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ABSTRACT
As a promising new technology with the unique properties
like high efficiency, scalability and fault tolerance, Peer-to-
Peer (P2P) technology is used as the underlying network
to build new Internet-scale applications. However, one of
the well known issues in such an application (for example
WWW) is that the distribution of data popularities is heav-
ily tailed with a Zipf-like distribution. With consideration
of the skewed popularity we adopt a proactive caching ap-
proach to handle the challenge, and focus on two key prob-
lems: where(i.e. the placement strategy: where to place
the replicas) and how(i.e. the degree problem: how many
replicas are assigned to one specific content)? For the where
problem, we propose a novel approach which can be gener-
ally applied to structured P2P networks. Next, we solve
two optimization objectives related to the how problem:
MAX PERF and MIN COST. Our solution is called PoP-
Cache, and we discover two interesting properties: (1) the
number of replicas assigned to each content is proportional
to its popularity; (2) the derived optimal solutions are re-
lated to the entropy of popularity. To our knowledge, none
of the previous works has mentioned such results. Finally,
we apply the results of PoPCache to propose a P2P base
web caching, called as Web-PoPCache. By means of web
cache trace driven simulation, our extensive evaluation re-
sults demonstrate the advantages of PoPCache and Web-
PoPCache.

Categories and Subject Descriptors
H.3.7 [Information storage and retrieval]: Information
Search and Retrieval - Search process; C.2.4 [Computer-
Communication Networks]: Distributed Systems - Dis-
tributed applications

General Terms
Design, Performance
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1. INTRODUCTION
As a promising new technology, Peer-to-Peer (P2P) sys-

tems have the potential to build applications at a very large
scale. Existing P2P applications like Gnutella and KazaA
connect millions of machines to provide Internet-scale file
sharing services. Due to P2P’s unique distributed, autonomous,
and heterogenous characteristics, efficient search algorithms
are essential to improve the usability of a P2P system. There-
fore, many research works have been conducted on address-
ing the search efficiency issue, including Chord [23], Pas-
try[21], Tapestry[28], CAN[20], etc. In these approaches
each peer and its stored contents are organized using a dis-
tributed hash table (DHT), and they are examples of struc-
tured P2P systems. For such a system with N nodes, the
search cost (i.e. number of lookup hops) is bounded by
O(log N). For the current search solutions in the structured
P2P, all peers are assumed to submit queries to uniformly
search the contents stored in all nodes. However, this as-
sumption is not valid in practice. Often, the popularities of
the contents (measured with respect to the proportion of all
submitted queries that can be satisfied by the content [16, 8,
29]) are quite skewed. For example, web requests on the In-
ternet space are highly skewed with a Zipf-like distribution.
Therefore, in the reality, this skewed popularity will cause
the workload of whole network unbalanced, moreover, due
to the limited bandwidth, though the search cost to some
“hot” peers (the peers have content that can satisfy more
queries) is still bounded to O(log N) in terms of the number
of hops, there will be a long latency for getting the data.

So far, we have listed the challenges brought by the skewed
popularity distribution. In fact, this skewed popularity dis-
tribution also brings opportunity. If we can replicate these
popular contents, there will be substantial reduction on the
search cost for popular contents and the workload of the
whole network can be balanced as well. Therefore, in this
paper, in order to make use of the skewed popularity distri-
bution for proper replication, we propose an analysis model
to handle two key problems related to caching the replicates
in structured P2P systems: where and how to cache the
replicas of popular contents in the P2P nodes? For the first
problem involving where to place the replicas of the con-
tents, i.e. the placement strategy problem, we propose a
novel approach which can be generally applied in the struc-



tured P2P network by placing the replicas in the so-called
k-ary tree Ti. Then with such placement strategy, we han-
dle the problem that how many replicas are assigned for one
object, i.e. the degree of replication, and we consider two
optimization criteria:

– MAX PERF: given a constant number of replicas, how
to minimize the request latency measured by the average
lookup hops in P2P network (i.e. maximize the perfor-
mance)?

– MIN COST: given a targeted threshold of the request
lookup hops, how to minimize the copy number of replicas
(i.e. minimize the cost)?

Replicas, as the paid cost to diminish the average lookup
hops of P2P systems, will consume the bandwidth by ship-
ping the copies to multiple destination nodes; on the other
hand, the average lookup hops of P2P, as the gained ben-
efit from replication, is one of the most important factors
to measure the performance of P2P systems and useful to
diminish the request latency in P2P applications. Conse-
quently, how to tradeoff the gained performance(i.e. average
lookup hops) and the paid cost(number of replicas) is the key
problem during the design of P2P based Caching system. In
this paper, we formate such tradeoff as two orthogonal op-
timization problems: MAX PERF and MIN COST; then,
the system designers can choose either one criterion based
on the system design objective with our closed-form solu-
tions for both optimization criteria. We refer our proposed
replica placement strategy together with the optimal closed
form solutions as the popularity-based P2P based proactive
caching, PoPCache in short.

In order to demonstrate the real usage of PoPCache, we
develop a P2P-based web caching scheme, called as Web-
PoPCache. We have shown through the extensive exper-
iments with respect to the feasibility and optimization of
Web-PoPCache based on our proposed analysis model. In
summary, we make the following contributions in this paper:

• We propose a novel replica placement strategy of PoP-
Cache, by which we can achieve better results than cur-
rently known placement strategies such as CFS [9](the
cooperative file system over Chord [23]), Beehive [19],
and the PAST [22].

