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ABSTRACT 
In a wide range of applications, multiple data streams need to be 
examined together in order to discover trends or patterns existing 
across several data streams. One common practice is to redirect 
all data streams into a central place for joint analysis. This 
“centralized” practice is challenged by the fact that data streams 
often are private in that they come from different owners. In this 
paper, we focus on the problem of building a classifier in this 
context and assume that classification evolves as the current 
window of streams slides forward. This problem faces two major 
challenges. First, the many-to-many join relationship of streams 
will blow up the already fast arrival rate of data streams. Second, 
the privacy requirement implies that data exchange among owners 
should be minimal. These considerations rule out all classification 
methods that require producing the join in the current window. 
We show that Naïve Bayesian Classification (NBC) presents a 
unique opportunity to address this problem. Our main 
contribution is to adopt NBC to solve the classification problem 
for private data streams. 
 

1. INTRODUCTION 
With today’s information explosion, data not only are stored in 
large amount but also grow rapidly over time. Data streams are 
such examples, including internet traffic streams, stock trading 
streams, and telephone call streams. Data streams are 
characterized as being unbounded, continuously arriving at a high 
rate, and being scanned once [2]. To benefit from the information 
and knowledge contained in data streams, often several related 
data streams need to be examined together to discover trends or 
patterns that exist across different data streams. For example, 
stock streams and news streams are related, traffic report streams 
and car-accident streams are related, sensor readings of different 
types are related. In this paper, we focus on building classification 
models from such data. Our insight is that classification patterns 

often are jointly determined by the co-occurrence of certain 
conditions in several related streams. We illustrate this point by a 
simplified example. 

1.1 Motivating Example 
One application involving data streams is to monitor financial or 
trading transactions for suspicious behaviors [38]. In stock 
markets, “favorable trading” refers to stock transactions that are 
favorable to the engaging party, i.e., selling before a stock 
plunges or buying before a stock goes up. In order to build 
classification models to identify “favorable trading”, the stock 
trading stream that records all trading transactions must be 
examined. However, stock transactions are not isolated or 
independent events; they are related to other data streams, e.g., 
phone calls between dealers and managers/staffs of public 
companies. Thus it is necessary to consider related data streams 
together. For example, a classification algorithm may need to look 
at the following related data: 

 
Trading stream: T (τ, Dealer, Type, Stock, Class) 
Phone call stream:  P (τ, Caller, Callee) 
Company table:  C (Company, Stock) 
Person table:  S (Name, Org) 
 

where τ is the timestamp, “Type” is either “sell” or “buy”, 
“Class” (“yes”/“no”) refers to the class label of being favorable 
trading or not. To compute the training set, a SQL query can be 
used to extract information from the above data as follows: 
 
 SELECT  * 
 FROM  P, S, T, C 
 WHERE  S.Name=P.Caller AND P.Callee=T.Dealer 
  AND P.τ<T.τ AND T.Stock=C.Stock 
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Table 1. Related streams / tables Table 2. The join stream 

Essentially, this query performs a join on the related data and 
each joined tuple represents a connection between a phone call 
and the trading ensued from this call. The join result is then used 
to train the classifier. 

Table 1 shows a snapshot of data. The join relationship is 
indicated by the arrows connecting the join attributes. Note that 
the join between P and T is “many-to-many”. For example, 
“Albert” was called twice and traded twice, generating four tuples 
in the join stream in Table 2 (The timestamps for each join record 
are ignored because of the space.), the rule “Org=Company → 
Class=Yes” holds in 3 out of 4 tuples that have “Org=Company”, 
i.e., with 75% confidence. This suggests that after getting a call, 
the trading on the caller’s company stock tends to be more 
favorable.  

This example illustrates that classification of certain behaviors 
(i.e., favorable trading) depends on information contained in 
several correlated streams and examining such streams together 
likely produces more accurate classifiers than examining any 
single input stream alone. The join is a common operation to 
combine several streams into a single stream and the training data 
for classification is defined by this “join stream”. Moreover, 
classification rules evolve as data streams evolve. New favorable 
trading rules may emerge as a reaction to evade from being 
identified by existing rules. In order to capture this change, the 
classifier needs to adapt quickly to the changed data distribution. 
A solution to this problem faces two major challenges.  

 Privacy preservation. In the above example, since trade and 
phone call streams involves trading secrets and individual’s 
privacy, apparently neither the trading company nor the phone 
service company is willing to disclose their local sensitive data. 
The common approach of redirecting all streams into a central 
place immediately violates this privacy constraint. In the 
literature, privacy-preserving data mining and stream data 
mining have been studied separately. The traditional privacy-
preserving data mining techniques focus on static data and are 
not applicable to data streams with unbounded data size and 

continuous arrival of new data. On the other hand, most prior 
work on stream data mining assumes either a single stream or 
several streams but no privacy issue, and focuses on the 
processing speed of stream data. More details in Section 2. 

