
1

STAIRS: Towards Efficient Full-Text Filtering and
Dissemination in a DHT Environment
Weixiong Rao† Ada Wai-Chee Fu† Lei Chen‡ Hanhua Chen♯

†Department of Comp. Sci. and Eng. ‡Department of Comp. Sci. and Eng. ♯School of Computer Sci.
The Chinese University of Hong Kong Hong Kong University of Sci.andTech. Huazhong University of Sci. and Tech.
{wxrao,adafu}@cse.cuhk.edu.hk leichen@cse.ust.hk huanhua@hust.eud.cn

Abstract— Nowadays contents in Internet like weblogs,
wikipedia and news sites become “live”. How to notify and
provide users with the relevant contents becomes a challenge.
Unlike conventional Web search technology or the RSS feed,
this paper envisions a personalized full-text content filtering and
dissemination system in a highly distributed environment such
as a Distributed Hash Table (DHT). Users can subscribe to their
interested contents by specifying some terms and threshold values
for filtering. Then, published contents will be disseminated to the
associated subscribers. We propose a novel and simple framework
of filter registration and content publication, STAIRS. By the
new framework, we propose three algorithms (default forward-
ing, dynamic forwarding and adaptive forwarding) to reduce
the forwarding cost and false dismissal rate; meanwhile, the
subscriber can receive the desired contents with no duplicates. In
particular, the adaptive forwarding utilizes the filter information
to significantly reduce the forwarding cost. Experiments based on
two real query logs and two real datasets show the effectiveness
of our proposed framework.

I. I NTRODUCTION

The contents of Internet such as weblogs, wikipedia and
news sites are growing in an amazing speed. For example, in
July 2006, there were over 1.6 million blog postings every day;
the number of blogs worldwide was reported as 50 million
and is doubled every 6 months [14]; in Wikipedia, which
has 2,163,836 articles in the English version, the increaseof
average addition per day during the period from 2002-01-
01 to 2007-01-01 is from 54 to 1822 [2]. These staggering
numbers suggest a significant shift in the nature of Web
content from mostly static pages to continuously created and
updated documents.

With such “live” contents, how to notify users about their
interested contents becomes a highly helpful and a very
challenging task. Web search technologies can retrieve Web
documents for input queries, however, it is ill-suited to no-
tify users about rapidly-changing contents. Though Google
Alerts [3] and Microsoft Live Alerts [1] provide the dissemina-
tion service for end users, it is believed that both alert services
are based on batch processing through the search engine [9].
Thus, they cannot offer timely dissemination service. Many
users now use RSS feeds, which allow them to receive rapid
updates from sites of interest. However, one RSS feed only
covers an individual site, such as a blog, hence end users
need to subscribe to multiple sites in order to satisfy their
various interests. Moreover, RSS feeds adopt a topic based
publish/subscribe approach. Due to the lack of content-based

subscription, articles that are sent by RSS may not correspond
to the real interests of subscribers, resulting in false dismissals
and false alarms.

In view of the shortcomings of previous approaches such as
no timely dissimilation or no content-based services, we aim to
design a personalized threshold-based full-text content filtering
and dissemination system in a large distributed environment
like Peer-to-Peer (P2P) network. In such a system, end users
can subscribe their interested contents by entering someterms
as a filtering condition (i.e. a subscriptionfilter). The system
will disseminate refresh contents that match a subscription
filter to the corresponding subscriber.

To disseminate the relevant documents to a subscriber, we
employ a score function such asterm frequency* inverse
document frequency(tf*idf) to measure the relevance between
published contents and subscription filters. Only the document
with a score higher than a system default threshold or a user
specified threshold will be disseminated to users. In this work,
we use both terms and thresholds in the filter conditions
is based on the following observations: (1) term input has
become the de-facto standard for end users to retrieve their
interested documents in Web search engines, and the tf*idf
score function is widely used in Information Retrieval (IR)
context such as vector space model (VSM) to measure the
relevance; (2) the whole content space is extremely huge, while
the subscription filters are usually composed of a few terms,
therefore without setting a threshold value, the matching result
set for the filter terms against the content space will be very
large; this is especially true for terms that frequently appear
in documents.

In a simpler setting, subscribers may adopt adefaultthresh-
old value that is provided by the dissemination system itself.
However, some subscribers may specify their own thresholds
to meet their specific requirements.

A. Problem Statement

We formalize the key problem of building such a dissemi-
nation system.

Problem Statement: We assume that each documentd is
associated with|d| pairs of 〈ti, score(ti, d)〉, where ti is a
term ind, andscore(ti, d) represents the importance or weight
of term ti in d, which can be pre-computed using theterm
frequency* inverse document frequency(tf*idf) scheme.

Each subscription filterf consists of |f | terms f =
{t1, .., t|f |} and a thresholdT(f). The value ofT(f) can be

2

the default valueT or a personalized value greater or less
than T. Documentd will be disseminated to the subscriber
with filter f provided that

TotalScore(f, d) =

|f |
∑

i=1

score(ti, d) ≥ T(f)

A matching scheme should enable documentd to be dis-
seminated to each interested subscriber atno or low false
dismissal rate andlow publication cost, which is determined
by the document forwarding cost in a P2P system. Also,
the documents should be disseminated in atimely manner;
otherwise the validity may expire and the documents become
useless.

B. Previous Approaches

In distributed IR systems based on DHT look up, such
as [23], [10], [18], each documentd is stored in thehome
nodesfor all terms ind. To retrieve the interested documents,
an end user enters a queryf composed of a few terms,
then DHT routesf to the home node foreach term in f .
The returned results from|f | home nodes are intersected and
aggregated to determine the final result. If we directly apply
the above idea to our problem, filterf will first be registered
to |f | home nodes, thend is forwarded to|d| home nodes, and
finally d is matched withf in the home node for the common
terms that appear in bothd and f . There are two problems
for such scheme: (1) The cost to forwardd to |d| home nodes
is high because the number of terms ind, |d|, is typically
large, for example in our experiments the number of terms
per document of one data set is around 6000 on average. (2)
Since each filter is registered at the home node of each term
in the filter, forwarding documentd to the home nodes of all
terms ind will produceduplicateddissemination.

Previous work KLEE [10] vertically stores the document
information to the home node of each term in the document
and uses a thresholding approach to answer distributed top-
k queries in atop-downmanner: in each round, only several
top candidate items are chosen from each sorted input index-
list; and the next two or three rounds try to go down the
input index list and choose more candidates to avoid false
dismissal. However, the multiple rounds of candidate items
fetching between query initiators and document home nodes
will be time consuming and cannot guaranteetimely delivery.
Though KLEE proposes an hybrid structure of histogram and
bloom filter, HistogramBlooms, to collect the document term
information, which is similar to our proposed structure, Hi-
Blooms, in fact, our HiBlooms is used to summarize the filter
information (including filter thresholds, filter lengths and query
terms). The Bloom filters in each cell of HiBlooms are further
grouped by filter length and also are dynamically created to
reduce the false positive rate; while in HistogramBlooms, each
cell contains one Bloom filter.

Publish/Subscribe systems like [6] register each filter com-
posed of multiple attribute predicates toone attribute index
with the most selective principle. However, the approach of[6]
is not applicable: documentd is forwarded to each predicate

list associated to each attribute in the schema, that is well-
suited for the data schema with several attributes. Following
this idea, forwardingd to home nodes for all terms that
appear in the dissemination system is extremely costly, which
is actually identical to the document broadcast across DHT.
In Sieve [8] as a distributed content dissemination system,
the counting algorithm suffers from the high latency problem
because, for a subscription involving predicates over multiple
attributes, the intermediate matching result of each attribute is
maintained before the whole subscription is finally evaluated.

