
Distributed Maximal Clique Computation

Yanyan Xu, James Cheng, Ada Wai-Chee Fu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
yyxu,jcheng,adafu@cse.cuhk.edu.hk

Yingyi Bu
Department of Computer Science
University of California, Irvine

yingyib@ics.uci.edu

Abstract—Maximal cliques are important substructures in
graph analysis. Many algorithms for computing maximal
cliques have been proposed in the literature; however, most of
them are sequential algorithms that cannot scale due to the high
complexity of the problem, while existing parallel algorithms
for computing maximal cliques are mostly immature and
especially suffer from skewed workload. In this paper, we first
propose a distributed algorithm built on a share-nothing archi-
tecture for computing the set of maximal cliques. We effectively
address the problem of skewed workload distribution due to
high-degree vertices, which also leads to drastically reduced
worst-case time complexity for computing maximal cliques in
common real-world graphs. Then, we also devise algorithms
to support efficient update maintenance of the set of maximal
cliques when the underlying graph is updated. We verify the
efficiency of our algorithms for computing and updating the
set of maximal cliques with a range of real-world graphs from
different application domains.

Keywords-maximal clique enumeration; incremental update

I. INTRODUCTION

Let G = (V,E) be a simple undirected graph. A subset
of vertices, C ⊆ V , is called a clique if every vertex in C is
connected to every other vertex in C by an edge in G, and
C is called a maximal clique if any proper superset of C is
not a clique. The problem of maximal clique enumeration
(MCE) is to compute the set of maximal cliques in G.

Maximal cliques are elementary substructures in a graph
and instrumental in graph analysis such as the structural
analysis of many complex networks, graph clustering and
community detection, network hierarchy detection, emerg-
ing pattern mining, vertex importance measures, etc. The
problem of MCE has been extensively studied and there are
three main types of algorithms.

The first type is sequential in-memory algorithms [1], [2],
[3], [4], [5], [6], which do not scale well for processing
large graphs because of the high complexity of MCE. The
second type is sequential I/O-efficient algorithms [7], [8],
[9], which focus on reducing the high cost of random disk
I/Os for processing graphs that cannot fit in main memory.
However, reducing the I/O cost does not solve the main
computational issue as MCE is a CPU-intensive task. The
third type is parallel and distributed algorithms [9], [10],
[11], [12], which aim at reducing the elapsed running time
by parallelizing the task of MCE. However, the parallel

algorithms in [10], [11] require a copy of the entire input
graph to be resident in main memory and cannot handle
imbalanced workload. The distributed algorithm in [12]
partitions a graph and distribute the subgraphs to workers
where MCE is processed locally on the subgraphs. However,
these algorithms do not deal with imbalanced workload
due to skewed degree distribution, and may also have high
communication cost since many unwanted edges may be
distributed. Recently, another algorithm was proposed to
recursively split a graph into smaller subgraphs and dis-
tribute the subgraphs to worker machines for MCE [9].
Their algorithm is also not work-efficient and may also
have skewed workload due to high-degree vertices, while
the subgraph splitting process can be expensive.

In this paper, we study two main problems: computing
the set of maximal cliques and updating the set of maximal
cliques. We highlight the main ideas of our algorithms and
the main contributions of our work as follows.

To compute the set of maximal cliques efficiently, we
examine the computational bottlenecks that hinder the per-
formance of computing the set of maximal cliques as well
as parallelizing MCE. We propose a new parallel algorithm
based on the share-nothing architecture to overcome these
bottlenecks. Specifically, we significantly reduce the cost
of a frequent and most costly operation in the process
of MCE, as well as use specific vertex orderings that
can achieve O(

∑d
i=1 nii3

i/3) worst-case time complexity
for processing most common real-world graphs (e.g., d-
degenerate graphs, power-law graphs, and sparse graphs),
where d is the maximum core number of a graph (which is
generally small for real-world graphs, see Table I) and ni is
the number of vertices with core number i [13]. Note that∑d

i=1 ni = |V |. This is tremendously smaller the optimal
worst-case time complexity of MCE for processing general
graphs, which is O(3|V |/3) [6]. We give detailed analysis
of our algorithm and also show that our algorithm achieves
balanced workload and the total amount of work performed
by parallelizing the MCE task is asymptotically the same as
that by sequentially executing the task.

Real-world graphs often undergo frequent changes. How-
ever, the number of maximal cliques is notoriously known
to be large even for some small graphs. Thus, it is im-
practical to recompute the set of all maximal cliques for

every graph update, while any small update (e.g., an edge
insertion/deletion) to the graph can cause a considerable
amount of updates to the set of maximal cliques. We
propose efficient algorithms to incrementally update the set
of maximal cliques stored in distributed sites, which poses
new challenges.

We evaluate the performance of our algorithms on a set
of real world graphs from different domains. Our results
show that our parallel MCE algorithm is significantly more
efficient than an existing MapReduce algorithm for MCE
[12]. Our results also verify the efficiency of our algorithms
for update maintenance of the set of maximal cliques.

Paper organization. The remainder of the paper is
organized as follows. Section II gives the basic notations and
defines the problem. Section III discusses the details of our
algorithm for computing the set of maximal cliques. Section
IV presents the algorithms for incrementally updating the set
of maximal cliques. Section V reports the experimental re-
sults. Section VI discusses the related work. Finally, Section
VII gives our concluding remarks.

