hk

X. Lin
The University of New South Wales, Sydney, Australia
e-mail: lxue@cse.unsw.edu.au

X. Lin
NICTA, Sydney, Australia

of top-k typicality queries are formulated. To answer
questions like “Who are the top-k most typical NBA play-
ers?”, the measure of simple typicality is developed. To
answer questions like “Who are the top-k most typical guards
distinguishing guards from other players?”, the notion of
discriminative typicality is proposed. Moreover, to answer
questions like “Who are the best k typical guards in whole
representing different types of guards?”, the notion of rep-
resentative typicality is used. Computing the exact answer
to a top-k typicality query requires quadratic time which is
often too costly for online query answering on large dat-
abases. We develop a series of approximation methods for
various situations: (1) the randomized tournament algorithm
has linear complexity though it does not provide a theoretical
guarantee on the quality of the answers; (2) the direct local
typicality approximation using VP-trees provides an approx-
imation quality guarantee; (3) a local typicality tree data
structure can be exploited to index a large set of objects. Then,
typicality queries can be answered efficiently with quality
guarantees by a tournament method based on a Local Typi-
cality Tree. An extensive performance study using two real
data sets and a series of synthetic data sets clearly shows that
top-k typicality queries are meaningful and our methods are
practical.

Keywords Typicality analysis · Top-k query · Efficient
query answering

1 Introduction

Learning from examples is an effective strategy extensively
adopted in practice. For instance, how should one teach the
concept of mammal? A helpful approach is to show some typ-
ical examples of mammals such as leopard and lions. Good

123

810 M. Hua et al.

examples are often more effective than feature descriptions as
the first step to understand a concept or a large set of objects.

How should good examples be chosen? First of all, those
examples must be typical. Using platypuses (which lay eggs
instead of giving birth to live young) as examples of mammals
may mislead children in learning the concept. In addition, real
examples are strongly preferred. Some virtual objects made
up by assembling perfect features of the concept may not be
easy to understand. More often than not, an ideal case may
not be possible. For example, there does not exist a single
bird having all the expected features of birds.

Typicality analysis has been studied extensively in psy-
chology and cognitive science (see Sect. 3 for a brief review).
Interestingly, the strategy of using typical examples to sum-
marize and analyze a large set of objects can be applied to
effective query answering. When a user asks a query which
may return a large number of answers, instead of examining
those answers one by one, the user may want to obtain a small
number of typical answers for digesting.

1.1 Motivating examples

Jeff is a junior basketball player whose dream is to play in
the NBA. As the NBA has more than 400 active players, they
are quite diverse. Jeff may want to know some representative
examples of NBA players. Top-k typicality queries can help.

1.1.1 Top-k simple typicality queries

Jeff asks, “Who are the top-3 most typical NBA players?”
We can imagine that, in the space of technical statistics, there
exists a likelihood function of being NBA players. The player
who has the maximal likelihood of being NBA players is the
most typical. This leads to our first typicality measure—the
simple typicality. A top-k simple typicality query finds the k
most typical objects in a set of objects.

1.1.2 Top-k discriminative typicality queries

Jeff is particularly interested in becoming a guard. “Who
are the top-3 most typical guards distinguishing guards from
other players?” Simple typicality on the set of guards is insuf-
ficient to answer the question, since it is possible that a typ-
ical guard may also be typical among other players. Instead,
players that are typical among all guards but are not typical
among all non-guard players should be found.

In order to address this demand, we need the notion of
discriminative typicality, which measures how an object is
typical in one set but not typical in the other set. Given a set
of objects and a target subset, a top-k discriminative typical-
ity query finds the k objects with the highest discriminative
typicality values.

1.1.3 Top-k representative typicality queries

NBA guards may still have some sub-groups. For example,
the fresh guards and the experienced guards, as well as the
shooting guards and the point guards. Jeff wants to learn dif-
ferent types of guards, without a clear idea about what types
there are. So he asks,“Who are the best 3 typical guards in
whole representing different types of guards?”

Simple typicality does not provide the correct answer to
this question, since the 3 players with the greatest simple typ-
icality may be quite similar to each other, while some other
popular players different from those three may be missed.
Discriminative typicality does not help either, because the
exact types of guards and their members are unknown.

To solve this problem, we develop the notion of repre-
sentative typicality on a set of objects, which measures how
an object is typical among a set of objects different from the
already reported typical objects. Given a set of objects, a top-
k representative typicality query finds a set of k objects with
the highest representative typicality scores.

1.1.4 Efficient query answering

Top-k typicality queries can be used to provide good
examples for effective learning and understanding. The above
scenarios may happen in many other applications, such as
students learning concepts, medical analysts investigating
medical cases, and city administration analyzing traffic acci-
dents and crimes. In our empirical study (Sect. 8), we will
illustrate the effectiveness of typicality queries using two real
data sets.

As more and more data has been accumulated, top-k
typicality queries may be applied on large data sets. It is
practically desirable that the queries can be answered online.
However, we will show that, with a proper notion of top-k
typicality, computing the exact answer to a top-k typical-
ity query needs quadratic time which is often too costly for
online query answering on large data sets. On the other hand,
typical enough examples are often sufficient for understand-
ing and analyzing large data sets. Thus, there are practical
demands to have approximation methods to answer top-k
typicality queries.

1.2 Our contributions

In this paper, we formulate and tackle the problem of effi-
ciently answering top-k typicality queries, and make the fol-
lowing contributions.

First, we extend the idea of typicality analysis from psy-
chology and cognitive science to database query answering
and search, and identify the novel problem of top-k typical-
ity query answering on large databases. We develop three
effective measures for typicality.

123

Top-k typicality queries and efficient query answering methods on large databases 811

Second, as computing exact answers to top-k typicality
queries on large databases can be costly, we develop a series
of approximation query answering algorithms for various sit-
uations: (1) the randomized tournament algorithm has linear
complexity though it does not provide a theoretical guaran-
tee on the quality of the answers; (2) the direct local typical-
ity approximation using VP-trees provides an approximation
quality guarantee; (3) a local typicality tree (LT-tree) can be
exploited to index a large set of objects. Then, typicality que-
ries can be answered efficiently with quality guarantees by
an LT-tree tournament method.

Last, we conduct an extensive performance study on both
real data sets and synthetic data sets to verify the effective-
ness of top-k typicality queries and the efficiency of our query
evaluation methods.

1.2.1 How is this study different from others?

To the best of our knowledge, we are the first to systemat-
ically study how to use typicality in ranking query answers
from large databases. We also address the efficient query
answering issue.

Top-k queries (also known as ranking queries) have been
heavily employed in many applications, such as searching
web databases, similarity search, recommendation systems,
etc. According to a user-specified preference function, a top-
k query returns the best k results. Many previous studies
investigated efficient approaches to answering top-k queries
using aggregate scoring functions. Such an aggregate func-
tion maps an object to a certain preference score. The score
depends on only the attribute values of the object, and is often
independent from other objects in the database.

Top-k typicality queries are a special type of top-k que-
ries, however, the typicality of an object depends on the dis-
tribution of the other objects in question. This poses a major
challenge for efficient top-k typicality query answering. To
the best of our knowledge, how to answer top-k queries effi-
ciently using such “relative” scoring functions has not been
studied well.

The rest of the paper is organized as follows. We pro-
pose the typicality measures in Sect. 2 and systematically
review the related work in Sect. 3. For top-k simple typical-
ity queries, we develop a randomized tournament algorithm
in Sect. 4, and the local typicality approximation methods in
Sect. 5. We discuss how to answer top-k discriminative and
representative typicality queries in Sects. 6 and 7, respec-
tively. We report a systematic performance study in Sect. 8.
The paper is concluded in Sect. 9.

2 Top-K typicality queries

In this section, we define the three types of top-k typicality
queries that will be addressed in this paper.

By default, we consider a set of objects S on attributes
A1, . . . , An . Let Ai1 , . . . , Ail be the attributes on which the
typicality queries are applied (1 ≤ i j ≤ n for 1 ≤ j ≤ l) and
dAi1 ,...,Ail

(x, y) be the distance between two objects x and y
in S on attributes Ai1 , . . . , Ail . When Ai1 , . . . , Ail are clear
from context, dAi1 ,...,Ail

(x, y) is abbreviated to d(x, y).
We address the top-k typicality problem in a generic met-

ric space. Therefore, the distance metric d should satisfy the
triangle inequality. The definitions and frequently used nota-
tions are summarized in Table 1.

2.1 Simple typicality

In a set of objects S, which object is the most typical? To
answer this query, we introduce simple typicality.

By intuition and as also suggested by the previous research
in psychology and cognitive science (as will be reviewed in
Sect. 3), an object o in S is more typical than the others if o is
more likely to appear in S. Conceptually, the set of objects S
on attributes A1, . . . , An can be viewed as a set of indepen-
dent and identically distributed samples of an n-dimensional
random vector Z that takes values in the Cartesian product
space D = DA1 × · · · × DAn , where DAi is the domain of
attribute Ai (1 ≤ i ≤ n). The likelihood of o ∈ S, given that
o is a sample of Z , can be used to measure the typicality of o.

Definition 1 (Simple typicality) Given a set of objects S on
attributes A1, . . . , An and a subset of attributes Ai1 , . . . , Ail
(1 ≤ i j ≤ n for 1 ≤ j ≤ l) of interest, let Z be the n-dimen-
sional random vector generating the samples S, the simple
typicality of an object o ∈ S with respect to Z on attributes
Ai1 , . . . , Ail is defined as TAi1 ,...,Ail

(o,Z) = L Ai1 ,...,Ail
(o|Z) where L Ai1 ,...,Ail

(o|Z) is the likelihood [23] of o on
attributes Ai1 , . . . , Ail , given that o is a sample of Z .

In practice, since the distribution of random vector Z is
often unknown, we use TAi1 ,...,Ail

(o, S) = L Ai1 ,...,Ail
(o|S) as

an estimator of TAi1 ,...,Ail
(o,Z), where L Ai1 ,...,Ail

(o|S) is the
posterior probability of an object o on attributes Ai1 , . . . , Ail
given S [23].

L Ai1 ,...,Ail
(o|S) can be computed using density estimation

methods. In this paper, we adopt the commonly used kernel
density estimation method, which does not require any dis-
tribution assumption on S. The general idea is to use a kernel
function to approximate the probability density around each
observed sample. More details will be discussed in Sect. 4.1.

Hereafter, unless specified otherwise, the simple typicality
measure refers to the estimator TAi1 ,...,Ail

(o, S). Moreover,
for the sake of simplicity, when Ai1 , . . . , Ail are clear from
context, TAi1 ,...,Ail

(o, S) and L Ai1 ,...,Ail
(o|S) are abbreviated

to T (o, S) and L(o|S), respectively.
Given a set of objects S on attributes Ai1 , . . . , Ail of inter-

est, a predicate P and a positive integer k, a top-k simple
typicality query returns, from the set of tuples in S satisfying

123

812 M. Hua et al.

Table 1 Summary of definitions and frequently used notations

Notation Description

o(= (a1, . . . , an)) An object on attributes A1, . . . , An (o.Ai = ai for 1 ≤ i ≤ n)

D = DA1 × · · · × DAn The Cartesian product space (DAi is the domain of attribute Ai for 1 ≤ i ≤ n)

Z and S A random vector Z and a set of objects S that are independent and identically distributed
samples of Z

L(o|Z) The likelihood [23] of an object o given that it is a sample of random vector Z
L(o|S) The likelihood [23] of an object o given a set of objects S

T (o, Z) = L(o|Z) The simple typicality of object o (Definition 1)

T (o, S) = L(o|S) An estimator of simple typicality T (o, Z)

DT (o, U, V) = T (o, U)− T (o, V) the discriminative typicality of o in C ⊂ S, where U and V are the random vectors that
generate the samples C and S − C , respectively (Definition 2)

DT (o, C, S − C) = T (o, C)− T (o, S − C) An estimator of discriminative typicality DT (o, U, V)

D(o, A) = {x |x ∈ D, d(x, o) = miny∈A d(x, y)} The representing region of o ∈ A (Definition 3)

N (o, A, S) = {x |x ∈ S ∩ D(o, A)} The objects in S that lie in the representing region of o ∈ A

GT (A, Z) =∑
o∈A T (o, ZD(o,A))Pr(D(o, A)) The group typicality of a set of objects A ⊂ S, where T (o, ZD(o,A)) is the simple typicality

of o with respect to Z in D(o, A) (Definition 4)

GT (A, S) =∑
o∈A T (o, N (o, A, S))

|N (o,A,S)|
|S| An estimator of group typicality GT (A, Z)

RT (o, A, Z) = GT (A ∪ {o}, Z)− GT (A, Z) The representative typicality of o with respect to the reported answer set A ⊂ S (Definition 5)

RT (o, A, S) = GT (A ∪ {o}, S)− GT (A, S) An estimator of representative typicality RT (o, A, Z)

Fig. 1 The simple typicality
and discriminative typicality
curves of a set of points

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

Y

X

a

c

b

d

e

f

-0.4

-0.2

 0

 0.2

 0.4

P
ro

ba
bi

lit
y

de
ns

ity

Location of data point

ac b d e f

T(o,black)=L(o|black)
T(o,white)=L(o|white)

DT(o,white,black)

(a) (b)

predicate P , the k tuples having the largest simple typicality
values that are computed on attributes Ai1 , . . . , Ail .

Example 1 (Top-k simple typicality queries) Consider the set
of points in Fig. 1a. A top-3 simple typicality query on attri-
bute X with predicate C O L O R = white returns the 3 white
points having the largest simple typicality values computed
on attribute X .

Figure 1b projects the points in T to attribute X . The likeli-
hood function of the white points and that of the black points
on attribute X are labeled as L(o|white) and L(o|black) in
the figure, respectively, while we will discuss how to com-
pute the likelihood values in Sect. 4.1. Points a, b and c have
the highest likelihood values among all white points, and thus
should be returned as the answer to the query.

2.2 Discriminative typicality

Simple typicality works when a set of objects are consid-
ered independently from other objects not in the set. In some

scenarios, a user may have multiple classes of objects, such as
the guards and all other NBA players as illustrated in Sect. 1.
To understand the discriminative features of one class against
the others, one may want to find the objects that are typical
in the target class, but not in the others.

Given a set of objects S and a target subset C, which
object is the most typical in C but not in (S − C)? We use
the discriminative typicality to answer such a question. By
intuition, an object o ∈ C is typical and discriminative in C if
the difference between its typicality in C and that in (S−C)

is large.

Definition 2 (Discriminative typicality) Given a set of
objects S on attributes A1, . . . , An and a target subset C ⊂ S,
let U and V be the n-dimensional random vectors generating
the samples C and S − C , respectively, the discriminative
typicality of an object o ∈ C on attributes Ai1 , . . . , Ail (1 ≤
i j ≤ n for 1 ≤ j ≤ l) is DT (o,U ,V) = T (o,U)−T (o,V),
where T (o,U) and T (o,V) are the simple typicality values
of object o with respect to U and V , respectively.