For an information dissemination system like SIFT[22]
and InRoute [4], the content matching and dissemination
are conducted by a centralized indexing structure. Though
intended for the large distributed environments, FeedTree[16]
and Corona [12] adopt topic or subject-based content dissem-
ination, using the URL address as the subscription topic or
subject. With consideration of the high maintenance issue due
to a large number of topics in the topic based pub/sub system,
[11] devises a dynamical clustering method for reducing
the maintenance overhead. Instead, our proposed fine-grained
content filtering model is free from topic maintenance while
reducing the forwarding cost.

C. Our Approach

To guarantee low forwarding cost, no (or a low rate of) false
dismissal, and timely dissemination, we propose a threshold-
based approach to exclude useless terms in the documents.
Specifically, we require each subscriber to register his/her
filter f to the home node of each term inf , this is called
“ full” registration. When a document is published, based on a
given threshold (system default or user’s specification), only
a few terms are selected from the published document for
forwarding, this is called “partial” forwarding. We call the
threshold based full-textfiltering and dissemination system
that is enabled by the full registration and partial forwarding
asSTAIRS.

In STAIRS, we also design the mechanism to avoid duplicate
document dissemination. Moreover, we utilize the fact that
most of the queries (filters) are expressed with a few terms
to remove more useless terms for dissemination. Finally,
for users with personalized thresholds, we utilize the filter
information to tune the system thresholds and to reduce the
number of terms as candidates for distribution. In summary,
the contributions of this paper include:

• a new thresholding approach is proposed so that useless
terms in a documentd are excluded andd is not for-
warded to the home nodes of these useless terms, saving
a lot of forwarding cost;

• the basic filtering and dissemination framework can be
extended to handle personalized subscriptions with dy-
namical thresholds;

• using the filter information, an adaptive approach can
tune the default threshold and select a smaller number
of candidate terms to significantly reduce the forwarding
cost;

• with real query logs and document corpus, our experi-
mental results verify our analytical findings.

3

H

B

C

F

D E
A

B

G
J

K

L

M

I

f2

BDE

f3

CEF

Doc

Home Node

of Term K

Document

Forwarding

Document
Dissemination

Filter
Registration

f1

A

Subscriber

DHT Based

P2P network

Publisher

Fig. 1. Basic Framework of Full Registration and Partial Forwarding

The rest of this paper is organized as follows: Section II
shows the basic content filtering and dissemination frame-
work with the system default threshold. Section III extends
the thresholding approach to meet subscribers’ personalized
requirements. Section IV shows the adaptive forwarding.
Section V evaluates the prototype implementation. Finally,
Section VI is a conclusion.

II. BASIC FRAMEWORK

Let us first show an overview of DHT-based P2P networks
and then consider the simple case inSTAIRSwhere each
subscription filter specifies the default threshold.

A. An Overview of DHT-based P2P networks

A number of structured peer-to-peer routing protocols have
been proposed recently, including CAN [13], Chord [17],
Tapestry [24] and Pastry [15]. These P2P systems provide
the functionality of a scalable distributed hash-table (DHT),
by reliably mapping a given object key (like a term with
the string type) to a unique live node in the network. For
simplicity, in this paper, we call the node that is responsible
for the object key ashome nodeof the key. These systems have
the desirable properties of high scalability, fault tolerance and
efficient routing of queries. In these DHT P2P networks, each
node is regularly assigned with equalO(log N) number of
links, and the average lookup hop number is guaranteed with
O(log N) whereN is the total number of nodes in DHT.

B. Filter Registration

Each end user subscribes his/her interested documents by
a filter f = {t1, ..., t|f |} with a threshold valueT(f). Here
we call the number of terms inf , |f |, as thelength of filter
f . For the basic framework, we assume that each subscriber
adopts a default threshold valueT(f) = T.

When a subscriber sends out the subscription request con-
taining filterf to a DHT based P2P network,f is registered in
the home node for each term inf . As a result,f is registered
in |f | peers. We call this “full registration”. In Figure 1, filter
f2 = {B,D,E} is registered in three home nodes respectively
for B, D, andE; f3 = {C,E, F} is registered in three home
nodes respectively forC, E andF .

f1 f2
f4

f3

(d)

f7 f5 f8

T(1.0)

(c)

DTerm of f6

f9

f1=A

f2=BDE

f3=CEF
f4=BCDE

f5=GHIKLM

f6=JK
f7=EHIJKLM

f8=HKM

f9=DKM

TTerms

BTerms
0.68

T(1.0)

(a)

Term Score

Sort List

BTerms
0.98

A 1.0

B 0.9

C 0.7

D 0.5

E 0.4

F 0.08

G 0.05

H 0.04

I 0.03

J 0.03

K 0.02

L 0.02

M 0.01

A 1.0

B 0.9

C 0.7

D 0.5

E 0.4

F 0.08

G 0.05

H 0.04

I 0.03

J 0.03

K 0.02

L 0.02

M 0.01

TTerms

(b)

A B C D E F G H I J K L M

T(1.0)

Term Score

(a) Document with〈term, score〉 pairs; (b) Optimized for Short Filters;
(c) Disseminating Terms; (d) Short Filters;

Fig. 2. Bottom-up Approach to Select TTerms by Default Threshold T = 1.0

C. Document Publication

Before the documents are published, the computation of
term scorescore(ti, d) by tf∗idf requires the global statistical
information including total number of documents and the
inverse document frequency of some term. In [5], it has shown
that in IR scenarios it is enough to have an approximation
of the exactidf values. By a set of randomly chosen peers
to collect such statistics and merge the results, [19] creates
an approximation of the globalidf values. Though it is an
open problem to approximateidf in pub/sub scenario [20],
one possible solution is to use the similar approximate solution
as [19] to computeidf , and the precise approximate will be
our future work.

Given documentd := {〈ti, score(ti, d)〉|i=1,...,|d|}, two
steps are required for document publication:

• Document Forwardingto forward d to the home nodes
of some meaningful terms ind;

• Document Disseminationto disseminated to subscribers
with qualified filtersf with TotalScore(f, d) ≥ T.

In the second step, a filterf satisfyingTotalScore(f, d) ≥
T is called a “qualified filter”. In the computation of
TotalScore(f, d) =

∑|f |
i=1 score(ti, d) where ti ∈ f , term

ti need not appear in the documentd. If term ti ∈ f is
not in documentd, then score(ti, d) = 0. Only when term
ti ∈ f is also in documentd, ti will contribute the value of
TotalScore(f, d) by the term scorescore(ti, d).

Now, we show how to useTotalScore(f, d) ≥ T for
document forwarding. If we sort all terms in documentd

by a descendingorder of score(ti, d), we can position the
threshold valueT in the sorted list as illustrated by the

4

following example. In Figure 2 (a), the term scores are sorted
in descending order, the sum of term scores fromM to E is
0.68, and the sum fromM to D is 1.18. Then the threshold
valueT = 1.0 is positioned between termD andE. Since the
sum of term scores fromM to E is less than the threshold
value1.0, we call the terms fromM to E the“Below Threshold
Terms” (BTerms), and the remaining terms ind (i.e. terms
from D to A) the “Threshold Terms” (TTerms). With BTerm
and TTerm, we have two important lemmas about documentd

and thresholdT. The first lemma follows from the definition
of BTerm:

Lemma 1:The sum of term scores of any subset of BTerms
in documentd is less thanT.

For example, in Figure 2(a) with BTerms fromM to E, for
the full combination of BTerms, the sum of term scores, 0.68,
is less than the threshold value 1.0; for a partial combination
for BTerms like{E,F,G}, the sum of term scores is less than
0.68.

Lemma 2:Given a documentd with TotalScore(f, d) ≥
T, the qualified filterf at least contains one TTerms ofd.

Proof By contradiction: if no TTerm appears inf , f is
composed of only BTerms. By Lemma 1, we find that the sum
of all term scores for all terms inf is less thanT, contradicting
the assumption in Lemma 2. Hence the Lemma holds.