II. NOTATIONS AND NOTIONS

We study the problem of computing and updating maxi-
mal cliques in a simple undirected graph, G = (V,E), where
V is the set of vertices and E is the set of edges of G.
We keep G in its adjacency list representation. Each vertex
v ∈ V is assigned a unique vertex ID, denoted by ID(v),
where the vertex ID ranges from 1 to |V |. Given any two
vertices u and v, we use ID(u) < ID(v) or equivalently
ID(v) > ID(u) to denote that u is ordered before v
according to the order of their IDs. In the adjacency list
representation of a graph, vertices are ordered in ascending
order of their IDs.

We define the set of adjacent vertices of a vertex v ∈ V
as adj (v) = {u : (u, v) ∈ E}. We further define adj (<
v) = {u : u ∈ adj (v), ID(u) < ID(v)} and adj (> v) =
{u : u ∈ adj (v), ID(u) > ID(v)}.

A set of vertices, C, where C ⊆ V , is a clique in G
if every v ∈ C is adjacent to all other vertices in C, i.e.,
v ∈ adj (u) for all u ∈ (C \ {v}). If @C ′ ⊃ C such that C ′

is a clique in G, then C is a maximal clique.
We use M(G) to denote the set of maximal cliques in

G. We also use Mv to denote the set of maximal cliques
starting with v, i.e., Mv = {C : C ∈ M(G), v =
argminu∈CID(u)}, where “v = argminu∈CID(u)”
means “v ∈ C such that ID(v) = min{ID(u) : u ∈ C}”.

The following example illustrates the concepts.

Example 1: Figure 1 shows a graph G with 8 vertices. If
we assign the vertex ID in ascending order of the vertex
degree, where ties are broken arbitrarily, then we have
ID(h) = 1, ID(c) = 2, ID(f) = 3, ID(a) = 4,
ID(d) = 5, ID(g) = 6, ID(b) = 7, and ID(e) = 8.
According to this ID assignment and ID ordering, we have

a

d

b

g

e

h

c

f

Figure 1. A graph G

adj (< h) = ∅, adj (> h) = {g, e}, adj (< g) = {h, a, d}
and adj (> g) = {b, e}. There are 3 maximal cliques
in G, i.e., M(G) = {{a, b, d, e, g}, {b, c, e, f}, {e, g, h}}.
Hence, we have Mh = {e, g, h}, Mc = {b, c, e, f},
Ma = {a, b, d, e, g}, and Mv = ∅ for v ∈ {b, d, e, f, g}.

Problem definition. Given a graph G = (V,E), this paper
proposes efficient algorithms for: (1) Computing the set of
maximal cliques, i.e., computing M(G); and (2) Update
maintenance of M(G) when G is updated.

III. COMPUTING MAXIMAL CLIQUES

We first present a parallel algorithm for computing the
set of maximal cliques on a shared-nothing architecture.
The algorithm consists of two phases: data distribution and
maximal clique enumeration (MCE), which can be easily
implemented in one round of Map and Reduce [14]. We
first discuss these two phases, and then we also show how
different orderings of vertices can reduce the complexity of
MCE in common real-world graphs.

A. Phase I: Data Distribution

The data distribution phase is shown in Lines 1-6 of
Algorithm 1. Given a simple undirected graph G = (V,E),
the algorithm divides the task of MCE into many sub-tasks
to be computed in parallel. The data necessary for MCE at
each worker machine is to be distributed according to the
following lemma.

LEMMA 1: Computing Mv requires ADJ =
{(u, adj(u)) : u ∈ adj(> v)} ∪ {(v, adj(v)}.

Lemma 1 implies that for each v ∈ V , (v, adj(v))
is only needed to compute Mu for each u ∈ (adj(<
v) ∪ {v}). Thus, we only need to output the key-value
pair ⟨ID(u); (v, adj(v))⟩ for each u ∈ (adj(< v) ∪ {v})
instead of u ∈ (adj(v) ∪ {v}), which will prove to achieve
a tremendous reduction in the complexity of MCE for
processing common real-world graphs (to be analyzed in
Section III-C).

B. Phase II: Maximal Clique Enumeration

The second phase, i.e., MCE, is shown in Lines 7-12 of
Algorithm 1. The data for computing Mv is distributed to
an active worker. Note that for each C ∈ Mv , (C \ {v}) ⊆

Algorithm 1: Parallel MCE
1 Data distribution:

Input : ⟨v; adj(v)⟩ for each v ∈ V
2 begin
3 foreach vertex v ∈ V do
4 output ⟨ID(v); (v, adj(v))⟩;
5 foreach vertex u ∈ adj(< v) do
6 output ⟨ID(u); (v, adj(v))⟩;

7 Maximal clique enumeration (MCE):
Input : ⟨ID(v); (v, adj(v), {(u, adj(u)) : u ∈ adj(> v)}⟩

for each v ∈ V
8 begin
9 foreach u ∈ adj(> v) do

10 ADJ>v[u]← adj(u) ∩ adj(> v);
11 ADJv[u]← adj(u) ∩ adj(v);

12 LocalMCE({v}, adj(> v), adj(< v), ADJ>v, ADJv);

Algorithm 2: LocalMCE(C, cand , prev ,ADJ>v,ADJ v)

1 if cand = ∅ and prev = ∅ then
2 output C as a maximal clique;