123

Top-k typicality queries and efficient query answering methods on large databases 813

In the definition, the discriminative typicality of an object
is defined as the difference of its simple typicality in the
target set and that in the rest of the data set. One may won-
der whether using the ratio T (o,U)

T (o,V)
may also be meaningful.

Unfortunately, such a ratio-based definition may not choose
a typical object that has a large simple typicality value with
respect to U . Consider an extreme example. Let o be an object
that is very atypical with respect to U and has a typicality
value of nearly 0 with respect to V . Then, o still has an infi-
nite ratio T (o,U)

T (o,V)
. Although o is discriminative between U

and V , it is not typical with respect to U at all.
Due to the unknown distribution of random vectors U and

V , we use DT (o, C, S − C) = T (o, C) − T (o, S − C) to
estimate DT (o,U ,V), where T (o, C) and T (o, S − C) are
the estimators of T (o,U) and T (o,V), respectively.

Given a set of objects S on attributes Ai1 , . . . , Ail of inter-
est, a predicate P and a positive integer k, a top-k discrimi-
native typicality query treats the set of tuples in S satisfying
P as the target subset, and returns the k tuples in the tar-
get subset having the largest discriminative typicality values
computed on attributes Ai1 , . . . , Ail .

Example 2 (Top-k discriminative typicality queries) Con-
sider the set of points in Fig. 1a again and a top-3 dis-
criminative typicality query on attribute X with predicate
C O L O R = white.

The discriminative typicality DT (o, white, black) for
each object o ∈ white is plotted in the figure, where white
and black denote the set of white points and black points,
respectively. To see the difference between discriminative
typicality and simple typicality, consider objects a, b and c,
which have large simple typicality values among all white
points. However, they also have relatively high simple typ-
icality values as a member in the subset of black points
comparing to other white points. Therefore, they are not dis-
criminative. Points {d, e, f } are the answer to the query, since
they are discriminative.

2.3 Representative typicality

The answer to a top-k simple typicality query may contain
some similar objects, since the objects with similar attribute
values may have similar simple typicality scores. However,
in some situations, it is redundant to report many similar
objects. Instead, a user may want to explore the data set by
viewing typical objects that are different from each other but
jointly represent the whole data set well. For example, as
illustrated in Sect. 1, a user may want to get a small subset of
guards representing the whole set of guards nicely. Reporting
similar typical objects as simple typicality queries does not
meet the requirement.

Suppose a subset A ⊂ S is chosen to represent S. Each
object in (S − A) is best represented by the closest object in
A. For each o ∈ A, we define the representing region of o.

Definition 3 (Representing region) Given a set of objects
S on attributes A1, . . . , An and a subset A ⊂ S, let D =
DA1 × · · · × DAn where DAi is the domain of attribute Ai

(1 ≤ i ≤ n), the representing region of an object o ∈ A
is D(o, A) = {x |x ∈ D, d(x, o) = miny∈A d(x, y)}, where
d(x, y) is the distance between objects x and y.

To make A representative as a whole, the representing
region of each object o in A should be fairly large and o
should be typical in its own representing region.

Definition 4 (Group typicality) Given a set of objects S on
attributes A1, . . . , An and a subset A ⊂ S, let Z be the
n-dimensional random vector generating the samples S, the
group typicality of A on attributes Ai1 , . . . , Ail (1 ≤ i j ≤ n,
1 ≤ j ≤ l) is GT (A,Z) = ∑

o∈A T (o,ZD(o,A)) · Pr
(D(o, A)), where T (o,ZD(o,A)) is the simple typicality of
o with respect to Z in o’s representing region D(o, A) and
Pr(D(o, A)) is the probability of D(o, A).

Since the distribution of Z is unknown, we can estimate
the group typicality GT (A,Z) as follows. For any object o ∈
A, let N (o, A, S) = {x |x ∈ S∩D(o, A)} be the set of objects
in S that lie in D(o, A), Pr(D(o, A)) can be estimated using
|N (o,A,S)|
|S| . The group typicality GT (A,Z) is estimated by

GT (A, S) = ∑
o∈A T (o, N (o, A, S)) · |N (o,A,S)|

|S| , where
T (o, N (o, A, S)) is the estimator of simple typicality T (o,

ZD(o,A)), since N (o, A, S) can be viewed as a set of inde-
pendent and identically distributed samples of Z that lie in
D(o, A).

The group typicality score measures how representative
a group of objects is. The size-k most typical group prob-
lem is to find k objects as a group such that the group has
the maximum group typicality. Unfortunately, the problem
is NP-hard, since it has the discrete k-median problem as a
special case, which was shown to be NP-hard [15].

Moreover, top-k queries are generally expected to have
the monotonicity in answer sets. That is, the result of a top-
k query is contained in the result of a top-k′ query where
k < k′. However, an object in the most typical group of size
k may not be in the most typical group of size k′ (k < k′).
For example, in the data set illustrated in Fig. 2, the size-1
most typical group is {A} and the size-2 most typical group
is {B, C}, which does not contain the size-1 most typical
group. Therefore, the size-k most typical group is not suit-
able to define the top-k representative typicality.

To make representative typicality practical on large data
sets, we adopt a greedy approach.

Definition 5 (Representative typicality) Given a set of
objects S and a reported answer set A ⊂ S, let Z be the

123

814 M. Hua et al.

Fig. 2 Non-monotonicity of
size-k most typical group

A C

B

random vector with respect to samples S, the representa-
tive typicality of an object o ∈ (S − A) is RT (o, A,Z) =
GT (A ∪ {o},Z)− GT (A,Z), where GT (A ∪ {o},Z) and
GT (A,Z) are the group typicality values of subsets A∪ {o}
and A, respectively.

In practice, we use RT (o, A, S) = GT (A ∪ {o}, S) −
GT (A, S) to estimate RT (o, A,Z), where GT (A, S) and
GT (A∪{o}, S) are the estimators of GT (A,Z) and GT (A∪
{o},Z), respectively.

Given a set of objects S on attributes Ai1 , . . . , Ail of inter-
est, a predicate P and a positive integer k, a top-k represen-
tative typicality query returns k objects o1, . . . , ok from the
set of tuples in S satisfying predicate P , such that o1 is the
object having the largest simple typicality, and, for i > 1,

oi = arg max
o∈S−{o1,...,oi−1}

RT (o, {o1, . . . , oi−1}, S).

The representative typicality values are computed on attri-
butes Ai1 , . . . , Ail .

Example 3 (Top-k representative typicality queries) Consid-
er the set of points in Fig. 3a and a top-2 representative
typicality query on attribute X with predicate C O L O R =
white.

We project the white points to attribute X and plot the sim-
ple typicality scores of the white points, as shown in Fig. 3b.
Points a and c have the highest simple typicality scores. How-
ever, if we only report a and c, then the dense region around
a is reported twice, but the dense region around b is missed.
A top-2 representative typicality query will return a and b as
the answer.

2.4 Comparison with other analysis

Typicality is different from the following existing notions of
representative objects.

2.4.1 Medians, means and typical objects

In many previous studies, medians and means are often used
to represent the aggregate of a set of objects. The mean of
a set of points is the geometric center of the set, while the
median is the point in the set that is closest to the mean. Can
medians and means approximate typical objects well?

Consider a set of points in Fig. 4. Points A and C are the
median and the mean of the set, respectively, and point B
(the white point) is the most typical point. Clearly, the most
typical point B is quite different from the median and the
mean in this example.

As the geometric centers, medians and means are not nec-
essarily related to probability distribution which is captured
by the typical objects. In Sect. 8.1, we will use real data sets
to further elaborate the differences between medians, means,
and typical objects.

2.4.2 Clustering and typicality analysis

Clustering analysis partitions a set of objects into subsets so
that the objects in each subset share similar features. It is dif-
ferent from typicality analysis in the following two aspects.
First, clustering analysis focuses on grouping objects into
clusters. The relationship among objects in a cluster is often
not explored. Typicality analysis finds the most represen-
tative objects, but does not deal with grouping of objects.

Fig. 4 Medians, means and
typical objects

A

C

B

Fig. 3 The answer to a top-2
representative typicality query
on a set of points

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12

Y

X

ac

b

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

P
ro

ba
bi

lit
y

de
ns

ity

Location of the data point

ac b

T(o,white)

(a) (b)

123

Top-k typicality queries and efficient query answering methods on large databases 815

T2

M
C

C
M

T3

M
C

T1

Fig. 5 Cluster centroids and typical objects

Second, although the centroid in a cluster sometimes may be
used to represent the cluster, it may not be representative in
general. More detailed comparisons between clustering and
the typicality analysis can be found in Sect. 3.4.

Figure 5 shows a set of points with three clusters. The
clusters are computed based on the distance between points:
two or more points belong to the same cluster if their pair-
wise distances are smaller than their distances to the points in
other clusters. The mean and the median of the points in each
cluster are labeled C and M , respectively. Medians are often
considered as cluster centroids. The answer of the top-3 most
representative typicality query contains white points T1, T2

and T3, which are quite different from the means and medi-
ans. Moreover, the typical objects T1, T2 and T3 are more
similar (with shorter distance) to the objects around them
than medians.

3 Related Work

3.1 Typicality in psychology and cognitive science

Typicality of objects has been widely discussed in psychol-
ogy and cognitive science [22,48]. People judge some objects
to be “better examples” of a concept than others. This is
known as the graded structure [42] of a category. Generally,
the graded structure is a continuum of category represen-
tativeness, beginning with the most typical members of a
category and continuing through less typical members to its
atypical members.

There are several determinants of graded structure. One
determinant is the central tendency [6] of a category. Central
tendency is either one or several very representative exem-
plar(s), either existing in the category or not. An exemplar’s
similarities to the central tendency determine its typicality in
this category. Another determinant of typicality is the stim-
ulus similarity [41]. Generally, the more similar an instance
is to the other members of its category, and the less similar
it is to members of the contrast categories, the higher the
typicality rating it has.

The prototype view [43] suggests that a concept be repre-
sented by a prototype, such that objects “closer to” or “more

similar to” the prototype are considered to be better examples
of the associated concept. The exemplar view [12] is an alter-
native to the prototype view that proposes using real objects
as exemplars instead of abstract prototypes that might not
exist in real life. Finally, the schema view [16] improves the
prototype view by modeling concepts in schema theory and
artificial intelligence knowledge representation.

Although typicality has not been used before in query
answering on large databases, the idea of typicality was
recently introduced into ontology design and conceptual
modeling [5], which are generally related to database design.
How is our study related? Our typicality measures are in the
general spirit of typicality measures used in psychology and
cognitive science. As suggested by the previous studies in
psychology and cognitive science, typicality measures may
vary in different applications. In our study, we propose simple
typicality, discriminative typicality, and representative typi-
cality for different application requirements.

Studies on typicality in psychology and cognitive sci-
ence often do not address the concerns about efficient query
answering from large databases. Complementary to those
studies, we focus on efficient query answering.

3.2 Top-k (ranking) queries

There are numerous query answering algorithms proposed
for top-k queries in the literature. The threshold algorithm
(TA) [39] is one of the best algorithms. TA first sorts the val-
ues in each attribute and then scans the sorted lists in parallel.
A “stopping value” is maintained, which acts as a threshold
to prune the tuples in the rest of the lists if they cannot have
better scores than the threshold. Several variants of TA have
also been proposed, such as [25]. The recent development and
extension of top-k query answering include using views to
answer top-k queries efficiently [19], removing redundancy
in top-k patterns [52], applying multidimensional analysis in
top-k queries [53], continuous monitoring of top-k queries
over a sliding window [38], and so forth.
How is our study related? Our top-k typicality queries pro-
vide a list of objects with the highest typicality scores accord-
ing to the proposed typicality measures. This is similar to the
existing ranking queries in general.

However, our scoring functions (typicality measures) are
different from most of the scoring functions studied before
in top-k queries. The typicality score for each object is based
on its relationship with the other objects in question. This
is much more complicated than scoring an individual object
based on its own attributes independently, like most other
scoring functions do. Therefore, some classic and efficient
query answering algorithms for top-k queries cannot be
directly applied to answer top-k typicality queries. We have
to develop new efficient query answering algorithms.

123

816 M. Hua et al.

3.3 The (discrete) k-median problem

Finding typical objects is broadly related to the k-median
problem in computational geometry. Given a set S of n points,
the k-median problem is to find a set M of k points minimizing
the sum of distances from all points in S to M . Points in M
are called the medians of S. Under the constraint that points
in M belong to S, it is known as the discrete k-median prob-
lem. When k = 1, we can find the exact median in O(n2)

time. When k is an arbitrary input parameter, the discrete k
median problem on any distance metric is N P-hard [15].

Several approximation algorithms have been proposed to
compute the approximate 1-median efficiently. [8] proposes a
quad-tree based data structure to support finding the
approximate median with a constant approximation ratio in
O(n log n) time. A randomized algorithm is proposed in [14],
which computes the approximate median in linear time.
Although the approximation ratio cannot be bounded, it per-
forms well in practice. [33] provides a (1 + δ)-approxima-
tion algorithm with runtime O(n/δ5) based on sufficiently
large sampling. [7] proposes an algorithm to solve the median
problem in L1 metric in O(n log n) time.
How is our study related? The top-k simple typicality query
and the discrete k-median problem both want to find the
objects in a data set optimizing the scores with respect to
their relationship to other objects. However, as will be clear in
Sect. 4.1, the functions to optimize are different. The methods
of the discrete k-median problem cannot be applied directly
to answer top-k typicality queries.

Moreover, in discrete k-median problem, there is no rank-
ing among the k median objects. The top-k representative
typicality queries as defined will return k objects in an order.

3.4 Clustering analysis

Clustering analysis partitions a set of data objects into smaller
sets of similar objects. [54] is a nice survey of various clus-
tering methods.

The clustering methods can be divided into the follow-
ing categories. The partitioning methods partition the objects
into k clusters and optimize some selected partitioning
criterion, where k is a user specified parameter. K-means [29],
K-medoids [36] and CLARANS [40] are examples of this
category. The hierarchical methods perform a series of
partitions and group data objects into a tree of clusters.
BIRCH [56], CURE [27] and Chameleon [35] are exam-
ples of hierarchical methods. The density-based methods
use a local cluster criterion and find the regions in the data
space that are dense and separated from other data objects by
regions with lower density as clusters. The examples of den-
sity-based methods include DBSCAN [24], OPTICS [3] and
DENCLUE [30]. The grid-based methods use multi-resolu-
tion grid data structures and form clusters by finding dense

grid cells. STING [51] and CLIQUE [2] are examples of
grid-based methods.
How is our study related? Typicality analysis and clustering
analysis both consider similarity among objects. However,
the two problems have different objectives. Clustering
analysis focuses on partitioning data objects, while typicality
analysis aims to find representative objects.