In Figure 2, two TTerms (B, D) appear in the qualified
filter f2 with TotalScore(f2, d) ≥ 1.0.

1) Forwarding by TTerms:By Lemma 2, we conclude that
at least one TTerms of documentd appear in aqualifiedfilter
f . Meanwhile, from Section II-B, filterf is “fully registered”
in the home node of each term inf . The terms in a filter
f can be (i) TTerm ofd, (ii) BTerm of d, or (iii) not in d.
Thus “full registration” can guarantee that a qualified filter f

with TotalScore(f, d) ≥ T is certainly registered in the home
node for some TTerm ofd.

As a result, when documentd is published, we can forward
d only to the home node of each TTerm ind because the
qualified filters must be registered in the home node of some
TTerm. Compared with the “full-forwarding” approach that
forwards documentd to the home node of each term ind,
our “partial-forwarding” can reduce the forwarding cost. In
Figure 1, when documentd in Figure 2(a) is published,d is
only forwarded to 4 home nodes: for TTermA, B,C andD,
instead of 13 home nodes by “full forwarding”: for the terms
from A to M .

Algorithm 1 Selection (thresholdT, documentd)
Require: |d| term scoresscore(ti, d) of documentd are reverse

sorted withscore(t1, d) ≥ ... ≥ score(t|d|, d);
1: Doc Score(d) ← 0;
2: for i = |d| to 1 do
3: Doc Score(d) ← Doc Score(d) + score(ti)
4: if Doc Score(d) ≥ T then
5: return t1, ...ti as selected TTerms;
6: end if
7: end for
8: return null;

Algorithm 1 lists the pseucode to select TTerms by threshold
T for document forwarding. In the bottom-up loop (line 2-7),

the sum of term scoresscore(ti, d) starts from the tail term
with the least term scorescore(t|d|, d). Once the sum from
score(t|d|, d) to score(ti, d) is larger than the thresholdT,
the remaining terms fromt1 to ti are returned as TTerms (line
5). Finally if the sum of all term scores is smaller thanT, no
term is selected as a TTerm.

2) Dissemination Without Duplicates:When documentd
reaches the home node for some TTerm, for all filtersf locally
registered in the home node,TotalScore(f, d) is computed to
check whether the conditionTotalScore(f, d) ≥ T is met. If
met, documentd should be disseminated to the subscriber of
f ; otherwise, no dissemination takes place. Note that by “full
registration”, filter f will be registered in the home nodes
of all terms appeared inf . It could be a problem: whenf
may contain multiple TTerms, there could produce a duplicate
dissemination. For example in Figure 1, with two TTerms
B,D, f2 is registered in the home nodes forB andD. When
d is forwarded to two home nodes forB and D, document
d may be duplicately disseminated to the subscriber off2 by
both home nodes.

To avoid duplicated dissemination, we introduce a
dissemination rule. First let us define some terms. Given a
documentd, we call a term in filterf with the highest term
score ind a dissemination term (DTerm) of f for d, denoted
astf,d. In case of a tie in the highest score, we can break the
tie by some rule such as choosing the term that appears the
earliest in the document. The home node fortf,d is treated as
the dissemination nodeto deliver d to f . With the definition
of DTerm tt,f we give the following dissemination rule:

Dissemination Rule: Given a qualified filterf composed
of one or more TTerms, documentd is disseminated to the
subscriber specifyingf only by the home node of the DTerm
of filter f for d.

To illustrate the dissemination rule, we may set up document
d of Figure 1 with the term scores of Figure 2 (a). Whend is
forwarded to the home node for termB, it can be observed
that filter f2 = {B,D,E} contains two TTermsB and D.
Since the term score forB is higher,d will be disseminated
to the subscriber specifyingf2 via the home node forB.
Meanwhile, whend is forwarded to the home node forD, it
can be similarly observed thatf2 contains two TTermsB and
D. Based on the dissemination rule, the home node forD will
not disseminated to the subscriber off2. Similarly, document
d is uniquely disseminated to the subscribers of filtersf1, f2

andf3 by the dissemination nodesA, B andC, respectively.
In addition, Figure 2(d) shows the dissemination term of all
filters from f1 to f9 for documentd.

Note that in our dissemination rule,no nodes are required
to remember the history information about the disseminated
documents. Instead, in [8], the subscribers have to remember
the history information to avoid duplicates when documents
are forwarded from multiple home nodes, and the communi-
cation cost used to forward duplicated documents is wasted in
vain.

5

D. Optimization for Shorter Filters

From two real query history logs from a popular commercial
search engine and www.search.com, we find that the major
input queries are typically composed of only a few terms (See
Figure 6(a) in Section V). If these short queries are used as
the filters inSTAIRS, we can further improve the forwarding
cost by forwardingd to home nodes of a very small number
of TTerms.

Recall the definition of TTerms and BTerms in Section II-
C, we actually assume that a filter is composed byarbitrary
number of terms, and require the sum of term scores for
BTerms ind to be less than the default threshold valueT. With
consideration that filters are composed of at most|f |s short
terms, we can redefine the TTerms by the default threshold
T as follows: in the bottom-up sorted list of documentd, the
sum of term scores for|f |s consecutive terms should be less
thanT; then we use the termth with the highest term score
among such|f |s consecutive terms to indicate the term ind

is TTerm or BTerm: any term ind having a higher term score
than th is a TTerm; otherwise it is a BTerm.

For example in Figure 2(b), suppose the maximal number of
terms in any filter is|f |s = 3. Since the sum of term scores for
3 terms includingF , E andD is only 0.98, we may indicate
that any termti with term score smaller than0.5 as BTerm;
and the remaining terms as TTerm. Compared with Figure 1(a)
where the sum of term scores for all terms from the bottom line
to termE is less thanT = 1.0, now we only require the sum
of term scores for|f |s consecutive terms is less thanT = 1.0.
Obviously, by filtering with a small number of terms, we boost
the BTerms to a higher position in the sorted list and achieve
a smaller number of TTerms than Figure 2(a); forwardingd to
home nodes of a smaller number of TTerms will further reduce
the forwarding cost. The experiments of Section V show that
this strategy can greatly reduce the number of TTerms and the
forwarding cost.

Similar to Lemmas 1 and 2, we derive the following results
for the new definition of BTerms and TTerms:

Lemma 3:The sum of term scores by any combination of
|f |s BTerms in documentd is less thanT.

Lemma 4:Given a documentd with TotalScore(f, d)≥ T,
a qualified filterf composed of at most|f |s terms contains at
least one TTerm ofd.

Algorithm 2 lists the pseucode to utilize the shorter filters
for document forwarding. Note During the for loop from step
8 to step 13,Doc Score(d) is re-initiated to aggregate the
term score of at most|f | terms. IfDoc Score(d) ≥ T is met,
the remaining terms fromt1 to tj are returned as the selected
TTerms.

E. Discussion

Full registration is the key ofSTAIRSto enable partial
forwarding with less forwarding cost. Documentsd1 andd2,
even with the same term list, may produce different sorted lists
for term scores. A termti may be a TTerm ind1, but it may
be a BTerm ind2. Full registration guarantees that we need
only forward each document to the home node for its TTerms,
which is locally determined by the document publisher itself,
without any a priori knowledge of subscriber filters.

