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Abstract. Privacy-preserving data publication for data mining is to
protect sensitive information of individuals in published data while the
distortion to the data is minimized. Recently, it is shown that (α, k)-
anonymity is a feasible technique when we are given some sensitive at-
tribute(s) and quasi-identifier attributes. In previous work, generalization
of the given data table has been used for the anonymization. In this pa-
per, we show that we can project the data onto two tables for publishing
in such a way that the privacy protection for (α, k)-anonymity can be
achieved with less distortion. In the two tables, one table contains the
undisturbed non-sensitive values and the other table contains the undis-
turbed sensitive values. Privacy preservation is guaranteed by the lossy
join property of the two tables. We show by experiments that the results
are better than previous approaches.

1 Introduction

Privacy-preserving data mining is about preserving the individual privacy and
retaining as much as possible the information in a dataset to be released for
mining. The perturbation approach [2] and the k-anonymity model [14, 13, 4, 1]
are two major techniques for this goal.

The k-anonymity model assumes a quasi-identifier (QID), which is a set of
attributes that may serve as an identifier in the data set. In the simplest case,
it is assumed that the dataset is a table and that each tuple corresponds to an
individual. For example, in Table 1, attributes Job, Birth and Postcode form a
quasi-identifier, where attribute Illness is a sensitive attribute. The privacy may
be violated if some quasi-identifier values are unique in the released table. The
assumption is that an attacker can have the knowledge of another table where
the quasi-identifier values are linked with the identities of individuals. Therefore,
a join of the released table with this background table will disclose the sensitive
data of individuals. A real example is found in the voter registration records in
the United States, where the attributes of name, gender, zip code and date of



Job Birth Postcode Illness

clerk 1975 4350 HIV

manger 1955 4350 flu

clerk 1955 5432 flu

factory worker 1955 5432 fever

factory worker 1975 4350 flu

technical supporter 1940 4350 fever
Table 1. Raw medical data set

Job Birth Postcode Illness

* * 4350 HIV

* * 4350 flu

* * 5432 flu

* * 5432 fever

* * 4350 flu

* * 4350 fever

Table 2. A (0.5, 2)-anonymous
table of Table 1 by full-domain
generalization

Job Birth Postcode Illness

white-collar * 4350 HIV

white-collar * 4350 flu

* 1955 5432 flu

* 1955 5432 fever

blue-collar * 4350 flu

blue-collar * 4350 fever

Table 3. An (0.5,2)-anonymous
data set of Table 1 by local re-
coding

birth are recorded. It is found that a high percentage of the population can be
uniquely identified by the gender, date of birth and the zip code [12].

Let Q be the quasi-identifier (QID). An equivalence class set, called a
QID-EC, for the same QID value of a table with respect to Q is a collection
of all tuples in the table containing identical values of Q. For instance, Table 2
contains two QID-EC’s. The first QID-EC contains the first two and the last two
tuples because these tuples contain identical values of Q. Similarly, the second
QID-EC contains the third and the fourth record.

A data set D is k-anonymous with respect to Q if the size of every QID-EC
with respect to Q is k or more. As a result, it is less likely that any tuple in
the released table can be linked to an individual and thus personal privacy is
preserved. For example, each QID-EC in Table 2 has a size equal to or greater
than 2. If k = 2, the data set in Table 2 is said to be k-anonymous.

We assume that each attribute follows a generalization hierarchy. In this
hierarchy, a value in a lower level has a more specific meaning compared with a
value in a higher level. For instance, Figure 1 shows a generalization hierarchy
of attribute job.

In order to achieve k-anonymity, we generalize some values in some attributes
in the quasi-identifier by replacing the values in a lower level by the values in a
higher level according to the generalization hierarchy. Table 2 is a generalization
of Table 1.