• Under such a placement strategy and the optimization
criteria MAX PERF and MIN COST: (1)we derive a
proportional principle, i.e. the number of replicas for
a web content is proportional to its popularity. (2)
we also find that the entropy of content popularity is
related to the optimal closed form solutions.

• We propose to a PoPCache based proactive web caching
solution, Web-PoPCache, which replicates web con-
tents among a large number of connected clients. The
proposed web caching solution can optimally tradeoff
the performance gain and the cost.

Among all contributions, two are interesting: (1) For both
the objectives of MAX PERF and MIN COST, the optimal
number of replicas is proportional to the object popularity
px. It is known that for unstructured P2P, the random walk
based technique is optimized by the square-root principle [7,
16, 29, 29]; here we arrive at a different optimal function of
the popularity for a structured P2P system. (2) For both
optimization problems MAX PERF and MIN COST, the

derived closed form solutions are related to entropy of pop-
ularity px. To our knowledge, none of previous P2P works
has mentioned such a relationship. Intuitively it makes sense
since we have expected that our approach can accelerate the
search for popular nodes, then the skew of the popularity
distribution will play an important role in the optimization
of the search performance, and taking the popularity as a
probability function of the query targets, entropy is a sound
measure of the skew of the distribution.

The rest of this paper is organized as follows: Section 2
introduces the background of web caching system. In Sec-
tion 3 we present the related work in this area. In Section 4
we present PoPCache’s novel replica placement strategy and
the closed form solution for the optimization objectives. In
Section 5 we present Web-PoPCache, a P2P based proactive
web caching scheme based on PoPCache. Section 6 evaluates
the performance of PoPCache and Web-PoPCache. Finally,
Section 7 is a conclusion.

2. BACKGROUND
As an Internet application, web caching is a widely uti-

lized technology to reduce the content request latency, to de-
crease the amount of aggregate network traffic between the
client side and the server side where the requested contents
are hosted, and to balance the workload by distributing the
heavy workload of the busy web servers. Given a request
from the web browser of a client side to the original web
server of the server side, web caching can be implemented in
various locations: (1) in the local directory of client side web
browser ; (2) at the origin web server (for example, the con-
tents, or portions of contents, can be stored in a server-side
cache to reduce the server load); (3) at the intermediate the
proxy servers located between the client side and the orig-
inal web server, including client side proxy servers (the or-
ganization proxy, and the forward proxy cache of client side
ISP:Internet Service Provider), and the server side proxy
servers(reverse proxy cache of server side ISP, and such a
network is called a content delivery network: CDN).

Web contents can be cached while passing to the client
side web browser from client side proxy servers(the orga-
nization proxy, and the forward proxy cache of client side
ISP), hence there can be caching only for those contents
which are already requested. This kind of caching is typ-
ically called passive caching at client side. On the other
hand, proactive caching means that the replicas of web con-
tents are proactively cached by the original web servers and
the server side CDN to achieve the goals of improved perfor-
mance and load balancing. The proactive caching technique
is widely utilized for the content providers like Google or the
third-party CDN provider like Akamai. Though supporting
load balancing and having better performance including re-
duced request latency and decreased bandwidth consump-
tion, such caching involves expensive costs, which include
the expensive dedicate hardware devices (for example high
performance servers and network devices), the operational or
administrative cost and the associated network bandwidth
consumption.

To avoid the expensive cost to construct the server side
caching and CDN, P2P technology is an alternative to con-
nect a large number of volunteered nodes with low costs (for
example desk top machines) to construct a cooperative web
caching system. Squirrel [12] is an example of such a web
caching system and it shares the local contents by Pastry [21]



to form an efficient and scalable web caching. However, the
passively web caching technique, such as the one applied by
Squirrel, only stores the web content to the node with node
ID numerically closest to the hash ID of the URL of such
web content. There is no consideration about the popularity
skewness of the contents. Consequently, the workload of the
whole network may still unbalanced.

Cooperative Web caching is the most common solution
for augmenting the low cache hit rates due to single proxies.
There has been extensive work on cooperative web caching
system as a technique to reduce request latency and increase
the hit rate. The design of cooperative web caching sys-
tems can be hierarchical like Harvest [10] and Squid [1],
hash-based [14],directory-based [11], and multicast based
[24]. Different from these cooperative web caching systems
which still require a dedicated proxy infrastructure, P2P
based web caching systems completely eliminate the need of
proxy servers. Kache [15], a cooperative web caching sys-
tem built over Kelips [15], can perform a lookup in one hop,

however, with the cost of maintaining a list of O(
√

N) peers
in each node. Squirrel [12], a peer-to-peer web cache tar-
geted at replacing central demand-side web caches within
a local area network, is a passive, opportunistic cache with
no consideration of the skewed popularity and performance
optimization.

3. RELATED WORK
In this section we briefly review the related works in three

aspects: structured P2P systems, replica placement strat-
egy, and the degree of replication.

Structured Peer-to-Peer System: A number of peer-
to-peer routing protocols have been proposed recently, in-
cluding CAN [20], Chord [23], Tapestry [28] and Pastry [21].
These self-organizing, decentralized systems provide the func-
tionality of a scalable distributed hash-table (DHT), by re-
liably mapping a given object key to a unique live node
in the network. The systems have the desirable properties
of high scalability, fault tolerance and efficient routing of
queries. Besides these DHT-based P2P, randomized P2P
networks like Symphony [17], SkipGraph [6],and more struc-
tured P2Ps like BATON [13], P-Grid [4] etc are all exam-
ples of structured P2P. In these structured P2P protocols,
each node is regularly assigned with equal number of neigh-
bors, and the average lookup hop number is guaranteed with
O(log N).