Algorithm 2 SelectionShort (thresholdT, documentd, length
|f |)
Require: |d| term scoresscore(ti, d) of documentd are reverse

sorted withscore(t1, d) ≥ ... ≥ score(t|d|, d);
1: for i = |d| to 1 do
2: Doc Score(d) ← 0;
3: if i− |f | > 0 then
4: jUpper ← i− |f |;
5: else
6: jUpper ← 1;
7: end if
8: for j = i to jUpper do
9: Doc Score(d) ← Doc Score(d) + score(tj)

10: if Doc Score(d) ≥ T then
11: return t1, ...tj as selected TTerms;
12: end if
13: end for
14: end for
15: return null;

A

1.2:f1 1.4:f2
1.1:f4

0.2:f3 .25:f7 1.5:f5 1.0:f8 0.18:f6

T

(1.0)

(d)

Threshold value of f6 is 0.18

1.7:f9

B C D E F G H I J K L M

M 0.01

TTerms

BTerms
0.68

T
(1.0,1.1)

(a)

Term Score

L 0.02

K 0.02

J 0.03

I 0.03

H 0.04

G 0.05

F 0.08

E 0.4

D 0.5

C 0.7

B 0.9

A 1.0

1.2 ; f1=A
1.4 ; f2=BDE

0.2 ; f3=CEF
1.1 ; f4=BCDE
1.5 ; f5=GHIKLM

0.18; f6=JK
0.25; f7=EHIJKLM

1.0 ; f8=HKM
1.7 ; f9=DKM

(e)

Thresholds Filters

M 0.01

TTerms

BTerms
1.18

T(h)

(1.2; 1,4;
1.5; 1.7)

(b)

Term Score

L 0.02

K 0.02

J 0.03

I 0.03

H 0.04

G 0.05

F 0.08

E 0.4

D 0.5

C 0.7

B 0.9

A 1.0

M 0.01

TTerms

BTerms
0.15

T(l)
(0.18; 0.2;
 0.25)

(c)

Term Score

L 0.02

K 0.02

J 0.03

I 0.03

H 0.04

G 0.05

F 0.08

E 0.4

D 0.5

C 0.7

B 0.9

A 1.0

T(l)

(.18)

<3.78 <2.78 <1.88 <0.68 <0.28 <0.20 <0.15 <0.11 <0.08 <0.05 <0.03 <0.01<1.18

Sum(score(J,d))

(a) Default Threshold; (b) Higher Thresholds; (c) Lower Thresholds;
(d) Guided Forwarding; (e) Personalized Filters.

Fig. 3. Personalized Subscription

III. PERSONALIZED SUBSCRIPTION

In this section we extend the basic framework ofSTAIRS
by allowing each subscriber to specify his/her personalized
threshold.

Though the system sets up a default threshold that may
work well for general users, some subscribers may pre-
fer to specify their own thresholds, which may be higher
or lower than the default valueT. In Figure 3(e), some
subscribers use the default value1.0, some specify higher
thresholds 1.1, 1.2, 1.4, 1.7; others specify smaller values
0.18, 0.2, 0.25, 0.8.

1) Default Forwarding For High Thresholds:With such
dynamic thresholds, the challenge in the P2P environment
is that the publisher cannot know in advance the thresholds

6

specified by subscribers.
Given a higher thresholdTh, the set of TTerms byTh is

a subsetof the set of TTerms by the default valueT. For
example, in Figure 3(b), TTerms byTh = 1.2, i.e. terms
{A,B,C}, are subset of TTerms byT = 1.0, i.e. terms
{A,B,C,D}. As a result, forwarding documentd to TTerms
by the default thresholdT can also satisfy the requirement of
Th.

After d is forwarded to the home node for each TTerm by
T, d is matched with each locally registered subscription filter
f by checking whetherTotalScore(f, d) ≥ Th is met. If true,
the document is disseminated by the dissemination rule.

2) Dynamic Forwarding For Low Thresholds:Unfortu-
nately the set of TTerms for a lower thresholdTl < T is
a supersetof the set of TTerms by the default valueT. Then
just forwarding the published documentd to home nodes for
TTerms byT will miss some TTerms byTl. For example in
Figure 3(c), terms{E,F,G} are missed ifd is only forwarded
to home nodes for TTerms byT (i.e. terms fromA to D).

Recall the dissemination rule in Section II-C.2, it states
that documentd is disseminated to the subscriber only via
the home node of the dissemination term (DTerm) tf,d.
Given termtf,d having term scorescore(tf,d, d), we define
Sum(⌈score(tf,d, d)⌉) as the sum of all term scores smaller
than score(tf,d, d). In Figure 3(d) the dissemination term in
filter f6 = {J,K} is termJ with term score0.03. The scores
of terms fromJ to M are equal to or less than0.03, and
Sum(⌈score(J, d)⌉) = (0.03 + 0.02 + 0.02 + 0.01) = 0.08.

If f is a qualified filter ofd, two prerequisites must be met:
{

(1)TotalScore(f, d) ≥ Tl

(2)TotalScore(f, d) ≤ Sum(⌈score(tf,d, d)⌉)

The first prerequisite is the basic filtering require-
ment. The second prerequisite holds by contradiction: if
TotalScore(f, d) > Sum(⌈score(tf,d, d)⌉), filter f must
contain a term score larger thanscore(tf,d), contradicting the
definition of dissemination term. Next from (1) and (2), we
get:

Tl ≤ Sum(⌈score(tf,d, d)⌉)

In Figure 3(d), considerd and filter f6 with thresh-
old 0.18 (tf6,d is term J). Since T(f6) = 0.18 and
Sum(⌈score(tf6,d, d)⌉) = Sum(⌈score(J, d)⌉) = 0.08, we
can infer that documentd does not satisfyf6, violating Tl ≤
Sum(⌈score(tf,d, d)⌉). For illustration, Figure 3(d) shows
the value ofSum(⌈score(tf,d, d)⌉ for each term when such
term is used as dissemination term. Following the condition
Tl ≤ Sum(⌈score(tf,d, d)⌉), we similarly find thatd does
not satisfy filterf5, f8 andf9.

The above prerequisites can be used to guide the document
forwarding. For any two termsti and tj in documentd, we
can easily infer that

IF score(ti, d) > score(tj , d),
THEN Sum(⌈score(ti, d)⌉) > Sum(⌈score(tj , d)⌉)

Suppose filterfi andfj specify the same thresholdTl and
have the dissemination termti and tj for documentd. The
probability for Tl < Sum(⌈score(ti, d)⌉) will be higher than
that of Tl < Sum(⌈score(tj , d)⌉). It means thatd satisfies

filter fi with a higher probability thanfj . Therefore we
consider forwardingd to the home node forti with a higher
probability than forwardingd to home node fortj . Let us
define thecoverageof forwarding d to the home node for
BTerm tk (with respect toT), denoted byPtk,d, as:

Ptk,d =
Sum(⌈score(tk, d)⌉)

∑|dbt|
x=1 Sum(⌈score(tx, d)⌉)

In the above equationtk is a BTerm by the default threshold
T and |dbt| is the number of such BTerms. In Figure 3,
by the above equation, the coveraged Ptk

to forward d to
the home noded forE,F, ...,M respectively are37.68%,
27.71%,18.74%,...,0.099%.

Among all BTerms, we choseb BTerms,t1, ...tb, with top
values of Pti,d whereb is the smallest number to make sure
that

∑b
i=1 Pti,d ≥ P, whereP is a system threshold. The value

of b will be minimized for reducing the forwarding cost. IfP
is set to 1, thend is forwarded to the home nodes for all
BTerms and no filters will be missed, or the total coverage
will be 100%. In Figure 3(c), givenP = 90%, term E,F,G

will be chosen sincePE + PF + PG = 90.93%.
For convenience, we call these chosen BTerms as deter-

mined by the given probability P the PTerms. As a result, with
dynamic thresholds, documentd will be forwarded to home
nodes for TTerms and PTerms. The union of the TTerms and
PTerms form the PTTerms.

Discussion: In a DHT like P2P environment, it is not easy to
setup a reasonable value ofP: with a small value ofP, many
documents are missed if most subscribers specify low filter
thresholds; with a larger value ofP, much forwarding may
be wasted if most subscribers specify high filter thresholds.
To tackle this problem, in Section IV, we shall propose
an adaptive forwarding technique to make sure the false
miss dismissal rate and document forwarding cost are further
reduced.