3 else if cand ̸= ∅ then
4 let up be the vertex in cand that maximizes

|cand ∩ADJ>v[up]|;
5 U ← cand \ADJ>v[up];
6 sort U in descending order of |ADJ>v[u]| for all u ∈ U ;
7 foreach u ∈ U do
8 cand ← cand \ {u};
9 cand ′ ← cand ∩ADJ>v[u];

10 foreach w ∈ cand ′ do
11 ADJ ′

>v[w]← ADJ>v[w] ∩ cand ′;
12 ADJ ′

v[w]← ADJ v[w] ∩ prev ;

13 LocalMCE(C ∪ {u}, cand ′, prev ∩ADJ v[u],
ADJ ′

>v,ADJ ′
v);

14 prev ← prev ∪ {u};

adj(> v). Thus, to enumerate the maximal cliques in Mv ,
we only need adj(u) ∩ adj(> v), denoted by ADJ>v[u],
for each u ∈ adj(> v). However, to check maximality
of the cliques, we also need adj(u) ∩ adj(v), denoted by
ADJv[u], for each u ∈ adj(> v). Then, the algorithm
invokes the procedure “LocalMCE” to compute Mv locally
at the worker, as shown in Algorithm 2.

We first explain some notations used in Algorithms 2. We
use C to denote the clique currently being enumerated, cand
to denote the set of candidate vertices that can be used to
expand or form a clique, and prev to denote a set of vertices
that are in some other maximal cliques (either enumerated
previously by the same worker or enumerated by another
worker) so that C is maximal only if prev = ∅. We also use
ADJ>v and ADJ v to denote the sets {ADJ>v[u] : u ∈
adj(> v)} and {ADJv[u] : u ∈ adj(> v)}, respectively.

The LocalMCE algorithm starts from a set C initially

consisting of a single vertex, and repeats the process “find
a candidate vertex u ∈ cand that is a common neighbor
of all vertices in the current C and then add u to C”
until there exists no common neighbor of the current C,
in which case cand = ∅, and C is returned as a maximal
clique if prev = ∅. When we grow the current clique C
to C ′ = (C ∪ {u}), we refine cand by intersecting it with
ADJ>v[u] because any candidate vertex that can grow C ′

must be in ADJ>v[u]. We also refine prev by intersecting it
with ADJ v[u] because if another maximal clique C ′′ exists
such that C ′ cannot be grown into a maximal clique in the
end, then (C ′′ \ C ′) must be a subset of ADJ v[u]. For
the same reasons, we also refine ADJ>v[w] and ADJv[w]
for each new candidate vertex w ∈ cand ′, by intersecting
them with cand ′ and prev , respectively. Then, LocalMCE
is invoked recursively to further grow C ′.

The following lemma shows that computing Mv for each
v ∈ V gives the complete set of maximal cliques, M, and
no redundant maximal clique is generated.

LEMMA 2: M(G) =
∪

v∈V Mv , and Mu∩Mv = ∅ for
all u, v ∈ V and u ̸= v.

A comparison between LocalMCE and classic MCE al-
gorithms. The LocalMCE algorithm is similar to the classic
MCE algorithms that apply pruning by pivot vertex (i.e., up

in Line 4 of Algorithm 2) [1], [2], [6]. Compared with the
classic algorithm, we make the following improvements.

When growing the current clique C to a new clique
(C ∪ {u}), the classic algorithm refines cand and prev by
intersecting each of them with adj (u). During the processing
of MCE, these set intersections are the most costly opera-
tions, especially because adj (u) can be very large for those
high-degree vertices in a power-law graph. Since the number
of cliques enumerated (i.e., those ‘C’s in the intermediate
steps of MCE) can be significantly larger than the number of
maximal cliques and high-degree vertices are contained in
many cliques, we can tremendously reduce the running time
of MCE if we can reduce the cost of the set intersections.

Cheng et al. [9] proposed to reduce the cost of set
intersection by extracting subgraphs and then performing
MCE in the subgraphs. They used a cost model to find the
optimal subgraphs, but computing the cost model is NP-hard.

We propose a much simpler but effective mechanism,
which is also more suitable for parallel MCE. We observe
that by ordering the vertices we only need ADJ>v[u]
for growing the current clique and ADJv[u] for checking
maximality. Thus, we always refine cand by intersecting
it with ADJ>v[u] instead of with the whole set adj (u),
and we will show in Section III-C that ADJ>v[u] is small
even for high-degree vertices in common real-world graphs.
Furthermore, whenever we add a new candidate vertex u
to C, we refine ADJ>v[w] and ADJv[w] for each new
candidate vertex w, so that in the subsequent recursive steps
we can intersect with the smaller ADJ>v[w] and ADJv[w]

instead of with adj (w).

C. Ordered MCE and Complexity

The time complexity of the classic algorithm for MCE
[1], [2], [6] is O(3|V |/3), which is proved to be optimal
for processing general graphs [6]. However, we show how
different orderings of vertices can reduce the complexity
of MCE in many graphs such as power-law graphs and d-
degenerate graphs, which are prevalent in real world [15],
[3]. We consider the following types of ordering: (1) order-
ing by vertex degree, (2) ordering by degeneracy number
[3], and (3) ordering by the core number of the vertices.