Replica Placement Strategy: Some works in P2P net-
work propose to place the replica or cached objects to smooth
the load in the hot-spot nodes caused by popular queries.
CFS [9], a cooperative file system over Chord [23], caches
the popular objects along the lookup path towards the nodes
where the popular objects are stored. In PAST [22],the
storage system over Pastry [21], the search for some object
is redirected to the nearest replicas of the targeted object.
Such placement strategy [22] is a random placement strat-
egy. Based on the replication level l, Beehive [19] replicates
the object content copies to all the nodes that have at least
l matching prefixes with the object. Unlike the heuristical
schemes like CFS [9] and PAST [22], Beehive [19] and our
work can provide optimal solutions based on the analytical
model. Compared with Beehive [19], our proposed solu-
tion for an optimization problem MIN COST makes use of
less replicas to achieve the same targeted performance and
provide better granularity to control the number of replicas;

Symbol Meaning
ni i-th node in the system
N the total number of nodes in the system
cx x-th content in the system
px the request popularity of cx

C the total number of contents in the system
lx the number of replicas assigned to content cx

L the total number of replicas
Hx the hop number to lookup content cx

H the average hop number to lookup all contents
k number of links regularly assigned at each node
τ the targeted number of average lookup hops

α parameter in Zipf distribution z−α

Table 1: Meanings of main symbols used

furthermore, there is no assumption on the popularity distri-
bution in our optimization, while Beehive [19] only provides
the analytical guarantee for the Zipf distribution. Different
from our work, under the proposed cost model, [5] presented
the replication of dynamic XML documents in the context
of the ad-hoc connected web services which can be treated
as unstructured P2P, and does not provide the global opti-
mality.

The Degree of Replication: In unstructured P2P net-
works, [7] proposes to optimize search efficiency by repli-
cation, where the number of replicas of an object is pro-
portional to the square-root of the object’s popularity. [8]
presents a square-root topology for unstructured P2P net-
works where the degree of a peer machine is proportional to
the square root of the node popularity. Their results show
that for random walk search, the square-root principle can
achieve optimal performance. Compared with these related
works, our work and Beehive [18, 19] solve the MIN COST
problem with closed form solution, however, Beehive [19]
only arrives at the approximate numeric results for MIN COST
under the assumption of the Zipf popularity distribution.
Furthermore, for the optimization problem MAX PERF, we
derive the proportional principle, in contrast to the square-
root principle un-structured P2P network in the above.

4. THEORETICAL ANALYSIS
In this section, we first present our novel replica placement

strategy in Section 4.1, then propose the analytical solutions
of PoPCache to two optimization objectives related to the
replication degree problem in Section 4.2. Table 1 summa-
rizes the main symbols used in this section.

4.1 Replica Placement in PoPCache
Our proposed placement strategy is a general framework

which can be applied in structured P2P networks like DHT
based P2P(Chord [23], Pastry [21], Tapestry [28], CAN [20]),
randomized structured P2P ( Symphony [17], SkipGraph [6]),
or BATON [13]. This is difference from the work in Bee-
hive [19], which is limited to the prefix matching based DHT
like Pastry[21].

In general, each node in structured P2P network is reg-
ularly assigned with k links for routing. In Chord [23], the
value of k is the size of the finger table; in Pastry [21]
(Tapestry [28]) the value of k can be treated as the num-
ber of rows (levels) in the routing table (neighbor set); in
Symphony [17], the value of k is the number of long links.
A similar situation holds for other structured P2P network.
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Figure 1: The proposed replica placement strategy

With k-regular links for routing in each node, the content
object cx stored in the structured P2P network, can be found
with the average O(log N) number of hops, where N is the
total number of nodes.

The key observation in structured P2P is that each node
n can be treated as the root of a k-ary tree with the k direct
neighbors of n connected by k links as the 1st level chil-
dren, the neighbors of neighbors of n added with k2 links
as the 2nd-level children... As a result, given total N nodes
in the structured P2P network, any node ni can be treated
as the root of a k-ary tree, which has at most logk N lev-
els with k� remote neighbors as the �-level children where
� = 1, 2, ..., logk N . Such a tree with node ni as the root
is denoted as Ti. The search from some node nj to ni is
the process of greedily approaching the root ni along the
bottom-up path of Ti towards ni.

For simplicity, we take Chord [23] as example. In Fig-
ure 1(a), each node has a finger table with size equal to
k = 3(Note: in Figure 1(a) we omit the arrows between one
node and its successor, for example n0 to n1, for the clear
figure). Based on the finger table allocation principle, the
i-th node with nodeID ni is connected directly to nodes with
nodeID equal to (ni + 20) MOD N , (ni + 21) MOD N , and
(ni + 22) MOD N , where N = 13. For example node n0

with nodeID equal to 0 in Figure 1(a) has 3 links respec-
tively pointing to nodes n1,n2, and n4, which alternatively
means nodes n1,n2, and n4 are connected by n0 . With the
same situation, node n9 is connected by nodes n8, n7, and
n5; n7 is connected by n6, n5, and n3. The same situation
holds for other nodes. Then n9 in Figure 1(a) is the root
of T9, with the direct neighbors of n8, n7, and n5 as the
1st-level children, the direct neighbors of n8,n7, and n5 as
2nd-level descendants... The lookup for n9 from any source
node can be treated as the process of greedily approaching
the root of T9, i.e. n9 in the bottom-up manner. The rout-
ing from any node towards the root of Ti always finds the
closest path to greedily reach the root based on the local
routing information of n. For example, to find n9, n4 can
look up the local routing information (n5,n6, and n8) and
consider n8,instead of n4 or n5, as the closest intermediate
forwarder to reach n9. As a result, any node located at the
�-th level of the tree of ni will consume on average average
O(�) hops to reach the root ni. For other structured P2P
network, such kind of k-ary tree can also be conceptually
constructed for each node.