IV. A DAPTIVE FORWARDING

So far, dynamic forwarding only relies on the default
threshold and the value of P to select PTTerms, in this section
we show that this may result in high forwarding cost. We
then describe howSTAIRScan utilize some summarized filter
information to further reduce the forwarding cost.

A. Problems with the lack of user filter information

Without knowing the user filter thresholds and filter terms,
the forwarding cost of dynamic forwarding may be high
caused by selecting many TTerms, which is illustrated by the
following scenarios:

• There can be problems when the default threshold is set
either too high or too low compared to thresholds that
users prefer. If the default threshold is too low, there will
a lot of unwanted document forwarding since the TTerms
based onT is excessive; if it is too high, false dismissal
will become a problem.

• Not all terms in a documentd must appear in the
registered filters. For example in Figure 4 (a) termsC

and E do not appear in 9 filtersf1, ..., f9. Since E

7

M 0.01

TTerms

BTerms

0.78

T

(1.0,1.1)

Term Score

L 0.02

K 0.02

J 0.03

I 0.03

H 0.04

G 0.05

F 0.08

E 0.4

D 0.5

C 0.7

B 0.9

A 1.0

1.2 ; F1=A

1.4 ; F2=BDF

0.2 ; F3=BFH

1.1 ; F4=BDH

1.5 ; F5=GIKNPQ

0.18; F6=BK

0.25; F7=BHJNPYZ

1.0 ; F8=KLM

1.7 ; F9=DKM

(d)

Thresholds Filters

M 0.01

TTerms

BTerms

1.08

T(h)

(1.2; 1,4;

1.5; 1.7)

Term Score

L 0.02

K 0.02

J 0.03

I 0.03

H 0.04

G 0.05

F 0.08

E 0.4

D 0.5

C 0.7

B 0.9

A 1.0

M 0.01

TTerms

BTerms

0.15

T(l)

(0.18; 0.2;

 0.25)

Term Score

L 0.02

K 0.02

J 0.03

I 0.03

H 0.04

G 0.05

F 0.08

E 0.4

D 0.5

C 0.7

B 0.9

A 1.0

(a) (b) (c)

(a) Default Threshold; (b) Higher Thresholds;
(c) Lower Thresholds; (d) Personalized Filters.

Fig. 4. Adaptive Forwarding

is missing in these filters, we skip the term score of
E during the BTerm selection and compute the sum of
term scores fromE to M excluding termE as0.78, less
than T = 1.0. Thus, three remaining termsA, B and
C are chosen as TTerms. Moreover, since termC is also
missing in the filters, we only selectA andB as TTerms,
discardingC.

• Suppose in Figure 4 (d), we setup the filter length
|f |s = 6 to optimize the forwarding cost for short
filters. However, not all terms in a filter containing6 or
more terms must appear in the published document. For
example in Figure 4(d) filtersf5 andf7 contain at least6
terms each, and forf5, only 3 terms (G, I andK) appear
in documentd; for f7, only 3 terms (B, H andJ) appear
in d. Thus we may safely reset|f |s = 3 for the document
to generate less TTerms than with|f |s = 6.

• A filter with a low thresholdTl may contain a TTerm. In
Figure 4 (c) the 3 filtersf3, f6 andf7 have thresholdsTl

smaller than the defaultT = 1.0, we may select 6 terms
from H to M as BTerms and let the 7 remaining terms
(from A to G) be TTerms. However, we notice thatB, as
a TTerm, appears in the above 3 filters. Thus in the home
node ofB, f3, f6 andf7 are matched with documentd. It
means that usingTl to select TTerms is too conservative
when there are TTerms in these filters. UsingT = 1.0 to
select TTermB can also have documentd disseminated
to subscribers of filtersf3, f6 andf7.

As a summary, not knowing the filter information (thresh-
olds, filter lengths and query terms) may create either a high
false dismissal rate or a high forwarding cost. In the next
sections, we show how to select a few number of TTerms to
reduce the forwarding cost by using a proposed structure to
summarize the filter information.

B. Selecting a smaller number of TTerms by HiBlooms

To summarize the filter information, we use a hybrid struc-
ture of histogram and bloomfilters, named HiBlooms. The
histogram is used to capture the distribution of filter thresholds,
and the bloom filter is to encode the query terms in those

filters whose thresholds fall in the cell (or bucket) range of
the histogram. In details, suppose the equi-width histogram
maintainsb buckets or cells with range[lbi, ubi), those filters
with threshold inside[lbi, ubi) are further grouped by filter
length, and all query terms in each group are encoded byone
compact synopsis, represented by a Bloom filter. Thus, the
whole HiBlooms structure containsb ∗ g bloom filters where
b and g is the number of buckets and grouped filter length,
respectively.

Algorithm 3 SelectionBF (bloom filter bf , threshold T,
length |f |, documentd)
Require: |d| term scoresscore(ti, d) of documentd are reverse

sorted withscore(t1, d) ≥ ... ≥ score(t|d|, d);
1: d′ ← null;
2: for i = 1 to |d| do
3: if bf.lookup(ti) is true then
4: add 〈ti, score(ti, d)〉 to d′

5: end if
6: end for
7: return SelectionShort(T,|f |, d′);

After receiving the request to publish documentd, the node
selects the TTerms via the HiBlooms structure as follows: for
each bloom filters associated with a grouped filter length|f |g
and a bucket with threshold range[lbi, ubi), we follow the
approach in Section II-D to select the TTerms by the filter
length|f |g and a thresholdT (we consider the lower boundlbi

as the threshold). During the selection of TTerms, we check
whether the termti in d appear in the bloom filter: if so,
the term scorescore(ti) will contribute to the calculation
of TotalScore(f, d), otherwise we directly consider such
terms as BTerms. With the HiBlooms structure, the number of
selected TTerms can be significantly reduced, correspondingly
giving a lower forwarding cost. Moreover, the membership
checking of the bloom filter does not produce false negatives.

Algorithm 3 shows the pseucode to select TTerms by the
bloom filter, thresholdT and length|f | to select TTerms. As
shown before, each bloom filterbf in the HiBlooms structure
is associated with a grouped filter length|f | and a threshold
T (i.e. the lower boundlbi). First (line 1-6), we initiate a
documentd′ with null, then add〈ti, score(ti, d)〉 to d′ where
ti ∈ d appear in the bloom filter. Sincescore(ti, d) is reverse
sorted in the original documentd, score(ti, d

′) is also reverse
sorted. After that, we call function selectshort in Algorithm 2
to select TTerms.

C. Maintaining HiBlooms structure

Suppose each bloom filter in the HiBlooms structure uses
k hash functions and allowsm bits, by the following Equa-
tion [7]:

(

1

2

)k

≈ (0.6185)m/n (1)

We may find the value ofn that minimizes the false positive
rate produced by the bloom filters, wheren is the number of
terms that are encoded by the bloom filter. Withb buckets
and g groups, the HiBlooms structure can summarize a total

8

numbern∗b∗g terms. However, when the number of encoded
terms in the bloom filter is much larger than the value of
n∗b∗g, the overall false positive rate of the HiBlooms structure
will be high.

Recall the approach in Section II-D to select TTerms, we
notice that the input parameters withlow filter thresholdsand
long filter lengthsmay selectmore TTerms and result in a
higher forwarding cost. Thus, given some thresholdτ and filter
length ℓ, the HiBlooms structure assigns more bloom filters
to precisely summarize those filtersf with T(f) ≤ τ and
|f | ≥ ℓ; and relax the strict summary for the remaining filters.
More specifically, when a filterf with T(f) ≤ τ and |f | ≥ ℓ

is encoded by some bloom filter, we need to check whether
the number of query terms encoded by such a bloom filter
is larger than the value ofn in Equation 1. If true, an extra
bloom filter is created in order to precisely encode more query
terms. On the other hand, the filtersf with eitherT(f) ≥ τ or
|f | ≤ ℓ are always encoded to a single bloom filter, whether
the number of encoded query terms by such bloom filter is
more thann or not.