Degeneracy ordering. An undirected graph G is k-
degenerate if for every subgraph G′ of G, there exists some
vertex in G′ that has k or fewer neighbors within G′. The
degeneracy of G is the smallest value of k for which G
is k-degenerate. If the degeneracy of G is d, then G has a
degeneracy ordering such that if we assign ID(v) according
to the degeneracy ordering (i.e., ID(v) = i if v is at the i-th
position by the degeneracy ordering), then |adj(> v)| ≤ d
for all v ∈ V .

Eppstein et al. [3] prove the following complexity of MCE
for a d-degenerate graph.

THEOREM 1: Let G = (V,E) be a graph where the
degeneracy of G is d. When the vertices in G are ordered
by degeneracy ordering, applying Algorithm 2 to compute
Mv for all v ∈ V uses O(|V |d3d/3) time.

The proof in [3] is for sequential algorithms, while in our
case for parallel computation, each worker uses O(d3d/3)
time for computing Mv .

Since the degeneracy d is quite small for most real-
world graphs, especially for sparse graphs and power-law
graphs, the above complexity is a significant reduction to
the O(3|V |/3) complexity for processing general graphs.

Degree ordering. For each v ∈ V , we assign ID(v) = i if
v is at the i-th position when the vertices in V are ordered
in ascending order of their degree, where ties are broken
arbitrarily. Let h be the maximum value of h such that there
are h vertices with degree at least h. We give the following
complexity analysis.

THEOREM 2: Given a graph G = (V,E), when the
vertices are ordered by their degree, applying Algorithm 2
to compute Mv for all v ∈ V uses O(|V |h3h/3) time.

Proof: We first show that |adj(> v)| ≤ h for all v ∈ V .
Suppose on the contrary that there exists a vertex v ∈ V such
that |adj(> v)| > h. Since |adj(> v)| > h, there are at least
(h+1) vertices that are ordered after v, i.e., they have degree
at least as large as v. Since |adj(v)| ≥ |adj(> v)| > h, v
has degree at least (h+1) and hence each u ∈ adj(> v) has
degree at least (h + 1). This means that there are at least
(h + 1) vertices that have degree at least (h + 1), which
contradicts to the fact that h is the maximum value of h

such that there are h vertices with degree at least h. Thus,
|adj(> v)| ≤ h for any v ∈ V .

If |adj(> v)| ≤ h, then following a similar analysis to
Theorem 2 of [3] we can show that computing Mv by
Algorithm 2 uses at most O(h3h/3) time.

For a typical power-law graph, h≤|V |0.4 [7]. Thus, for
processing large power-law graphs, our algorithm can be
much faster than the classic algorithms [1], [2], [6].

Core number ordering. Another interesting vertex or-
dering we can use is based on k-core [13]. The k-core of
a graph G is the largest subgraph Ck = (VCk

, ECk
) of G

such that ∀v ∈ VCk
, the degree of v in Ck is at least k. The

core number of a vertex v ∈ V , denoted by c(v), is defined
as the largest k such that v is in Ck.

Let d be the maximum core number of a vertex in G.
Note that the degeneracy of G is equal to d. However, we
can give an ordering of the vertices by their core number
and show that this ordering achieves better time complexity
than that by degeneracy ordering given in Theorem 1.

LEMMA 3: There exists an ordering of the vertices in G
s.t. (1) for all v ∈ V , ID(v) = i if v is at the i-th position
by the ordering, (2) for all u, v ∈ V , if ID(u) < ID(v),
then c(u) ≤ c(v), and (3) for all v ∈ Vi, |adj(> v)| ≤ i.

By the ordering given in the proof of Lemma 3, we obtain
the following new complexity. Let Vi be the set of vertices
with core number i and ni=|Vi|. Thus, ni=|VCi \VCi+1 | for
1≤i<d and nd=|VCd

|.

THEOREM 3: Given a graph G = (V,E), when the
vertices are ordered by core number ordering as given in
Lemma 3, applying Algorithm 2 to compute Mv for all
v ∈ V uses O(

∑d
i=1 nii3

i/3) time.

The proof of Theorem 3 is similar to that of Theorem 2.
Since in most real-world graphs, the number of vertices

with core number i decreases rapidly when i increases, the
complexity using core number ordering can be much smaller
than that using degeneracy ordering. The following theorem
further shows that the complexity of MCE given in Theorem
3 is close to the lower bound.

THEOREM 4: The maximum possible number of maxi-
mal cliques in a graph G, where the degeneracy of G is d,
is given by

∑d−1
i=1 ni3

i/3 + (nd − d)3d/3, and such a graph
exists.

Proof: It is shown that the maximum possible number
of maximal cliques in a graph with n vertices is bounded
by 3n/3 [16]. For all v ∈ Vi, |adj(> v)| ≤ i according
to Lemma 3, which means that the subgraph of G induced
by adj(> v) gives at most 3i/3 maximal cliques. Since any
maximal clique in Mv is a subset of ({v} ∪ adj(> v)), v
forms at most 3i/3 maximal cliques with vertices in adj(>
v) and hence |Mv| ≤ 3i/3. Thus,

∑
v∈Vi

|Mv| ≤ ni3
i/3.

When i = d, the subgraph induced by Vd, i.e., Cd, has
degeneracy d. By Theorem 3 of [3], the maximum possible
number of maximal cliques in a graph with degeneracy d is
given by (nd − d)3d/3.