Now we show how to utilize the k-ary tree Ti for replica

placement. For a structured P2P network with k regular
links in each node, to place the replicas for some content
object cx, we can first find the home node ni of the con-
tent object cx, i.e. the node where the content object cx is
stored in the structured P2P network. The tree Ti with ni

as the root can be utilized for replica placement. Suppose
lx replicas of the content object cx are required. First, at
most (due to the fact that one node can appear in multiple
locations of the k-ary tree Ti) k replicas are placed in the
1st level children of ni in the tree Ti, next at most k2 repli-
cas are placed in the 2nd level children of ni in the tree Ti

,..., until all li replicas of cx are consumed. The correspond-
ing lx descendant nodes of ni to store the replicas of cX are
called the delegate nodes, and the area with these lx delegate
nodes is called the acceleration area of cx. In Figure 1(b), if
5 replicas are allocated for node n9 for caching, first the 1st
level children (n8,n7, and n5) are respectively placed with
one replica; then the two more replicas are placed in two 2nd
level nodes (n6 and n4). During the greedy search towards
the designation node, the nodes with less distance to the
destination node have a higher probability to be visited as
the intermediate nodes towards the destination node than
those node with larger distance to destination node. As a
result, n6 and n4, instead of n3 and n1, are chosen to place
the replicas for node n9. Based on our placement strategy
we have the following theorem:

Theorem 1 In structured P2P with N nodes and k regular
links for routing in each node, for content object cx with lx
replicas placed along levels of the tree Ti with the home node
ni of cx as the root, the average hop number Hx to lookup
cx is O(log N − logk lx).

Proof : Since the content object cx is stored in the home
node ni, cx is located at the root ni of the k-ary tree Ti.
Based on our proposed replica placement strategy, suppose
the 1-st level children of ni are placed with at most k repli-
cas of cx, the search for cx from any source can be reduced
on average by 1 hop; again if both the 1-st and 2-nd lev-
els descendants of ni are assigned at most (k1 + k2) repli-
cas, then the search for cx can be reduced on average by
2 hops,..., if the 1-st level, the 2-nd level,..., the �-th level
descendants of ni are in total assigned (k1 + k2 + ... + k�)
replicas of cx, the search for cx can be reduced on aver-
age by � hops. Given lx replicas for cx, they are placed
at the 1-st, 2-nd,...,logk (1 + lx(1 − 1/k))-th level descen-
dants of ni, the search for cx can be reduced on average
by logk (1 + lx(1 − 1/k)) hops.

For any request to lookup cx, once it reaches any one of lx
delegate nodes of ni, it can be terminated and the rest of the
search from the current node to ni is skipped. Consequently,
the average hop number to lookup cx will be reduced by at
most logk lx, i.e. the average hop number Hx to lookup cx

is Hx = O(log N − logk lx). �

4.2 Optimal Proactive Cache
As discussed in the above section, given content object cx

with copy number equal to lx, the average hop number to
lookup cx is Hx = O(log N−logk lx). The choice of the opti-
mization criterion MAX PERF or MIN COST is dependant
upon the system design principle, the optimization objec-
tive can be either oriented to the best performance or the
cost minimization. In this section, we proactively place the



replicas of popular contents with the placement strategy in
Section 4.1 and provide our solutions for both optimization
criteria MAX PERF and MIN COST based on the analyti-
cal model.

4.2.1 MAX_PERF: Performance MAXIMIZATION
Given the total number of L replicas in the structured

P2P network, the optimal objective of MAX PERF is to
maximize the performance by minimizing the average hop
number to lookup all C content objects in the structured
P2P network. In this paper, given the content object cx, the
content popularity of cx can be defined as the proportion
of all submitted queries that can be satisfied by cx. This
definition is consistent with [8, 29]. Obviously, 0 ≤ px ≤ 1

and
∑C

i=1 px = 1 where C is the total number of content
objects in the system. Since the queries follow the popularity
distribution, the average hop number to lookup all content
objects, H, is given by:

H =

C∑
x=1

(px · Hx) =

C∑
x=1

px · (log N − logk lx) (1)

Then we achieve the following proportional principle:

Theorem 2 Given
∑C

x=1 lx = L, H is minimized when
lx = px · L.