 Blow-up of the join stream. As input streams arrive in a fast 
pace, the classifier must evolve quickly when new structures 
emerge and old ones are out-of-date. However, the join of 
multiple input streams is an expensive operation, in fact, much 
slower than the arrival rate of input streams. Furthermore, the 
“many-to-many” join relationship, as shown in Table 1, could 
generate the result join stream that is much larger than input 
streams. Any method that explicitly generates the join stream 
will suffer from thid blow-up of data arrival rates and is unlikely 
to be able to keep pace with the incoming source streams. 

1.2 Contributions and Paper Outline 
We consider several private data streams owned by different sites. 
One data stream, called target stream, contains class labels. The 
current window of the training data is defined by the join of input 
streams in their current window. Such joins are called sliding-
window join [2] and the join result defines a new stream called 
“join stream”. The specification of window can be either tuple-
based or time-based [2]. As the window of input streams slides 
forward, so does the window of the join stream and the classifier 
must be updated to adapt to the change of window. In practice, 
only some portion of the data is labeled whereas the remaining is 
not. For each window, the unlabeled portion will be classified by 
the classifier built in the previous window, and at the same time, 
the labeled portion will be used to train the classifier in the 
current window [31]. 

Due to the privacy requirement and blow-up of join, however, the 
join stream cannot be generated explicitly. Hence, the problem we 
study is to build and update the classifier based on the never-
generated join stream, given several private input streams. The 
construction and update of the classifier must not reveal private 
information to other sites. This problem is referred to as the 

   



secure join stream classification (Secure-JSC) hereinafter. 
Existing classification methods [19][4][31] cannot be applied to 
the Secure-JSC problem because they deal with a single stream 
and requires the join stream to be explicitly given.  

Our insight is that the independence assumption of Naïve 
Bayesian Classifier (NBC) [12] provides a unique opportunity to 
address the requirements for Secure-JSC: for a given class label, 
variables are assumed to be independent of each other. Research 
shows that NBC is reliable even when this assumption is violated 
[11][17][16]. The reason for this reliability is that the most likely 
class label predicted by NBC is typically correct though the 
estimated probability may be distorted by the independence 
assumption. In other words, the top ranked class label often is 
correct though the estimated probability for ranking class labels 
was distorted. This reliability has been echoed by the popularity 
and success of NBC in both research works and practical 
applications. For most data stream applications, some degree of 
inaccuracy is tolerable, especially so because the data arrive very 
fast and there is only the time to scan the data once.  

To adopt NBC to Scure-JSC problem, however, we must compute 
the information required by NBC on the join stream without 
generating the join and exchanging private information across 
sites. Our insight is that this information can be obtained by 
computing some “blow-up summary” from examining each input 
stream and exchanging this summary with other sites. The “blow-
up summary” can be computed by examining each input tuple in 
the current window twice, independent of the number of tuples it 
joins in other streams. The benefit of this approach is twofold: 
eliminate the need of collecting private data streams in a central 
place and avoid the expensive join. Though we consider NBC, the 
idea of “blow-up summary” is applicable to other classification 
algorithms that require similar statistics such as decision trees. 

The rest of this paper is organized as follows. In Section 2, we 
review related works. In Section 3, we define the problem and 
discuss core concepts of NBC. In Section 4, we present our 
algorithm. We evaluate our method in Section 5. Section 6 
concludes the paper. 

2. RELATED WORKS 
Privacy preserving data mining was first introduced in [25] and 
[26]. These works opened up a rapidly growing area and various 
privacy preservation techniques have emerged since then. Most 
works on privacy preserving data mining assume static data. On 
the other hand, there is a large body of works on stream data 
management and mining. But this body of works does not deal 
with privacy issues. The novelty of our work lies in addressing 
privacy preservation, data streams and the training data defined 
by a general join of several streams. Below, we focus on related 
works which address one ore more of these aspects.  

In data stream management [2], sliding-window join is proposed 
to answer queries involving the join of multiple data streams, such 
as the join size, sum [1] [9], join-distinct [14]. Their focus was on 
how to compute these statistics of the join under resource 
constraints and techniques such as sampling [6] or load-shedding 
[5] [18] are used to reduce the cost of join.  These works assume 
either a single stream or multiple streams but no privacy issue. In 
the Secure-JSC problem, as we explained in the previous section, 

it is prohibited to first compute the join of multiple streams and 
then build the classifier. Thus these techniques cannot be applied. 

Most stream mining algorithms consider a single stream and 
simple statistics such as average and standard deviation. 
Classification on data streams was considered in 
[10][13][19][4][31]. Other mining problems that involve multiple 
streams are clustering [15][3], correlation analysis [20], sequential 
patterns [7]. None of these works consider the privacy issue. 
Neither do they involve a general join among streams; thus, they 
do not deal with the blow-up of data arrival rates caused by a 
many-to-many join.  

[22] presents a secure construction of decision tree classifiers 
from vertically partitioned data, where the join is given by the 
one-to-one relationship implied by the common key identifier for 
all partitions. This is not applicable to the general many-to-many 
join relationship. Recently, [21] proposed a secure construction 
for decision tree classifiers over distributed tables with the general 
many-to-many join relationship. Both works consider static data, 
not stream data. 