Next we show that there exists a graph G that has∑d−1
i=1 ni3

i/3 + (nd − d)3d/3 maximal cliques. The graph
G is formed by d/3 components (for simplicity, we assume
that d is a multiple of 3) and a main component. The
main component is a Turan’s graph T (d, d/3), forming d/3
independent sets (each of size 3), and with edges from each
vertex in each independent set connected to all vertices in
the other independent sets. The other d/3 components are
L1, ..., Ld/3, where Li contains mi vertices and there is no
edge among vertices in Li, i.e., Li is an independent set
in G (for simplicity, we assume that mi ≥ 3). Each vertex
in Li is connected to all vertices in i independent sets in
T (d, d/3). Obviously, vertices in Li have core number 3i,
and hence mi = n3i for i < d/3, and nd = md/3 + d
since the d vertices in T (d, d/3) are also in the d-core.
For 1 ≤ i ≤ d, if i%d ̸= 0, then ni = 0 (note that no
maximal clique is formed by vertices with core number i
in this case). Now consider the number of maximal cliques
that can be formed by vertices in Li for 1 ≤ i < d/3. Note
that each vertex in Li is linked to i sets of independent
sets {I1, ..., Ii} in T (d, d/3). A maximal clique can be
formed by picking one vertex from Li, and one vertex
from each of I1, ..., Ii. Hence the number of maximal
cliques that can be formed by vertices in Li is given by
mi3

i = n3i3
i. Since nd = md/3+d, the number of maximal

cliques that can be formed by vertices in Ld/3 is given by
md/33

d/3 = (nd − d)3d/3. Summing up we have a graph
with

∑d−1
i=1 (ni)3

i/3 + (nd − d)3d/3 maximal cliques.

Theorem 4 implies that the worst-case time complex-
ity of MCE in a graph with degeneracy d is at least
O(

∑d−1
i=1 ni3

i/3 + (nd − d)3d/3) since there are so many
maximal cliques in the worst case. Thus, the worst-case
time complexity of our algorithm for computing Mv for all
v ∈ Vi is only a factor of i greater than the lower bound time
complexity. Importantly, i is small when ni is large, and nd

is usually small for most real-world graphs. We further verify
the efficiency of MCE by each ordering by experiments.

D. Work Efficiency and Workload Balancing

The following theorem shows that the total amount of
work performed by all the machines is asymptotically the
same as that by sequentially executing Algorithm 2 to
compute Mv for all v ∈ V , which achieves the best known
time complexity (as given in Theorem 3) for computing
maximal cliques in a graph with degeneracy d (the previous
best complexity is given by [3] as shown in Theorem 1). In
addition, it also shows that the workload at each worker is
bounded by d instead of |V | or the degree of the vertices.

THEOREM 5: The total amount of work performed by all
the workers for computing the set of maximal cliques by
core number ordering, as well as the total amount of data
being communicated, is O(

∑d
i=1 nii3

i/3). The amount of
work done by any worker is O((|V |/ϕ)ndd3

d/3), where ϕ
is the number of workers.

Note that the same analysis can also be applied if the ver-
tices are ordered by degeneracy ordering or degree ordering.

IV. UPDATING MAXIMAL CLIQUES

We consider two update operations: edge insertion and
edge deletion. Note that vertex deletion can be considered
as a series of edge deletion followed by the deletion of
an isolated vertex, while the deletion (and insertion) of an
isolated vertex (i.e., a maximal clique of size 1) is trivial.

We first need to present the data structure that we use
to store the maximal cliques. When we apply Algorithm 2
to compute Mv , for each v ∈ V , the process naturally
constructs a prefix tree, denoted by Tv , such that the root
of Tv is v and each root-to-leaf path represents a maximal
clique in Mv . We use the prefix tree structure because it
can effectively save storage space by sharing the common
subsets among maximal cliques. The prefix trees Tv for each
v ∈ V are stored in a distributed file system.

In the following discussion, we process the insertion and
deletion of an edge (u, v), and without loss of generality we
assume ID(u) < ID(v).

A. Edge Insertion

When an edge (u, v) is inserted into G, we have two cases
to handle: (1) some existing maximal cliques become non-
maximal, which need to be deleted; and (2) new maximal
cliques appear in G, which need to be inserted. We process
the two cases as shown in Algorithm 3.

For Case (1), an existing maximal clique C becomes non-
maximal only if C contains either u or v, and C ⊂ (adj(u)∩
adj(v)) ∪ {u, v}, since now C ∪ {v} or C ∪ {u} is a new
maximal clique containing C. The following observation
shows where C can be found.

OBSERVATION 1: Let C be a maximal clique before
inserting (u, v), where C ⊂ (adj(u) ∩ adj(v)) ∪ {u, v} and
either u ∈ C or v ∈ C. Then, C is represented by a root-to-
leaf path in Tw, where w ∈ ((adj(> u) ∩ adj(< v)) ∪ {v})
or w ∈ ((adj(< u) ∩ adj(< v)) ∪ {u}).