Proof : This is an optimization problem of H with the
subjective

∑C
x=1 lx = L. We use the Lagrange multiplier

method to solve for the optimal value of lx in terms of px.
We find the Lagrange multiplier λ that satisfies ∇H = λ·∇f
where f =

∑C
x=1 lx −L = 0. First, treating px, log N and k

as the constants,

∇H =
C∑

x=1

px · 1

ln k
· (− 1

lx
) · ûx (2)

where ûx is a unit vector. Next,

∇f =

C∑
x=1

λ · ûx (3)

Since ∇H = λ · ∇f , then

px · 1

ln k
· (− 1

lx
) = λ (4)

Solving for lx gives

lx = −px · 1

ln k
· 1

λ
(5)

Substituting the above equation into f =
∑C

x=1 lx−L = 0
gives

C∑
x=1

lx =

C∑
x=1

(−px · 1

ln k
· 1

λ)
= L (6)

since
∑C

x=1 px = 1, we have

C∑
x=1

(−px · 1

ln k
· 1

λ
) = (− 1

ln k
· 1

λ
) = L (7)

− 1

λ
=

L
1

ln k

(8)

By substituting the above equation back to Equation 5,
we arrive at Theorem 2. �

If we substitute lx = px ·L in Theorem 2 into Equation 1,
then we get

H = log N −
C∑

x=1

(px · logk px) − logk L (9)

Compared with the well-known square-root principle in
unstructured P2P network, our replica placement strategy
in structured P2P network arrives at a different proportional
principle. In unstructured P2P with the random walk based
search scheme, the average hop number to search cx is pro-
portional to the reverse of lx, the number of ni’s replicas,
while we achieve the average search cost as shown in The-
orem 1. Hence for the optimization problem MAX PERF,
we derive the proportional principle.

Furthermore, in Equation 9, we find that −
∑C

x=1 (px · logk px)
is in fact the entropy definition of px. Intuitively it makes
sense since we have expected that our approach can accel-
erate the search for popular nodes, then the skew of the
popularity distribution will play an important role in the
optimization of the search performance, and taking the pop-
ularity as a probability function (of the query targets) en-
tropy is a sound measure of the skew of the distribution. To
our knowledge, no previous P2P work has mentioned such a
relationship.

4.2.2 MIN_COST: Cost Minimization
In contrast to the problem of MAX PERF, the optimiza-

tion problem of MIN COST is to minimize the total number
of replicas, L, to achieve the targeted constant result τ for
the average search cost H given in Equation 1. We derive
the following theorem to solve the optimization problem of
MIN COST:

Theorem 3 With the targeted constant result τ to make
H = τ , L =

∑C
x=1 lx is minimized when lx = px·k(log N−τ−Epx ),

where Epx is the entropy of px with the value of Epx =∑C
x=1 (px · logk px).

Proof : Similar to the proof of Theorem 2, we use the
Lagrange multiplier method to achieve the same result of lx
as Theorem 2:

lx = −px · 1

ln k
· 1

λ
(10)

Then substituting the result of lx by Equation 10 into
H = τ can give:

H =

C∑
x=1

[px · (log N − logk

−px

λ ln k
)] = τ (11)

Since
∑C

x=1 px = 1, by the similar steps in the proof of
Theorem 2 we have

−λ = kEpx+τ−log N−logk ln k (12)

By substituting the result of λ into Equation 10, we arrive
at Theorem 3. �

The benefits of our optimal solution for MIN COST is
that the value of τ is independent of the value of node count
N . In the very skewed case, the optimal allocation of lx for
content object cx in Theorem 3 can achieve O(1) average



search hops. Compared with Beehive [19], our optimal solu-
tion from Theorem 3 has the following the advantages: (1)
the distribution of popularity pi can be the general probabil-
ity distribution, unlike Beehive which only gives the numeric
result for the Zipf like distribution; (2) our optimal solution
can be applied to the general structured P2P; while Bee-
hive [19] is limited to the prefix matching based DHT like
Pastry [21].

As in Theorem 2, Theorem 3 also give rise to the propor-
tional principle where lx ∝ px, and the entropy term of px

appears as well. Thus, the proportional principle and the re-
lationship to the entropy of px are related to the optimal so-
lutions to both MAX PERF and MIN COST in structured
P2P.

5. OPTIMAL PROACTIVE WEB CACHING
In this section, we apply the results of PoPCache to a

real Internet application, web caching, by proposing a P2P-
based web caching scheme, which can optimally tradeoff the
cost and performance gain. We shall call this web caching
system Web-PoPCache.

5.1 System Architecture
The target environment of our system is a large scale co-

operate network typically with 100 to 10,000 or more client
desktop machines. All of the clients are assumed to ac-
cess the Internet web server through a direct connection or
through a firewall. In each node Web-PoPCache runs as
a daemon program. There are three components in Web-
PoPCache: proactive cache proxy, local cache store, and
the underlying P2P operation unit(see Figure 2). The web
browser in each node is configured to use the proactive cache
proxy to access the web objects. The proactive cache proxy
is responsible for: (1)intercepting the http request from the
web browser; (2) caching the requested web contents, (3)
optimally replicating the popular web contents based on the
replica placement strategy; and (4) maintaining the consis-
tency of local caches. The cache store, used to locally store
the cached web contents, is limited to a fixed storage size
and it uses an LRU cache replacement policy. Finally the
P2P operation unit provides the get/put operations by find-
ing the home node with node ID numerically closest to the
hash ID of a web content URL. Note that web contents are
typically of a reasonable size. In [25] there has been a study
of the sizes of web contents of a real data set taken from the
internet. In their study, the size of each HTML document
was measured and for the entire data set, the mean size was
4.4KB, the median size was 2.0KB, and the maximum size
was 1.6MB.

When a client node submits a http request, the client
node itself, intermediate nodes, and home node can sever the
http request when the local cache stores of the client node,
intermediate nodes or the home node contain the replicas
of the requested web contents. Even if no replicas of such
contents are found, Web-PoPCache redirects the requests to
the original web server. As a result, Web-PoPCache utilizes
the underlying P2P overlay to cooperatively serve the http
request with the replicated web contents. The key point of
Web-PoPCache is to adopt the replica placement strategy of
PoPCache (Section 4.1) to setup the caching location, and
the proportional principle derived in Section 4.2 to place
the replicas of the web content. Therefore, our system can
optimally tradeoff the cost (i.e. the number of replicas) and
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Figure 2: System Architecture of Web-PoPCache

the performance gain (i.e. average search hop number).
Through Figure 2, we illustrate the use of Web-PoPCache

as the following.