In some studies, cluster centroids are used to represent the
whole clusters. However, in general the centroid of a clus-
ter may not be a representative point. For example, medians
are often considered as cluster centroids in partitioning clus-
tering methods, but they are not the most typical objects as
shown in Sect. 2.4.

In the density-based clustering method DBSCAN [24], the
concept of “core point” is used to represent the point with
high density. For a core point o, there are at least Min Pts
points lying within a radius Eps from o, where Min Pts and
Eps are user input parameters. However, “core points” are
significantly different from “typical points” in the following
two aspects.

First, a “core point” may not be typical. Consider an
extreme case where there are two groups of points: the first
group of points lie close to each other with a size much larger
than Min Pts, while the second group only contain Min Pts
points lying within a radius Eps from a point o that are far
away from the points in the first group. then, o is a core point
but it is not typical at all. Second, a typical point may not be
a “core point”, either. It is possible that a typical point does
not have Min Pts points lying within a distance Eps from it,
but it still has a high typicality score. A comparison between
clustering and typicality analysis on real data sets is given in
Sect. 8.1.

It is possible to extend the existing clustering methods to
answer typicality queries, by defining the most typical object
in a cluster as the centroid and using the maximal group typ-
icality of clusters as the clustering criteria, which is in the
same spirit as our typicality query evaluation algorithms.

3.5 Other related models

Typicality probability [13,26] in statistical discriminant anal-
ysis is defined as the Mahalanobis distance between an object
and the centroid of a specified group, which provides an abso-
lute measure of the degree of membership to the specified
group.

Spatially-decaying aggregation [17,18] is defined as the
aggregation values influenced by the distance between data
items. Generally, the contribution of a data item to the aggre-
gation value at certain location decays as its distance to
that location increases. Nearly linear time algorithms are
proposed to compute the ε-approximate aggregation values
when the metric space is defined on a graph or on the Euclid-
ean plane.

123

Top-k typicality queries and efficient query answering methods on large databases 817

How is our study related? Discriminant analysis mainly
focuses on how to correctly classify the objects. It does not
consider the typicality of group members. Our definition of
discriminative typicality combines both the discriminability
and the typicality of the group members, which is more
powerful in capturing the “important” instances in multi-
class data sets. Moreover, [13,26] do not discuss how to
answer those queries efficiently on large data sets.

Spatially decaying sum with exponential decay function
[17,18] is similar to our definition of simple typicality. How-
ever, in [17,18], the spatially decaying aggregation problem
is defined on graphs or Euclidean planes, while we assume
only a generic metric space. The efficiency in [17,18] may
not be carried forward to the more general metric space. The
techniques developed in this paper may be useful to compute
spatially-decaying aggregation on a general metric space.
When typicality queries are computed on graphs or Euclid-
ean planes, some ideas in [17,18] may be borrowed.

4 Answering simple typicality queries

In this section, we first discuss how to compute likelihood
values, then, we show that answering top-k typicality que-
ries is quadratic in nature. Last, we present a randomized
tournament approximation algorithm (RT). The approxima-
tion algorithm developed for simple typicality computation
in this section can be extended to answer top-k discriminative
typicality queries and top-k representative typicality queries,
as will be discussed later in Sects. 6 and 7, respectively.

4.1 Likelihood computation

For an object o in S, likelihood L(o|S) is the posterior prob-
ability of o given data S, which can be computed using prob-
ability density estimation methods. There are several model
estimation techniques in the literature [21], including para-
metric and non-parametric density estimation. Parametric
density estimation requires a certain distribution assumption,
while non-parametric estimation does not. Among the vari-
ous techniques proposed for non-parametric density estima-
tion [20], histogram estimation [34], kernel estimation [1,11]
and nearest neighbor estimation [37] are the most popular. In
this paper, we use kernel estimation, because it can estimate
unknown data distributions effectively [28].

Kernel estimation is a generalization of sampling. In ran-
dom sampling, each sample point carries a unit weight. How-
ever, an observation of the sample point increases the chance
of observing other points nearby. Therefore, kernel estima-
tor distributes the weight of each point in the nearby space
around according to a kernel function K . The commonly used
kernel functions are listed in Table 2, where I (|u| ≤ 1) in
the kernel functions denotes the value 1 when |u| ≤ 1 holds,
and 0 when |u| ≤ 1 does not hold.

Table 2 The commonly used kernel functions

Name Kernel function

Uniform K (u) = 1
2 I (|u| ≤ 1)

Triangle K (u) = (1− |u|)I (|u| ≤ 1)

Epanechnikov K (u) = 3
4 (1− u2)I (|u| ≤ 1)

Quartic K (u) = 15
16 (1− u2)2 I (|u| ≤ 1)

Triweight K (u) = 35
32 (1− u2)3 I (|u| ≤ 1)

Gaussian K (u) = 1√
2π

e− 1
2 u2

Cosine K (u) = π
4 cos(π

2 u)I (|u| ≤ 1)

A bandwidth parameter (also known as the smoothing
parameter) h is introduced to control the distribution among
the neighborhood of the sample. As shown in [47], the quality
of the kernel estimation depends mostly on the bandwidth h
and lightly on the choice of the kernel K . Too small
bandwidth values cause very spiky curves, and too large
bandwidth values smooth out details. A class of effective
methods are data-driven least-squares cross-validation algo-
rithms [9,44–46], which select the bandwidth value that min-
imizes integrated square error.

In this paper, we choose the commonly used Gaussian
kernels. Our approach can also be adapted using other ker-
nel functions. We set the bandwidth of the Gaussian kernel
estimator h = 1.06s

5√n
as suggested in [46], where n is the size

of the data set and s is the standard deviation of the data set
which can be estimated by sampling. In Sect. 8.3, we evalu-
ate the sensitivity of the answers to top-k typicality queries
with respect to the choice of kernel functions and bandwidth
values. The results show that the answers computed using
different kernel functions listed in Table 2 are mostly con-
sistent. Moreover, using different bandwidth values around
h = 1.06s

5√n
also provide consistent answers.

Outliers in data sets may increase the standard deviation of
the data sets, and thus lead to larger bandwidth values, which
may impair the quality of the answers to typicality queries.
Therefore, for better performance, we can remove outliers
in data sets as preprocessing. There are extensive studies on
effective and efficient outlier detection [31,49,50], which can
be used as a screening step in our methods. Moreover, it is
shown from the experimental results in Sect. 8.3 that, even on
data sets containing a non-trivial amount of noise, the results
returned by top-k typicality queries are often consistent with
the results found when outliers are removed.

Since we address the top-k typicality problem in a generic
metric space, the only parameter we use in density estimation
is the distance (or similarity) between two objects. Formally,
given a set of objects S = (o1, o2, . . . , on) in a generic metric
space, the underlying likelihood function is approximated as

L(x |S) = 1

n

n∑

i=1

Gh(x, oi) = 1

n
√

2π

n∑

i=1

e−
d(x,oi)

2

2h2 (1)

123

818 M. Hua et al.

Algorithm 1 ExactTyp(S,k)
Input: a set of objects S = {o1, . . . , on} and positive integer k
Output: the k objects with the highest simple typicality values
Method:
1: for all object o ∈ S do
2: set T (o, S) = 0
3: end for
4: for i = 1 to n do
5: for j = i + 1 to n do

6: w = 1
n
√

2π
e
− d(oi ,o j)

2

2h2

7: T (oi , S) = T (oi , S)+ w

8: T (o j , S) = T (o j , S)+ w

9: end for
10: end for
11: return the top-k objects according to T (o, S)

where d(x, oi) is the distance between x and oi in the metric

space, and Gh(x, oi) = 1√
2π

e−
d(x,oi)

2

2h2 is a Gaussian kernel.

4.2 An exact algorithm and complexity

Hereafter, by default, we assume that outliers are removed
using the techniques discussed in Sect. 4.1.

Theoretically, given a set of objects S, if the likelihood
of an object o ∈ S satisfies L(o|S) ∝ 1∑

o′∈S d(o,o′) , then
the discrete 1-median problem can be reduced to a special
case of the top-1 simple typicality query problem. As so far
no better than quadratic algorithm has been found for exact
solutions to the general discrete 1-median problem (except
in L1 metric space), it is challenging to find a better than
quadratic algorithm for computing exact answers to general
top-k typicality queries.

Algorithm 1 is a straightforward quadratic method that
computes the exact answer to a top-k simple typicality query.
It computes the exact simple typicality for each object using
two nested loops, and then selects the top-k objects. Qua-
dratic algorithms are often too costly for online queries on
large databases, while good approximations of exact answers
are good enough for typicality analysis. This motivates our
development of approximation algorithms.

4.3 A randomized tournament algorithm

Inspired by the randomized tournament method [14] for the
discrete 1-median problem, we propose a randomized tourna-
ment algorithm for answering top-k simple typicality queries
as follows.

Let t be a small integer, called the tournament group size.
To find the most typical object in a set S of n objects, we par-
tition the objects into 	 n

t
 groups randomly such that each
group has t objects. For each group, we use the exact algo-
rithm to find the object that has the largest simple typicality

Algorithm 2 RandomTyp(S,k,t ,v)
Input: a data set S, positive integer k, tournament size t and number

of validations v

Output: approximation to the answer to a top-k simple typicality query
Ã

Method:
1: Ã = ∅
2: for i = 1 to k do
3: S′ = S − Ã
4: candidate = ∅
5: for j = 1 to v do
6: repeat
7: G = {gi } (1 ≤ i ≤ 	 n

t
, |gi | = t ,
⋃

gi∈G gi = S′)
8: for all group g ∈ G do
9: winnerg = ExactT yp(g, 1)

10: S′ = S′ − g ∪ winnerg
11: end for
12: until |S′| = 1
13: candidate = candidate ∪ S′
14: end for
15: Ã = Ã ∪ {arg maxo∈candidate{T (o, S)}}
16: end for

value in the group. Only the winner objects in the groups are
sent to the next round.

The winners of the previous round are again partitioned
randomly into groups such that each group contains t objects.
The most typical object in each group is selected and sent
to the next round. The tournament continues until only one
object is selected as the winner. The final winner is an approx-
imation of the most typical object.

To approximate the second most typical object, we run the
randomized tournament again with the following constraint:
the most typical object already chosen in the previous tour-
nament cannot be selected as the winner in this tournament.
The final winner in the second tournament is the approxi-
mation of the second most typical object. Continuing in this
manner, we can find an approximation to the set of top-k
typical objects by running a total of k tournaments.

In order to achieve a higher accuracy, we can run this ran-
domized tournament several times for selecting the approxi-
mation of the i-th most typical object (1 ≤ i ≤ k), and pick
the object with the largest simple typicality among all the
final winners. The procedure is given in Algorithm 2.

The typicality computation within one group has the time
complexity of O(t2). There are 	logt n
 tournament rounds
in total. Without loss of generality, let us assume n = tm .
Then, the first round has n

t groups, the second round has
n
t
t = n

t2 groups, and so forth. The total number of groups is
∑

1≤i≤logt n
n
ti = n

t−1 (1 − 1
tm) = O(n

t). The complexity of

selecting the final winner is O(t2 · n
t) = O(tn). If we run

each tournament v times for better accuracy, and run tourna-
ments to choose top-k typical objects, the overall complexity
is O(kvtn).

123

Top-k typicality queries and efficient query answering methods on large databases 819

The randomized algorithm runs in linear time with respect
to the number of objects. However, the accuracy of the
approximation to the answer is not guaranteed in theory,
though in practice it often has reasonable performance.

5 Local typicality approximation

While the randomized tournament method is efficient, it can-
not guarantee the approximation quality. Can we provide
some quality guarantee and at the same time largely retain
the efficiency? In this section, we develop several heuris-
tic local typicality approximation methods. Our discussion
in this section is for simple typicality. The methods will be
extended to other typicality measures later in the paper.

5.1 Locality of typicality approximation

In Gaussian kernel estimation, given two points a and p, the
contribution from p to T (a, S), the simple typicality score

of a, is 1
n
√

2π
e
− d(a,p)2

2h2 , where n is the size of the data set.
The contribution of p decays exponentially as the distance
between a and p increases. Therefore, if p is remote from a,
p contributes very little to the simple typicality score of a.

Moreover, in a metric space, given three points a, b and p,
the triangle inequality |d(a, p)−d(b, p)| < d(a, b) holds. If
d(a, p) � d(a, b), then d(a, p) ≈ d(b, p). Therefore, the
objects far away from a and b will have similar contributions
to the probability density values T (a, S) and T (b, S).

Based on the above observations, given a set of objects S
and a subset C ⊆ S, can we use the locality to approximate
the object having the largest simple typicality value in C?

Definition 6 (Neighborhood region) Given a set of objects
S, a neighborhood threshold σ , and a subset C ⊆ S, let
D = DA1 × · · · × DAn where DAi is the domain of attribute
Ai (1 ≤ i ≤ n), the σ -neighborhood region of C is defined
as D(C, σ) = {o|o ∈ D, mino′∈C {d(o, o′)} ≤ σ }.
Definition 7 (Local simple typicality) Given a set of objects
S, a neighborhood threshold σ , and a subset C ⊆ S, let Z be
the random vector that generates samples S, the local simple
typicality of an object o ∈ C is defined as LT (o, C,Z, σ) =
L(o|ZD(C,σ)) where L(o|ZD(C,σ)) is the likelihood of o
given that it is a sample of Z in region D(C, σ).

In practice, for each object o ∈ S, we use the set of objects
in S that lie in o’s σ -neighborhood region to estimate the sim-
ple typicality of o.

Definition 8 (Local neighborhood) Given a set of objects
S, a neighborhood threshold σ , and a subset C ⊆ S, The
σ -neighborhood of C is defined as L N (C, S, σ) = {o|o ∈

S ∩ D(C, σ)}, where D(C, σ) is the σ -neighborhood region
of C .

L N (C, S, σ) is the set of objects in S whose distance to at
least one object in C is at most σ . Then, LT (o, C,Z, σ) can
be estimated using LT (o, C, S, σ) = L(o|L N (o, C, σ)),
where L(o|L N (o, C, σ) is the likelihood of o given objects
L N (o, C, σ).

The following result uses local simple typicality to approx-
imate the simple typicality with a quality guarantee. The
proof can be found in Appendix A.

Theorem 1 (Local typicality approximation) Given a set of
objects S, neighborhood threshold σ , and a subset C ⊆ S,
let õ = arg maxo1∈C {LT (o1, C, S, σ)} be the object in C
having the largest local simple typicality value, and o =
arg maxo2∈C {T (o2, S)} be the object in C having the largest
simple typicality value. Then,

T (o, S)− T (̃o, S) ≤ 1√
2π

e−
σ2

2h2 (2)

Moreover, for any object x ∈ C,

T (x, S)− LT (x, C, S, σ) <
1√
2π

e−
σ2

2h2 ≤ 1√
2π

(3)

From Theorem 1, we can also derive the minimum neigh-
borhood threshold value σ to satisfy certain approximation
quality.