Following Observation 1, first Lines 3, 5 and 6 of Algo-
rithm 3 call the “DeleteNode” procedure (i.e., Algorithm
4) to delete an existing maximal clique C from Tw, if
C will become non-maximal after inserting (u, v), i.e.,
C ⊂ cand = (adj(u) ∩ adj(v)) ∪ {u, v} (checked in Line
3 of Algorithm 4). Since C is represented by a root-to-leaf
path in Tw but a prefix subpath of C may be shared by some
other maximal cliques in Mw, we only remove the part of

Algorithm 3: Insert(u, v)
1 cand← (adj(u) ∩ adj(v)) ∪ {u, v};
2 foreach w ∈ ((adj(> u) ∩ adj(< v)) ∪ {v}) do
3 DeleteNode(v, Tw, cand);

4 foreach w ∈ ((adj(< u) ∩ adj(< v)) ∪ {u}) do
5 DeleteNode(v, Tw, cand);
6 DeleteNode(u, Tw, cand);

7 newcand← (adj(> w) ∩ cand) \ {u, v};
8 newprev ← adj(< w) ∩ cand;
9 foreach w′ ∈ newcand do

10 ADJ>w[w
′]← adj(w′) ∩ adj(> w);

11 ADJw[w
′]← adj(w′) ∩ adj(w);

12 invoke LocalMCE({u, v, w}, newcand, newprev,
ADJ>w, ADJw) to generate new maximal cliques
containing {u, v} and {w} and insert them into Tw;

Algorithm 4: DeleteNode(x, Tw, cand)

1 foreach occurrence of x in Tw do
2 foreach maximal clique C represented by each

root-to-leaf path via x in Tw do
3 if C ⊂ cand then
4 starting from the leaf node and moving along

the path up to the root, recursively delete from
Tw any node that has no child (note that initially
only the leaf node has no child);

the path that is not shared by any other maximal cliques
(Line 4 of Algorithm 4).

Now we process Case (2). The following observation
shows where a new maximal clique C should be inserted.

OBSERVATION 2: Let C be a new maximal clique after
inserting (u, v) into G. Then, C should be inserted into Tw,
where w ∈ ((adj(< u) ∩ adj(< v)) ∪ {u}).

Following Observation 2, we first generate all new max-
imal cliques that contain {u, v, w}, for each w ∈ ((adj(<
u)∩ adj(< v))∪{u}), which is processed by the algorithm
“LocalMCE” (i.e., Algorithm 2), and we also insert the new
maximal cliques into Tw (Lines 7-12 of Algorithm 3).

B. Edge Deletion

The deletion of an edge (u, v) is processed in essentially
the reverse way of how we process the edge insertion.
As shown in Algorithm 5, we first delete all the existing
maximal cliques that contain both u and v, where such
maximal cliques appear in Tw, where w is defined in
Observation 2. Then, we general all new maximal cliques
that contain only u or v, and insert them into Tw, where w
is defined in Observation 1.

V. EXPERIMENTAL EVALUATION

We evaluate the performance of our algorithms on a
cluster of 64 computing nodes, each with a 2.0GHz and 4GB

Algorithm 5: Delete(u, v)
1 cand← (adj(u) ∩ adj(v)) ∪ {u, v};
2 foreach w ∈ ((adj(< u) ∩ adj(< v)) ∪ {u}) do
3 delete unshared nodes along any path in Tw that

represents a maximal clique containing both u and v by
a procedure similar to Algorithm 4;

4 compute all new maximal cliques that contain
C = {w, u} and insert them into Tw by a procedure
similar to Lines 7-12 of Algorithm 3; and similarly for
C = {w, v};

5 foreach w ∈ ((adj(> u) ∩ adj(< v)) ∪ {v}) do
6 compute all new maximal cliques that contain

C = {w, v} and insert them into Tw by a procedure
similar to Lines 7-12 of Algorithm 3;

Table I
DATASET STATISTICS

Youtube Patents Google Skitter Wiki
|V | 1134890 3774767 875713 1696415 2394385
|E| 2987624 16518948 4322051 11059298 4659562

degmax 28754 793 6332 35455 100029
d 51 58 43 111 131
α 17 11 44 67 26

|M(G)| 3265953 14787028 1417580 37322351 86333297

RAM. The communication speed between the computing
nodes in the cluster is 1Gbps.

We selected five datasets from five different do-
mains in the Stanford Large Network Dataset Collection
(http://snap.stanford.edu/data/). The Youtube
dataset comes from the community networks, where users
form friendship each other. The Patents dataset is from the
citation networks. The Google dataset is a Web graph from
Google and it is selected from the category of Web graphs.
The Skitter dataset is an Internet topology graph and it is
selected from the category of Systems graphs. The Wiki
dataset is a Wikipedia talk (communication) network from
the Wikipedia networks. Some of the graphs are directed
and we ignore the edge direction to study maximal cliques
in these graphs. Table I gives some statistical information
about the datasets, including the number of vertices (|V |),
the number of edges (|E|), the maximum vertex degree
(degmax), the maximum core number or degeneracy of the
graph (d), the size of the maximum clique (α), and the
number of maximal cliques (|M(G)|).