To estimate the value ofτ and ℓ, we first use an equi-
width histogram to collect the statistic information ofall
filters (but with no query term information). In the equi-
width histogram, the filters with thresholds falling withina
bucket range is grouped by the filter length, and the number
of filters for each group is collected to show the overall filter
distribution (threshold value and filter length). When such kind
of histogram is ready, some threshold valueτ and some filter
length ℓ can be approximated, so that the total number of
query terms in those filters with a lower threshold thanτ and
a longer filter length thanℓ is less than the value ofn ∗ b ∗ g

wheren is computed by Equation 1.
We leverage the scalable aggregation tree [21] to collect

the overall histogram structure for the thresholdT(f) and
filter length |f | to approximateτ and ℓ. Each node in the
aggregation tree can propagate the local equi-width histogram
(which is used to collect local filter information) up to their
parents. The parents merge the received equi-width histograms
with their own local equi-width histogram and continue the
propagation until the root builds the overall histogram, and
then propagate the histogram across the whole aggregation
tree until each node receives the histogram. By the value of
ℓ and τ , each node summarizes the filter information by the
HiBlooms structure. Then the local HiBlooms structure of each
node is propagated and merged by bit union operations across
the scalable aggregation tree, and propagated down so that all
nodes receive the overall HiBlooms structure.

V. EXPERIMENTS

A. Methodology

We evaluateSTAIRS in an DHT environment by using
FreePastry1 as the simulator with total 10,000 nodes, each
filter is registered to the home node of each term in the filter
and each document is forwarded to the home node of each
chosen candidate TTerm in the document for dissemination.

(1) Subscription Filters

1http://www.freepastry.org

Query Parameter Search.com Commercial SE

Number of queries 81,497 4,000,000
Average number of terms per query 2.085 2.843
Maximal number of terms per query 11 29
Minimal number of terms per query 1 1

TABLE I

STATISTICS OFTWO QUERY LOGS

0 5 10 15 20 25
1E-4

1E-3

0.01

0.1

1

10

100

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

Number of Terms in Queris

 Search.com
 Commercial SE

Fig. 5. Number of Terms in Query Logs

The number of queries provided by U.S. National Institute
of Standards and Technology (NIST) for the TREC WT10g
and TREC AP web test collection are far from enough to be
used as the subscription filters in the experiments. Instead, we
use two real query logs: (1) a trace log with 81.3 MB input
query history file collected within four months from a popular
commercial search engine (in short “commercial SE”), which
is quite representative for real world systems; (2) a similar
query history file from www.search.com with size 1.27MB.
Table I summaries the parameters of both query logs. On
average, the number of terms per query is 2.085 in search.com
and 2.843 in the commercial SE; the largest number of terms
in search.com is 11, and that in the commercial SE is 29 terms.
The accumulative percentage of filters composed of less than
3 terms in search.com and the commercial SE’s query logs is
89.17% and 88.77%, respectively; that of less than 5 terms is
98.84% and 98.42%. Figure 5 plots the number of terms of
the two query logs, where the x-axis represents the number of
terms, and the y-axis represents the percentage of filters with
the corresponding number of terms.

From Table I and Figure 5 it is clear that the input queries
in the two query log files are typically composed of very few
terms. Hence, if these input queries are used as the subscription
filters, there is opportunity for our proposed approach in
Section II-D and Section III.

(2) Content Document
We use two data sets:

• one based on Text Retrieval Conference (TREC) WT10G
web corpus, a large test set widely used in web retrieval
research. The dataset contains around 10 gigabyte, 1.69
million web page documents and a set of queries (we

9

Document Parameter Trec WT10g Trec AP

Total Number of Docs 1,692,096 1,050
Average Number of Terms per Doc 64.808 6,054.9
Maximal Number of Terms per Doc 331 7,320
Minimal Number of Terms per Doc 2 1,303
Total Number of Terms 16,382 48,788
Average Term Frequency 130.31 619.48
Maximal Term Frequency 210,089 1,050
Minimal Term Frequency 1 1

TABLE II

STATISTICS OF THETREC DATA SETS

mean the “title” field of a TREC topic as a query).
The WT10g data was divided into 11,680 collections
based on document URLs. Each collection on average
has 144 documents with the smallest one having only
5 documents. The average size of each document is
5.91KB. The data set was stemmed with the Porter
algorithm and common stop words such as “the”, “and”,
etc. were removed from the data set.

• one based on TREC AP: a text categorization task based
on the Associated Press articles used in the NIST TREC
evaluations. Compared with TREC WT10G data set, the
TRACE AP data set is composed of fewer (only 1,050)
articles but with a larger number of terms, on average
6054.9 per article. Table II summarizes the statistics for
the test data sets.

By formulascore(ti,d) =
freqi,d

Maxl(freqi,d) ·log N
ni

, we compute
the score of each term in both data sets. In this formula,

freqi,d

Maxl(freqi,d) represents the value of term frequencies (tf)

and log N
ni

the inverse document frequencies (idf). In de-
tails, freqi,d is the termti frequency in documentd, and
Maxl(freqi,d) is the maximal term frequency in document
d; ni is the number of documents containingti across the
whole data set, andN is the total number of documents.

We plot the term scores of 4 sampled documents in TREC
AP and TREC WT10G,respectively, in Figure 6 (a) and (b).
From these figures, the term score of TREC WT10G is
relatively larger than that of TREC AP due to the effect of

freqi,d

Maxl(freqi,d) . Clearly, the skew term score distribution in both
figures is important for the proposed approach: with a given
threshold, the high skew can significantly prune the terms with
low scores; thus reducing the content forwarding cost.

With no real threshold values available for the subscribers’
filters, we randomly generate the threshold values through (1)
uniform distribution; (2) exponential distribution with agiven
mean value. The purpose of using exponential distribution is
to study how the adaptive forwarding can adjust the system
default threshold to meet the relatively low thresholds by
exponential distribution. The generated thresholds are used for
filters to reflect subscribers’ personalized subscription.

(3) Performance Metric
We use two main metrics to measure the system perfor-

mance:

• Forwarding cost saving rate: the saving rate is 1.0
minus the ratio between the forwarding cost of our

proposed bottom-up threshold approach and that of the
full-forwarding. The higher the saving rate, the less
forwarding cost is used.

• Document false dismissal rate: the rate is 1.0 minus the
ratio between the documents that the subscribers actually
receive in the filtering and disseminating system and the
documents that the subscribers should receive by the
specified filters. The higher the false dismissal rate, the
more documents are missed.

B. Performance Results of Default Forwarding

First we conduct the experiments to study the forwarding
cost saving by default thresholds. In the experiments, we
use TREC AP and TREC WT10G as published documents.
For subscriber filters, we use each entry in search.com and
the commercial SE query log as a subscription filter, and
the default threshold as the filter threshold specified by the
subscriber. During the document forwarding, we setup the
number of terms in subscription filters as a system parameter
|f |s, respectively with the value of 10, 5, 3, 2 and 1. By the
value of|f |s, Section II-D may use the sum of|f |s consecutive
terms of each published document to optimize the forwarding
cost by selecting a smaller number of TTerms. Section II-C
may assume filters with arbitrary terms.