There are only a few studies that cover both data streams and 
privacy preservation. [36][37] focus on the problem of private 
search over data streams. Their goal is to protect the privacy of 
the query over data stream, not the data stream itself. A more 
related work is [23]. It preserves the privacy of data streams by 
adding randomized noises. No join relationship is involved among 
streams. This approach cannot be applied to the Secure-JSC 
problem since the data obfuscation does not preserve the join 
relationship among streams. The condensation approach in [33] 
could be applied to data streams because of its support for 
incremental update. Since anonymized records are randomly 
generated in a way to preserve aggregated statistics, it is not clear 
that this method could preserve the join relationship if applied to 
multiple data streams. All these works do not consider the 
classification problem. 

3. PROBLEM STATEMENT 
3.1 Secure Join Stream Classification 
Consider n data streams S1, …, Sn, distributed among n sites. 
Secure Join stream classification refers to the problem where a 
classifier needs to be built such that (1) the training instances are 
defined by a sliding-window join over all data streams; (2) no site 
learns private information about other data streams. The sliding-
window join over S1, …, Sn is specified by a join condition, a 
window specification and window update specification [2][32]. 

In this paper, we consider a join condition in the form of a 
conjunction of equality predicates Si.A=Sj.B (i≠j), where each of 
Si.A and Sj.B, called join attributes, represents one or more 
attributes from Si and Sj. Since Si.A and Sj.B are allowed to 
contain more than one attribute, we need to consider at most one 
predicate Si.A=Sj.B between each stream pair Si and Sj. In the join 
graph, there is an edge between Si and Sj if there is a predicate 
Si.A=Sj.B in the join condition. We consider join conditions for 
which the join graph is connected and contains no cycle. Many 
joins in practice are in fact acyclic, such as chain joins and star 
joins over the star/snowflake schemas [34]. 

The window and update specification can be time-based or tuple-
based. Our method only depends on the set of tuples in the current 

   



window, not on how the window is specified and updated. The 
term “window” refers to the collection of current windows of all 
input streams. One of S1,…,Sn, called target stream, contains the 
class column. The task is to build a classifier each time the 
window updates. This means that the classifier must be rebuilt 
whenever the window on any input stream slides forward. The 
speed of fastest-sliding window determines the rate of classifier 
updates.  

In the current window, the training set is the set of tuples defined 
by the sliding-window join. Importantly, the training set is not 
explicitly given, rather, is specified by the input streams and the 
sliding-window join. Some tuples in the input streams do not 
contribute any tuple in the join. Such tuples are dangling. We do 
not assume that dangling tuples are removed beforehand; in fact, 
the removal of dangling tuples is not straightforward due to the 
privacy requirement.   

Privacy Model. All sites are assumed to be honest, curious, but 
not malicious [35]. Intuitively, this means that a site may collect 
intermediate information received from other sites, but will follow 
the specified computation as expected. Our privacy model can be 
described by three types of attributes in each window: 

 Non-private class column: the class column can be revealed to 
all sites. This assumption was made previously in [22]. When 
all sites collaborate to build a classifier, we assume these sites 
are willing to share the information on class labels 

 Semi-private join attributes: for a join predicate Si.A=Sj.B, the 
join attributes Si.A and Sj.B, are semi-private in that the sites 
of Si and Sj are willing to share their join values that they both 
have, i.e., Si.A∩Sj.B, but not any other join values, i.e., 
(Si.A∪Sj.B)-(Si.A∩Sj.B). This model was adopted in the 
literature for secure join and intersection in [24] . 

 Private non-join attributes: the values of all non-join attributes 
must not be revealed to any other sites. 

In short, any join values known to the joining sites are not private, 
but everything else is. We shall use this privacy model to define 
our notion of privacy-preserving.  

3.2 Naïve Bayesian Classifiers 
Consider a single table T (X1,…, Xn, Class). “Class” denotes the 
class column whose domain is a collection of class labels {C1,…, 
Cm}.  Xi is a categorical variable. To classify a tuple x=(x1 ,…, 
xn), the Naïve Bayesian Classifier (NBC) assigns x to the class Ci 
that maximizes the conditional class probability P(Ci|x) based on 
the following maximum a posteriori (MAP) hypothesis: 
 

)()|(maxarg)|(maxarg ii
ClassC

i
ClassC

CPCxPxCP
ii ∈∈

=  

where P(Ci) is the class probability and P(x|Ci) is the conditional 
probability of x given the class label Ci. Under the independence 
assumption that variables X1, …, Xn are independent given the 
class label, NBC estimates P(x|Ci) by 

∏
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=
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Once P(xj|Ci) and P(Ci) are collected from the training data, NBC 
is able to assign a class label to a new tuple x. NBC requires the 
variables Xi to be categorical (having a small number of distinct 

values). Continuous attributes can be first discretized (such as 
equi-width or equi-depth binning) into a small number of intervals 
before applying NBC. 
To compute P(xj|Ci) and P(Ci), we only need to compute the class 
count matrix of the form (xk, <N1,…, Nm>) for each distinct value 
xk of Xj, where Nj (1≤j≤m) is the number of tuples that has the 
value xk and the class label Cj. This data structure has a size 
proportional to the number of distinct values in Xj.  
The above discussion assumes a single table T. For Secure-JSC, T 
will be the join result of the input streams S1, …, Sn in the current 
window. Generating T would violate the privacy constraint. The 
challenge is to compute P(xj|Ci) and P(Ci) on the join T without 
generating T. In the next section, we present such a method. 