1. The client user sends the http request by submitting
one URL via the web browser to access the web con-
tents (1.1 in Figure 2). After intercepting the http re-
quest from the web browser, the proactive cache proxy
checks the local cache store to determine whether a
replica belonging to such a URL is available (1.2 in
Figure 2).

2. If there is a replica in the local cache store, such con-
tent is directly returned to the client (2.1 and 2.2 in
Figure 2);

3. Otherwise if no replica of such a URL exists , the
proactive cache proxy redirects (3.1 in Figure 2) the
http request to the P2P operation unit to lookup the
home node i.e. client 3 with a node ID closest to the
hash ID of the URL. The http request is greedily for-
warded towards client 3, but if the intermediated node
client 4 contains a replica for the request in its local
cache store (3.2 in Figure 2), then the replica is re-
turned to the requester (3.3 in Figure 2);

4. When all intermediate nodes towards home node do
not contain the replica of such a URL, the request
finally reaches home node client 4 (3.4 in Figure 2),
then Web-PoPCache will check whether a replica in
client 4 is available to serve the http request, and if
so, the replica is directly returned to the requester (3.5
in Figure 2); otherwise, client 4 will visit the original
web server to fetch the requested content and return
the content to the requester (3.4 in Figure 2).

5.2 Load Balancing
With no careful consideration of the load balancing scheme,

the skewed popularity of web content request(i.e the well-
known Zipf distribution) can aggravate the load of the node
hosted with the most popular web contents. However, since
the replicas of these popular web content are placed along
the levels of neighbors based on the results of Section 4, the
requests for such web contents can be terminated at the lev-
els of neighbors, which reduce the workload. However, to
handle a sudden burst of request for some popular contents,
each node can set up a threshold for the query rate based



Traces NLANR BU
Time Jan 9-10, 2007 Nov 1,1994-

Jan 17, 1995
# Requests 189034 107578
# Contents 117765 16939
Total (GB) 2.66406 0.55371

Infinite Cache (GB) 2.0332 0.3945
Avg Requests per Content 1.60518 6.3500973
Max Requests per Content 1696 3328
Min Requests per Content 1 1
Avg content popularity (%) .000849149 0.005902784
Max content popularity (%) 0.8971931 3.093569317
Min content popularity (%) 0.000529005 0.000929558

Hit ratio (%) 37.8239 72.5603748

Table 2: Statistics about the traces

on its capacity. Before the load of the client is out of its ca-
pacity, the client can progressively copy the requested web
contents to its direct neighbors. Similar situation holds for
these direct neighbors. As a result, the popular web contents
are progressively replicated throughout the levels of nodes
from its home node.

5.3 Popularity Estimation
Following the idea in [27], the total number of queries

issued in the system in a time interval can be estimated by
gossip based sampling protocol or [26] like deterministic
protocol. The number of queries received at each local node
ni divided by the total number of queries is the popularity
px of such a node. For each node, the number of received
queries can be measured by counting at regular interval.
However a sudden burst of queries can rapidly change the
rate, hence we measure the query arrival time to respond to
the change in query rate. Then, the popularity px can be
estimated by the query rate against the total query rate.

6. EVALUATION
The evaluation includes two parts: (1) PART-A (Section

6.2): Comparison of our proposed cache placement strategy
in Section 4.1 and several current cache placement strategies
including CFS [9], Pastry [22](in spirit, [22] is a random
strategy), and Beehive [19]; then further present the experi-
mental results to evaluate our solutions for MAX PERF and
MIN COST. For this part of the evaluation, we adopt the
average search hops as the metric to evaluate the lookup
efficiency. (2) PART-B (Section 6.3): Comparison of Web-
PoPCache with Squirrel [12] to optimally tradeoff the bet-
ter performance and load balancing against the cost. In
this part, we adopt three main metric types: performance
(request latency, external bandwidth and hit ratio), load
balancing (query count per machine), and overhead (cache
storage per machine).

The underlying structured P2P is implemented with a
Chord [23] based DHT protocol. All the experimental results
are obtained by a trace-driven event simulator. To model the
skewed popularity distribution, we have downloaded several
publicly available web request trace files. For the evalua-
tion of PART-A, we directly store all distinct URLs that
appeared in the web request trace files to the home nodes;
based on the request count for each URL we calculate the
request popularity for such URL, then apply the result of
Section 4 to place the copies of URLs in the delegate nodes.
Then to model the skewed request popularity, for each row
of the trace file, one request for the URL that appeared in
the row is sent to lookup the URL; For PART-B, we build
the web cache application upon the underlying P2P simula-

tor. Instead of statically allocated before the requests, the
URL copies are progressively placed in its delegate nodes
based on the incoming requests(see Section 5.2).

6.1 Traces
Table 2 lists the Web traces we have used for the perfor-

mance evaluation.

• NLANR traces: NLANR (National Lab of Applied
Network Research) provides sanitized cache access logs
in the public domain [2]. We have used 2 days’ traces
of Jan 9, 2007 and Jan 10, 2007 from the “bo”, “pa”,
“sd” and “uc” proxies.