2 (α, k)-anonymity

The k-anonymity model is proposed in order to prevent the re-identification of
individuals in the released data set. However, it does not consider the inference
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Fig. 1. Generalization hierarchy of attribute job

relationship from the quasi-identifier to some sensitive attribute. We assume
for simplicity that there is only one sensitive attribute and that some values of
this attribute are sensitive values. Suppose all tuples in a QID-EC contain the
same sensitive value in the released data set, even though the size of the QID-
EC is greater than or equal to k, all tuples in this QID-EC are linked to this
sensitive value in the released data set. Therefore, each individual that has the
corresponding QID value will be linked to the sensitive value. Let us call such
an attack an inference attack.

In order to overcome this attack, [9, 17] proposed some privacy models and
methods. [9] and [17] proposed an l-diversity model and an (α, k)-anonymity
model, respectively, where α is a real number ∈ [0, 1] and k and l are positive
integers. As discussed in [17], it is difficult for users to set the parameters in the
l-diversity model. In this paper, we focus on the (α, k)-anonymity model, which
generates publishable data that is free from the inference attack. In addition to
k-anonymity, this model requires that the value of the frequency (in fraction) of
any sensitive value in any QID-EC is no more than α after anonymization.

There are two possible schemes of generalizations: global recoding and local
recoding. With global recoding [13, 8, 3, 11, 7, 16, 4] all values of an attribute
come from the same domain level in the hierarchy. In other words, all values come
from the values in the same level in the generalization hierarchy. For example, all
values in attribute job are in the lowest level (i.e. clerk, manager, factory worker
and technical supporter), or all are in the top level (i.e. *). For example, a global
recoding of Table 1 is Table 2. One advantage is that an anonymous view has uni-
form domains. But, it may lose more information, compared with local recoding
(which will be discussed next), because it suffers from over-generalization.

Under the scheme of local recoding [14, 13, 1, 10, 6, 5, 19], values may be
generalized to different levels in the domain. For example, Table 3 is a (0.5, 2)-
anonymous table by local recoding. In fact, one can say that local recoding is a
more general model and global recoding is a special case of local recoding. Note
that, in the example, known values are replaced by unknown values (*). This is
called suppression, which is one special case of generalization, which is in turn
one of the ways of recoding.

It is easy to check that generalizing data to form QID-EC’s in a released
table is one possible way to achieve (α, k)-anonymity. However, it is not the only
possible way, and we shall describe another method in the next section.

3 The lossy join approach
In recent work, it has been found that lossy join of multiple tables is useful in
privacy-preserving data publishing [18, 15]. The idea is that if two tables with



Job Birth Postcode Illness ClassID

clerk 1975 4350 HIV 1

manager 1955 4350 flu 1

clerk 1955 5432 flu 2

factory worker 1955 5432 fever 2

factory worker 1975 4350 flu 3

technical supporter 1940 4350 fever 3
Table 4. Temp table

Job Birth Postcode ClassID

clerk 1975 4350 1

manager 1955 4350 1

clerk 1955 5432 2

factory worker 1955 5432 2

factory worker 1975 4350 3

technical supporter 1940 4350 3
Table 5. NSS Table

ClassID Illness

1 HIV

1 flu

2 flu

2 fever

3 flu

3 fever
Table 6. SS Table

a join attribute are published, the join of the two tables can be lossy and this
lossy join helps to conceal the private information.

In this paper, we make use of the idea of lossy join to derive a new mechanism
for achieving a similar privacy preservation target as (α, k)-anonymization. Let
us take a look at an example in Table 1. A (0.5, 2)-anonymization is given in
Table 3. From this table, we can generate a table Temp as shown in Table 4. For
each equivalence class E in the anonymized table, we assign a unique identifier
(ID) to E and also to all tuples in E. Then, we attach the correspondence ID to
each tuple in the original raw table and form a new table Temp. From the Temp
table, we can generate two separate tables, Tables 5 and 6. The two tables share
the attribute of ClassID. If we join these two tables by the ClassID, it is easy to
see that the join is lossy and it is not possible to derive the table Temp after the
join. The result of joining the two tables is given in Table 7. From the lossy join,
each individual is linked to at least 2 values in the sensitive attribute. Therefore,
the required privacy of individual can be guaranteed. Also, in the joined table,
for each individual, there are at least 2 individuals that are linked to the same
bag B of sensitive values, such that in terms of the sensitive values, they are not
distinguishable. For example, the first record in the raw table (QID = (clerk,
1975, 4350)) is linked to bag {HIV,flu}. We find that the second individual (QID
= (manager, 1955, 4350)) is also linked to the same bag B of sensitive values.
This is the goal of k-anonymity for the protection of sensitive values.