4. OUR APPROACH 
We assume that the current window of each input stream can fit in 
the local memory. The join relationship among streams forms an 
acyclic join graph, which is a rooted tree. Any stream may be 
regarded as the root. As our method involves propagation of 
information along the edges of the tree, we  call this tree 
propagation tree. 
Let us consider the site for an input stream Si. Instead of 
generating the join stream, the site maintains an entry of (Cls, 
Count) for each tuple t in the current window of Si. Cls is a class 
vector in the form of <N1,…, Nm> where m is the number of 
classes and Ni records the number of occurrences of t associated 
with the class label Ci in the never-generated join stream. Count is 
the number of occurrences of t in the join stream. Intuitively, the 
entry (Cls, Count) for t stores all information about t in the current 
window of the join stream. Thus, instead of keeping every join 
tuple involving t, we keep t only once and store its number of 
occurrences and class labels in those occurrences. The size of this 
data structure is proportional to the window size of Si. 
Importantly, having Cls for each tuple t in the current window, the 
site of Si is able to compute P(xj|Ci) and P(Ci) for the all values xj 
in the current window. The challenge is computing Cls without 
performing the join. 
To compute the class vectors Cls, we propagate the “blow-up 
effect” of join. The propagation proceeds in two phases. In the 
phase of bottom-up propagation, Cls and Count are propagated 
from the leaf nodes to the root. The propagation along an edge 
blows up Cls and Count according to the join condition on the 
edge. The detail will be presented shortly. On reaching the root, 
the Cls for the root reflects the join of all input streams. Next, in 
the phase of top-down propagation, we propagate Cls from the 
root to all leaf nodes. When reaching all leaf nodes, Cls in each 
stream have reflected the join effect of all streams. The algorithm 
is distributed in that each node (site) in the tree performs the 
propagation as described; there is no central place to collect all 
data. This approach circumvents the computation of the sliding-
window join, thus addresses both the privacy and efficiency 
requirements. 
Now we explain the propagation at each site in details. First, we 
extend arithmetic operations to class vectors Cls: given an 
operator “○” and two Cls’s V1=<a1,…,am> and V2= <b1,…,bm>, 
V1○V2= <a1○b1,…,am○bm>. For example, <4,3>/<2,3>=<2,1>. 
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Figure 1. Example with 3 streams at initialization Figure 2. After bottom-up propagations 

 

4.1 Initialization 
Initially, for each tuple in the target stream, its Cls, <N1, …, Nm>, 
is determined as follows: Ni=1 if the class label is Ci or otherwise 
Nj=0. Count is initialized to 1. For any tuple in any other stream, 
its Cls is initialized to all zeros <0,…,0> and Count is 1. This 
initialization does not require a separate scan of streams and can 
be combined with the bottom-up propagation discussed in the 
following subsection. 

Example 1. Consider an example with 3 streams with initial Cls 
and Count shown in Figure 1. The join relationships are specified 
by the arrows: S1 and S3 join on J1, and S2 and S3 join on J2. S1 is 
the target stream containing two classes. S3 is the root of the 
propagation tree. The root can be arbitrarily selected. We will 
show later that choosing the input stream with largest window 
size as the root can optimize the cost of scan of input streams. 

4.2 Bottom-Up Propagation 
This is the phase where the information of Cls and Count are 
propagated from leaf nodes to the root in a bottom-up order. 
Consider a parent node SP and a child node SC with the join 
predicate SP.J1= SC.J2. The propagation from a child to the parent 
is based on the following observation. 

Observation 1: Given a tuple t in SP, if t joins with k tuples in SC, 
t will occur k times in the join between SP and SC. These 
occurrences can be represented by blowing up Cls and Count of t 
using the aggregated Cls and Count of the k joining tuples in SC. 
And if SP has n child nodes (n>1), the Cls and Count of t in SP 
will be blown up by all children to reflect the join with all 
children streams.  

To explain Observation 1 precisely, we define the blow-up 
summary from SC to SP as the set {(v, ClsAgg, CountAgg)}. v is a 
distinct join value in SC, ClsAgg=∑Cls and CountAgg=∑Count, 
where ∑ is over all tuples in Sc containing the value v. Since the 
target stream can be anywhere in the tree, there are two cases in 
the bottom-up propagation from children to a parent node SP: 

- If the target stream is not in SP’s subtree, we blow up only 
Count at SP since ClsAgg is always zero for all child nodes of 
Sp (recall Cls is initialized to all-zero for a non-target 
stream); 

- If the target stream is in SP’s subtree, exactly one of the child 
of SP has non-zero ClsAgg and we blow up both Cls and 
Count at SP. 