Corollary 1 (Choosing neighborhood threshold) Given a set
of objects S, an object x ∈ S, and a quality requirement

θ (θ < 1√
2π

), if σ ≥
√
−2 ln

√
2πθ · h, then T (x, S) −

LT (x, C, S, σ) < θ for any subset C (x ∈ C).

The proof of Corollary 1 is given in Appendix B.

5.2 DLTA: direct local typicality approximation using
VP-trees

Inequality 3 in Theorem 1 can be used immediately to approx-
imate simple typicality computation with quality guarantee.
Given a neighborhood threshold σ , for each object x ∈ S,
the direct local typicality approximation (DLTA) algorithm
computes the σ -neighborhood of {x}, i.e., L N ({x}, S, σ) and
the local simple typicality LT (x, {x}, S, σ). Then, it returns
the k objects with the highest local simple typicality values
as the approximation to the answer of the top-k simple typi-
cality query.

The quality of the approximation answer is guaranteed by
the following theorem, whose proof is given in Appendix C.

Theorem 2 (Approximation quality) Given a set of objects
S, neighborhood threshold σ and integer k, let A be the k
objects with the highest simple typicality values, and Ã be

123

820 M. Hua et al.

Fig. 6 Decomposing a set of objects in a VP-tree

Center(N6)=e
Radius(N6)=dist(e,f)
Neighborhood(N6)={N6,N7,c}
Winner(N6)=e

Final winner:

N6N4 N5

N1

N2 N3

N7

Fig. 7 Computing the approximate most typical point

the k objects with the highest local simple typicality values.
Then,
∑

o∈A T (o, S)−∑
õ∈ Ã T (̃o, S)

k
<

1√
2π

e−
σ2

2h2 (4)

Searching the σ -neighborhood for each object can be very
costly. To implement the direct local typicality approxima-
tion efficiently, we can use the VP-tree index [55] to support
σ -neighborhood searches effectively.

A VP-tree [55] is a binary space partitioning (BSP) tree.
Given a set of objects S, a VP-tree T indexes the objects in
S. Each node in a VP-tree represents a subset of S. Roughly
speaking, for each non-leaf node N and the set of nodes SN

at N , a vantage point is selected to divide the set SN into two
exclusive subsets SN1 and SN2 (SN = SN1 ∪ SN2) such that,
to search the objects within distance σ to an object p ∈ N ,
likely we only need to search either SN1 or SN2 but not both.
SN1 and SN2 are used to construct the two children of N . For
example, the VP-tree in Fig. 7 indexes the objects in Fig. 6.

A VP-tree can be constructed top-down starting from the
root which represents the whole set of objects. A sampling
method is given in [55] to select vantage points for internal
nodes. Then, the first half subset of objects that are close to
the vantage point form the left child of the root, and the other
objects form the right child. The left and the right children
are further divided recursively until a node contains only one
object (a leaf node). A VP-tree can be constructed in cost
O(|S| log |S|).

Searching a VP-tree for the σ -neighborhood of a query
point is straightforward using the recursive tree search. Once
an internal node in the tree can be determined in the σ -neigh-
borhood of the query point, all descendant objects of the
internal node are in the neighborhood and no subtrees need

to be searched. For example, the σ -neighborhood of node
N6 = {e, f } in Fig. 6 is represented by the dashed circle.
To find all points in the σ -neighborhood of N6, we search
the VP-tree in Fig. 7 from the root node N1, and recursively
examine each internal node. During the search, node N4 can
be pruned since all points in N4 lie out of the σ -neighborhood
of N6.

The cost of computing the local simple typicality of an
object x is O(|L N ({x}, S, σ)|). Then, computing the local
simple typicality of all objects in S takes O(

∑
x∈S |L N ({x},

S, σ)|) time. Although the search can be sped up using a VP-
tree, the complexity of the DLTA algorithm is still O(|S|2).
The reason is, in the worst case where σ is larger than the
diameter (i.e., the largest pairwise distance) of the data set,
the σ -neighborhood of each object contains all other objects
in S.

5.3 LT3: local typicality approximation using tournaments

To reduce the cost of computing local simple typicality fur-
ther, we incorporate the tournament mechanism, and propose
a local typicality approximation algorithm using tournaments
(the LT3 algorithm). The basic idea is to group the objects
locally, and conduct a tournament in each local group of
objects. The object with the largest local simple typicality is
selected as the winner. The winners are sent to the next round
of tournament. The tournaments terminate when only one
object is left as the winner. A sampling method is employed
to reduce the computational cost.

5.3.1 Local typicality trees (LT-trees)

A local typicality tree (LT-tree) is an MVP-tree [10] with
auxiliary information that supports local typicality calcula-
tion and tournaments. Given a set of objects S, an LT-tree
can be constructed as follows.

First, we construct an MVP-tree [10] on S, which is a
t-nary VP-tree that uses more than one vantage point to par-
tition the space. Without loss of generality, let us assume
t = 2l and the data set contains tm objects. We assign a layer
number to each node in the MVP-tree. The root node has
layer number 0, and a node is assigned layer number (i + 1)

if its parent has layer number i . We remove all those nodes
in the MVP-tree whose layer number is not a multiple of t .
For a node N of layer number j t (j ≥ 1), we connect N to
its ancestor in the MVP-tree of layer (j − 1)t .

Second, we compute three pieces of information, the
approximate center, the radius, and the σ -neighborhood, for
each node in the LT-tree.

Approximate center. For a node N in the LT-tree, let SN be
the set of objects at N . To compute the approximate center
at a node N in the LT-tree, we draw a sample R of

√|SN |

123

Top-k typicality queries and efficient query answering methods on large databases 821

Final winner:

N6N4 N5

N1

N2 N3

N7

Fig. 8 Computing the approximate second most typical point

objects from SN , and compute the pairwise distance between
every two objects in R. Then, for each object x ∈ R, the
center-score of x is the maximum distance from x to another
point in R. The object in R of the minimum center-score is
chosen as the center. This center approximation procedure is
popularly used in computational geometry. It takes O(|SN |)
time for each node N , and O(|S| logt |S|) time for all nodes
in the LT-tree.

Radius. Once the center c of a node N is chosen, the radius
is given by the maximum distance between c and the other
objects at N . This can be computed in time O(|SN |) for each
node N , and O(|S| logt |S|) for all nodes in the LT-tree.

σ -neighborhood. We use a range query in the LT-tree to com-
pute a superset of the σ -neighborhood of SN for every node
N in the LT-tree, which always achieves a typicality approx-
imation no worse than using the σ -neighborhood. To com-
pute the superset, we start from the root and iteratively search
for the nodes that completely lie in the σ -neighborhood of
N , using the approximate center and radius of N . Once all
objects at a node N ′ are in the σ -neighborhood of N , we use
N ′ to represent them and do not search any subtrees of N ′.

5.3.2 Query answering

To answer a top-k simple typicality query, we run tourna-
ments on the LT-tree bottom-up. First, a tournament is run for
each leaf node in the LT-tree. The winner enters the tourna-
ment at the parent node. The winner o1 at the root node is the
approximation of the most typical object. Figure 7 illustrates
the procedure of computing the approximate most typical
point in the set of points in Fig. 6 using an LT-tree. During
the tournaments in the leaf nodes, {b, c, e, h} are selected as
local winners and sent to the parent nodes. Then, {c, e} are
selected in the tournaments in nodes N2 and N3. Finally, e is
selected as the winner, which approximates the most typical
point in the data set.

To find the approximation of the second most typical
object, we do not need to completely run the tournaments
again. Instead, we can reuse most of the results in the tourna-
ments of finding the most typical object w1. The only tour-
naments we need to rerun are on the nodes containing w1.

Algorithm 3 LT3Typ(S,k,T)
Input: a set of n objects S = {o1, . . . , on} and positive integer k and

an LT-tree T (with m levels) built on S whose root node is NR
Output: approximation to the answer to a top-k simple typicality query

Ã
Method:
1: Ã = ∅
2: for j = m to 0 do
3: for all node N at level L j do
4: winnerN = arg maxo∈N {LT (o, N , S, σ)}
5: Np = Np ∪ {winnerN } {*Np is the parent node of N}
6: end for
7: end for
8: Ã = Ã ∪ {winnerNR }
9: w1 = winnerNR

10: for i = 2 to k do
11: find N such that wi−1 ∈ N {*wi−1 is the last output winner}
12: while N �= NR do
13: winnerN = arg maxo∈N ,o �=wi−1 {LT (o, N , S, σ)}
14: Np = Np ∪ {winnerN }
15: N ← Np
16: end while
17: Ã = Ã ∪ {winnerNR }
18: wi = winnerNR

19: end for

First, we run a new tournament at the leaf node N contain-
ing w1, but do not include w1 in the new tournament. Then,
the winner w′1 is sent to Np, the parent of N , and a new
tournament is run there by replacing w1 by w′1. A series of m
tournaments are needed to find a new winner w2 in the root
node, which is the approximation of the second most typical
object. At each level of the LT-tree, only one node needs to
run a tournament. For example, in the LT-tree in Fig. 8, after
e is selected as the first final winner, it is removed from node
N6. Then, only the tournaments in nodes N6, N3 and N1 need
to be re-conducted. Finally, c is selected as the final winner
to approximate the second most typical point. The complete
procedure is shown in Algorithm 3.

The quality of the answers returned by the LT3 algorithm
can be guaranteed by the following theorem, whose proof is
given in Appendix D.

Theorem 3 In a set S, let o be the object with the largest
simple typicality and õ be an object computed by the LT3
method using local typicality approximation and the tourna-
ment group size t . Then,

T (o, S)− T (̃o, S) <

(
1√
2π

e−
σ2

2h2

)

· 	logt |S|

The LT3 algorithm combines the merits of both local
typicality approximation and the tournament mechanism. It
achieves better accuracy than the randomized tournament
algorithm, thanks to the local grouping. It is more efficient
than the DLTA algorithm because of the tournament mech-
anism. As shown in our experiments, the approximations of
the most typical objects computed by the LT3 algorithm are
very close to the exact ones. LT3 is very efficient and scalable.

123

822 M. Hua et al.

5.3.3 A sampling method for bounding runtime

To make the analysis complete, here we provide a sampling
method which provides an upper bound on the cost of local
typicality computation with quality guarantee.

Suppose we want to compute the local simple typicality
LT (p, C, S, σ). We consider the contribution of an object
o ∈ L N (C, S, σ) to LT (p, C, S, σ), denoted by

η(o) = 1

|L N (C, S, σ)|Gh(p, o) = e−
d(p,o)2

2h2

|L N (C, S, σ)|√2π

We can draw a sample of L N (C, S, σ) to estimate the expec-
tation of η(o). Please note that

LT (p, C, S, σ) = |L N (C, S, σ)| · E[η(o)]
where E[η(o)] is the expectation ofη(o) for o ∈ L N (C, S, σ).

Using a special form of the Chernoff–Hoeffding bound [4],
we have the following result.

Theorem 4 For any δ (0 < δ < 1) and ε (ε > 0) and a

sample R of L N (C, S, σ), if |R| > 3
√

2π ·e
σ2

2h2 ·ln 2
δ

ε2 , then

Pr

{∣
∣
∣
∣
∣

|L N (C, S, σ)|
|R|

∑

o∈R

η(o)− LT (p, C, S, σ)

∣
∣
∣
∣
∣

> ε · LT (p, C, S, σ)

}

< δ

Theorem 4 provides an upper bound of the sample size,
which is independent of the size of data sets. The larger ε

and δ, the smaller the sample size. The larger σ , the larger
the sample size.

Using the sampling method suggested by Theorem 4, we
can have a tournament algorithm using an LT-tree of cost
O(n log n). The algorithm provides a theoretical bound on
the runtime.

However, the sampling method cannot be practically gain-
ful unless on extremely large data sets. The LT-tree already
exploits the locality of objects nicely. When the data set is
not extremely large, the number of objects in the σ -neigh-
borhood of a node is usually (substantially) smaller than the
number of samples required for high approximation qual-
ity. In our experiments, the above case is always true. Thus,
we do not include the experimental results on this sampling
method.

6 Answering discriminative typicality queries

Discriminative typicality can be calculated as follows. For
each object o in the target subset C ⊂ S, Algorithm 1 can be
used to compute the simple typicality scores of o in C and

S − C , respectively. The difference between the two is the
discriminative typicality of o.

Suppose there are m objects in the target subset C . To com-
pute the discriminative typicality score of an object o ∈ C ,
we have to compute the simple typicality scores of o in both
C and S − C , which takes O(n) time, where n is the size of
the whole data set S. Therefore, answering top-k discrimina-
tive typicality queries using the exact algorithm takes time
O(mn).

The approximation methods developed for top-k simple
typicality queries can also be adopted to answer top-k dis-
criminative typicality queries.

6.1 A randomized tournament algorithm

Generally, the randomized tournament algorithm can be used
to answer top-k discriminative typicality queries if the dis-
criminative typicality measure is applied. The difference is
that only the objects in the target subset C are involved in the
tournament. The other objects are only used to compute the
approximate discriminative typicality scores of the objects
in C .

The cost of discriminative typicality computation within
one group is O(m

n t2). Since there are O(n
t) groups in total,

the complexity of selecting the final winner is O(mt). If we
run each tournament v times for better accuracy, then the
overall complexity of answering a top-k discriminative typ-
icality query is O(kvtm).

6.2 Local typicality approximation

Similar to the idea in Sect. 5.1, we can define the local dis-
criminative typicality as follows.

Definition 9 (Local discriminative typicality) Given a set of
objects S on attributes A1, . . . , An , a neighborhood thresh-
old σ , and a target subset C ⊂ S, let U and V be the ran-
dom vectors generating C and S −C , respectively, the local
discriminative typicality of an object o ∈ C on attributes
Ai1 , . . . , Ail is defined as L DT (o,U ,V, σ) = LT (o, {o},
U , σ) − LT (o, {o},V, σ), where LT (o, {o},U , σ) and LT
(o, {o},V, σ) are the local simple typicality values of o in U
and V , respectively.

L DT (o,U ,V, σ) can be estimated using L DT (o, C, S−
C, σ) = LT (o, {o}, C, σ) − LT (o, {o}, S − C, σ), where
LT (o, {o}, C, σ) and LT (o, {o}, S − C, σ) are the estima-
tors of local simple typicality values of o in C and S − C ,
respectively.

Similar to Theorem 1, we have the following quality guar-
antee of local discriminative typicality approximation.