3.1 Contribution

[17] proposed to generate one generalized table which satisfies (α, k)-anonymity.
Since the table is generalized, the data in the table is distorted. In this paper,
we generalize the definition of (α, k)-anonymity to allow for the generation of
two tables instead of one generalized table. In this way, the privacy protection
for (α, k)-anonymity can be achieved with less distortion. In the two tables, one



Job Birth Postcode Illness ClassID

clerk 1975 4350 HIV 1

manager 1955 4350 HIV 1

clerk 1975 4350 flu 1

manager 1955 4350 flu 1

clerk 1955 5432 flu 2

factory worker 1955 5432 flu 2

clerk 1955 5432 fever 2

factory worker 1955 5432 fever 2

factory worker 1975 4350 flu 3

technical supporter 1940 4350 flu 3

factory worker 1975 4350 fever 3

technical supporter 1940 4350 fever 3
Table 7. Join result table

table contains the undisturbed non-sensitive values and the other table contains
the undisturbed sensitive values. The privacy preservation is by the lossy join
property of the two tables. We show that the results are better than previous
approaches [17, 18] in the experiments.

The rest of the paper is organized as follows. In Section 4, we re-visit (α, k)-
anonymity and propose a genearlization model of (α, k)-anonymity. In Sec-
tion 5, we describe how the lossy join can be adapted to the generalized (α, k)-
anonymity model. We propose an algorithm which generates two tables satisfy-
ing (α, k)-anonymity in Section 6. A systematic performance study is reported
in Section 7. The paper is concluded in Section 8.

4 Generalized (α, k)-anonymity

Let us re-examine the objectives of (α, k)-anonymity. With k-anonymity, we
want to make sure that when an individual is mapped to some sensitive values,
at least k−1 other individuals are also mapped to the same sensitive values. Let
B be a bag of these sensitive values. For example, consider an individual with
QID=(clerk, 1975, 4350) in Table 1. With 2-anonymity, since s/he is mapped
to the first and the second tuple in Table 3, s/he is mapped to a bag B =
{HIV, flu}. There is another individual with QID=(manager, 1955, 4350) in
Table 1 that also is mapped to the same bag B = {HIV, flu} in Table 3. (α, k)-
anonymity further ensures that no sensitive value is sufficiently dominating in
B so that an individual cannot be linked to any sensitive value in B with a
high confidence. For instance, with α = 0.5, since B contains HIV and flu,
the frequency (in fraction) of each value in B is at most 0.5. Based on this
observation, we generalize the definition of (α, k)-anonymity as follows:

Definition 1 (Generalized (α, k)-anonymity). Consider a dataset D in which
a set of attributes form the QID. We assume that the adversary only has the
knowledge of an external table where the QID’s are linked to individuals. A re-
leased data set D′ generated from D satisfies generalized k-anonymity if, when-
ever an individual is linked to a bag B of sensitive values, at least k − 1 other



individuals are also linked to B. In addition, if the frequency (in fraction) of any
sensitive value in B is no more than α, then the released data satisfies generalized
(α, k)-anonymity.

5 Generalized (α, k)-anonymity by Lossy Join

Suppose we form an anonymized table in which some QID values are generalized.
In the anonymized table, each set of tuples with the same QID values forms a
QID-EC. However, instead of publishing one single table A with the generalized
values, there is the possibility of separating the sensitive attribute from the
non-sensitive attributes and generate two tables by projecting these two sets of
attributes. Tuples in the two tables are linked if they belong to the same QID-
EC in A. Hence we can publish two tables: (1) one table, called non-sensitive
table (NSS table), containing all the non-sensitive attributes together with QID
equivalence class (QID-EC in A) IDs, and (2) the other table, called sensitive
table (SS table), containing the QID-EC ID and the sensitive attributes. The
released tables are annotated with the remark that each tuple in each of the two
published table corresponds to one record in the original single table. This is to
ensure that a user will not mistakenly join the two tables and assume that the
join result corresponds to the original table.