The following lemma gives the computation for blow-up 
following the above observation and discussion . 

Lemma 1. Assume that a parent node SP has n child nodes. For 
each tuple t in SP with the join values v1,…,vn, where vi is the join 
value between SP and the ith child, let (vi, ClsAggi, CountAggi) 
denote the blow-up summary from ith child. Then 

.)(.
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jCountAggCountt
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∏
≠=

=
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ji CountAggClsAggClst
,..1

)(*)(.

Based on this lemma, to compute Count and Cls at SP, each child 
node SC propagates its blow-up summary to the parent SP. After 
receiving blow-up summaries from all child noes, SP scans its 
tuples once and updates Count and Cls of each tuple t as in 
Lemma 1. In addition, SP creates the blow-up summary from SP to 
its own parent (if any) in the same scan. 

Example 2. The bottom-up propagation for Example 1 is shown 
in Figure 2. S1 and S2 are scanned (locally) to produce blow-up 
summaries to propagate to S3. On receiving the summaries, S3 
blows up Cls and Count of its tuples. For example, consider the 
tuple t in S3 as gray scaled in Figure 2 (with J1=b, J2=d). t has two 
corresponding summary entries: (b,<0,1>,1) from S1 and 
(d,<0,0>,2) from S2. t.Count=1*2=2, t.Cls=<0,1>*2=<0,2>. 
These results indicate that t occurs in the join twice, both having 
the class label C2, which is exactly the same information as in the 
join stream. 

4.3 Top-Down Propagation 
At the end of bottom-up propagation, Cls in the root stream 
reflects the join of all streams. However, Cls in other streams has 
not reflected the joins performed at their ancestors. Thus we need 
to propagate in the top-down fashion to push the correct join 
information to all non-root streams. The propagation is based on 
the following observation. 

   



Observation 2: For a parent node SP and a child node SC, if a 
tuple t in SC joins with some tuple in SP that has the join value v, 
so do all tuples in SC that have this join value v. We can view all 
such tuples as an “equivalence class” on the join value v in SC, 
denoted as SC[v]. Similarly, SP[v] contains all tuples in SP that 
have the join value v. Cls of the SC[v] tuples must be rescaled to 
reflect all joins not reflected so far at SC. The rescaling must 
satisfy the following properties: (1) the relative share of any tuple 
in SC[v] remains unchanged because every tuple in SC[v] will join 
every tuple in SP[v], (2) the aggregated ∑Cls in SC[v] after 
rescaling is the same as the aggregated ∑Cls in SP[v]. 

To perform the top-down propagation, we define the rescaling 
summary from SP to SC as the set {(v, ClsAgg)}, where v is a join 
value in SP and ClsAgg is the aggregated class vector of all SP[v] 
tuples. 

Lemma 2. Let t be a tuple in SC[v] and let (v, ClsAgg) be a 
rescaling summary entry from SP. t.Cls is rescaled as follows: 

 t.Cls= ClsAgg * (t.Count / SC[v].CountAgg) 

where SC[v].CountAgg is the aggregated ∑Count over all SC[v] 
tuples. ■ 

The ratio t.Count/SC[v].CountAgg represents t’s share in SC[v].  
Based on this lemma, to compute Cls at SC, the parent node SP 
propagates its rescaling summary to SC. On receiving the 
rescaling summary from SP, Cls in SC are updated as in Lemma 2. 
In the same scan, the rescaling summary from SC to its own 
children (if any) is computed. 

Example 3. The top-down propagation is shown in Figure 3. At 
the root S3, the rescaling summaries to S1 and S2 are generated 
while scanning S3 in the bottom-up propagation. On receiving 
these summaries, S1 and S2 rescale their Cls. For example, for the 
tuple t in S1 as gray scaled in Figure 3, t.Cls=<0,1> is rescaled to 
<0,2>*(1/1)=<0,2>, where (b,<0,2>) is the summary entry 
corresponding to b, and (1/1) is the share of t in its own 
equivalence class for J1=b. The result captures exactly the same 
information about t as in the join stream: t occurs twice having the 
class label C2. 
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Figure 3. After top-down propagations 

4.4 Using NBC 
We now consider classifying a new instance t=<t1,…, tn>, where tj 
is the sub-record from Sj. At each site j for Sj, let tj=<x1,…xm>. 
The site j computes P(tj|Ci)= ∏P(xk|Ci) for k=1,…,m, and sends 
P(tj|Ci) to a coordinator, which could be any of the participating 
sites or a third party. After receiving this information from all 
sites, the coordinator computes P(t|Ci)=∏P(tj|Ci)×P(Ci) for 
j=1,…,n. The class label Ci that yields the maximum P(t|Ci) is 
assigned to t. P(Ci) is available to every participating site. No 
private information, as per our privacy model, is revealed by 
sending P(tj|Ci) to the coordinator because P(tj|Ci) is just a 
numerical value. If an attribute value xi in a new instance t is not 
found in the training data, this value is simply ignored in the 
posterior computation. 