Theorem 5 (Local discriminative typicality approximation)
Given a set of objects S, a neighborhood threshold σ , and a

123

Top-k typicality queries and efficient query answering methods on large databases 823

target subset C ⊆ S, let õ = arg maxo1∈C {L DT (o1, C, S,

σ)} be the object in C having the largest local discriminative
typicality value, and o = arg maxo2∈C {DT (o, C, S)} be the
object in C having the largest discriminative typicality value.
Then,

DT (o, C, S − C)− DT (̃o, C, S − C) <
2√
2π

e−
σ2

2h2 (5)

Moreover, for any x ∈ C,

|DT (x, C, S − C)− L DT (x, C, S − C, σ)|
< 1√

2π
e−

σ2

2h2
(6)

6.2.1 DLTA: direct local typicality approximation

Theorem 5 can be directly used to approximate discrimina-
tive typicality. Given a neighborhood threshold σ , for each
object x ∈ C , we compute the σ -neighborhood of {x} in
C and S − C , respectively, and thus its local discriminative
typicality. Searching the σ -neighborhood can also be done
using a VP-tree, as described in Sect. 5.2.

The cost of computing the local discriminative typical-
ity of an object x ∈ C is O(|L N ({x}, S, σ)|). The overall
cost of computing the local discriminative typicality of all
objects in the target subset C is O(

∑
x∈C |L N ({x}, S, σ)|).

As analyzed in Sect. 5.2, the σ -neighborhood of an object
may contain the whole data set in the worst case. Thus, the
time complexity of the direct local typicality approximation
method for discriminative typicality is O(mn), where m is the
size of the target subset C , and n is the size of the whole data
set. However, data is often distributed as clusters in practice,
and the number of objects contained in the σ -neighborhood
of each object is often small.

6.2.2 LT3: local typicality approximation using
tournaments

The local typicality approximation method using
tournaments (LT3) method can be extended to answer top-
k discriminative typicality queries, which follows the same
framework as answering top-k simple typicality queries. The
only difference is that, in the tournament in each node, local
discriminative typicality is computed, instead of local simple
typicality.

Similar to Theorem 3, we have the following guarantee
of the quality of answering top-k discriminative typicality
queries using the LT3 method.

Theorem 6 In a set S, let o be the object of the largest dis-
criminative typicality and õ be an object computed by the LT3
method using local discriminative typicality approximation

with the tournament group size t . Then,

DT (o, C, S − C)− DT (̃o, C, S − C)

<
2√
2π

e−
σ2

2h2 · 	logt |S|

Sampling method introduced in Sect. 5.3.3 can also be
used to bound the runtime of the LT3 algorithm for discrim-
inative typicality approximation.

7 Answering representative typicality queries

In this section, we first propose a straightforward approach
to find the exact answer of a top-k representative typical-
ity query. Then, we will discuss how to extend the approxi-
mation techniques proposed for simple typicality queries to
efficiently answer top-k representative typicality queries.

7.1 An exact algorithm and complexity

When the answer set A is empty, the most representatively
typical object is simply the most typical object o1, which
can be computed using Algorithm 1. After o1 is added to A,
the group typicality GT (A, S) is the simple typicality score
T (o1, S), since all members in S are represented by o1.

Then, in order to compute the next object with the maxi-
mal representative typicality score, according to Definition 5,
we have to compute the group typicality score G(A∪{o}, S)

for each object o ∈ (S − A) and select the object with the
maximal score.

To compute GT (A∪{o}, S), we first construct N (o, A, S)

for object o as follows. We scan all objects in (S − A). For
each object x ∈ (S − A), suppose x ∈ N (o′, A, S) for an
object o′ ∈ A, which means that o′ is the object closest
to x in A. If d(o, x) < d(o′, x), then x is removed from
N (o′, A, S) and is added to N (o, A, S). To make the com-
putation efficient, we maintain the minimum distance from
an object x ∈ (S− A) to the objects in A by a 1-dimensional
array. The minimum distances are updated every time after
a new object is added into A.

Then, T (o, N (o, A, S)), the simple typicality of o in
N (o, A, S), is computed using Algorithm 1. Probability Pr
(N (o, A, S)) is |N (o,A,S)|

|S| . For other objects o′ ∈ A, since
N (o′, A, S) may be changed, the simple typicality scores
T (o′, N (o′, A, S)) and Pr(N (o′, A, S)) are updated accord-
ingly. Last, GT (A ∪ {o}, S) can be calculated according to
Definition 4.

The above procedure is repeated to find the next most rep-
resentatively typical object, until k objects are found.

The complexity of the exact algorithm is O(kn2) because
each time after an object is added to A, the representative typ-
icality scores of all objects in (S− A) need to be recomputed

123

824 M. Hua et al.

to find the next object with the largest representative typical-
ity score.

7.2 A randomized tournament method

A top-k representative typicality query can be answered using
the randomized tournament method.

At the beginning, the answer set A is empty, so the ran-
domized tournament method works exactly the same as find-
ing the most typical object using the randomized tournament
method as described in Sect. 4.3. The winner object of the
tournament is added to A.

To compute the i th (i > 1) object with the highest approx-
imate representative typicality score, a randomized tourna-
ment is conducted from bottom up, similar to finding the first
answer in A. The only difference is that the representative
typicality score of each object in each group is computed,
instead of the simple typicality score. The object with the
maximal representative typicality score in each group is the
winner and is sent to the next round of tournament. The final
winner is an approximation of the i th most representatively
typical object, and is added to A.

A top-k representative typicality query can be answered
by k randomized tournaments. To ensure a higher accuracy,
we can run each tournament several times, and pick the win-
ner object with the highest representative typicality score on
the whole data set.

The complexity of the randomized tournament to find the
i th object (i ≤ k) with the highest representative typicality
score is O(vtn), where v is the number of times the tourna-
ment is run, t is the group size, and n is the size of the data
set. This is because, finding the object with the highest rep-
resentative typicality score in each group takes O(t2) time,
and there are O(n

t) groups in total. To answer a top-k repre-
sentative typicality query, k randomized tournaments need to
be conducted. Therefore, the overall complexity is O(kvtn).

7.3 Local typicality approximation methods

The locality property in simple typicality approximation can
be extended to address the representative typicality approxi-
mation.

Let A be the current reported answer set. The local group
typicality of A is computed by only considering the object in
the σ -neighborhood of o ∈ A. The intuition is, if an object is
not in the σ -neighborhood of o, then the contribution from o
to this object is small and can be ignored.

Definition 10 (Local group typicality) Given a set of objects
S, a neighborhood threshold σ and a subset A ⊂ S, let Z
be the random vector that generates the samples S, the local
group typicality of A is

LGT (A,Z, σ) =
∑

o∈A

LT (o, {o},ZD(o,A), σ) · Pr(N)

where LT (o, {o},ZD(o,A), σ) is the local simple typicality
of o in its representing region D(o, A) and N = D(o, A) ∩
D({o}, σ) is the σ -neighborhood region of o in its represent-
ing region D(o, A).

Definition 11 (Local representative typicality) Given a set
of objects S, a neighborhood threshold σ and a reported
answer set A ⊂ S, let Z be the random vector generating
the samples S, the local representative typicality of an object
o ∈ (S− A) is L RT (o, A,Z, σ) = LGT (A∪ {o},Z, σ)−
LGT (A,Z, σ).

For any object o ∈ A, let N (o, A, S) = {x |x ∈ S ∩
D(o, A)} be the set of objects in S that lie in D(o, A), then
L N ({o}, N (o, A, S), σ) is the σ -neighborhood of o in
N (o, A, S). The local group typicality LGT (A,Z, σ) can be
estimated using LGT (A, S, σ) = ∑

o∈A LT (o, {o},
N (o, A, S), σ)· |L N ({o},N (o,A,S),σ)|

|S| . Hence, the local repre-
sentative typicality is estimated by L RT (o, A, S, σ) = LGT
(A ∪ {o}, S, σ)− LGT (A, S, σ).

Local representative typicality can approximate represen-
tative typicality with good quality, as shown below. The proof
can be found in Appendix E.

Theorem 7 (Local representative typicality approximation)
Given a set of objects S, a neighborhood threshold σ , and
an answer set A ⊂ S, let õ = arg maxo1∈(S−A){L RT (o1,

A, S, σ)} be the object in (S − A) having the largest local
representative typicality value, and o = arg maxo2∈(S−A)

{RT (o,A, S)} be the object in (S − A) having the largest
representative typicality value. Then,

RT (o, A, S)− RT (̃o, A, S) <
2√
2π

e−
σ2

2h2 (7)

Moreover, for any x ∈ (S − A),

|RT (x, A, S)− L RT (x, A, S, σ)| < 1√
2π

e−
σ2

2h2 (8)

7.3.1 DLTA: direct local typicality approximation

Direct local representative typicality approximation (DLTA)
follows the similar framework of the exact algorithm
described in Sect. 7.1. The only difference is that the local
representative typicality score instead of the representative
typicality score is computed.

To compute the local representative typicality score of an
object o given answer set A, one critical step is to compute
the local group typicality score LGT (A ∪ {o}, S, σ). The
computation is similar to the exact algorithm elaborated in
Sect. 7.1, except that the local simple typicality instead of
the simple typicality of o in N (o, A, S) is used to compute
LGT (A ∪ {o}, S, σ).

123

Top-k typicality queries and efficient query answering methods on large databases 825

Suppose the current reported answer Ai (0 ≤ i < k,
A0 = ∅) contains the first i answers to a top-k representa-
tive typicality query, computing the local simple typicality of
an object o ∈ (S − Ai) takes O(|L N ({o}, N (o, A, S), σ)|),
where L N ({o}, N (o, A, S), σ) is the σ -neighborhood of o in
the set of its represented members N (o, A, S). Thus, the com-
plexity of computing the (i + 1)-th answer is
O(

∑
o∈(S−Ai)

|L N ({o}, N (o, A, S), σ)|).
The overall complexity of answering a top-k representa-

tive typicality query is O(
∑k−1

i=0
∑

o∈(S−Ai)
|L N ({o},

N (o, A, S), σ)|). In the worst case, the local neighborhood
of any object o may contain the whole data set. Moreover, Ai

contains i objects, so |S− Ai | = n− i . Therefore, the overall
complexity of the DLTA algorithm is O(

∑k−1
i=0 ((n−i)·n)) =

O(n · (2n−k−1)k
2) = O(kn2).

7.3.2 LT3: local typicality approximation using
tournaments

The LT3 algorithm for simple typicality approximation can
be used to answer top-k representative typicality queries.
To find the object with the largest representative typicality
score. After the first answer object is added into A, to find
the approximation of the next most representatively typical
object, a tournament is conducted from bottom up. In each
node of the LT-tree, we compute the local representative typ-
icality of each object, and select the object with the greatest
local representative typicality score as the winner, and let it
go to the tournament in the parent node. The computation of
local representative typicality is similar to the local represen-
tative typicality computation in the DLTA algorithm.

There is one critical difference between the LT3 algorithm
for simple typicality computation and the LT3 algorithm for
representative typicality computation. In simple typicality
computation, once the first winner object is computed, we
only need to re-conduct part of the tournament to find the
next winner object. However, the representative typicality
score of each object changes once the reported answer set
is updated. Thus, no results can be reused. A new tourna-
ment among the rest of the objects should be conducted from
bottom up completely. Therefore, the LT3 method for rep-
resentative typicality computation is not as efficient as the
LT3 method for simple typicality or discriminative typicality
computation.

Similar to Theorem 3, the quality of answering top-k rep-
resentative typicality queries using the LT3 method is guar-
anteed.

Theorem 8 In a set S, let o be the object of the largest repre-
sentative typicality and õ be an object computed by the LT3
method using local representative typicality approximation

and the tournament group size t . Then,

RT (o, A, S)− RT (̃o, A, S) <
2√
2π

e−
σ2

2h2 · 	logt |S|

8 Empirical evaluation

In this section, we report a systematic empirical study using
real data sets and synthetic data sets. All the experiments were
conducted on a PC computer with a 3.0 GHz Pentium 4 CPU,
1.0 GB main memory, and a 160 GB hard disk, running the
Microsoft Windows XP Professional Edition operating sys-
tem. Our algorithms were implemented in Microsoft Visual
C++ V6.0.

8.1 Typicality queries on real data sets

In this section, we use two real data sets to illustrate the
effectiveness of typicality queries on real applications.

8.1.1 Typicality queries on the Zoo data set

We use the Zoo Database from the UCI Machine Learning
Database Repository,1 which contains 100 tuples on 15 Bool-
ean attributes and 2 numerical attributes, such as hair (Bool-
ean), feathers (Boolean) and number of legs (numeric). The
Euclidean distances are computed between objects by treat-
ing Boolean values as binary values. All tuples are classified
into 7 categories (mammals, birds, reptiles, fish, amphibians,
insects and invertebrates). We apply the simple typicality,
discriminative typicality and representative typicality que-
ries on the Zoo Database. The results of the three queries all
match the common sense of typicality.

We compute the simple typicality for each animal in the
data set. Table 3 shows the most typical and the most atyp-
ical animals of each category. Since some tuples, such as
those 10 most typical animals in category mammals, have
the same values on all attributes, they have the same typical-
ity value. The most typical animals returned in each category
can serve as good exemplars of the category. For example, in
category mammals, the most typical animals are more likely
to be referred to as a mammal than the most atypical one,
platypuses, which are one of the very few mammal species
that lay eggs instead of giving birth to live young.

We apply discriminative typicality analysis on the Zoo
Database to find the discriminative typical animals for each
category. The results are listed in Table 3 as well. In some cat-
egories, the tuples having the largest simple typicality value
also have the highest discriminative typicality value, such as
categories mammals, birds, fish, invertebrates, and amphibi-
ans. In some categories such as insects and reptiles, the most

1 http://www.ics.uci.edu/~mlearn/MLRepository.html.

123

http://www.ics.uci.edu/~mlearn/MLRepository.html.

826 M. Hua et al.

Table 3 The most typical, the most discriminatively typical, and the most atypical animals

Category # Tuples Most typical Most discriminative typical Most atypical

Mammal 40 Boar, Cheetah, Leopard, Lion, Boar, Cheetah, Leopard, Lion, Platypus (T = 0.01)

Lynx, Mongoose, Polecat, Puma, Lynx, Mongoose, Polecat, Puma,

Raccoon, Wolf (T = 0.16) Raccoon, Wolf (DT = 0.08)

Bird 20 Lark, Pheasant, Sparrow, Lark, Pheasant, Sparrow, Penguin (T = 0.04)

Wren (T = 0.15) Wren (DT = 0.04)

Fish 14 Bass, Catfish, Chub, Herring, Bass, Catfish, Chub, Herring, Carp (T = 0.03)

Piranha (T = 0.15) Piranha (DT = 0.03)

Invertebrate 10 Crayfish, Lobster (T = 0.16) Crayfish, Lobster (DT = 0.01) Scorpion (T = 0.08)

Insect 8 Moth, Housefly (T = 0.13) Gnat (DT = 0.02) Honeybee (T = 0.06)

Reptile 5 Slowworm (T = 0.17) Pitviper (DT = 0.007) Seasnake (T = 0.08)

Amphibian 3 Frog (T = 0.2) Frog (DT = 0.008) Newt, Toad (T = 0.16)

T simple typicality value, DT discriminative typicality value

Table 4 The most representatively typical and the most typical animals

Top-10 most representatively typical animals Top-10 most typical animals

Rank Animal Representative typicality score Category Rank Animal Simple typicality score Category

1 Boar 0.0874661 Mammal 1 Boar 0.0855363 Mammal

2 Lark 0.135712 Bird 1 Cheetah 0.0855363 Mammal

3 Bass 0.176546 Fish 1 Leopard 0.0855363 Mammal

4 Gnat 0.198142 Insect 1 Lion 0.0855363 Mammal

5 Aardvark 0.213342 Mammal 1 Lynx 0.0855363 Mammal

6 Wallaby 0.225642 Mammal 1 Mongoose 0.0855363 Mammal

7 Starfish 0.236235 Invertebrate 1 Polecat 0.0855363 Mammal

8 Slug 0.246638 Invertebrate 1 Puma 0.0855363 Mammal

9 Dolphin 0.236347 Mammal 1 Raccoon 0.0855363 Mammal

10 Frog 0.265012 Amphibian 1 Wolf 0.0855363 Mammal

typical animals are not the most discriminatively typical.
For example, in category reptiles, the most discriminatively
typical animal is pitvipers in stead of slowworm, because
slowworm is also similar to some animals in other categories
besides reptiles, such as newts in category amphibians. On
the other hand, pitvipers are venomous. Very few animals in
the other categories are venomous. The result matches the
above analysis.