The schema of the non-sensitive table (NSS table) is shown as follows, where
Class ID corresponds to QID-EC ID.

Original QID attributes Class ID

The schema of the sensitive table (SS table) is shown as follows.

Class ID Sensitive attribute

Let us consider the example in Table 1 again. We propose that Table 5 (NSS)
and Table 6 (SS) can be published as the anonymized data.

Theorem 1. The resulting published tables NSS and SS satisfy generalized
(α, k)-anonymity.

Proof: Given the QID information of individuals in a table TI (which we as-
sume that an attacker may possess) and the anonymized Table TA (e.g. Table 3),
we can “join” the two tables by matching each QID in TA to its anonymized
equivalence class and obtain a table TIA. Since TA satisfies (α, k)-anonymity,
when the QID of an individual is linked to a bag B of values in the sensitive
attribute, at least k− 1 other QID’s of other individuals are also linked to B. In
addition, the frequency (in fraction) of any sensitive value in B is no more than
α.

Now, suppose the adversary is given tables NSS and SS. Equipped with
only table TI , an adversary must join the tables NSS and SS on their common



attribute in an attempt to link the QID’s to the sensitive values. Let the join
result be table T ′A, such as Table 7. Consider any QID-EC with class ID X. Let
BX be the bag of sensitive values that X is linked to in TA and suppose there
are a tuples in TA belonging to X. In Table T ′A, there will be a2 tuples generated
for X. In Table T ′A, BX becomes B′

X and each entry in BX is duplicated a times
in B′

X . In the a2 tuples in T ′A, each original QID value in the given table T
will now be linked to the bag B′

X . Besides, a individuals are involved in X, and
each is linked to B′

X . The frequency of each sensitive value in B′
X is the same as

that in BX in TIA. Hence, the tables NSS and SS release no more information
as the table TA in terms of the linkage of an individual to a bag B of sensitive
values and in terms of the percentage of each sensitive value in B.

This shows that the privacy protection provided by the single anonymized
table TA is no stronger than that provided by the NSS and SS tables in terms
of (α, k)-anonymity. Since TA satisfies (α, k)-anonymity, tables NSS and SS also
satisfy (α, k)-anonymity.

The example shown in Tables 3 to 7 demonstrates the ideas in the proof
above. If we publish Tables 5 and 6, we can achieve similar privacy preservation
objectives as if we publish Table 3 only.

6 Algorithm

Our method includes the following steps.

1. Construct an (α, k)-anonymous table T∗ from the given raw table (which
will be described in Algorithm 1), and assign each equivalence class in the
resulting table a class ID.

2. Add a column for the class ID of the equivalence class in the original raw
table, such that, for each tuple, the class ID is the ID of the equivalence class
that the tuple belongs in T∗. Call this new table the Temp table. Hence the
Temp table contains the raw table plus one extra column.

3. Project the Temp table on the QID attributes and the Class ID column. The
resulting table is the NSS table.

4. Project the Temp table on the sensitive attributes and the Class ID column.
This results in the SS table.

The top-down approach has been found to be highly effective in k-anonymization
[4]. In this approach, the table is first totally anonymized to the unknown values,
and then attributes are specialized one at a time until we hit a point where the
resulting table violates (α, k)-anonymity. We shall adopt the top-down approach
in [17] to tackle the first step of (α, k)-anonymization in the above. The idea
of the algorithm is to first generalize all tuples completely so that, initially, all
tuples are generalized to one equivalence class. Then, some values in the dataset
are specialized in iterations. During the specialization, we must maintain (α, k)-
anonymity. The process continues until we cannot specialize the tuples anymore
without violating (α, k)-anonymity. The pseudo-code of the top-down approach
is shown in Algorithm 1.