• BU traces: Boston University collected traces from a
similar computing facility and user population in 1995
and 1998, which can be found in [3]. We have selected
the traces in a period of 2 months in two different years,
which are denoted by BU-95 and BU-98, respectively.

To clearly present the distribution of requests, we respec-
tively show the count of requests per URL ordered by the
ranking of popularities of the trace file NLANR(pa.sanitized-
access.20070109) and trace file BU(the contents in subdirec-
tory condensed/272 of BU-www-client-traces.tar.gz) in Fig-
ure 3 and Figure 4. The traces can be publicly downloaded
from IRCache [2] and BU Trace [3]. The ranking sequence
presented in the x-axis of Figure 3 is ordered in a descending
manner. To plot the points with a zero hit, we add the orig-
inal requests by 1 so that the points with zero value can be
shown on the y-axis with log-scale. From this figure, we can
find that the requests count basically follows the well-known
Zipf like distribution. Furthermore, based on the definition
of entropy Epx = −

∑C
x=1 (px · logk px), for some value of

k = 7.6 we compute the entropy for NLANR trace file and
BU trace file:6.2579 and 2.7637. Since entropy is used to
measure the randomness of the popularity distribution, we
can find the popularity distribution of BU trace file is more
skewed than NLANR trace file. In addition, the larger value
of k also reduces the entropy of popularity distribution.

6.2 Evaluation for the Analysis Model

6.2.1 Comparison of placement strategy
We compare the placement strategy of PoPCache with

other three strategies: the CFS strategy [9], Beehive strat-
egy [19] and the random strategy. Following the strategy de-
scribed in CFS [9] which is a cooperative file system based on
Chord [23], we place replicas along the lookup path towards
the destination. For random placement, which essentially is
the strategy taken by Pastry [21], replicas are placed at ran-
domly chosen nodes. In the experiment setting, N = 4000
and k = 8. For each web content uniquely identified by a
URL, we adopt the proportional principle to assign the num-
ber of replicas based on px and place the replicas by four
strategies as described above. By varying the total number
of replicas, we measure the average lookup hops H for each
strategy.

Figure 5 plots the average lookup hops for the above four
cases by varying the value of D, it can be found that PoP-
Cache outperforms other three strategies. This can be ex-
plained that: (1) the PoPCache placement achieves the least
average lookup hops because the replicas placed in the the
k-ary tree Ti can benefit searching from any source nodes;
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(2)in the Chord or random strategy, only the searches from
some specific source nodes can be accelerated by the alinks;
(3) for Beehive [19], only roughly half of the cache copies
can be helpful to the lookup due to the limitation that it is
target for only the prefix based DHT.

6.2.2 MAX_PERF
In Figure 6 we compare the our proposed optimal solu-

tion for MAX PERF under two trace files NLANR and BU,
we also plot the results of no caching in Figure 6. By no
caching we mean that no replicas is utilized in PoPCache.
Theoretically the adoption of the proportional principle in
PoPCache can achieve less lookup hops for the same number
of replicas. From this figure, we can find that the average
lookup hop number for trace file NLANR is larger than that
for trace file BU. This result can be consistently explained
by Equation 9 in Section 4.2.1, because the entropy of px for
popularity in trace file NLANR is larger than that in trace
file BU.

6.2.3 MIN_COST
Figure 9 plots the total copy number C with the goal to

satisfy the target lookup hops τ respectively for N = 800
and N = 8000. Naturally, to satisfy a smaller τ , more
copies will be consumed. From Figure 9, for N = 8000,
to achieve less than 1 hops from τ = 8 to τ = 7, about
4.5× 107 more replicas are needed; while to achieve below 1
hops from τ = 3 to τ = 2, about 3.1× 109 more replicas are
needed: the same reduction of the average lookup hops con-
sumes nearly 100 times of replicas. Similar situation holds
for N = 800, though when N grows from 800 to 8000, to
achieve the average lookup hops H, more replicas are re-
quired for N=8000 than N=800. Also due to the different
entropy values for BU trace and NLANR trace, more repli-
cas are consumed for NLANR trace than BU trace for both
N=800 and N=8000. This experiment provides the guide-

line for system administrator to tradeoff the performance
gain and cost.

6.3 Evaluation for the Web Cache Application
In this section, we evaluate Web-PoPCache for coopera-

tive web caching in terms of the load balancing, the con-
sumed external bandwidth and hit ratio. Each participated
node in Web-PoPCache is assumed to be a desktop machine
with similar capacity. For simplicity, Web-PoPCache adopts
the LRU policy.

6.3.1 Load Balancing
For a node ni, we set the load of ni, Li, to be the the num-

ber of incoming http requests with URLs that are served by
ni. Figures 7 and 8 respectively plot the load distribution of
NLANR and BU trace data for Web-PoPCache and Squir-
rel [12]. The x-axis of Figure 7 and Figure 8 present the
load (number of requests to server in each node) boundary
values, where the left most point on the x-axis corresponds
to a load (request count in some node) of less than 10 both
for the NLANR and BU trace, and the right most point
refers to a load larger than 1500 and 1000 respectively for
the NLANR and BU trace; and y-axis represents the count
of all nodes with load Li within the load boundary values.