In some situations, the results from the simple typical-
ity queries may have a bias on the most popular categories.
Table 4 lists the top-10 most typical animals in the Zoo Data-
base. The 10 animals are all mammals, since mammals are
the largest category in the Zoo Database. As a result, the
top-10 most typical animals as a whole is not representative.
The animals in other categories cannot be represented well.

Representative typicality queries avoid this problem. The
top-10 most representatively typical animals are also listed
in Table 4, which cover 6 out of the 7 categories in the Zoo
Database. The only missed category is Reptile, which only

contains 5 animals. Boar is the first animal in the answer set
of both queries, since it is the most typical animal in the whole
data set. Note that the representative typicality score and the
simple typicality score of boar are slightly different, because
the bandwidth parameter h is computed via sampling, and
thus may have a small difference in each computation. The
second most representatively typical animal is Lark, which is
the most typical animal in the second most popular category
Bird. Dolphin is in the answer to the top-10 representative
typicality query, since it represents a set of aquatic mammal
in the Zoo database, such as porpoise and mink. They are not
typical mammals, but they are an important category if we
would like to explore different kinds of mammals.

To show the difference between typicality analysis and
clustering analysis, we apply the k-medoids clustering
algorithm [36] to the Zoo data set. We first compute the 10
clusters of the Zoo data set. The median animals of the clus-
ters are {Starfish, Boar, Lark, Tuatara, Dolphin, Flea, Bass,
Mink, Scorpion, Hare}. The group typicality score of the

123

Top-k typicality queries and efficient query answering methods on large databases 827

Table 5 The most typical NBA players in 2005-2006 Season

Name T Position Minutes Points per game 3-Point throw Rebounds Assists Blocks

Danny Granger 0.0383 Forwards 22.6 7.5 1.6 4.9 1.2 0.8

Devean George 0.0382 Forwards 21.7 6.3 3 3.9 1.0 0.5

Michael Finley 0.0378 Guards 26.5 10.1 5 3.2 1.5 0.1

T simple typicality values

Table 6 The answers to top-10 simple typicality/discriminative typicality/representative typicality queries on the NBA guards

Top-10 simple typicality query Top-10 discriminative typicality query Top-10 representative typicality query

Name T 3PT AST Name DT 3PT AST Name RT 3PT AST

Ronald Murray 0.076 2.4 2.6 Delonte West 0.0095 4.3 4.6 Ronald Murray 0.076 2.4 2.6

Marko Jaric 0.075 2.3 3.9 David Wesley 0.0092 5.2 2.9 Andre Owens 0.06 0.8 0.4

Keith Bogans 0.074 3.7 1.8 Speedy Claxton 0.0092 1.1 4.8 Charlie Bell 0.037 4.1 2.2

Kevin Martin 0.074 3.4 1.4 Eddie Jones 0.0085 6.8 2.4 Mike James 0.023 6.9 5.8

Anthony Johnson 0.072 2.8 4.3 Chris Duhon 0.0083 5.2 5 Brent Barry 0.017 3.8 1.7

Jalen Rose 0.072 3.2 2.5 T. J. Ford 0.0082 1.9 6.6 Calbert Cheaney 0.017 0.2 0.5

Michael Finley 0.071 5 1.5 Jalen Rose 0.0082 3.2 2.5 Alex Acker 0.014 1.2 0.8

Chucky Atkins 0.071 5.3 2.8 Kirk Hinrich 0.0079 5.8 6.4 Leandro Barbosa 0.009 4.9 2.8

Chris Duhon 0.071 5.2 5 Jason Terry 0.0078 7.3 3.8 Zoran Planinic 0.007 1.2 1

Eddie Jones 0.07 6.8 2.4 Mike Miller 0.0077 6.5 2.7 Keyon Dooling 0.007 1.2 2.2

T simple typicality values, DT discriminative typicality values, RT representative typicality values, and 3PT for 3-point throw

set of median animals is 0.182. At the same time, the group
typicality score of the answer set of the top-10 most repre-
sentatively typical animals shown in Table 4 is 0.216. There-
fore, the set of animals found by the clustering analysis is
only 84% as representative as the set of animals found by the
top-k representative typicality queries.

8.1.2 Typicality queries on the NBA data set

We apply typicality queries on the NBA 2005–2006 Season
Statistics.2 The data set contains the technical statistics of
458 NBA players, including 221 guards, 182 forwards and
55 centers, on 16 numerical attributes.

Table 5 shows the top-3 most typical players, and some
of the attribute values. The results answer Jeff’s question in
Sect. 1.1.1.

To answer Jeff’s question in Sect. 1.1.2, we conduct a
top-10 discriminative typicality query on guards. The results
are shown in Table 6. For comparison, in the same table we
also list the answer to the top-10 simple typicality query on
guards. To explain the results, we list some selected attributes
as well. The most discriminatively typical guards have bet-
ter performance than those of the highest simple typicality
in 3-point throws or assists, which are the skills popular in
guards, but may not be common in other players.

2 http://sports.yahoo.com/nba/stats/.

In Table 6, we list the answers to the top-10 representative
typicality query on guards. Comparing to the answers to a
top-10 simple typicality query listed in Table 6, the top-10
representatively typical guards are quite different from each
other in 3 point throws and assists. For example,
Ronald Murray, the most typical guard, represents the NBA
guards who are experienced and perform well, while Andre
Owens, the second most representatively typical guard, rep-
resents a group of NBA guards whose performances are rel-
atively poorer.

We use the NBA data set to examine the differences among
medians, means, and typical objects. The results are shown
in Table 7. The simple typicality scores of the medians and
the means are often substantially lower than the most typical
players, which justifies that the geometric centers may not
reflect the probability density distribution. A typical player
can be very different from the median player and the mean.
For example, Ronald Murray is identified as the most typical
guard, but Charlie Bell is the median guard. The technical
statistics show that Murray makes fewer rebounds than Bell,
but contributes more assists. To this extent, Murray is more
typical than Bell as a guard. Moreover, Ronald Murray played
76 games in the season, while Charlie Bell only played 59
games. If we take the range 76±6 = [70, 82], then there are
92 guards whose numbers of games played are in the range;
while there are only 31 guards whose numbers of games
played are in the range 59 ± 6 = [53, 65]. That is, much
more guards played a similar number of games as Murray.

123

http://sports.yahoo.com/nba/stats/.

828 M. Hua et al.

Table 7 Comparison among medians, means, and typical players in the NBA data set

Category (position) Median/mean/most typical Name Simple typicality # Games Avg. min. per game

All players Median Ryan Gomes 0.0271 61 22.6

Mean N/A 0.0307 54.4 20.51

Most typical Danny Granger 0.3830 78 22.6

Centers Median Jake Voskuhl 0.0903 51 16

Mean N/A 0.0679 52.42 17.36

Most typical Francisco Elson 0.1041 72 21.9

Forwards Median Al Jefferson 0.0747 59 18

Mean N/A 0.0509 54.83 19.97

Most typical Maurice Taylor 0.0910 67 18.1

Guards Median Charlie Bell 0.0488 59 21.7

Mean N/A 0.0230 54.54 21.73

Most typical Ronald Murray 0.0756 76 27.8

To compare the difference between typicality analysis and
clustering analysis, we compute 2 clusters of all guards using
the k-medoids clustering algorithm [36]. The median players
of clusters are {Ronald Murray, Stephon Marbury}, whose
group typicality score is 0.105. The group typicality score
of the top-2 most representatively typical guards in Table 6
(i.e.,{Ronald Murray, Andre Owens}) is 0.161. The set of
players found by the clustering analysis is only 65% as rep-
resentative as the set of players found by the top-k represen-
tative typicality queries.

8.2 Approximation quality

To evaluate the query answering quality on large data sets, we
use the Quadraped Animal Data Generator also from the UCI
Machine Learning Database Repository to generate synthetic
data sets with up to 25 numeric attributes. We test the approx-
imation quality of the RT (randomized tournament) method,
the DLTA (direct local typicality approximation) method, and
the LT3 (local typicality approximation using tournaments)
method on top-k simple typicality queries, top-k discrimi-
native typicality queries, and top-k representative typicality
queries, respectively. The results are reported in the rest of
this section.

First of all, we test RT, DLTA, and LT3 for top-k simple
typicality queries. To measure the error made by an approx-
imation algorithm, we use the following error rate measure.
For a top-k typicality query Q, let A be the set of k objects
returned by the exact algorithm, and Ã be the set of k objects
returned by an approximation algorithm. Then, the error rate
e is

e =
∑

o∈A T (o, S)−∑
o∈ Ã T (o, S)

∑
o∈A T (o, S)

× 100% (9)

The error rate of the exact algorithm is always 0.

We compare three approximation algorithms: the random-
ized tournament method (RT, Algorithm 2), the direct local
typicality approximation method (DLTA, Sect. 5.2), and the
LT-tree tournament method (LT3, Sect. 5.3). By default, we
set the number of tuples to 10, 000, the dimensionality to
5 attributes, and conduct top-10 simple typicality queries.
When local typicality is computed, by default we set the
neighborhood threshold to 2h, where h is the bandwidth
of the Gaussian kernel. In such a case, according to The-
orem 1, the difference between the simple typicality value
and the local simple typicality value of any object is always
less than 0.05. In the randomized tournament method, by
default the tournament group size is 10 and 4 times vali-
dation are conducted. We observe that although with more
rounds of validations, the quality of randomized tournament
may increase, but after 3 rounds, the quality improvement is
very small.

Figure 9a shows the change of approximation quality with
respect to the neighborhood threshold. In the figure, the error
bounds given by Theorems 1 and 3 are also plotted, which
are labeled as U B(DLT A) and U B(LT 3), respectively. To
make the curves legible, the error rates are in the logarith-
mic scale. Clearly, the larger the neighborhood threshold, the
more accurate the local typicality approximation. Our meth-
ods perform much better than the error bounds, which shows
that they are effective in practice.

In Fig. 9b, we vary the value of k in the top-k queries. The
approximation quality of RT is not sensitive to k, since it runs
k times to select the top-k answers. Both DLTA and LT3 see
a larger error rate with a larger value of k, this is because the
distant neighbors may get a better chance to play a role in
typicality when more objects are returned.

Figure 9c shows the impact of dimensionality on the error
rate. DLTA achieves the best approximation quality, the error
rate is up to 0.066%. LT3 has an accuracy close to DLTA,

123

Top-k typicality queries and efficient query answering methods on large databases 829

 0.0001
 0.001
 0.01
 0.1

 1
 10

 100
 1000

 2 2.5 3 3.5 4

E
rr

or
 r

at
e

(%
)

Neighborhood threshold

UB(LT3)
UB(DLTA)

LT3
DLTA

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Parameter k

RT
LT3

DLTA
 0
 2
 4
 6
 8

 10
 12

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Number of attributes

RT
LT3

DLTA

 0
 5

 10
 15
 20
 25
 30

 10000 15000 20000 25000 30000

E
rr

or
 r

at
e

(%
)

Number of tuples

RT
LT3

DLTA

(b) (c) (d)(a)

Fig. 9 Approximation quality of answering top-k simple typicality queries

 0

 1

 2

 3

 4

 5

 2 2.5 3 3.5 4

E
rr

or
 r

at
e

(%
)

Neighborhood threshold

LT3
DTLA

 0
 5

 10
 15
 20
 25
 30
 35

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Parameter k

RT
LT3

DLTA

 0

 5

 10

 15

 20

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Number of attributes

RT
LT3

DLTA

 0
 5

 10
 15
 20
 25
 30
 35
 40

 10000 15000 20000 25000 30000

E
rr

or
 r

at
e

(%
)

Number of tuples

RT
LT3

DLTA

(a) (b) (c) (d)

Fig. 10 Approximation quality of answering top-k discriminative typicality queries

and is much better than RT. The error rate decreases as the
dimensionality increases, since the average pairwise distance
in the data set also increases and the local typicality approx-
imation becomes more effective.

Figure 9d tests the approximation quality versus the num-
ber of tuples in the data set. When the cardinality increases,
the data set becomes denser, and the local typicality approx-
imation is more accurate. That is why LT3 and DLTA per-
form better with larger data sets. However, the approximation
quality of RT decreases in large data sets, since with a fixed
tournament group size, the larger the data set, the more likely
the most typical object in a random group is biased.

In summary, DLTA and LT3 both achieve better accuracy
than RT, which strongly justifies the effectiveness of our local
typicality approximation technique. The accuracy of LT3 is
slightly lower than DLTA, but as we will show in Sect. 8.4,
LT3 is much more efficient than DLTA.

We also report the approximation quality of top-k discrim-
inative typicality query answering algorithms. By default, the
data set contains 10, 000 tuples with 5 attributes. We ran-
domly assign 20% of the tuples into the target subset C , and
conduct top-10 discriminative typicality queries. The neigh-
borhood threshold σ of DLTA and LT3 is set to 2h, where
h is the bandwidth of Gaussian kernels. The group size of
randomized tournament is set to 50, and 4 validations are
conducted. Here we increase the tournament size to 50, since
only 20% objects are actually involved in the tournament, as
we explained in Sect. 6.1.

The error rate measure is defined as follows. We normalize
DT (o, C, S−C) as DT ′(o, C, S−C) = DT (o, C, S−C)−
minx∈C DT (x, C, S − C), in order to make the DT (o, C, S
−C) value always non-negative. For a top-k discriminative
typicality query Q, let A be the set of k objects returned by
the exact algorithm, and Ã be the set of k objects returned by

an approximation algorithm. Then, the error rate e is

e =
∑

o∈A DT ′(o, C, S − C)−∑
o∈ Ã DT ′(o, C, S − C)

∑
o∈A DT ′(o, C, S − C)

×100% (10)

The approximation quality of the three methods are shown
in Fig. 10. In general, the comparison among RT, DLTA and
LT3 is similar to the situation of the top-k simple typicality
query evaluation listed in Fig. 9.