4.5 Algorithm Analysis 
Below, we analyze the algorithm wrt privacy and scalability. 

Privacy. In the bottom-up and top-down propagation, only 
summaries are passed between parent/child pairs. For non-join 
attributes, no site transmits their values in any form to other sites. 
For the join attributes, consider a parent node SP and a child node 
SC with the join predicate SP.J1= SC.J2. The blow-up summary 
from SC to SP contains entries of the form (v, ClsAgg, CountAgg), 
where v is a join value in SC.J2 and ClsAgg/CountAgg contains the 
class/count information. Since ClsAgg and CountAgg are the 
aggregate-level information and the class column is non-private, 
ClsAgg/CountAgg does not pose a problem. SP.J1 and SC.J2 are 
semi-private, thus v can be exchanged between SP and SC if v∈ 
SP.J1∩ SC.J2. This can be ensured by first performing the secure 
intersection [24] to get SP.J1∩SC.J2. Then the blow-up summary 
from SC to SP needs to contain only entries for the join values in 
the intersection. As for the rescaling summary from SP to SC, no 
secure intersection is needed because all dangling tuples are 
removed at the end of bottom-up propagation.  

Privacy Claim. (1) No private attribute values are transmitted out 
of its owner site. (2) Semi-private attribute values are transmitted 
between two joining sites only if they are shared by both sites.■  

Scalability. In the bottom-up and top-down propagation, one 
summary is passed between each parent/child pair and each 
stream (window) is scanned once. At any time, only the 
summaries for the edges being examined are kept in memory. The 
size of a summary is proportional to the number of distinct join 
values, not the number of join tuples. A summary lookup 
operation takes a constant time in an array or hash table 
implementation. The whole propagation is linear in the window 
size, in fact, scans each input tuple in the current window twice, 
once at the bottom-up propagation phase and once at the top-
down propagation process. Thus, the computation at each window 
is independent of the join size. This property is important because 
the join size can be arbitrarily large compared with the window 
size, due to the many-to-many join relationships. An additional 
cost is the secure intersection, which is performed during the 
bottom-up propagation as discussed above. This cost is log linear 
in the number of distinct join values [24], not the number of 
tuples in the window. 

Scalability Claim. For each window, the cost of rebuilding NBC 
is proportional to the window size, not the join size. More 
precisely, each tuple in the window is scanned twice (in memory). 

   



The two scans of the root stream, one in the bottom-up 
propagation phase and one in the top-down propagation process, 
can be combined into one. In this case, choosing the input stream 
of the largest window size (i.e., the most number of tuples) as the 
root will minimize the cost of stream scans. 

5. EMPIRICAL STUDIES 
Our approach aims at two goals, namely, privacy preservation and 
fast processing of join stream classification. The privacy goal is 
delivered by limiting the information exchanged among sites, as 
claimed in Section 4. Therefore, in this section we focus on the 
performance goal. We would like to answer two questions: (1) 
whether the formulation of Secure-JSC defines a better training 
space compared with a single stream alone; (2) whether our 
algorithm scales up to handle high-speed data streams. 
We denote our algorithm as NB_Join, as it builds a NBC classifier 
whose training set is defined on the join of multiple streams. We 
compared it with following alternatives: 

- NB_Target: NBC based on the target stream alone. In this case, 
all non-target streams are ignored. 

- DT_Join: the decision tree classifier (C4.5) on the join stream. 
To build the decision tree, the join stream is first computed by 
actually joining the input streams. Note that his approach does not 
meet the privacy requirement.  

- DT_Target: the decision tree classifier on the target stream 
alone. 

For each window, we train the classifier using the first 80% of 
stream tuples within this window and evaluate the classifier using 
the remaining 20% of stream tuples in the same window. The 
testing data are generated by the join of the testing samples from 
all streams. 

We measure performance by “time per input tuple”, i.e., time 
spent on each window divided by the number of input tuples in 
the window. The “input tuples” refers to the tuples in the input 
streams, not the join stream. This measure gives an idea about the 
data arrival rate that an algorithm is able to handle. For DT_Join, 
because it has to generate the join stream before building the 
classifier, we measure the join time only and ignore the classifier 
construction time since the join time dominates. Most of sliding-
window join algorithms in literature are not suitable for 
generating the join stream for DT_Join because they focus on fast 
computing special aggregates [9][14], or producing approximate 
join results [18] under resource constraints; not the exact join 
result. We implemented the nested loop join algorithm. This 
choice should not have a major effect because all tuples in the 
current window are in memory. All programs were coded in C++ 
and run on a PC with 2GHz CPU, 512M memory and Windows 
XP. 