A. Results of Computing Maximal Cliques

We evaluate the performance of computing the set of
maximal cliques, compared with an existing MapReduce
MCE algorithm [12], denoted by Wu et al. in Table III.
Wu et al.’s algorithm is implemented using Hadoop. We
also use the Hadoop distributed file system to store the
graph data and the prefix trees that represent the set of
maximal cliques, but implemented our own version of Map
and Reduce phases for both data distribution (see Section

4 8 16 32 64
0

4

8

12

16

20

R
un

ni
ng

 ti
m

e
(s

ec
)

Machine number

 core number
 degree
 degeneracy

(a) YouTube

4 8 16 32 64
4

8

12

16

20

24

R
un

ni
ng

 ti
m

e
(s

ec
)

Machine number

 core number
 degree
 degeneracy

(b) Patents

4 8 16 32 64
0

3

6

9

12

15

R
un

ni
ng

 ti
m

e
(s

ec
)

Machine number

 core number
 degree
 degeneracy

(c) Google

4 8 16 32 64
0

100

200

300

400

500

R
un

ni
ng

 ti
m

e
(s

ec
)

Machine number

 core number
 degree
 degeneracy

(d) Skitter

4 8 16 32 64
0

100

200

300

400

500

R
un

ni
ng

 ti
m

e
(s

ec
)

Machine number

 core number
 degree
 degeneracy

(e) Wiki

Figure 2. Running time (in sec) of MCE with different vertex orderings

III-A) and MCE computation (see Section III-B). We ran the
algorithms on 4, 8, 16, 32, and 64 machines, respectively,
and recorded the elapsed running time (in seconds).

Effect of vertex orderings. We first report the elapsed
running time of our algorithm for MCE using different
vertex orderings by core number, degree, and degeneracy,
respectively, as shown in Figure 2. Note that the running
time includes the time to compute the orderings. The results
show that for all the datasets, when more machines are used,
there is a significant decrease in the elapsed running time.
On average, we record 1.60 times reduction in the elapsed
running time when the number of machines is doubled for
both core number ordering and degeneracy order, while for
degree ordering the reduction is 1.54 times. Among the three
vertex orderings, core number ordering achieves the best
performance consistently in most of the cases. The result
thus verifies our analysis that core number ordering gives
the lowest time complexity for MCE in Section III-C. The
performance of degree ordering is comparable with that of
degeneracy ordering in most cases, except for processing the
Skitter dataset its performance is considerably worse when
4 to 16 machines are used.

We also measured the data distribution time of our algo-
rithm, and found that the data distribution time is almost the
same regardless of which vertex ordering is used. We thus
report the data distribution time of core number ordering
when different number of machines are used in Table II. The
result shows that the data distribution time does not decrease
significantly when more than 16 machines are used, which
may be due to the fact that the communication time also
increases when more machines are used, and the amount
of data to be distributed is not large. Compared with the
running time shown in Figure 2, we can see that the overall
data distribution time is only a small portion of the elapsed
running time, especially for the Skitter and Wiki datasets.
Thus, it is important to have an efficient algorithm for the
main MCE process.

Comparison with Wu et al. [12]. We now compare the
performance of our algorithm (by core number ordering)
with that of Wu et al.’s algorithm. We report the running
time for 16 machines only due to limited space, as the
running time of Wu et al.’s algorithm is orders of magnitude

Table II
DATA DISTRIBUTION TIME (IN SEC) FOR 4 TO 64 MACHINES

Youtube Patents Google Skitter Wiki
4 4.8286 4.3470 4.4218 4.1530 4.3232
8 3.7168 3.5472 3.6615 3.5509 3.6869
16 2.8447 2.6010 2.6174 2.9907 2.7394
32 2.4480 2.6241 2.5171 2.3189 2.4165
64 2.5729 2.3870 2.4692 2.4641 2.5176

Table III
RUNNING TIME (IN SEC) OF MCE

Our algorithm Wu et al.
Youtube 7.0162 982
Patents 8.4981 2868
Google 5.8394 1178
Skitter 140.3460 > 10000
Wiki 219.2920 > 10000

larger than ours in all cases while our algorithm also shows
a better scalability in terms of number of machines used. As
shown in Table III, Wu et al.’s algorithm uses up to orders
of magnitude more time than our algorithm, which clearly
demonstrates the efficiency of our algorithm.

B. Results of Updating Maximal Cliques

We now evaluate the performance of updating the set of
maximal cliques, M(G). For edge insertion, we randomly
generated 1000 edges that are not in G, and insert them into
G. For edge deletion, we randomly selected 1000 existing
edges in G to be deleted. Tables IV and V report the average
elapsed running time for each update operation, running on
4, 8, 16, 32, and 64 machines, respectively.

The results show that updating M(G) for both edge
insertion and deletion is fast for all the datasets, but it is not
easy to see a trend when more machines are used. In general,
when more machines are used, the running time decreases
but the time reduction is not significant. We examined the
details and found that when an edge (u, v) is inserted or
deleted, most updates are operated on Tu and/or Tv . Since
the updates on Tu and/or Tv take much longer time, the
time taken by the worker that processes Tu and/or Tv is
longer than that by other workers. Since we measure the
elapsed time, the finishing time of the last worker determines
the running time, and thus using more machines does not
help much in this situation. However, we emphasize that
the use of vertex ordering has significantly limited the size

Table IV
UPDATE TIME (IN SEC) FOR EDGE INSERTION

Youtube Patents Google Skitter Wiki
4 0.0669 0.0623 0.0493 0.0830 0.0188
8 0.0410 0.0423 0.0333 0.0532 0.1304
16 0.0311 0.0299 0.0285 0.0436 0.0702
32 0.0269 0.0286 0.0353 0.0387 0.0727
64 0.0269 0.0254 0.0228 0.0336 0.0421

Table V
UPDATE TIME (IN SEC) FOR EDGE DELETION

Youtube Patents Google Skitter Wiki
4 0.0780 0.0731 0.2082 0.0784 0.2459
8 0.0461 0.0486 0.1636 0.0539 0.2606
16 0.0283 0.0409 0.0294 0.0455 0.2375
32 0.0220 0.0247 0.0346 0.0393 0.2062
64 0.0261 0.0243 0.0226 0.0342 0.1529

of any Tv to O(3d/3). Without the ordering, the size of
Tv is bounded by O(3n/3) or O(3|adj(v)|/3) in practice,
where O(3|adj(v)|/3) is still drastically larger than O(3d/3)
for high-degree vertices (see Table I). Thus, our method has
already achieved a good bounded balanced workload.