To test the approximation quality for representative typ-
icality, we conducted various experiments. By default, the
data set contains 5, 000 tuples with 5 attributes, and conduct
top-10 representative typicality queries. The neighborhood
threshold σ of DLTA and LT3 is set to 2h, where h is the
bandwidth of Gaussian kernels. The group size of random-
ized tournament is set to 10, and 4 validations are conducted.

We adopt the following error rate measure. For a top-k rep-
resentative typicality query Q, let A be the set of k objects
returned by the exact algorithm, and Ã be the set of k objects
returned by an approximation algorithm. GT (A, S) and
GT (Ã, S) are the group typicality scores of A and Ã, respec-
tively. Then, the error rate e is

e = |GT (A, S)− GT (Ã, S)|
GT (A, S)

× 100% (11)

The error rate measure computes the difference between
the group typicality of the exact answer and the group typ-
icality of the approximate answer. If the error rate is small,
even the objects in the two answer sets are different, the
approximation to the answer still represents the whole data
set well. The approximation quality of representative typi-
cality approximation is shown in Fig. 11. The explanations
are similar to the situations of simple typicality queries.

123

830 M. Hua et al.

 0
 2
 4
 6
 8

 10

 2 2.5 3 3.5 4

E
rr

or
 r

at
e

(%
)

Neighborhood threshold

LT3
DTLA

 0
 10
 20
 30
 40
 50

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Parameter k

RT
LT3

DLTA

 0
 10
 20
 30
 40
 50

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Number of attributes

RT
LT3

DLTA

 0
 10
 20
 30
 40
 50

 5000 7500 10000 12500 15000

E
rr

or
 r

at
e

(%
)

Number of tuples

RT
LT3

DLTA

(a) (b) (c) (d)

Fig. 11 Approximation quality of answering top-k representative typicality queries

 0
 0.5

 1
 1.5

 2
 2.5

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Parameter k

Uniform
Triangle

Epanechnikov
Quartic

Triweight
Cosine

 0
 1
 2
 3
 4
 5
 6
 7

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Parameter k

Uniform
Triangle

Epanechnikov
Quartic

Triweight
Cosine

 0
 2
 4
 6
 8

 10
 12
 14
 16

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Parameter k

Uniform
Triangle

Epanechnikov
Quartic

Triweight
Cosine

(a) (b) (c)

Fig. 12 The error rates of using different kernel functions with respect to k

 0
 2
 4
 6
 8

 10

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Parameter k

2h
1.5h
0.5h

 0
 2
 4
 6
 8

 10
 12
 14

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Parameter k

2h
1.5h
0.5h

 0
 2
 4
 6
 8

 10
 12
 14
 16

 5 10 15 20 25E
rr

or
 r

at
e

(%
)

Parameter k

2h
1.5h
0.5h

(a) (b) (c)

Fig. 13 The error rates of using different bandwidth values with respect to k

In summary, for all three types of typicality queries, DLTA
has the best approximation quality, while RT gives the larg-
est error rates. LT3 has comparable approximation quality to
DLTA.

8.3 Sensitivity to parameters and noise

To test the sensitivity of the answers of top-k typicality que-
ries with respect to the kernel function and the bandwidth
value, we use the Quadraped Animal Data Generator to gen-
erate synthetic data sets with 10, 000 tuples and 5 attributes.

We first fix the bandwidth value h = 1.06s
5√n

as discussed

in Sect. 4.1, and use the kernel functions listed in Table 2
to answer top-k simple typicality/ discriminative typicality/
representative typicality queries. We compare the results
computed using the Gaussian kernel function and the results
computed using some other kernel functions as follows.

Let the results returned by using the Gaussian kernel be
A and the results returned by using other kernel functions
be Ã, the error rates of the answers to the three typicality
queries are computed using Eqs. 9, 10 and 11, respectively.
The curves are shown in Fig. 12. The results match the dis-
cussion in Sect. 4.1: the answers computed using some other
kernel functions are similar to the answers computed using
the Gaussian kernel, since the error rates are very low.

We then use the Gaussian kernel function and vary the
bandwidth value from 0.5h to 2h, where h = 1.06s

5√n
is the

default bandwidth value used in other experiments. Let A be
the answer set computed using the default bandwidth value
h and Ã be the answer set computed using other bandwidth
values, the error rates are computed using Eqs. 9, 10 and 11,
respectively. From the results shown in Fig. 13, we can see
that the answers computed using different bandwidth values
are similar in their typicality/discriminative typicality/group
typicality score. Moreover, using smaller bandwidth values
causes less difference than using larger bandwidth values.
Larger bandwidth values smooth out the peaks of the density
curves, which are the most typical points.

In summary, the answers to top-k simple typicality que-
ries, top-k discriminative typicality queries and top-k repre-
sentative typicality queries are insensitive to the choice of
kernel functions and the bandwidth values.

Moreover, we evaluate the sensitivity of top-k typicality
queries with respect to noise in data sets. We use the Qua-
draped Animal Data Generator to generate synthetic data
sets with 10, 000 tuples and 5 attributes. In addition, we add
5 to 15% noise tuples whose attribute values are uniformly
distributed in the domain of each attribute. Gaussian kernel
function and bandwidth h = 1.06s

5√n
are used. The answers

returned are denoted by Ã, and the answers computed when

123

Top-k typicality queries and efficient query answering methods on large databases 831

 0
 1
 2
 3
 4
 5

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Parameter k

15%
10%

5%

 0
 1
 2
 3
 4
 5

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Parameter k

15%
10%

5%

 0
 1
 2
 3
 4
 5

 5 10 15 20 25

E
rr

or
 r

at
e

(%
)

Parameter k

15%
10%

5%

(a) (b) (c)

Fig. 14 The error rates of having different amount of noises with respect to k

 0
 50

 100
 150
 200
 250
 300

 2 2.5 3 3.5 4

R
un

tim
e

(s
ec

on
d)

Neighborhood threshold

DTLA
LT-tree construction

LT3

 0
 50

 100
 150
 200
 250
 300
 350
 400

 5 10 15 20 25

R
un

tim
e

(s
ec

on
d)

Parameter k

Exact
DLTA

LT-tree construction
LT3
RT

 0
 200
 400
 600
 800

 1000
 1200
 1400

 5 10 15 20 25R
un

tim
e

(s
ec

on
d)

Number of attributes

Exact
DLTA

LT-tree construction
LT3
RT

 0
 500

 1000
 1500
 2000
 2500
 3000

 20000 40000 60000 80000 100000

R
un

tim
e

(s
ec

on
d)

Number of tuples

Exact
DLTA

LT-tree construction
LT3
RT

(a) (b) (c) (d)

Fig. 15 Efficiency and scalability of answering top-k simple typicality queries

 0

 20

 40

 60

 80

 100

 2 2.5 3 3.5 4

R
un

tim
e

(s
ec

on
d)

Neighborhood threshold

DTLA
LT3

LT-tree construction
 0

 50

 100

 150

 200

 5 10 15 20 25

R
un

tim
e

(s
ec

on
d)

Parameter k

Exact
DLTA

LT3
LT-tree construction

RT

 0
 50

 100
 150
 200
 250
 300
 350
 400

 5 10 15 20 25

R
un

tim
e

(s
ec

on
d)

Number of attributes

Exact
LT3

DLTA
LT-tree construction

RT

 0
 200
 400
 600
 800

 1000
 1200
 1400

 20000 40000 60000 80000 100000

R
un

tim
e

(s
ec

on
d)

Number of tuples

Exact
DLTA

LT-tree construction
LT3
RT

(a) (b) (c) (d)

Fig. 16 Efficiency and scalability of answering top-k discriminative typicality queries

removing the noises are denoted by A. The error rates in
Fig. 14a, b, and c are computed using Eqs. 9, 10 and 11,
respectively. Clearly, the results of top-k typicality queries
are not sensitive to noise and outliers in data sets.

8.4 Efficiency and scalability

To test the efficiency and the scalability of our methods, we
report in Figs. 15, 16, and 17 the runtime in the experiments
conducted in Figs. 9, 10, and 11, respectively.

As shown in Fig. 15a, the runtime of DLTA increases sub-
stantially when the neighborhood threshold increases, but the
increase of runtime for the LT3 method is mild, thanks to the
tournament mechanism.

Figure 15b shows that the runtime of DLTA and LT3 is
insensitive to the increase of k. LT3 incrementally computes
other top-k answers after the top-1 answer is computed. Thus,
computing more answers only takes minor cost. The RT
method has to run the tournaments k rounds, and thus the
cost is linear to k.

As shown in Fig. 15c, among the four methods, RT is the
fastest and the exact algorithm is the slowest. LT3 and DLTA
are in between, and LT3 is faster than DLTA. All methods
are linearly scalable with respect to dimensionality.

Figure 15d shows the scalability of the four algorithms
with respect to database size. RT has a linear scalability. LT3
clearly has the better performance and scalability than DLTA
on large data sets.

The trends for discriminative typicality queries and repre-
sentative typicality queries are similar, as shown in Figs. 16
and 17, respectively.

In summary, as RT has linear complexity, when runtime
is the only concern, RT should be used. While DLTA and
LT3 are much more scalable than the exact algorithm and are
more accurate than RT, they are good when both accuracy
and efficiency matter. LT3 has the better efficiency and sca-
lability than DLTA, while achieving comparable accuracy to
DLTA.

9 Conclusions

In this paper, we apply the idea of typicality analysis from
psychology and cognitive science to query answering, and
study the novel problem of answering top-k typicality que-
ries. The simple typicality, the discriminative typicality and
the representative typicality measures are proposed for dif-
ferent applications. As computing the exact answers to top-
k typicality queries on large data sets can be too costly for

123

832 M. Hua et al.

 0

 100

 200

 300

 400

 500

 2 2.5 3 3.5 4R
un

tim
e

(s
ec

on
d)

Neighborhood threshold

DTLA
LT3

LT-tree construction

 0

 500

 1000

 1500

 2000

 5 10 15 20 25R
un

tim
e

(s
ec

on
d)

Parameter k

Exact
DLTA

LT3
LT-tree construction

RT

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 5 10 15 20 25R
un

tim
e

(s
ec

on
d)

Number of attributes

Exact
LT3

DLTA
LT-tree construction

RT

 0

 1000

 2000

 3000

 4000

 5000

 10000 40000 60000 80000 100000R
un

tim
e

(s
ec

on
d)

Number of tuples

Exact
DLTA

LT-tree construction
LT3
RT

(a) (b) (c) (d)

Fig. 17 Efficiency and scalability of answering top-k representative typicality queries

online queries, we develop a series of approximation
methods. By a systematic empirical evaluation using both
real data sets and synthetic data sets, we illustrate the effec-
tiveness of top-k typicality queries, and verify the accuracy
and the efficiency of our methods.

Typicality can find other applications in databases. As
future work, we would like to explore the potential of typi-
cality analysis in data summarization, data warehousing and
data mining.

Appendix

A: Proof of Theorem 1

For any object x ∈ C ,

T (x, S)

= 1

|S|

⎛

⎝
∑

y∈L N (C,S,σ)

Gh(x, y)+
∑

z∈(S−L N (C,S,σ))

Gh(x, z)

⎞

⎠

Since LT (x, C, S, σ)= 1
|L N (C,S,σ)|

∑
y∈L N (C,S,σ) Gh(x, y),

T (x, S) = 1

|S|

(

|L N (C, S, σ)| · LT (x, C, S, σ)

+
∑

z∈(S−L N (C,S,σ))

Gh(x, z)

⎞

⎠ (12)

Because L N (C, S, σ) ⊆ S, |L N (C,S,σ)|
|S| ≤ 1. Thus,

T (x, S) ≤ LT (x, C, S, σ)+ 1

|S|
∑

z∈(S−L N (C,S,σ))

Gh(x, z)

(13)

According to the definition of local neighborhood,
d(x, z) > σ for any z ∈ (S − L N (C, S, σ)). Thus,

1

|S|
∑

y∈(S−L N (C,S,σ))

Gh(x, y) <
1√
2π

e−
σ2

2h2 (14)

Inequality 3 follows from inequalities 13 and 14 immediately.

Applying Eq. 12 to o and õ, respectively, we have

T (o, S)− T (̃o, S)

= |L N (C, S, σ)|
|S| (LT (o, C, S, σ)− LT (̃o, C, S, σ))

+ 1

|S|
∑

z∈(S−L N (C,S,σ))

(Gh(o, z)− Gh (̃o, z))

Using inequality 14, we have

1

|S|
∑

z∈(S−L N (C,S,σ))

(Gh(o, z)− Gh (̃o, z)) ≤ 1√
2π

e−
σ2

2h2

Since LT (̃o, C, S, σ)≥LT (o, C, S, σ), LT (o, C, S, σ)−
LT (̃o, C, S, σ) ≤ 0. Thus,

T (o, S)− T (̃o, S) ≤ 1√
2π

e−
σ2

2h2

Inequality 2 is shown.

B: Proof of Corollary 1

From Theorem 1, For any object o ∈ C , subset C ⊆ S and
neighborhood threshold σ , we have

T (x, S)− LT (x, C, S, σ) <
1√
2π

e−
σ2

2h2

In order to meet the quality requirement θ (θ < 1
2π

), it should

hold that 1√
2π

e−
σ2

2h2 ≤ θ . Therefore, σ ≥
√
−2 ln

√
2πθ · h.

C: Proof of Theorem 2

If A∩ Ã �= ∅, then let A = A− A∩ Ã and Ã = Ã− A∩ Ã.
So in the rest of the proof, we assume A ∩ Ã = ∅.

We sort the objects in A in the descending order of their
typicality values, and sort the objects in Ã in the descend-
ing order of their local typicality values. Let o be the i th
object in A, and õ be the i th object in Ã (1 ≤ i ≤ k). From

123

Top-k typicality queries and efficient query answering methods on large databases 833

Inequality 3, we have

0 ≤ T (o, S)− LT (o, {o}, S, σ) <
1√
2π

e−
σ2

2h2

and

0 ≤ T (̃o, S)− LT (̃o, {̃o}, S, σ) <
1√
2π

e−
σ2

2h2

Moreover, since o �∈ Ã, it holds that LT (o, {o}, S, σ) <

LT (̃o, {̃o},
S, σ). Thus,

T (o, S)− T (̃o, S)

= (T (o, S)− LT (o, {o}, S, σ))

−(T (̃o, S)− LT (̃o, {̃o}, S, σ))+ (LT (o, {o}, S, σ)

−LT (̃o, {̃o}, S, σ)) <
1√
2π

e−
σ2

2h2

Inequality 4 follows by summing up the above difference
at each rank i (1 ≤ i ≤ k).

D: Proof of Theorem 3

In the worst case, object o is not selected as the winner in the
first level of tournaments.