From Figures 7 and 8, we can find that the load distribu-
tion of Squirrel [12] is heavily tailed and is consistent with
the Zipf distribution given in Figures 3 and 4. It is because
Squirrel [12] does not consider the problem of load balanc-
ing. For example in Figure 8, the rate of nodes with load
within [10,250] among all nodes is 98.039%. When over-
loading is considered, for one threshold load value(=250 in
Figure 8), 7.698% of the nodes in Squirrel jave loads greater
than the threshold value and they have to serve 49.885% of
the requests! While in Web-PoPCache, only 0.35% of the
nodes exceed the load threshold and they only serve 1.862%
of the requests. It is found that Web-PoPCache can effec-
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tively balance the load. A similar situation holds for the
NLANR trace file seen in Figure 7.

6.3.2 Hit ratio and external bandwidth
We calculate the external bandwidth as the bytes trans-

ferred between Web-PoPCache and the external origin servers.
In this section, we compare Web-PoPCache with Squirrel [12]
on the hit ratio and external bandwidth savings by measur-
ing the impact of the per-node cache storage size. Since the
cache replacement strategy is implemented with LRU algo-
rithm, the rarely requested contents in the local cache store
are always replaced with the new incoming popular contents
which are more frequently requested to be placed in the local
cache store. Obviously the larger storage size of local cache
store can accommodate more replicas and can increase the
hit ratio; also a large value of node count N can provide more
nodes to accommodate the replicas and can also increase the
hit ratio. Both Figures 10 and 11 show the impact of local
cache storage size and node count N . When N grows, the
total size of all local storage in PoPCache is also increased.
As a result, the hit rate grows. Since the data size varies
from web object to web object, the x-axis in Figures 10 and
11 is represented as the cache storage size (i.e. size of the
priority queue to implement the local cache store), instead
of the total data size of cached web contents. In our experi-
ments, the first time to request a URL always is required to
visit the original web server outside the Web-PoPCache, as
a result, the infinite hit ratio appears in Figure 10 and Fig-
ure 11 is different in that of the computed hit ratio in table 2
where the downloaded trace file only records the requested
URL within some interval, and this could miss some of the
first-time requests.

Since the external requests for the original web server are
produced when the requests for some URL are missed in the
Web-PoPCache, the less hit ratio means that more external
bandwidth will be consumed as plotted in Figure 12 and

Figure 13.

6.3.3 Request Latency
Since Web-PoPCache is targeted to a large corporate in-

tranet environment by connecting a large number of desktop
machines to provide the cooperative web caching. The com-
munication latencies between the desktop machines within
the Web-PoPCache are of the order of a few milliseconds,
while the latencies between one desktop machine within the
Web-PoPCache and the external web severs are at least an
order of magnitude larger than the internal latency. Conse-
quently, the request latency between issuing the HTTP re-
quest and receiving the response is determined by two fac-
tors: (1) hit ratio; (2) the external latency. If the HTTP
requests are hit by the cached web objects placed in Web-
PoPCache, the request latency is within several milliseconds;
if missed, the request latency is dominated by the external
latency. Figures 14 and 15 respectively plot the average
request latency for NLANR trace and BU trace.

It can be found that the trends of the average latency
in Figure 14 and Figure 15 follows that of Figure 12 and
Figure 13, and are verse to that of Figure 10 and Figure 11.
From Figure 10, 11, 12, 13, 14 and 15, we can demonstrate
the benefits achieved by Web-PoPCache with increased hit
rate, reduced bandwidth and smaller request latency.

6.3.4 Fault Tolerance
Since the nodes in Web-PoPCACHE could leave or fail

suddenly, the replicated web contents in those nodes will
be lost. In this experiment, we assume the nodes fail ran-
domly with a given failure rate. Figure 16 shows the effect
of hit ratio by node failure rate. From this figure we can
find that the hit ratio is non-nearly reduced as the node
failure ratio grows. It can be explained as following. Due
to the proportional replication principle, the more popular
contents are placed to more nodes and less popular contents
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are placed to less nodes. With a given rate of node failure,
the more popular contents can survive with a higher prob-
ability than the less popular contents, i.e. the hit ratio for
popular contents is higher than the hit ratio of un-popular
contents. Simultaneously, the http requests are issued by
with skewed popularity, the high popular contents receive
more request than those less popularity. As a result, the hit
ratio curve vs node failure rate is the convex shape. More-
over, we can also find that with the same node failure ratio,
the hit ratio for N=4000 is higher than the hit ratio for
N=2000. For N=2000, each node are placed with more con-
tents than N=4000; and more contents are lost due to the
node failure. Consequently, the larger number of nodes in
Web-PoPCACHE can help the high hit ratio under node
failure. The reason that we chose hit ratio as the measure
metric is that when the failure happens in the intermediate
lookup path towards the destination node instead of no fail-
ure of the destination node, more hops will be consumed but
no effect of the hit ratio, and the replicated web contents can
be always found in the destination node. As a result, the
missed requests caused by node failure will visit the original
web servers by Internet, and then we focus on the effect of
hit ratio caused by node failure.

7. CONCLUSION
In this paper, with consideration of the skewed popular-

ities of data contents in a P2P environment, we propose a
proactive caching method PoPCache with a novel placement
strategy based on the closed form solutions for two opti-
mization objectives: MAX PERF and MIN COST. In the
optimal solutions, there are the following interesting proper-
ties: (1) the copy number assigned to each specific content
is proportional to its popularity, deviating from the well-
known square-root result achieved in unstructured P2P; (2)
the achieved optimal results are related to the entropy of
popularity. Next based on these results we propose an op-
timal proactive web caching scheme, Web-PoPCache, which
can optimally tradeoff the performance gain and cost. By
means of web cache trace driven simulations, our extensive
evaluation results demonstrate the advantages of PoPCache
and Web-PoPCache.
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