5.1 Real-life Datasets 
For experiments on real-life dataset, we obtained UK road 
accident data from the UK data archive1. It contains information 
about accidents, vehicles and casualties, in order to monitor road 
safety and determine policies to reduce the road accident casualty 
toll. There are three tables: “Accident”, “Vehicle” and 

                                                                 
1 http://www.data-archive.ac.uk/ 

“Casualty”. The characteristics of year-2001 data are shown in 
Figure 4 where arrows indicate join relationships: each accident 
involves one or more vehicles; each vehicle has zero or more 
casualties. Each table can be regarded as a stream that is 
timestamped by “date of accident”. On average, about 600 
“Accident” tuples, 700 “Vehicle” tuples and 850 “Casualty” 
tuples are added every day. The join stream is specified by the 
equalities between all common attributes among the three input 
streams. “Casualty” is the target stream with two casualty classes 
--- class 1: “fatal/serious” (13% of all tuples) and class 2: “slight” 
(87% of tuples). 
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Figure 4. UK road accident data (2001) 

5.1.1 Classification Accuracy 
Figure 5 shows the accuracy of all classifiers being compared. For 
all methods, the window size is the same and ranges from 10 to 50 
days with no window overlapping. 
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Figure 5. Classifier accuracy 

 

It is apparent that classifiers built on multiple streams are much 
more accurate. This result confirms that examining correlated 
streams is advantageous compared with building the classifier on 
a single stream. In fact, the accuracy obtained by examining the 
target stream alone is only about 80%, even lower than that 
obtained by a naïve classifier which simply classifies every tuple 
as belonging to class 2, since 87% of tuples belong to this class. 

On the other hand, the results also show that, with the same 
training set, naïve Bayesian classifier has a performance 
comparable to that of the decision tree. Keep in mind that our 
method NB_Join runs directly on the input streams, while the 
decision tree is built on the join stream. The latter does not meet 

   



the privacy requirement and has a high join cost. We will examine 
the efficiency of these two methods in the next set of experiments. 

5.1.2 Time per input tuple 
Figure 6 compares the time per input tuple. For example, at the 
window size of 20 days, the join takes about 9.83 seconds 
whereas NB_Join takes only about 0.3 seconds. Therefore, the 
join time per input tuple is 9.83*106/43,900=224 microseconds, 
where 43,900 is the total number of tuples that arrived in the 20-
day window. In contrast, NB_Join takes only 0.3*106/43,900=6.8 
microseconds per input tuple. This means that any method that 
requires computing the join will be at least 33 times slower than 
NB_Join. As the window size increases, the join time increases 
quickly due to the increased join cardinality in a larger window; 
whereas the time per input tuple for NB_Join is almost constant. 
In other words, our approach is linear in the window size, 
independent of the join stream size. This property makes our 
approach particularly suitable for multiple correlated streams. 

Therefore, though both NB_Join and DT_Join classifiers exhibit a 
similar classification accuracy, NB_Join is much more efficient 
than DT_Join.  
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Figure 6. Time per input tuple 

5.2 Synthetic Datasets 
To further verify our claims, we also conducted experiments on 
synthetic datasets with various data characteristics. Similar to the 
experiments on real-life datasets, we want to examine whether the 
correlation of multiple streams yields benefits for classification 
under different data characteristics. We also want to evaluate if 
NB_Join can deal with streams with high data arrival rates. As we 
are not aware of existing data generators to evaluate classification 
spanning correlated streams, we designed our own data generator. 

5.2.1 The Data Generator 
We consider the chain join of k streams S1, …, Sk, where S1 is the 
target stream. An adjacent pair Si and Si+1 have one join predicate 
and a non-adjacent pair have no join predicate. All streams have 
the same number of tuples denoted |S|. All join attributes are 
categorical and have the same domain size D. In addition, all 
streams have N ranked attributes and N categorical attributes 
(excluding the join attributes and the class attribute). Categorical 
values are drawn randomly from a domain of size 20. All ranked 
attributes have the ranked domain {1,…,10}.   

Since our goal is to verify that the classifier built on the join 
stream is more accurate when there are correlations among 
streams, the dataset must contain certain “structures” for the class 
label rather than random tuples. We construct the dataset in which 
the class label in a join tuple is determined by whether at least q 
percentage of the ranked attributes have a “high” value. A ranked 
value is “high” if it belongs to the top half of its ranked domain. 
Since the ranked attributes are distributed among multiple input 
streams, to ensure the desired property of the class label, the input 
streams S1,…,Sk are constructed as follows. 

- Join values. Each stream Si consists of D groups: from 1st to 
Dth group. All tuples in the jth (1≤j≤D) group of Si join with 
all tuples in the jth group of Si+1, but not any other tuples. 
The jth join group refers to the set of join tuples produced by 
the jth groups. The size Zj of the jth group is the same for all 
streams S1,…,Sk, and follows Poisson distribution with the 
mean λ=|S|/D. The jth join group has the size Zj

k, with λk 

being the mean. The blow-up ratio of the join is defined as 
λk/λ=λk-1, i.e., the ratio between the mean of group size on 
the join stream and that on input streams. 

- Ranked values. We generate ranked attributes such that all 
join tuples in the jth join group have the same class label. In 
particular, we ensure that all join tuples in the same group 
have “high” values in the same number of ranked attributes, 
say hj. To this end, we distribute the number hj among 
S1,…,Sk randomly, say hj1,…,hjk, such that hj =hj1+…+hjk, 
and all tuples in the jth group for Si are “high” in hji ranked 
attributes. hj follows uniform distribution in the range 
[0,k*N], where k*N is the total number of ranked attributes. 