Algorithm 1 Top-Down Approach for Single Attribute
1: fully generalize all tuples such that all tuples are equal
2: let P be a set containing all these generalized tuples
3: S ← {P}; O ← ∅
4: repeat
5: S′ ← ∅
6: for all P ∈ S do
7: specialize all tuples in P one level down in the generalization hierarchy such

that a number of specialized child nodes are formed
8: unspecialize the nodes which do not satisfy (α, k)-anonymity by moving the

tuples back to the parent node
9: if the parent P does not satisfy (α, k)-anonymity then

10: unspecialize some tuples in the remaining child nodes so that the parent P
satisfies (α, k)-anonymity

11: for all non-empty branches B of P , do S′ ← S′ ∪ {B}
12: S ← S′

13: if P is non-empty then O ← O ∪ {P}
14: until S = ∅
15: return O

7 Experimental Results

The system platform we used is: Windows XP OS, Microsoft SQL Server 2000,
Intel Celeron CPU 2.66GHz, 256MB Memory, 80G Hard disk. We implemented
our proposed algorithm, the (α, k)-anonymity based privacy preservation by lossy
join, in C/C++ language. Let us denote it by Alpha(Lossy). We compared the
proposed lossy-join algorithm with two algorithms in the literature. One is the
original algorithm of (α, k)-anonymity [17] which generalizes the QID and forms
one generalized table only. Let us denote the algorithm by Alpha. The other
algorithm is the anatomy algorithm which makes use of the lossy join for the
anonymization [18]. Let us denote the algorithm by Anatomy. Anatomy also
generates two tables with a similar strategy of separating the sensitive data and
the QID data. However, the goal of Anatomy is to create QID-EC’s which satisfy
the l-diversity requirement, without precaution in creating QID-EC’s that also
minimizes the effective distortion to the QID values. In other words, Anatomy
does not consider the minimization of the variations in the QID values in each
QID-EC when two tables are released. Alpha(Lossy) takes care of this issue
by the top-down anonymization algorithm and therefore results in less data
distortion.

The source code of this algorithm can be obtained from the author’s website
http://www.cs.cityu.edu.hk/∼taoyf/paper/vldb06.html. In our experiments, we
make some modifications on the ST files generated by the original anatomy
algorithm such that ST table can be loaded into the Microsoft SQL Server 2000.

Similar to [4, 8, 17], we adopted the adult data set for the experiment, which
can be downloaded in the UCIrvine Machine Learning Repository
(http://www.ics.uci.edu/∼mlearn/MLRepository.html). We eliminated the records



Attribute Distinct Values Generalizations Height

1 Age 74 5-, 10-, 20-year ranges 4

2 Work Class 7 Taxonomy Tree 3

3 Education 16 Taxonomy Tree 4

4 Martial Status 7 Taxonomy Tree 3

5 Race 5 Taxonomy Tree 2

6 Sex 2 Suppression 1

7 Native Country 41 Taxonomy Tree 3

8 Salary Class 2 Suppression 1

9 Occupation 14 Taxonomy Tree 2
Table 8. Description of Adult Data Set

with unknown values in this data set. The resulting data set contains 45,222 tu-
ples. Nine of the attributes were chosen in our experiments, as shown in Table
8. By default, we set k = 2 and α = 0.33. In Table 8, we set the first eight at-
tributes and the last attribute as the quasi-identifer and the sensitive attribute,
respectively.

We compare the algorithms in terms of effectiveness for aggregate queries.
Similar to [18], the effectiveness of aggregate query is defined to be its average
relative error in answering a query of the following form.

SELECT COUNT(*)

FROM Unknown-Microdata

WHERE pred(Aqi
1 ) AND ... AND pred(Aqi

qd) AND pred(As)

In the above query, Unknown-Microdata is an original data set or an anonymized
data set. qd denotes the number of QID attributes to be queried and As denotes
the sensitive attribute. For any attribute A, the predicate pred(A) has the form

(A = x1 OR A = x2 OR ... OR A = xb)
where xi is a random value in the domain of A, for 1 ≤ i ≤ b. The value of b
depends on the expected query selectivity s

b = d|A| · s1/(qd+1)e
where |A| is the domain size of A. If the value of s is set higher, the selection
conditions in pred(A) will be more.