Figures 7(a) and (c), with search.com query logs as filters,
respectively plot the forwarding cost saving for TREC AP
and TREC WT10G document corpus; and Figures 7(b) and
(d) report the cost saving rates with a commercial SE trace
logs as filters, for the same two TREC corpus data sets. By
Figure 7, we find that (1) The approach used to optimize
the short filters can save the forwarding cost. For example
in Figure 7(a) for threshold value 2.0, short filters with 10
terms may achieve 4.26 folds of the forwarding cost saving
compared to the arbitrary filters; for threshold 0.1, short filters
with 1 term may achieve 7.96 folds of the forwarding cost
saving compared to the arbitrary filters. (2) When the default
threshold value in the x-axis grows larger, the forwarding cost
saving rate of y-axis also increases. This is because when the
larger default threshold value is used, a smaller number of
TTerms are selected by the higher default threshold value. (3)
Since documents in TREC WT10G are relatively short articles
composed by a smaller number of terms than TREC AP, for
arbitrary number of terms, the cost saving of TREC WG10G
is higher than that of TREC AP.

Simultaneously, in the above experiments, we measure the
false dismissal rate. Using the search.com query logs as filters,
Figure 8(a) and (c) respectively plots the false dismissal
rate for TREC AP corpus and TREC WT10g corpus, and
Figure 8(b) and (d) for both corpus with a commercial SE’s
query logs as filters. From Figure 8, we find that: (1) when
setting|f |s = 10 or |f |s = 5, the technique used to optimize
short filters produce a very low false dismissal rate; even
in Figure 8(c) and (d), when the default threshold value is
unreasonably set with a large value 8.0, the false dismissalrate
is less than 0.0812. This result is useful: it indicates thatwith
larger threshold values, the system can reduce the forwarding
cost with a small false dismissal rate as confirmed in Figure 7.

10

1 10 100 1000 10000
1E-6

1E-5

1E-4

1E-3

0.01

0.1

 1
 2
 3
 4

te
rm

_s
co

re

terms ranked by term_score(log10)

Trec AP DataSet

1 10 100
1E-3

0.01

0.1

1

10

 1
 2
 3
 4

 te
rm

_s
co

re

terms ranked by term_score (log10)

Trec WT10G Data Set

(a) TREC AP (b) TREC WT10G

Fig. 6. Query Logs and Content Documents

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

 Arbitary
 10
 5
 3
 2
 1

search.com,Trec AP

Fo
rw

ar
di

ng
 C

os
t S

av
in

g

Default Threshold Value
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rw

ar
di

ng
 C

os
t S

av
in

g

 arbitrary
 10
 5
 3
 2
 1

Default Threshold Value

Commercial SE, TREC AP

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Fo
rw

ar
di

ng
 C

os
t S

av
in

g

 arbitrary
 10
 5
 3
 2
 1

Default Threshold Value

Commercial SE, TREC WT10g

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Fo
rw

ar
di

ng
 C

os
t S

av
in

g

 arbitrary
 10
 5
 3
 2
 1

Default Threshold Value

msn, TREC WT10g

(a) Search.com,TREC AP (b) Commercial SE,TREC AP (c) Search.com,TREC WT10G (d) Commercial SE,TREC WT10G

Fig. 7. Forwarding Cost Saving by Default Thresholds

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
M

is
s

D
is

m
is

sa
l R

at
e

 Arbitary
 10
 5
 3
 2
 1

Default Threshold Value

search.com, TREC AP

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
M

is
s

D
is

m
is

sa
l R

at
e

 arbitrary
 10
 5
 3
 2
 1

Default Threshold Value

Commercial SE, TREC AP

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
M

is
s

D
is

m
is

sa
l R

at
e

 Abitary
 10
 5
 3
 2
 1

Default Threshold Value

search.com, TREC WT

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

 arbitrary
 10
 5
 3
 2
 1

Fa
ls

e
M

is
s

D
is

m
is

sa
l R

at
e

Default Threshold Value

Commercial SE, TREC WT10g

(a) Search.com,TREC AP (b) Commercial SE,TREC AP (c) Search.com,TREC WT10G (d) Commercial SE,TREC WT10G

Fig. 8. False dismissal rate by Default Thresholds

(2) a relatively higher false dismissal rate is produced when
the number of short terms|f |s is smaller like 3, 2 or 1.

C. Performance Result of Adaptive Forwarding

We find that the results of the various combinations of two
query logs and two document corpus follow similar trends;
thus in the rest of this section, we report the results by
choosing one example combination (search.com as filters and
TREC AP as the documents) as the experimental data and
study the performance ofSTAIRunder several key parameters.
Also, we focus on the study of adaptive forwarding as the most
effective solution.

The experimental results of default forwarding indicate that
the forwarding cost heavily depends on the specified thresholds
(either the default threshold or personalized threshold).When
the threshold is low, the forwarding cost could be high.
Here we conduct the experiment to study the performance of
adaptive forwarding that uses the filter information to reduce
the forwarding cost.

In this experiment, the thresholds are generated by the
exponential distribution with mean equal to 0.1, and the
query logs in search.com are used as filters and TREC AP
as the documents. During the implementation of HiBlooms
structure for adaptive forwarding, we setk = 4 hash functions,
m = 512 ∗ 1024 ∗ 16 bits of bloom vector andc = 50 cells
(buckets). In each cell, the encoded terms are divided by 5
groups respectively for filters with filter length equal 1, 2,3,
4 and more than 5 (including 5). As a result, with33, 554
bits, each group of one bucket in the HiBlooms structure can
encode around4, 194 terms and the total number of encoded
terms is1, 048, 500 in the HiBlooms structure, while the false
positive rate is roughly equal to0.024 [7].

Figure 9 plots the forwarding cost saving rate and false
dismissal rate, respectively. By setting the accumulativerate
P = 80%, the dynamical forwarding can reduce the false
dismissal rate but with the cost of the reduced forwarding
cost saving). Compared with the dynamical forwarding with
P = 10%, the forwarding cost saving is a little reduced from

11

0.0

0.2

0.4

0.6

0.8

1.0

dyna, P=10%
arbi terms

0.18872

0.0669
0.0451

0.92621

0.00301
0.05233

 Forwarding Cost Saving
 False Dismissal Rate

Fo
rw

ar
di

ng
 C

os
t S

av
in

g
&

 F
al

se
 D

is
m

is
sa

l R
at

e

default,
10 terms

default,
arbi terms

adaptivedyna, P=80%
arbi terms

0.6425

0.3152

0.2036

0.06835

seach.com, TREC AP
exponential, mean=0.1

Fig. 9. Performance Study of Default, Dynamical and Adaptive Forwarding

0.06835 to 0.0669, yet the the false dismissal rate is reduced
from 0.3152 to 0.18872; for the default forwarding, that could
be treated as a dynamical forwarding with P= 0, the for-
warding cost saving for the case of filter length with arbitrary
terms, is just reduced to 0.05233, but the false dismissal rate
is greatly reduced to 0.00301. This is because: when the term
scores in published documents are sorted by the descending
order, especially for term score with a skew distribution, the
head part of sorted term scores may accumulate a much higher
score value than the tail part. Thus with a given cumulative
probability P, a few number of terms in the head part with high
term score values are selected as PTTerms, correspondingly
with a low forwarding cost saving and a small false dismissal
rate. More experiments by setting a larger P> 80% show that
the false dismissal rate approaches 0.0 with almost no false
forwarding saving.

Adaptive forwarding of Figure 9 utilizes the HiBlooms
structure to summarize the filter information and achieves the
highest forwarding cost saving rate 0.92629 and the lowest
false dismissal rate 0.0449; instead, without the available filter
information, either the default forwarding or the dynamic
forwarding can consume more forwarding cost (i.e. the small
forwarding cost saving rate) and the low false dismissal rate.
From this experiment, we find both the document information
(i.e. document terms and term scores) and the filter information
(i.e. query terms, filter thresholds and filter lengths) are critical
to further reduce the forwarding cost and the false dismissal
rate.

Figure 10 plots the load distribution of the above experi-
ment, where x-axis represents the load range from one point
value to next one (for example from 100 to 200), and y-axis
represents the node count inside the load range of x-axis. For
comparison, we plot the load distribution of default forwarding
with arbitrary terms, default forwarding with|f |s = 10, and
the adaptive forwarding.