- Class labels. If hj≥q*k*N, for some percentage parameter q, 
we assign the “Yes” class label to every tuple in the jth 
group of S1, otherwise, assign the “No” class label. 

Finally, to simulate the “concept drifting” in data streams, we 
change the parameter q every time after generating W tuples. In 
particular, for every W tuples we randomly determine a q value in 
the range [0.25, 0.75) following the uniform distribution. W is 
called the concept drifting interval. Usually W is larger than the 
window size because not every window leads to a change in 
classification. A dataset generated as above can be characterized 
by the parameters (N, |S|, D, λ, W), where λ=|S|/D is the mean of 
group size and determines the blow-up ratio of join. 

5.2.2 Accuracy 
We generated three streams S1, S2 and S3 with the parameter 
setting N=10, |S|=1,000,000, D=200,000, λ=5, W=100,000. Figure 
7 shows the accuracy vs the window size with 50% window 
overlapping. DT_Join and NB_Join are more accurate than their 
counterparts on the single stream, while both having similar 
accuracies. 
Figure 8 shows another experiment, where we fixed the window 
size w at 20,000 and decreased W from 100,000 to 20,000. Since 
the previous experiments have confirmed that classifiers built on 
the join stream have a better accuracy, in this experiment we only 
show the accuracy of NB_Join and DT_Join. As expected, the 
accuracy drops slowly as W decreases, since the structure for the 
class label changes more frequently. 
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Figure 7. Classifier accuracy vs window size 
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Figure 8. Classifier accuracy vs concept drifting interval 

 

5.2.3 Time per input tuple 
Figure 9 shows the time per tuple on the same dataset as in Figure 
7. The join time is much larger than the time of NB_Join. As the 
window size increases, the join time increases due to the blow-up 
effect of join, while NB_Join spends almost constant time per 
tuple for any window size. 
Figure 10 shows time per tuple vs. blow-up ratio of join. The 
parameters are fixed as N=10, |S|=1,000,000, D=200,000, 
W=100,000. For the join of three streams, the blow-up ratio is λ2. 
By varying λ from 2 to 7, the blow-up ratio varies from 4 to 49. 
The window size is fixed at 20,000. Again, NB_Join shows a 
much better performance and is flat with respect to the blow-up of 
join. This is because it scans the window exactly twice, 
independent of the blow-up ratio of the join. On the other hand, 
the join takes more time per tuple with a larger blow-up ratio 
because much more tuples are generated. 
Figure 11 shows time per tuple vs. number of streams. All 
parameters are still the same as in Figure 9. The window size is 
fixed at 20,000 tuples. We vary the number of steams from 1 to 5. 
The blow-up ratio for k-stream join is determined by 5(k-1). The 
comparison of the results is similar to Figure 10. 
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Figure 9. Time per input tuple vs. window size 
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Figure 10. Time per input tuple vs. blow-up ratio 
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Figure 11. Time per input tuple vs. number of streams 

 

5.3 Discussion 
On both real life and synthetic datasets, our empirical studies 
showed that when the features for classification are contained in 
several related streams, the proposed join stream classification has 
significant accuracy advantage over the conventional method of 
examining only the target stream. 

   



The main challenge is how such classification can be performed 
in pace with the high-speed input streams, given that the join 
stream has an even higher data arrival rate than that of the input 
streams. To this end, our experiments showed that our proposed 
algorithm has a cost linear in the size of input streams, 
independent of the join size. This feature makes our algorithm 
superior to other alternative methods. 

It is worthy of noting that the classifier must be rebuilt each time 
the window on any input stream slides forward. This is reasonable 
when there is no overlap or only small overlaps between windows. 
However, when windows are significantly overlapped, this 
strategy tends to repeat the work on the overlapped data. In this 
case, a more efficient strategy may be incrementally updating the 
NBC by working only on the difference due to the window sliding. 
We did not pursue in this direction further because even 
overlapped tuples still need to be joined with new tuples in other 
streams, which means that the scan of overlapped tuples cannot be 
avoided. Since our algorithm scans the current window only twice, 
the benefit of being incremental is limited, especially considering 
the overhead added.  

6. CONCLUSIONS 
Motivated by real life applications, we considered the 
classification problem where the training data are coming from 
several related private data streams. Joining all streams violates 
the privacy of stream owners and suffers from the blow-up of the 
join. We presented a solution based on Naïve Bayesian Classifiers. 
The main idea is rapidly obtaining the essential join statistics 
without actually computing the join. With this technique, we can 
build exactly the same Naïve Bayesian Classifier as using the join 
stream without exchanging private information. The processing 
cost is linear in the size of input streams and independent of the 
join size. Empirical studies supported our claim that examining 
several related streams indeed benefits the quality of 
classification. Having a much lower processing time per input 
tuple, the proposed method is able to handle much higher data 
arrival rate and deal with the general many-to-many join 
relationships of data streams. 
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