We compare the anonymized tables generated by different algorithms in terms
of average relative error, which is defined as follows. We perform the aggregate
query with the original data set, called Original. That is,

SELECT COUNT(*)

FROM Original

WHERE pred(Aqi
1 ) AND ... AND pred(Aqi

qd) AND pred(As)

Let us call the count obtained above act. We execute the aggregate query
with the anonymized data set as follows. As algorithm Alpha(Lossy) and algo-
rithm Anatomy generates two tables, namely NSS and SS, we perform the query
as follows.



SELECT COUNT(*)

FROM SS

WHERE SS.ClassID in (SELECT NSS.ClassID FROM NSS

WHERE pred(Aqi
1 ) AND ... AND pred(Aqi

qd)) AND pred(As))

Let us call the count obtained above est. As algorithm Alpha generates one
anonymized table, we perform the first query by replacing Unknown-Microdata
with the anonymized or generalized data. Then, we define the relative error to
be |act−est|/act, where act is its actual count derived from the original, and est
the estimated count computed from the anonymized table. In our experiments,
we compare all algorithms by varying the following factors: (1) the number of
QID-attributes d; (2) query dimensionality qd; (3) selectivity s and (4) dataset
cardinality n.

For each setting, we performed 1000 queries on the anonymized tables and
then reported the average query accuracy. By default, we set qd = 4, s = 0.05
and n = 45222. As we adopt the first eight attributes in Table 8 as the quasi-
identifier, the default value of d is 8.

We study the effect of the number of QI-attributes as shown in Figure 2. The
average relative error remains unchanged. Also, algorithm Alpha(Lossy) gives a
lower average relative error compared with algorithm Anatomy and algorithm
Alpha. This is because algorithm Alpha(Lossy) considers the minimization step
of the distortion for the anonymization but algorithm Anatomy does not. Also,
algorithm Alpha(Lossy) does not generalize the table but algorithm Alpha gen-
eralize the table, which makes the average relative error higher. On average,
algorithm Anatomy gives lower average relative error compared with algorithm
Alpha. The reason is similar. Algorithm Alpha generalizes the table, which dis-
tort the data much, but algorithm Anatomy does not.

We also studied the effect of query dimensionality qd as shown in Figure 3.
Similarly, even though the average relative error of algorithm Alpha(Lossy) is
smaller than that of algorithm Anatomy and algorithm Alpha, qd had little effect
on the average relative error.

We also varied the selectivity s as shown in Figure 4 and found that the
average relative error of all algorithms decreases when s increases. This is be-
cause, when s is larger, each attribute in the aggregate query involves more value
matches. That means the actual count is larger. Note that the actual count is the
denominator of the average relative error. Besides, if the generalized values in
the anonymized table match more aggregate values in the query, the estimated
count will be more accurate. Thus, the overall average relative error decreases
when s increases.

Figure 5 shows the average relative error against the data set cardinality n.
We found that the average relative error of all algorithms decreases slightly when
n increases. This is because, when n is larger, there is more chance that a tuple
can be matched with an existing tuple in the data without much generalization.
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Similarly, algorithm Alpha(Lossy) gives a lower average relative error compared
with algorithm Anatomy and algorithm Alpha.

8 Conclusion

In this paper, we proposed an (α, k)-anonymity based privacy preservation mech-
anism that reduce information loss by the use of lossy join. Instead of one gen-
eralized table, we generate two tables with a sharing attribute called ClassID,
which corresponds to a unique identifier of an “equivalence class”. One table
contains the detailed information of the quasi-identifier and ClassID, and the
other table contains ClassID and the sensitive attribute. By avoiding the gener-
alization of the quasi-identifier in the first table, we achieve less information loss.
We conducted some experiments and verified the improvement on information
loss.
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