Among the load distribution, we are interested in:

• the overall average load per node;
• the overloading issue: we consider one node is overloaded

when the node may receive more than 2 times of the
average load.

By default forwarding for arbitrary terms, the average load

0 200 400 600 800 1000 1200 1400

0

2

4

6

N
od

e
C

ou
nt

 (*
 1

00
0)

Load (received docs per node)

 adaptive
 default,10 terms
 default, arbitrary terms

search.com, TREC AP,
exponential, mean =0.1

Fig. 10. Load Distribution

is equal to 664 documents per node, and there are 1.58 %
nodes (i.e. 158 nodes) receiving more than 1200 documents;
when setting|f |s = 10 for the default forwarding, the average
load is 581 documents per node, with only 0.35% nodes (35
nodes) receiving more than 1000 documents. By the adaptive
forwarding, the average load is 132 document per node, and
no node receives more than 264 documents.

These results are explained as follows: in the document
corpus, some terms frequently appear in the documents and
some terms rarely appear. Thus, the frequent terms produce
high values of inverse document frequency (idf), and cor-
respondingly small values of term scores. By the default
forwarding with arbitrary terms to exclude the terms with the
small term scores, these frequent terms may be easily selected
as TTerms and documents are forwarded to the home nodes for
these frequent terms, suffering from the overloading problem.
By using the adaptive forwarding, these frequent terms with
small term scores can be excluded to receive the forwarded
document and be free of the overloading issue. Of course,
without excluded any terms, the full-forwarding suffer from
the most serious overloading because the home nodes of all
frequent terms receive the documents.

D. Sensitivity Study of Adaptive Forwarding

Following the above experiment of adaptive forwarding in
Section V-C, we vary the values of total number of nodes
N and several key parameters in the HiBlooms structure
(including group numberg, bucketsb, and bits in each bloom
filter) to study the sensitivity of adaptive forwarding.

Besides the forwarding cost saving and false dismissal rate,
Table III shows the average matching time per document and
actual data size of the HiBlooms structure. From this table,
we find that the DHT network sizeN has little effect on the
performance result because the filter information is indepen-
dent of the DHT node size. For the other three parameters,
the larger grouping filter length withg = 20 may produce
better performance for the four metrics, but with rather limited
improvement. This result is not hard to explain:g = 5 of the
default setting in Section V-C may cover most filters because
filters in the realistic trace log are typically composed by afew
number of terms. More cells withb = 1000 in the HiBlooms
structure can divide the filter thresholds more precisely and

12

Parameters Forwarding False Dismi- Avg Matching Time HiBlooms
Cost Saving ssal Rate Per Doc (ms) Size (MB)

default: 0.92629 0.0449 22.69 2.198
case 1: N=80k 0.93152 0.0623 23.86 2.253
case 2: g=20 0.94186 0.0533 26.32 2.576
case 3: b=1000 0.99282 0.0225 71.65 5.971
case 4: m=216 0.98664 0.0521 10.12 33.155

TABLE III

SENSITIVITY STUDIES OFADAPTIVE FORWARDING

further save forwarding cost with0.99282 and reduce the
dismissal rate with0.0225; however, more bloom filters due
to a larger value ofb = 1000 result in the increased matching
time with 71.65 ms per document and the whole HiBlooms
structure becomes larger with5.971 MB. Finally, setting more
bits for each bloom filter withm = 216 may use less matching
time than case 3 with larger cells but the whole HiBlooms
structure is as large as 33.155 MB.

VI. CONCLUSION AND FUTURE WORK

In this paper we propose a novel and simple content match-
ing and dissemination framework in distributed hash table,
STAIRS. Different from the previous alternative solution like
“ full registration and full forwarding”, or “single registration
and full forwarding”, STAIRScan significantly reduce the
content forwarding cost by the proposed “full registration and
partial forwarding”, and subscribers can receive the satisfying
contents with no duplicates. As for future work, we expect
that STAIRSwill be integrated with the existing RSS feed
approach [16] to provide more expressive content filtering.

ACKNOWLEDGMENT

The research of W. Rao and A. Fu are supported in
part by the RGC Earmarked Research Grant of HKSAR
CUHK 4118/06E. The research of L. Chen is supported
by Hong Kong RGC GRF 611608 and NSFC key project
NO. 60736013. The research of H. Chen is supported by
National Science Foundation of China (NSFC) under grant
No.60433040 and National 973 Key Basic Research Program
under grant No.2003CB317003.

We also would like to thank the anonymous ICDE reviewers
for their valuable comments that helped improve this paper.

REFERENCES

[1] http://alert.live.com.
[2] http://en.wikipedia.org/wiki/special:statistics.
[3] http://www.google.com/alerts.
[4] J. P. Callan. Document filtering with inference networks.In SIGIR,

pages 262–269, 1996.
[5] F. M. Cuenca-Acuna and T. D. Nguyen. Text-based content search and

retrieval in ad-hoc p2p communities. InNETWORKING Workshops,
pages 220–234, 2002.

[6] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and
D. Shasha. Filtering algorithms and implementation for very fast
publish/subscribe. InSIGMOD Conference, pages 115–126, 2001.

[7] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Summary cache:a
scalable wide-area web cache sharing protocol.IEEE/ACM Trans. Netw.,
8(3):281–293, 2000.

[8] S. Ganguly, S. Bhatnagar, A. Saxena, R. Izmailov, and S. Banerjee. A
fast content-based data distribution infrastructure. InINFOCOM, 2006.

[9] D. Kukulenz and A. Ntoulas. Answering bounded continuous search
queries in the world wide web. InWWW, pages 551–560, 2007.

[10] S. Michel, P. Triantafillou, and G. Weikum. Klee: A framework for
distributed top-k query algorithms. InVLDB, pages 637–648, 2005.

[11] T. Milo, T. Zur, and E. Verbin. Boosting topic-based publish-subscribe
systems with dynamic clustering. InSIGMOD Conference, pages 749–
760, 2007.

[12] V. Ramasubramanian, R. Peterson, and E. G. Sirer. Corona:A high
performance publish-subscribe system for the world wide web. In NSDI,
2006.

[13] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A
scalable content-addressable network. InSIGCOMM, 2001.

[14] I. Rose, R. Murty, P. R. Pietzuch, J. Ledlie, M. Roussopoulos, and
M. Welsh. Cobra: Content-based filtering and aggregation ofblogs and
rss feeds. InNSDI, 2007.

[15] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peersystems. In
Middleware, 2001.

[16] D. Sandler, A. Mislove, A. Post, and P. Druschel. Feedtree: Sharing
web micronews with peer-to-peer event notification. InIPTPS, pages
141–151, 2005.

[17] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H.Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internetapplications.
In SIGCOMM, 2001.

[18] C. Tang and S. Dwarkadas. Hybrid global-local indexingfor efficient
peer-to-peer information retrieval. InNSDI, pages 211–224, 2004.

[19] C. Tang, Z. Xu, and M. Mahalingam. psearch: Information retrieval in
structured overlays. InHotNets-I, 2002.

[20] C. Tryfonopoulos, S. Idreos, and M. Koubarakis. Publish/subscribe
functionality in ir environments using structured overlay networks. In
SIGIR, pages 322–329, 2005.

[21] P. Yalagandula and M. Dahlin. A scalable distributed information
management system. InSIGCOMM, pages 379–390, 2004.

[22] T. W. Yan and H. Garcia-Molina. The sift information dissemination
system.ACM Trans. Database Syst., 24(4):529–565, 1999.

[23] Y. Yang, R. Dunlap, M. Rexroad, and B. F. Cooper. Performance of
full text search in structured and unstructured peer-to-peer systems. In
INFOCOM, 2006.

[24] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: afault-tolerant
wide-area application infrastructure. volume 32, 2002.