Let o1 be the winner of the group containing o in the first
level of tournaments, then we have

T (o, S)− T (o1, S) <
1√
2π

e−
σ2

2h2

as indicated by inequality 2 in Theorem 1.
If oi fails the (i+1)th level of tournaments, let oi+1 be the

winner of the group containing oi in this tournament, then
again we have

T (oi , S)− T (oi+1, S) <
1√
2π

e−
σ2

2h2

For a set of objects S, there are 	logt |S|
 levels of tour-
naments. The final winner õ is the winner in the 	logt |S|
th
level of tournaments. That is, õ = o	logt |S|
. Then,

T (o, S)− T (̃o, S) = T (o, S)− T (o1, S)

+T (o1, S)− T (o2, S)+ · · ·
+T (o	logt |S|
−1, S)− T (o	logt |S|
, S)

<
1√
2π

e−
σ2

2h2 · 	logt |S|

The inequality in the theorem holds.

E: Proof of Theorem 7

Proof of Theorem 7 To prove Theorem 7, we need the
following lemma.

Lemma 1 (Local group typicality score approximation)
Given a set of objects S, a neighborhood threshold σ and
a reported answer set A ⊂ S.

GT (A, S)− LGT (A, S, σ) <
1√
2π

e−
σ2

2h2 (15)

Proof For each object o ∈ A, let N (o, A, S) be the set of
objects in S that lie in D(o, A), according to Eq. 1, we have

T (o, N (o, S, A)) · Pr(N (o, S, A))

= 1

|N (o, S, A)|
∑

x∈N (o,S,A)

Gh(x, o)× |N (o, S, A)|
|S|

= 1

|S|
∑

x∈N (o,S,A)

Gh(x, o)

Let N = L N ({o}, N (o, A, S), σ) be the σ -neighborhood
of o in N (o, A, S), then

LT (o, {o}, N (o, S, A), σ) · Pr(N)

= 1

|N |
∑

x∈N

Gh(x, o)× |N ||S|

= 1

|S|
∑

x∈N

Gh(x, o)

Thus,

T (o, N (o, S, A))Pr(N (o, S, A))

−LT (o, {o}, N (o, S, A), σ)Pr(N)

= 1

|S|

⎛

⎝
∑

x∈N (o,S,A)

Gh(x, o)−
∑

x∈N

Gh(x, o)

⎞

⎠

= 1

|S|
∑

x∈N (o,S,A)−N

Gh(x, o)

For object x ∈ N (o, S, A) − N , x is not in the σ -neigh-
borhood of o, so d(x, o) > σ . Therefore

1

|S|
∑

x∈N (o,S,A)−N

Gh(x, o) <
1

|S|
∑

x∈N (o,S,A)−N

1√
2π

e−
σ2

2h2

123

834 M. Hua et al.

Thus, we have

GT (A, S)− LGT (A, S, σ)

=
∑

o∈A

(T (o, N (o, S, A))Pr(N (o, S, A))

−LT (o, {o}, N (o, S, A), σ)Pr(N))

=
∑

o∈A

1

|S|
∑

x∈N (o,S,A)−N

Gh(x, o)

<
1

|S|
∑

o∈A

∑

x∈N (o,S,A)−N

1√
2π

e−
σ2

2h2

<
1√
2π

e−
σ2

2h2

Equation 15 holds. ��
Proof of Theorem 7 For any object x ∈ S,

RT (o, A, S) = GT (A ∪ {o}, S)− GT (A, S)

L RT (o, A, S, σ) = LGT (A ∪ {o}, S, σ)− LGT (A, S, σ)

Therefore,

RT (o, A, S)− L RT (o, A, S, σ)

= (GT (A ∪ {o}, S)− LGT (A ∪ {o}, S, σ))

−(GT (A, S)− LGT (A, S, σ))

Using Lemma 1, we have

0 ≤ GT (A ∪ {o}, S)− LGT (A ∪ {o}, S, σ) <
1√
2π

e−
σ2

2h2

and

0 ≤ GT (A, S)− LGT (A, S, σ) <
1√
2π

e−
σ2

2h2

Thus,

− 1√
2π

e−
σ2

2h2 < RT (o, A, S)− L RT (o, A, S, σ)

<
1√
2π

e−
σ2

2h2

Inequality 8 follows from the above inequality immediately.
Applying inequality 8 to o and õ, we have

|RT (o, A, S)− L RT (o, A, S, σ)| < 1√
2π

e−
σ2

2h2

and

|RT (̃o, A, S)− L RT (̃o, A, S, σ)| < 1√
2π

e−
σ2

2h2

Since L RT (̃o, A, S, σ) ≥ L RT (o, A, S, σ)

RT (o, A, S)− RT (̃o, A, S)

= (RT (o, A, S)− L RT (o, A, S, σ))

− (RT (̃o, A, S)− L RT (̃o, A, S, σ))

+ (L RT (o, A, S, σ)− L RT (̃o, A, S, σ))

≤ 2√
2π

e
− σ2

2h2

Inequality 7 is shown. ��

References

1. Abramson, I.S.: On bandwidth variation in kernel estimates—a
square root law. Ann. Stat. 10(4), 1217–1223 (1982)

2. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic
subspace clustering of high dimensional data for data mining appli-
cations. In: Proc. of ACM SIGMOD (1998)

3. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics:
ordering points to identify the clustering structure. In: Proc. of
ACM SIGMOD (1999)

4. Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for ham-
iltonian circuits and matchings In: Proc. of STOC (1977)

5. Au Yeung, C.M., Leung, H.F.: A formal model of ontology for
handling fuzzy membership and typicality of instances. Comput.
J. (to appear)

6. Barsalou, L.W.: The instability of graded structure: implications
for the nature of concepts. Concepts and conceptual development,
pp. 101–140 (1987)

7. Bespamyatnikh, S., Kedem, K., Segal, M.: Optimal facility
location under various distance functions. In: Proc. of WADS
(1999)

8. Bose, P., Maheshwari, A., Morin, P.: Fast approximations for sums
of distances, clustering and the fermat-weber problem. Compu.
Geom. Theory Appl. 24(3), 135–146 (2003)

9. Bowman, A.W.: An alternative method of cross-validation for the
smoothing of density estimates. Biometrika 71(2), 353–360 (1984)

10. Bozkaya, T., Ozsoyoglu, M.: Indexing large metric spaces for
similarity search queries. ACM Trans. Database Syst. 24(3),
361–404 (1999)

11. Breiman, L., Meisel, W., Purcell, E.: Variable kernel estimates of
multivariate densities. Technometrics 19(2), 135–144 (1977)

12. Brooks, L.R.: Nonanalytic concept formation and memory for
instances. In: Rosch, E.H., Lloyd B.B. (eds.) Cognition and Cate-
gorization, pp. 169–211. Hillsdale, New York, NY (1973)

13. Campbell, N.A.: Some aspects of allocation and discrimination.
In: Multivariate Statistical Methods in Physical Anthropology,
pp. 177–192 (1984)

14. Cantone, D., Cincotti, G., Ferro, A., Pulvirenti, A.: An effi-
cient approximate algorithm for the 1-median problem in metric
spaces. SIAM J. Optim. 16(2), 434–451 (2005)

15. Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-fac-
tor approximation algorithm for the k-median problem. In: Pro-
ceedings of the Symposium on Theory of Computing, pp. 1–10.
ACM Press, New York (1999)

16. Cohen, B., Murphy, G.L.: Models of concepts. Cogn. Sci. 8,
27–58 (1984)

17. Cohen, E., Kaplan, H.: Spatially-decaying aggregation over a
network: model and algorithms. In: Proc. of ACM SIGMOD
(2004)

18. Cohen, E., Kaplan, H.: Spatially-decaying aggregation over a net-
work. J. Comput. Syst. Sci. 73(3), 265–288 (2007)

19. Das, G., Gunopulos, D., Koudas, N., Tsirogiannis, D.: Answering
top-k queries using views. In: Proc. of VLDB (2006)

20. Devroye, L.: A Course in Density Estimation. Birkhauser, Basel
(1987)

21. Devroye, L., Lugosi, G.: Combinatorial Methods in Density Esti-
mation, 1st edn. Springer, Berlin (2001)

22. Dubois, D., Prade, H., Rossazza, J.: Vagueness, typicality,
and uncertainty in class hierarchies. Int. J. Intell. Syst. 6,
167–183 (1991)

23. Edwards, A.W.F.: Likelihood, 1st edn. Cambridge University
Press, London (1985)

24. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algo-
rithm for discovering clusters in large spatial databases with noise.
In: Proc. of ACM SIGKDD (1996)

123

Top-k typicality queries and efficient query answering methods on large databases 835

25. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. In: Proc. of PODS (2001)

26. Foody, G.M., Campbell, N.A., Trodd, N.M., Wood, T.F.: Deriva-
tion and applications of probabilistic measures of class member-
ship from the maximum likelihood classification. Photogramm.
Eng. Remote Sens. 58, 1335–1341 (1992)

27. Guha, S., Rastogi, R., Shim, K.: Cure: an efficient clustering algo-
rithm for large databases. SIGMOD Rec. 27(2), 73–84 (1998).
doi:10.1145/276305.276312

28. Gunopoulos, D., Kollios, G., Tsotras, V., Domeniconi, C.: Selec-
tivity estimators for multi-dimensional range queries over real
attributes. VLDB J. 14(2), 137–154 (2005)

29. Hartigan, J.A., Wong, M.A.: A K-means clustering algo-
rithm. Appl. Stat. 28, 100–108 (1979)

30. Hinneburg, A., Keim, D.A.: An efficient approach to clustering in
large multimedia databases with noise. In: Proc. of ACM SIGKDD
(1998)

31. Hodge, V., Austin, J.: A survey of outlier detection methodolo-
gies. Artif. Intell. Rev. 2(2), 85–126 (2004)

32. Hua, M., Pei, J., Fu, A.W.C., Lin, X., Leung, H.F.: Efficiently
answering top-k typicality queries on large databases. In: Proc. of
VLDB (2007)

33. Indyk, P.: Sublinear time algorithms for metric space problems.
In: Proc. of STOC (1999)

34. Kanazawa, Y.: An optimal variable cell histogram based on the
sample spacings. Ann. Stat. 20(1), 291–304 (1992)

35. Karypis, G., Han, E.H.S., Kumar, V.: Chameleon: hierarchi-
cal clustering using dynamic modeling. Computer 32(8), 68–
75 (1999)

36. Kaufmann, L., Rousseeuw, P.J.: Clustering by means of medoids.
In: Dodge, Y. (ed.) Statistical Data Analysis based on the L1 Norm,
pp. 405–416. Elsevier/North Holland, Amsterdam (1987)

37. Mack, Y., Rosenblatt, M.: Multivariate k-nearest neighbor density
estimates. J. Multivar. Anal. 9, 1–15 (1979)

38. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring
of top-k queries over sliding windows. In: Proc. of ACM SIGMOD
(2006)

39. Nepal, S., Ramakrishna, M.: Query processing issues in
image(multimedia) databases. In: Proc. of ICDE (1999)

40. Ng, R.T., Han, J.: Clarans: a method for clustering objects
for spatial data mining. IEEE Trans. Knowl. Data Eng. 14(5),
1003–1016 (2002)

41. Nosofsky, R.M.: Similarity, frequency, and category representa-
tions. J. Exp. Psychol. Learn. Memory Cogn. 14(1), 54–65 (1988)

42. Rosch, E.: On the internal structure of perceptual and semantic cat-
egories. In: Cognitive Development and Acquisition of Language,
pp. 111–144 (1973)

43. Rosch, E.: Cognitive representations of semantic categories. J.
Exp. Psychol. Gen. 104, 192–233 (1975)

44. Rudemo, M.: Empirical choice of histograms and kernel density
estimators. Scand. J. Stat. 9, 65–78 (1982)

45. Sain, S.R., Baggerly, K.A., Scott, D.W.: Cross-validation of
multivariate densities. J. Am. Stat. Assoc. 89(427), 807–
817 (1994)

46. Scott, D., Sain, S.: Multi-dimensional density estimation. Hand-
book of Statistics: Data Mining and Computational Statistics,
vol. 23 (2004)

47. Silverman, B.W.: Density Estimation for Statistics and Data Anal-
ysis (Hardcover). Chapman and Hall, London (1986)

48. Tamma, V., Bench-Capon, T.: An ontology model to facili-
tate knowledge-sharing in multi-agent systems. Knowl. Eng.
Rev. 17(1), 41–60 (2002)

49. Tarter, M.: Density estimation applications for outlier detec-
tion. Comput. Programs Biomed. 10(1), 55–60 (1979)

50. Walfish, S.: A review of statistical outlier methods. Pharm. Tech-
nol. 30(11), 82–88 (2006)

51. Wang, W., Yang, J., Muntz, R.R.: Sting: a statistical information
grid approach to spatial data mining. In: Proc. of VLDB (1997)

52. Xin, D., Cheng, H., Yan, X., Han, J.: Extracting redundancy-aware
top-k patterns. In: Proc. of ACM SIGKDD (2006)

53. Xin, D., Han, J., Cheng, H., Li, X.: Answering top-k queries with
multi-dimensional selections: the ranking cube approach. In: Proc.
of VLDB (2006)

54. Xu, R., Wunch II, D.: Survey of clustering algorithms. IEEE Trans.
Neural Netw. 16(3), 645–678 (2005)

55. Yianilos, P.N.: Data structures and algorithms for nearest neighbor
search in general metric spaces. In: Proc. of SODA (1993)

56. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data
clustering method for very large databases. In: Proc. of ACM SIG-
MOD (1996)

123

http://dx.doi.org/10.1145/276305.276312

	Top-k typicality queries and efficient query answering methodson large databases
	Abstract
	1 Introduction
	1.1 Motivating examples
	1.2 Our contributions

	2 Top-K typicality queries
	2.1 Simple typicality
	2.2 Discriminative typicality
	2.3 Representative typicality
	2.4 Comparison with other analysis

	3 Related Work
	3.1 Typicality in psychology and cognitive science
	3.2 Top-k (ranking) queries
	3.3 The (discrete) k-median problem
	3.4 Clustering analysis
	3.5 Other related models

	4 Answering simple typicality queries
	4.1 Likelihood computation
	4.2 An exact algorithm and complexity
	4.3 A randomized tournament algorithm

	5 Local typicality approximation
	5.1 Locality of typicality approximation
	5.2 DLTA: direct local typicality approximation using VP-trees
	5.3 LT3: local typicality approximation using tournaments

	6 Answering discriminative typicality queries
	6.1 A randomized tournament algorithm
	6.2 Local typicality approximation

	7 Answering representative typicality queries
	7.1 An exact algorithm and complexity
	7.2 A randomized tournament method
	7.3 Local typicality approximation methods

	8 Empirical evaluation
	8.1 Typicality queries on real data sets
	8.2 Approximation quality
	8.3 Sensitivity to parameters and noise
	8.4 Efficiency and scalability

	9 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