VI. RELATED WORK

The classic algorithms for MCE are the backtracking
methods [1], [2], [6], which employ effective pruning by
selecting good pivots to reduce the search space, and give
an optimal worst-case time complexity of O(3|V |/3) for
processing general graphs [6]. For processing d-degenerate
graphs, an extension of the algorithm that uses degeneracy
ordering achieves a time complexity of O(d|V |3d/3) [3].
Various output-sensitive MCE algorithms whose processing
time is proportional to the number of maximal cliques
were also studied [4]. Algorithms for enumerating maximal
cliques of size larger than a threshold were also studied [5].
All these algorithms are sequential in-memory algorithms,
which do not scale well due to the high complexity of MCE.
To process graphs that are too large to fit in main memory,
I/O-efficient algorithms that recursively extract a core part
of the input graph for local MCE computation were pro-
posed [7], [8], [9]. I/O-efficient algorithms for enumerating
triangles (i.e., smallest cliques) were proposed in [17], [18]
and related application was given in [19]. Recently, several
parallel or distributed algorithms were proposed [9], [10],
[11], [12], which we have discussed in Section I. Apart from
algorithms for computing the maximal cliques, a recent work
proposed a concise summary of the set of maximal cliques,
which ensures that for every maximal clique C, there is
a good portion of C that is represented by some maximal
clique in the summary [20]. This summary, however, is not
a lossless representation of the set of maximal cliques.

VII. CONCLUSIONS

We studied efficient algorithms for computing and updat-
ing the set of maximal cliques. Existing parallel algorithms

for computing maximal cliques are still immature and we
showed that our parallel algorithm is orders of magnitude
faster than the existing MapReduce algorithm for MCE
[12]. Update maintenance for the set of maximal cliques
on distributed sites has not been well studied in the past,
but we verified that our algorithm is efficient for a range of
real-world datasets from different domains.

REFERENCES

[1] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques
of an undirected graph,” Commun. ACM, vol. 16, no. 9, pp.
575–577, 1973.

[2] F. Cazals and C. Karande, “A note on the problem of reporting
maximal cliques,” Theor. Comput. Sci., vol. 407, no. 1-3, pp.
564–568, 2008.

[3] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal
cliques in sparse graphs in near-optimal time,” in ISAAC (1),
2010, pp. 403–414.

[4] K. Makino and T. Uno, “New algorithms for enumerating all
maximal cliques,” in SWAT, 2004, pp. 260–272.

[5] N. Modani and K. Dey, “Large maximal cliques enumeration
in large sparse graphs,” in COMAD, 2009.

[6] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case
time complexity for generating all maximal cliques and
computational experiments,” Theor. Comput. Sci., vol. 363,
no. 1, pp. 28–42, 2006.

[7] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu,
“Finding maximal cliques in massive networks by h*-graph,”
in SIGMOD Conference, 2010, pp. 447–458.

[8] ——, “Finding maximal cliques in massive networks,” ACM
Trans. Database Syst., vol. 36, no. 4, p. 21, 2011.

[9] J. Cheng, L. Zhu, Y. Ke, and S. Chu, “Fast algorithms for
maximal clique enumeration with limited memory,” in KDD,
2012, pp. 1240–1248.

[10] N. Du, B. Wu, L. Xu, B. Wang, and P. Xin, “Parallel algorithm
for enumerating maximal cliques in complex network,” in
Mining Complex Data, 2009, pp. 207–221.

[11] M. C. Schmidt, N. F. Samatova, K. Thomas, and B.-H.
Park, “A scalable, parallel algorithm for maximal clique
enumeration,” J. Parallel Distrib. Comput., vol. 69, no. 4,
pp. 417–428, 2009.

[12] B. Wu, S. Yang, H. Zhao, and B. Wang, “A distributed
algorithm to enumerate all maximal cliques in mapreduce,”
in Proceedings of the International Conference on Frontier
of Computer Science and Technology, 2009, pp. 45–51.

[13] S. B. Seidman, “Network structure and minimum degree,”
Social Networks, vol. 5, no. 3, pp. 269–287, 1983.

[14] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in OSDI, 2004, pp. 137–150.

[15] S. N. Dorogovtsev and J. F. F. Mendesand, “Evolution of
networks: From biological nets to the internet and www,”
Oxford University Press, 2003.

[16] J. Moon and L. Moser, “On cliques in graphs,” Israel J. Math,
vol. 3(1), pp. 23–28, 1965.

[17] S. Chu and J. Cheng, “Triangle listing in massive networks
and its applications,” in KDD, 2011, pp. 672–680.

[18] ——, “Triangle listing in massive networks,” TKDD.
[19] J. Wang and J. Cheng, “Truss decomposition in massive

networks,” PVLDB, vol. 5, no. 9, pp. 812–823, 2012.
[20] J. Wang, J. Cheng, and A. W.-C. Fu, “Redundancy-aware

maximal cliques,” in KDD, 2013, pp. 122–130.

